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ABSTRACT
Many real-time applications are designed to work in different
operating modes each characterized by different functional-
ity and resource demands. With each mode change, resource
demands of applications change, and static resource reserva-
tions may not be feasible anymore. Dynamic environments
where applications may be added and removed online also
need to adapt their resource reservations. In such scenar-
ios, resource reconfigurations are needed for changing the
resource reservations during runtime and achieve better re-
source allocations. There are a lot of results in the scientific
literature of how to find the optimal amount of resources
needed by an application in the different operating modes, or
how an application can perform safe mode transitions. How-
ever, the problem of resource reconfigurations for systems
with reservations has not been addressed. A resource sched-
uler should be reconfigured online in such a way that it still
guarantees a certain amount of resources during the reconfig-
uration process, otherwise applications may miss deadlines.
The paper proposes a framework for scheduling real-time ap-
plications through scheduling servers that provide resource
reservations, and algorithms for changing the resource reser-
vations online while still guaranteeing the feasibility of the
system and the schedulability of applications. The frame-
work analysis is integrated into a well-known modular per-
formance analysis paradigm based on Real-Time Calculus.
The results are illustrated with examples and a case study.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-Time and Embedded Systems

General Terms
Algorithms, Performance, Verification

1. INTRODUCTION
The server architecture paradigm has been seriously con-

sidered in the past years for its ability to separate the sche-
duling concerns between the system and the application lev-
els. A server mechanism is strictly connected with the re-
source partition idea where a shared resource, e.g. CPU
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computation time, is used by several applications. Servers
are used to isolate the temporal behavior of real-time tasks
through resource reservations [17]. Abeni and Buttazzo [3]
introduced a bandwidth reservation mechanism (the Con-
stant Bandwidth Server - CBS) that allows real-time tasks
to execute in dynamic environments under a temporal pro-
tection mechanism, so that a server never exceeds a pre-
defined bandwidth regardless of the actual requests of the
server tasks.

Server models can be classified into event-driven servers:
the servers are driven by the application requirements. The
CBS and sporadic server [22] are typical examples. And
time-triggered servers: the server resource supply is driven
by a predefined timing pattern that depends only on the
server properties. An example is the Time Division Multiple
Access (TDMA) server where the resource is periodically
partitioned [31]. In particular, a TDMA server assigns time
slots to its applications that repeat each cycle.

Nowadays, dynamic real-time applications ask for real-
time systems that can adapt their behavior at run-time by
changing their operating mode: the computing environment
and the available resource of a system may change over time.
For example, adding a new task into the system at runtime
may result in a reduction of the computing resources be-
ing allocated to the existing tasks. Moreover a change in
the operating mode of an application, e.g., from start-up to
normal, or from normal to shut-down, may also demand re-
allocation of the computing resources among the tasks. That
and many other scenarios require flexible workload manage-
ment and resource allocation.

Whereas a server manages an application by supplying
the resource it requires, adaptive applications must rely on
adaptive servers to meet their changing resource require-
ments. Servers need to be reconfigured dynamically to adapt
the resource reservations and reflect the changes in the sys-
tem or its environment. Such reconfigurations need to be
performed online without jeopardizing schedulability. It is
therefore essential to develop appropriate resource reconfig-
uration criteria and algorithms to manage the criticality of
the transition phase.

To cope with applications in which the computational de-
mand is highly variable, fixed reservations could not be ap-
propriate to achieve the desired performance, hence adaptive
scheduling schemes need to be adopted. Buttazzo et al. [6]
proposed an elastic scheduling methodology for adapting the
rates of a periodic task set to different workload scenarios,
without affecting the system schedulability. Abeni et al. [1]
presented a framework for dynamically allocating the CPU
resource to tasks whose execution times are not known a
priori. Adaptive reservation techniques based on feedback
scheduling have also been investigated by the authors in [2].
All of these frameworks are only suitable for soft real-time
systems.

There are also systems in which the application is char-
acterized by multiple execution modes, each consisting of a
specific task set and workload requirement. For these sys-
tems, the feasibility of the schedule has to be guaranteed
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Figure 1: TDMA servers reconfigured at t = 20ms (dashed line) causes longer WCRTs for tasks τB and τC .

not only within each individual mode, but also during mode
transitions. This problem has been deeply investigated in
the real-time literature [18, 21, 24, 28]. Crespo et al. [19]
presented a survey of mode change protocols for uniproces-
sor systems under fixed-priority scheduling and proposed a
new protocol along with its schedulability analysis. Guang-
ming [12] computed the earliest time at which a new task
can be safely added to the system scheduled by the Earliest
Deadline First (EDF), without jeopardizing the feasibility of
the task set. All of these results address the problem of per-
forming mode transitions in applications without violating
their schedulability. None of them considers how to change
resource reservations online without violating applications
schedulability which is the goal of this paper.

In real-time operating systems, servers are a specific sche-
duling mechanism that handles aperiodic requests as soon as
possible while preserving hard periodic tasks from missing
their deadlines. Another classification distinguishes between
fixed priority and dynamic priority servers, depending on the
scheduling policy used to schedule them. Among fixed pri-
ority servers, deferrable server [26] and sporadic server [22]
are the most well-known techniques that preserve their ca-
pacity when no request is pending upon the invocation of a
server. Spuri et al. [23] presented a survey of dynamic pri-
ority servers that can efficiently work under EDF. It is also
notable that time-triggered architectures play an increas-
ingly important role in large distributed embedded systems
as described in [14, 31]. Mainly, time-triggered servers offer
high predictability with enormous benefits to the analysis of
real-time systems.

However, classical server paradigms and models do not
allow adaptations to changing conditions. To the best of
our knowledge, none of the schedulers that provide isola-
tion and real-time guarantees have mechanisms for online
reconfiguration that can provide guarantees during the re-
configuration process. It may be possible to wait for an idle
time in the system in order to reconfigure the scheduler as
in [9], however, it is highly unlikely that idle times occur at
the same time for all applications.

Several papers have tried to face and cope with this lack.
Fohler [11] investigated the problem of mode changes in
both the applications and the scheduler in the context of
pre run-time scheduled hard real-time systems. Applica-
tions are specified with periodically activated graphs with
precedence constraints for which safe switching points are
pre-computed using heuristic search techniques. The FRES-
COR project [13] has proposed a mode change protocol for
a system with virtual resources based on the sporadic server
and periodic tasks where budgets may change. Both frame-
works are not as general as the results presented in this paper
which can deal with hierarchically scheduled systems with
mixed schedulers and complex task activation schemes.

New mechanisms have been proposed to change server
models at run-time. de Olivera et al. [10] addressed the
problem of finding optimal CBS parameters and dynamically

reconfiguring the servers, offering support for multi-mode
adaptive real-time applications. Valls et al. [29] presented
an adaptation protocol based on the definition of a contract
model for filtering peaks in resource demands where applica-
tions are modeled with periodic, continuous, and imprecise
tasks. However, in both frameworks there are no algorithms
and analysis of applications schedulability for the proposed
online resource reconfigurations.

Brandt et al. [5] propose the rate-based earliest deadline
(RBED) scheduler where servers are periodic tasks sched-
uled with EDF. The paper gives system schedulability con-
ditions for adaptations in the periods and utilizations of the
servers. However, the paper does not go neither into charac-
terizing the service provided by the servers during reconfig-
urations, nor into algorithms for how to control this service.

Craciunas et al. [7] propose the variable-bandwidth server
(VBS) which is based on CBS but allows for adaptations.
Applications are specified as sequences of actions which exe-
cute on a VBS. Activations of actions change the parameters
of the VBS, and schedulability is based on the maximum uti-
lization from all actions of an application. Our framework is
more general as server reconfigurations may happen at any
time, are independent of application model, and can take
advantage of application operating modes.

Contributions: We tackle the problem of scheduler adap-
tations in resource partitioned architectures, mainly from
the perspective of adaptive servers that provide real-time
guarantees. We develop a scheduling server framework based
on the static TDMA partitioning paradigm. We establish
criteria that need to be met during a reconfiguration of
the framework, classify the possible reconfiguration scenar-
ios, introduce algorithms for performing them while meeting
real-time constraints of applications, and present schedula-
bility analysis for the reconfigurations based on Real-Time
Calculus [27].

Organization of the paper: Section 2 classifies the
problems that may occur during reconfigurations of some
common servers with examples. Section 3 describes the pro-
posed Adaptive Server with Guarantees, and defines the ser-
vice guarantees that it provides during operation and recon-
figuration. Section 4 classifies the possible reconfiguration
scenarios and analyzes schedulability for each of them. Sec-
tion 5 illustrates the algorithms with a case study. Finally,
Section 6 concludes this paper.

2. MOTIVATIONAL EXAMPLES
To illustrate the different problems that may occur dur-

ing reconfigurations, we have chosen three examples of sys-
tems with TDMA servers [31], static polling servers [20], and
CBSs [3]. Similar examples can be derived with other kinds
of servers and show that a naive online change of param-
eters is not able to guarantee the system schedulability in
hard real-time scenarios.
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Figure 2: Polling server SA reconfigured at t = 28ms
(dashed line) causes a deadline miss for task τB and
a capacity miss for server SB.

Example 1. Consider Figure 1. Three TDMA servers,
SA, SB, and SC can operate in two modes, denoted as Old
Mode and New Mode. We suppose that given an operating
mode, all TDMA servers operate with the same period which
equals the cycle of the TDMA. When there is a mode change,
the allocated slots in the TDMA and the cycle of the TDMA
may change. When a server slot becomes available, it is
available regardless of whether there is workload to use it.

Server SA serves a single task τA with worst-case execu-
tion time (WCET) of 2ms and period of 20ms which we will
denote as (2, 20). In Old Mode, server SA has a reserved
slot of 1ms in a TDMA cycle of 10ms denoted as (1, 10).
In New Mode, server SA has parameters (3, 12). Server SB

serves a single task τB with parameters (2, 5). The server in
Old Mode has parameters (5, 10) and in New Mode (6, 12).
Server SC serves a single task τC with parameters (1, 16).
The server in Old Mode has parameters (1, 10) and in New
Mode (1, 12).
Figure 1 shows a server reconfiguration performed at time

t = 20ms. For task τB this means that it suffers longer
worst-case response time (WCRT) of 9ms during the recon-
figuration whereas its WCRT is 7ms in Old Mode and 8ms
in New Mode. Similarly task τC has a longer WCRT during
the reconfiguration equal to 13ms, whereas in Old Mode it is
10ms and in New Mode 12ms.

Hence, a reconfiguration of TDMA servers may cause sev-
eral tasks to miss deadlines.

Example 2. Consider Figure 2. Two polling servers, SA

and SB, are scheduled with the fixed priority policy. Server
SA has higher priority. It can operate in two modes. In Old
Mode it has a budget of 2ms and a period of 7ms, denoted
as (2, 7). It serves a single task τA with WCET of 2ms and
deadline equal to period of 7ms, denoted as (2, 7). In New
Mode SA and τA have parameters (6, 24) and (6, 24), respec-
tively. Server SB and its task τB operate in a single mode
and their parameters are (40, 59) and (40, 59), respectively.
The system is schedulable separately in both modes.

Figure 2 shows a server reconfiguration without a proper
transition algorithm. Server SA and task τA simultaneously
enter Mode II at time t = 28ms which leads to a capacity
miss for server SB and a deadline miss for task τB at time
t = 59ms even though the mode change was performed at the
end of the periods for server SA and task τA.
The example illustrates that reconfiguration of a server

may cause other servers to not be able to deliver their guar-
anteed budgets.

Example 3. Consider Figure 3. CBS SA can operate in
two modes. In Old Mode it has a budget of 4ms with a
period of 5ms denoted as (4, 5). It serves a single task τA
with WCET of 8ms and deadline equal to period of 10ms
denoted as (8, 10). In New Mode, the parameters for SA are
(8, 10) and τA is unchanged. CBS SB serves a single task τB
with parameters (2, 10) and (2, 10), respectively. The system
is schedulable when server SA is either in Old Mode or in
New Mode as U = USA + USB = 1.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τA

τB

SA

SB

Figure 3: CBS SA reconfigured at t = 15ms (dashed
line) causes a missed deadline for task τA.

Figure 3 shows a reconfiguration for server SA at the end
of a server deadline at time t = 15ms which leads to a missed
deadline for task τA at time t = 20ms.

The example illustrates that reconfiguration of a server
may cause the application that it serves to miss deadlines.

In summary, the problems observed during online recon-
figuration of servers fall in two classes:

1. Isolation violation: a reconfiguration of one server
may cause other servers to not be able to deliver their
guaranteed capacities.

2. Deadline violation: a reconfiguration of a server
may affect the application that it serves by making
it miss deadlines.

Safe reconfiguration algorithms will have to address both
problems in order to be suitable for hard real-time systems.

3. FRAMEWORK FOR ADAPTIVE
SERVERS WITH GUARANTEES

In this section, we give an overview of a framework with
adaptive resource reservations. There are many scenarios
for the use of such a framework and many different ways
to realize it. We focus on the scheduling servers and their
properties. In our framework, applications share a common
processor using servers and we refer to them as Adaptive
Servers with Guarantees (ASG) as they guarantee resource
reservations and can be reconfigured dynamically while still
providing a guarantee even during the reconfiguration.

We consider a uniprocessor system that runs a set of ap-
plications. Each application is scheduled on an individual
ASG. Servers provide resource reservations and guarantee
isolation between applications. Applications can be of arbi-
trary complexity and they may even have their own sched-
ulers, as in hierarchically scheduled systems [30]. An ASG is
only concerned with guaranteeing a minimum service supply
to its application. The system has a single Server Manager
that can control the parameters of all servers (such as their
budgets and period) and is able to communicate with the ap-
plications in order to accommodate their changing resource
requirements. The overall system framework is illustrated
in Figure 4.

ASG 1 ASG 2 ASG N

APPL. 1 APPL. 2 APPL. N
EDF FPFIFO

CPU

Server Manager

. . .

Figure 4: Overview of a system where the CPU is
shared by applications through multiple ASGs.
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3.1 The Adaptive Server with Guarantees
Servers are scheduled statically by a TDMA scheme. For

each server a slot of fixed size Q called budget is reserved in
the TDMA time-wheel. A server is activated, i.e., its budget
becomes available, when the slot of the server arrives in the
TDMA time-wheel. All servers in the system are activated
periodically with the same period P which equals to the
cycle of the TDMA. Servers can have different budgets but
always a common period. An ASG is denoted with the tuple
(Q,P ). A schedule of four ASGs is illustrated in Figure 5.

Budgets are always given to applications regardless of
whether they use them or not, like in a traditional TDMA
schedule. In the following discussion, we assume that con-
text switch overheads take negligible time but they can be
trivially added to our analysis. The description of an ASG
can be summarized in the following definition.

Definition 1. An ASG (Q,P ) guarantees to an applica-
tion access to a shared resource for Q > 0 time units every
P > 0 time units, where Q ≤ P .

The total utilization for a system with N ASGs is de-
fined as the sum of the single server utilizations, i.e., U =∑N

i=1 Qi/P . Such a system is schedulable when the total
utilization is smaller or equal to 1:

U ≤ 1. (1)

When the total utilization is less than 1, there is some
unused budget in the system, QF , called the free budget.
We suppose that all ASGs are scheduled from the beginning
of every period one after the other, and the free budget is
always at the end, as illustrated in Figure 5. The free budget
may be given to non real-time applications on the basis that
it can always be reclaimed by the system. The free budget
is essential in our framework during reconfigurations as it
will be shown in Section 4.

3.2 Resource Supply of an ASG
An ASG (Q,P ) may not have access to the CPU for a

time interval Δ that is upper bounded by P − Q. After
this interval, the server will have guaranteed access to the
resource for Q time units. Therefore, an ASG cannot guar-
antee resource access for any interval of size 0 ≤ Δ ≤ P −Q.
However, it guarantees service of S(Δ− (P −Q)), in any in-
terval (P −Q) ≤ Δ ≤ P , where S is CPU speed, e.g. cycles
per time unit. Without loss of generality, we assume that
S = 1, as all parameters in the system can be normalized
according to this speed. Then the minimum resource sup-
ply of an ASG (Q,P ) in any time interval Δ can be lower
bounded by the following function:

βQ,P (Δ) = max

(⌊
Δ

P

⌋
Q,Δ−

⌈
Δ

P

⌉
(P −Q)

)
,

or more compactly as:

βQ,P (Δ) = sup
0≤λ≤Δ

{
λ−

⌈
λ

P

⌉
(P −Q)

}
. (2)

The minimum resource supply for an ASG (Q,P ) is illus-
trated in Figure 6.

The minimum resource supply function in (2) is actually a
lower service curve as known from Network and Real-Time
Calculus [8, 15, 27]. Service curves are abstract representa-
tions for the availability of processing and communication
resources. A service curve β(Δ) gives a lower bound on the

ASG 1 ASG 2 ASG 3 ASG 4 unused ASG 1 ASG 2 ASG 3 ASG 4 unused ASG 1

t

period P
budget for server ASG 1

Q1

free budget
QF

Figure 5: Schedule for four ASGs.
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Δ
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r 
cy
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es

ASG(Q,P) ASG(Q,P)

Figure 6: Resource supply of an ASG (Q,P ).

available service in any time interval of length Δ > 0 where
for Δ ≤ 0, β(Δ) = 0. The service is usually expressed in a
suitable workload unit such as number of cycles for comput-
ing resources or bits for communication resources.

3.3 Performance Analysis
Application tasks are activated by the arrivals of events.

The timing characteristics of event arrivals are described
abstractly with arrival curves as known from Network and
Real-Time Calculus. The arrival curve α(Δ) denotes an
upper bound on the number of events that arrive in any
time interval of length Δ > 0 where for Δ ≤ 0, α(Δ) =
0. Arrival curves substantially generalize traditional event
streammodels such as periodic, periodic with jitter, and spo-
radic. Often the domain of arrival curves are workload units.
Event-based arrival curves can be converted to workload-
based arrival curves by scaling with the best-case/worst-case
execution demands of events. The units of the arrival and
service curves used in an analysis need to be the same. In
this paper, we will use the workload-based interpretation
and assume that each event has a fixed execution demand.
More general concepts for characterization of these units are
discussed in [16].

Now given the minimum resource supply of an ASG and a
characterization of the activation stream of the task, we can
compute the worst-case response time (WCRT) for the task.
To this end, we use results from Network and Real-Time
Calculus where for a resource supply characterized with a
service curve β and an input stream characterized with an
arrival curve α, the WCRT of an event from the stream is
the maximum horizontal distance between the arrival and
the service curves computed as follows:

sup
λ≥0

{inf{τ ≥ 0 : α(λ) ≤ β(λ+ τ)}} � Del(α, β). (3)

Example 4. To illustrate this, let us consider Example 1
from Section 2. Consider server SB in Old Mode which is
an ASG with budget Q = 5ms and a period P = 10ms. The
respective service curve can be computed with equation (2).
It serves a single periodic task τB with a period of 5ms and
WCET of 2ms. The WCRT of the task computed with equa-
tion (3) is shown in Figure 7a. The computed WCRT is
equal to the one observed on the trace in Figure 1.

3.4 Schedulability of Applications
An application is schedulable if its real-time requirements

are satisfied by the system. If we consider the case of a single
task, we may have the requirement that all activations are
processed within a relative deadline D. Given (3), this is
expressed as Del(α, β) ≤ D. Inverting it w.r.t. β, we can
compute a lower bound on the minimum resource demand
required to meet the deadline requirement. This is expressed
as follows:

β(Δ) ≥ α(Δ−D) ∀Δ ∈ R
≥0. (4)

In other words, the minimum resource demand has a lower
service curve that equals to β(Δ) = α(Δ−D).

By using previous results on demand bound functions by
Baruah et al. [4] and interface-based design by Wandeler
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Figure 7: Server SB and task τB WCRT analysis (a)
and schedulability condition (b).

and Thiele [30] such a task is schedulable if a resource can
supply service that is larger or equal to the demanded one.
For an ASG (Q,P ), schedulability would mean that:

βQ,P (Δ) ≥ β(Δ) ∀Δ ∈ R
≥0 (5)

where βQ,P is computed with (2).
In the case of task τB from Example 1, it is schedulable

with a relative deadline D = 7ms by server SB with Old
Mode parameters (5, 10). This can be seen in Figure 7b
where the service curve of server SB is above the shifted
arrival curve of task τB which expresses the resource demand
of the task.

The same schedulability condition applies not only for sin-
gle tasks, but even for complex applications as we can com-
pute the minimum resource demand of an application as a
single service curve β, for details see [30].

3.5 Schedulability during a Reconfiguration
A reconfiguration may change the server parameters such

as their budgets and period from one mode to another. We
consider a single reconfiguration. For a system with N
ASGs before a reconfiguration they operate with parame-
ters (QO

i , P
O), 1 ≤ i ≤ N , (for Old Mode), and after the

reconfiguration with parameters (QN
i , PN ), 1 ≤ i ≤ N , (for

New Mode). We assume that the system is schedulable in
Old Mode and New Mode separately, i.e., condition (5) is
satisfied by assumption for all servers in Old Mode:

βQO
i ,PO (Δ) ≥ βi(Δ) ∀Δ ∈ R

≥0 ∀i,

and for all servers in New Mode:

βQN
i ,PN (Δ) ≥ βi(Δ) ∀Δ ∈ R

≥0 ∀i.

During a reconfiguration or the changing from one set of
server parameters to another, the system should not suffer
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Table 1: Reconfiguration Scenarios
Remove a server

Decrease of a budget
PO = PN Add a server

Increase of a budget
Increase of period PO < PN

PO �= PN Decrease of period PO > PN

a degraded performance. Let us consider the two problems
described in Section 2. To prevent isolation violations, each
server should be able to guarantee a service curve during a
reconfiguration. To prevent deadline violations each server
should be able to guarantee a service curve that is sufficiently
large during a reconfiguration.

Let us denote as β̃i(Δ) the service provided by an ASG
during time intervals Δ that span Old Mode, the Recon-
figuration, and New Mode. In order to prevent a degraded
performance during a reconfiguration we need to have for all
servers that:

β̃i(Δ) ≥ min{βQO
i ,PO (Δ), βQN

i ,PN (Δ)} ∀Δ ∈ R
≥0 ∀i. (6)

The above condition ensures that each server guarantees
during a reconfiguration at least the minimum of the ser-
vices guaranteed in Old and New Modes. This implies that
each application served by an ASG during a reconfigura-
tion is guaranteed that it will not violate the larger of the
deadlines from Old and New Modes.

Example 5. To illustrate this, consider server SB from
Example 1. During the transition from Old Mode to New
Mode, if it were able to meet condition (6), then the WCRT
of task τB would have been at most the maximum of the
WCRTs from the two modes which is 8ms, and it would not
have experienced the WCRT of 9ms. This is illustrated in
Figure 8.

4. ALGORITHMS AND ANALYSIS
In this section, we classify the scenarios for feasible re-

source reconfigurations and provide schedulability analysis
for each of them to show that they meet condition (6) with
proofs available in [25]. The proposed algorithms are imple-
mented in the Server Manager and executed by it. Initiation
of a reconfiguration can be done by an application in order
to request a different resource reservation, or by the Server
Manager in order to achieve better resource allocation. The
proposed algorithms work regardless of what the reason for
reconfiguration is.

We distinguish between reconfigurations that change the
period of the servers, i.e., PO �= PN , and those that do not,
i.e., PO = PN . The possible reconfiguration scenarios are
summarized in Table 1.

Reconfigurations that do not require change of period have
simple feasibility conditions and they do not require any pre-
computed information except budgets and period, and the
decision for performing them can be made entirely online.
For the case of changing periods, conditions are much more
involved as we will see, and some parameters need to be
pre-computed and stored in the Server Manager to be used
online.

Notation. The time of the k-th activation of server
(Qi, P ) is denoted as si,k. The time when the free bud-
get starts is sF,k. An activation frame k contains the k-th
activations of all servers and the free budget. The time when
activation frame k starts is the activation time of the first
scheduled server (Q1, P ) denoted as s1,k and it ends when
the same server is scheduled again s1,k+1. When we would
like to differentiate between any of the parameters and in-
dicate that they belong to the Old Mode or the New Mode,
we will add the superscripts O or N , respectively. In the
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Figure 9: Notation. Three activation frames where
activation frame k belongs to the Old Mode, frame
k + 1 to the Reconfiguration, and frame k + 2 to the
New Mode.

Old Mode, all activation frames have the same length which
equals to the period, PO = sO1,k+1 − sO1,k for frames k in the
Old Mode, unless otherwise stated. Similarly for the New
Mode.

Algorithms that change the period of servers will require
an intermediate phase called Reconfiguration where budgets
and period will be different than the ones in Old and New
Modes. Parameters belonging to the Reconfiguration will
carry the superscript R when necessary. The notation is
illustrated in Figure 9.

4.1 No Change of Period
Here for brevity we do not differentiate between PO and

PN but refer to the period as P . In these scenarios the
last activation frame of the Old Mode which we denote as k
is followed immediately by the first activation frame of the
New Mode denoted as k + 1.

4.1.1 Removing an Existing ASG
Removing a server from the schedule means that in the

Old Mode, it has budget QO > 0, and in the New Mode,
its budget is QN = 0. The budgets of all other servers
are unchanged. This is an operation that can always be
performed since it decreases the utilization of the system by
QO/P , and increases the free budget, QN

F = QO
F +QO.

Algorithm 1 describes removing server (QO
i , P ) from a

schedule with N servers. When the server is removed, acti-
vations of all preceding servers are unchanged while activa-
tions of succeeding servers are shifted earlier by the removed
budget. This is illustrated in Figure 10.

Algorithm 1 Removing an ASG

Input: sOj,k, 1 ≤ j ≤ N � Schedule in last frame (k) of Old Mode

Input: P � Current period

Input: (QO
i , P ) � Server to be removed

Output: sNj,k+1, 1 ≤ j ≤ N , j �= i � Schedule in first frame (k + 1)

of New Mode

1: for j ← 1 to N do
2: if j < i then

3: sNj,k+1 ← sOj,k + P

4: else if j > i then

5: sNj,k+1 ← sOj,k + P − QO
i

6: end if
7: end for

Q1
t

QO
2 Q3 Q4 QO

F Q1 Q3 Q4 QN
F Q1

Q3 Q4

QO
2Old Mode New Mode

Figure 10: Removing server (QO
2 , P ) from a sched-

ule of four ASGs. The activation times of servers
(QN

3 , P ) and (QN
4 , P ) have been shifted to the left

by QO
2 in New Mode, and QO

2 has been used to
increase the free budget. The dashed boxes show
where servers (QO

3 , P ) and (QO
4 , P ) would have been

scheduled if there were no reconfiguration.

Theorem 1. Removing server (QO
i , P ) from a schedule

of N servers using Algorithm 1 satisfies condition (6) for all
other servers in the system as each of them gets at least a
guaranteed service during the reconfiguration of β̃j ≥ βQj ,P ,
1 ≤ j ≤ N, j �= i.

Proof. All proofs are omitted and can be found online
in a technical report [25].

4.1.2 Decreasing the Budget of an Existing ASG
Decreasing the budget of a server means that in Old Mode,

the server has budget QO > 0, and in New Mode, its bud-
get is 0 < QN < QO. The budgets of all other servers
are unchanged. This is an operation that can always be
performed since it decreases the utilization of the system
by (QO − QN )/P , and increases the free budget, QN

F =
QO

F + (QO −QN ).
Algorithm 2 describes decreasing the budget of server (Qi,

P ) from QO
i in Old Mode to QN

i in New Mode in a schedule
of N servers. In the first frame when the budget is de-
creased, activations of all preceding servers are unchanged
while activations of succeeding servers are shifted earlier by
the amount of decrease of budget. This is illustrated in Fig-
ure 11.

Theorem 2. Decreasing the budget of a server from (QO
i ,

P ) to (QN
i , P ) in a schedule of N servers using Algorithm 2

satisfies condition (6) for all servers in the system. Un-
changed servers get at least a guaranteed service during the
reconfiguration of β̃j ≥ βQj ,P , 1 ≤ j ≤ N, j �= i. For the

decreased server, this is β̃i ≥ βQN
i ,P .

4.1.3 Adding a New ASG
Adding a server to the schedule means that in Old Mode,

it has budget QO = 0, while in New Mode, its budget is
QN > 0. Budgets of all other servers are unchanged. From
condition (1), this is an operation that is feasible if there is
sufficient free budget in the system:

QN ≤ QO
F .

Algorithm 2 Decreasing the budget of an ASG

Input: sOj,k, 1 ≤ j ≤ N � Schedule in last frame (k) of Old Mode

Input: P � Current period

Input: (QO
i , P ) � Server to be modified with Old Mode parameters

Input: (QN
i , P ) � Server to be modified with New Mode parameters

Output: sNj,k+1, 1 ≤ j ≤ N � Schedule in first frame (k + 1) of

New Mode

1: for j ← 1 to N do
2: if j ≤ i then

3: sNj,k+1 ← sOj,k + P

4: else if j > i then

5: sNj,k+1 ← sOj,k + P − (QO
i − QN

i )

6: end if
7: end for

Q1
t

QO
2 Q3 Q4 QO

F Q1 Q3 Q4 QN
F Q1

Q3 Q4

QO
2 - QN

2Old Mode New Mode

QN
2

Figure 11: Decreasing the budget from QO
2 to QN

2

in a schedule of four ASGs. The activation times of
servers (Q3, P ) and (Q4, P ) have been shifted earlier
in New Mode by (QO

2 −QN
2 ), and (QO

2 −QN
2 ) has been

used to increase the free budget. The dashed boxes
show where servers (Q3, P ) and (Q4, P ) would have
been scheduled if there were no reconfiguration.
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Algorithm 3 Adding an ASG

Input: sOj,k, 1 ≤ j ≤ N � Schedule in last frame (k) of Old Mode

Input: sOF,k � Start of free budget in frame (k) in Old Mode

Input: P � Current period

Input: QO
F � Free budget in Old Mode

Input: (QN
N+1, P ) � Server to be added in New Mode

Require: QN
N+1 ≤ QO

F

Output: sNj,k+1, 1 ≤ j ≤ N + 1 � Schedule in first frame (k + 1) of

New Mode

1: for j ← 1 to N do

2: sNj,k+1 ← sOj,k + P

3: end for
4: sNN+1,k+1 ← sOF,k + P

Q1
t

Q2 Q3 Q4 QO
F Q1 Q3 Q4 QN

F Q1

Old Mode New Mode

Q2 QN
5

QO
F

Figure 12: Addition of server (Q5, P ) to a schedule of
four ASGs. Activation times of existing servers do
not change as the added server is scheduled after all
other servers in New Mode. Free budget has been
decreased by the budget of the server, QN

F = QO
F−QN

5 .
The dashed box shows where the free budget QO

F
would have been if there were no reconfiguration.

The reconfiguration decreases the free budget in the system,
QN

F = QO
F −QN , and increases the utilization by QN/P .

Algorithm 3 describes adding server (QN
N+1, P ) to a sched-

ule of N servers. In the first frame where the server is added,
it is scheduled at the beginning of the free budget slot. This
is illustrated in Figure 12.

Theorem 3. Adding server (QN
N+1, P ) to a schedule of

N servers using Algorithm 3 satisfies condition (6) for all
other servers in the system as each of them gets at least a
guaranteed service during the reconfiguration of β̃j = βQj ,P ,
1 ≤ j ≤ N .

4.1.4 Increasing the Budget of an Existing ASG
Increasing the budget of a server means that in Old Mode

it has budget QO > 0, and in New Mode it has budget
QN > QO. Budgets of all other servers are unchanged.
From condition (1), this is an operation that is feasible if
there is sufficient free budget in the system:

QN −QO ≤ QO
F .

The reconfiguration decreases the free budget in the system,
QN

F = QO
F − (QN −QO), and increases the utilization of the

system by (QN −QO)/P .
Algorithm 4 shows increasing the budget of a server from

(QO
i , P ) to (QN

i , P ) in a schedule of N servers. In the first
frame where the budget is increased, all preceding servers
are activated earlier in the free budget of the previous frame
by the amount of the increase of budget, and all succeeding
servers are activated without change. This is illustrated in
Figure 13.

Theorem 4. Increasing the budget of a server from (QO
i ,

P ) to (QN
i , P ) in a schedule of N servers using Algorithm 4

satisfies condition (6) for all servers in the system. Un-
changed servers get at least a guaranteed service during the
reconfiguration of β̃j ≥ βQj ,P , 1 ≤ j ≤ N, j �= i. For the

increased server this is β̃i ≥ βQO
i ,P .

Algorithm 4 Increasing the budget of an ASG

Input: sOj,k, 1 ≤ j ≤ N � Schedule in last frame (k) of Old Mode

Input: P � Current period

Input: QO
F � Free budget in Old Mode

Input: (QO
i , P ) � Server to be modified with Old Mode parameters

Input: (QN
i , P ) � Server to be modified with New Mode parameters

Require: QN
i − QO

i ≤ QO
F

Output: sNj,k+1, 1 ≤ j ≤ N � Schedule in first frame (k + 1) of

New Mode

1: for j ← 1 to N do
2: if j ≤ i then

3: sNj,k+1 ← sOj,k + P − (QN
i − QO

i )

4: else if j > i then

5: sNj,k+1 ← sOj,k + P

6: end if
7: end for

QO
FQ3

Q1
t

QO
2 Q3 QO

F Q1 Q3

Old Mode New Mode

QO
2

Q1

Q1 QN
2 Q3QN

F QN
F

QO
2

Q1

P - QN
2 + QO

2

Figure 13: Increasing the budget of server (QO
2 , P ) to

QN
2 in a schedule of three ASGs. Last frame of Old

Mode has a decreased length, P − QN
2 + QO

2 . This
causes the activation times of server (Q1, P ) to be
shifted earlier. Activation times of server (Q3, P ) do
not change as the shorter activation frame cancels
with the increased budget for all New Mode acti-
vations. Free budget has been decreased by the in-
crease of server budget, QN

F = QO
F − QN

2 + QO
2 . The

dashed boxes show where the activations of servers
(Q1, P ), (Q2, P ), (Q3, P ) and the free budget QF would
have been if there were no reconfiguration.

4.2 Change of Period
We perform analysis given the configurations of the sys-

tem (such as budgets and periods) in Old and New Modes.
The results of the analysis are whether a transition is feasible
with the given configurations, and in the case of feasibility
with what parameters it can be executed online.

4.2.1 Increase of Period
We suppose that there are N servers in the system. In

the Old Mode they operate with parameters (QO
i , P

O), 1 ≤
i ≤ N , and in the New Mode with (QN

i , PN ), 1 ≤ i ≤ N ,
where PO < PN . Assume that for every server we have
that QO

i ≤ QN
i . If this is not the case, namely there is

a server that requires a smaller budget in the bigger pe-
riod, QO

i > QN
i , we can reduce its budget first by using the

algorithm proposed in Section 4.1.2 as we can be sure that
schedulability is satisfied with the new budget in the smaller
period, and then perform the reconfiguration involving in-
crease of period.

The proposed reconfiguration algorithm is subject to the
feasibility condition that the sum of all New Mode server
budgets is smaller than the Old Mode period which is ex-
pressed as follows:

N∑
i=1

QN
i ≤ PO. (7)

The condition ensures that the increase of budgets does not
lead to service guarantee violations in intervals of time be-
ginning PO time units before the reconfiguration and ending
PO time units after the reconfiguration. It can be related
to the feasibility condition from Section 4.1.4,

∑N
i=1(Q

N
i −

QO
i ) ≤ QO

F .
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Algorithm 5 Increase of Period

Input: sOj,k, 1 ≤ j ≤ N � Schedule in last frame (k) of Old Mode

Input: PO � Old Mode period

Input: PN � New Mode period

Input: (QO
i , PO), 1 ≤ i ≤ N � Servers in Old Mode

Input: (QN
i , PN ), 1 ≤ i ≤ N � Servers in New Mode

Input: K � Number of activation frames during the Reconfiguration

Require:
∑N

i=1 QN
i ≤ PO

Output: sNj,k+p, 1 ≤ j ≤ N, 1 ≤ p ≤ K � Schedule in all frames

during the Reconfiguration

Output: sNj,k+K+1, 1 ≤ j ≤ N � Schedule in first frame

(k + K + 1) of New Mode

(* First frame of Reconfiguration - increase budgets *)

1: sR1,k+1 ← sO1,k + PO −
∑N

i=1(Q
N
i − QO

i )

2: for j ← 2 to N do

3: sRj,k+1 ← sRj−1,k+1 + QN
j−1

4: end for

(* All subsequent frames of Reconfiguration *)
5: for p ← 2 to K do
6: for j ← 1 to N do

7: sRj,k+p ← sRj,k+p−1 + PO

8: end for
9: end for

(* First frame of New Mode - increase period *)
10: for j ← 1 to N do

11: sNj,k+K+1 ← sRj,k+K + PN

12: end for

QO
1

t

QO
2 QO

F

Reconfiguration (K=2)

PN

QO
1 QO

2 QN
1 QN

2 QN
F

PO PO - ∑(QN
i-QO
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≤ PO
condition

QN
1 QN

2 QN
1 QN

2

POPO

New ModeOld Mode

Figure 14: Increase of period with K = 2.

When condition (7) is not satisfied, i.e. staying in the
most pessimistic configuration is not feasible, the reconfig-
uration algorithm would need to go through one or more
intermediate modes (budgets and periods) where for each
successive pair of them condition (7) holds. We will not dis-
cuss this further and assume that the feasibility condition is
met.

The algorithm for performing safely the increase of period
can be summarized in three steps: (1) Increase to New Mode
budgets following Algorithm 4. (2) Schedule the ASGs for
K ≥ 1 activation frames using the New Mode budgets and
Old Mode period. (3) Increase to New Mode period by in-
creasing free budget. The second step of the algorithm we
denote as the Reconfiguration phase which is K activation
frames long. We suppose that it has Old Mode period but
it can actually have a shorter period which would require a
small modification of our analysis. At the moment we as-
sume that K is given as input to the algorithm, later we
will show how to compute it. Algorithm 5 describes the de-
tails for performing the increase of period. It is illustrated
in Figure 14.

The following theorem gives a lower bound for the guaran-
teed resource supply of an ASG during an increase of period
reconfiguration.

Theorem 5. Reconfiguring a server from (QO
i , P

O) to
(QN

i , PN ) in a schedule of N servers using Algorithm 5 pro-
vides at least a guaranteed service of:1

β̃i(Δ) = min
{
β
QO

i
,PO (Δ), β

QN
i

,PN (Δ),

(β
QO

i
,PO ⊗ β

QN
i

,PN )(Δ − K · PO
+ P

O − Q
O
i ) (8)

+ β
QN

i
,PO (K · PO

)
}
, (9)

1The⊗ is the min-plus convolution operator which is defined
as: (a⊗ b)(Δ) = inf0≤λ≤Δ{a(Δ− λ) + b(λ)}
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Figure 15: Effect of K = {1, 2, 3} for server SB from
Example 1. Only K = 3 is feasible.

which satisfies condition (6) when K ≥ 1 is found as:

K = max
1≤i≤N

{
min

{
κ | ∀Δ ∈ R

≥0
, κ ∈ Z

+
,

(β
QO

i
,PO ⊗ β

QN
i

,PN )(Δ − κ · PO
+ P

O − Q
O
i ) + β

QN
i

,PO (κ · PO
)

≥ min{β
QO

i
,PO (Δ), β

QN
i

,PN (Δ)}
}}

.

The guaranteed service in the above theorem can be ex-
plained informally as follows. It is computed as the min-
imum of the services from Old Mode, New Mode, and an
expression which describes the service in time intervals that
span Old Mode, Reconfiguration, and New Mode. The last
one consists of two subexpressions. Expression (8) lower
bounds the service guaranteed in the time window part that
is outside of the Reconfiguration time window and hence the
service curve depends only on the Old and the New Modes
parameters, and it is ’shifted to the right’ by the size of
the Reconfiguration time window which is at most K · PO

time units. Expression (9) lower bounds the service guar-
anteed only in the Reconfiguration time window which uses
New Mode budgets with Old Mode period, and the service
is defined for a fixed length interval of size K · PO.

In expressions (8) and (9), we can increase the size of the
Reconfiguration phase by increasing the number of activa-
tion frames in it K. In order to meet condition (6) for each
server, we have to find the minimum K that will make the
guaranteed service β̃i greater or equal to the minimum of
the Old and New Modes services. After doing this for all
servers, we have to take the maximum K which will make
the reconfiguration feasible for the whole system.

We can find the minimum K for a server efficiently by
starting with an initial value of K = 1. If this is not feasi-
ble, we choose successive values of K by using binary search
until the smallest one is found that is feasible. With bigger
K we are increasing the service guaranteed in the Recon-
figuration which is service greater than Old Mode and New
Mode services (it has the larger New Mode budget and the
smaller Old Mode period), therefore we are guaranteed to
find a finite value for K which will make condition (6) sat-
isfied.

Example 6. We can illustrate this by considering server
SB from Example 1. It will need K = 3 to perform a safe
reconfiguration from (5, 10) to (6, 12). This is illustrated in
Figure 15 as well as the violations of condition (6) for K =
{1, 2}. The trace showing the violation for K = 2 for server
SB is in Figure 16.

4.2.2 Decrease of Period
This scenario is very similar to the one for increasing the

period. Because of the lack of space, we only give the main
points. In the Old Mode servers operate with parameters
(QO

i , P
O), 1 ≤ i ≤ N , and in the New Mode with (QN

i , PN ),
1 ≤ i ≤ N , where PO > PN . We assume that for every
server we have that QO

i ≥ QN
i .

It is subject to the feasibility condition that the sum of
Old Mode budgets is smaller than the New Mode period
which is expressed as

∑N
i=1 Q

O
i ≤ PN .
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Violation: Interval of 60 ms, server SB delivers budget of 29 ms when Old Mode guarantees 30 ms and New Mode guarantees 30 ms.
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Figure 16: Violation of condition (6) when increasing period with K = 2 for server SB from Example 1.

The algorithm can be summarized in three steps: (1) De-
crease to New Mode period by decreasing free budget. (2)
Schedule the ASGs for K ≥ 1 activation frames using Old
Mode budgets and New Mode period. (3) Decrease budgets
by using Algorithm 2. Algorithm 6 describes the details for
performing the decrease of period. It is illustrated in Fig-
ure 17.

Theorem 6. Reconfiguring a server from (QO
i , P

O) to
(QN

i , PN ) in a schedule of N servers using Algorithm 6 pro-
vides at least a guaranteed service of:

β̃i(Δ) = min
{
(β

QO
i

,PO ⊗ β
QN

i
,PN )(Δ − K · PN

+ P
N − Q

N
i )

+ β
QO

i
,PN (K · PN

), β
QO

i
,PO (Δ), β

QN
i

,PN (Δ)
}
,

which satisfies condition (6) when K ≥ 1 is found as:

K = max
1≤i≤N

{
min

{
κ | ∀Δ ∈ R

≥0
, κ ∈ Z

+
,

(β
QO

i
,PO ⊗ β

QN
i

,PN )(Δ − κ · PN
+ P

N − Q
N
i ) + β

QO
i

,PN (κ · PN
)

≥ min{β
QO

i
,PO (Δ), β

QN
i

,PN (Δ)}
}}

.

5. CASE STUDY
Here, we consider a multi-mode real-time system that ex-

ecutes two applications. Application 1 can run in two modes
denoted as mode 1 and mode 2. In mode 1, there is a single

Algorithm 6 Decrease of Period

Input: sOj,k, 1 ≤ j ≤ N � Schedule in last frame (k) of Old Mode

Input: PO � Old Mode period

Input: PN � New Mode period

Input: (QO
i , PO), 1 ≤ i ≤ N � Servers in Old Mode

Input: (QN
i , PN ), 1 ≤ i ≤ N � Servers in New Mode

Input: K � Number of activation frames during the Reconfiguration

Require:
∑N

i=1 QO
i ≤ PN

Output: sNj,k+p, 1 ≤ j ≤ N, 1 ≤ p ≤ K � Schedule in all frames

during the Reconfiguration

Output: sNj,k+K+1, 1 ≤ j ≤ N � Schedule in first frame

(k + K + 1) of New Mode

(* First frame of Reconfiguration - with decreased period *)
1: for j ← 1 to N do

2: sRj,k+1 ← sOj,k + PO

3: end for

(* All subsequent frames of Reconfiguration *)
4: for p ← 2 to K do
5: for j ← 1 to N do

6: sRj,k+p ← sRj,k+p−1 + PN

7: end for
8: end for

(* First frame of New Mode - decrease budgets *)

9: sN1,k+K+1 ← sR1,k+K + PN

10: for j ← 2 to N do

11: sNj,k+K+1 ← sNj−1,k+K+1 + QN
j−1

12: end for
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Figure 17: Decrease of period with K = 2.

task which processes a single event stream described by a
period p = 5ms, jitter j = 10ms, and minimum interarrival
time between two events d = 1ms. Each event has a worst-
case execution time of c = 2ms, and it needs to be processed
within a relative deadline of D = 9ms. Similarly, in mode 2
there is a single task but it processes an event stream with
parameters p = 40ms, j = 20ms, d = 20ms, c = 7ms, and
D = 25ms. Application 2 is a single mode application, it
has a single task that processes one event stream with pa-
rameters p = 20ms, j = 15ms, d = 5ms, c = 1ms, and
D = 30ms. The system schedules the two applications us-
ing two servers (Q1, P ) and (Q2, P ). We suppose that each
context switch takes 0.3ms. The utilization of the system,
U , can be computed as U = (Q1 + 0.3 +Q2 + 0.3)/P .

The designer of this system needs to select the configura-
tion parameters of the ASG schedule such as the minimum
required budgets that make the two applications schedula-
ble, and the size of the servers period. The design objective
is to minimize utilization because other soft real-time ap-
plications use the unused resources while guaranteeing the
real-time requirements. Then the solution depends on the
mode that application 1 is currently in. Figure 18 shows
the total utilization of the system as a function of the pe-
riod of the servers considering the two modes of applica-
tion 1, where the period varies from 1ms to 50ms. When
application 1 is in mode 1, the system has the minimum
utilization (U = 0.768) with servers period P = 12.5ms,
and allocated budgets for application 1 and application 2,
Q1 = 8ms and Q2 = 1ms, respectively. When application
1 is in mode 2, however, the system has the minimum uti-
lization (U = 0.427) achieved for period P = 22.5ms, and
budgets Q1 = 7ms and Q2 = 2ms.

Since the mode of application 1 changes dynamically dur-
ing runtime, it is not possible to fix the parameters of the
scheduler at design time. If the parameters are set to the op-
timal ones for mode 1, when operating in mode 2 the system
would have a 15% utilization overhead. Similarly fixing the
parameters optimally for mode 2, the utilization overhead
would be 14% when the system is in mode 1.

We can solve the above problem by using the algorithms
proposed in this paper. Let us consider two scenarios.

Scenario 1: When application 1 is in mode 1, we run
the two ASGs corresponding to the two applications with
parameters (8, 12.5) and (1, 12.5) which give us the lowest
system utilization. When application 1 switches to mode 2,
it notifies the Server Manager (SM) and it requests a switch
to the minimum budget for mode 2 of (4.7, 12.5). The SM
can grant this budget using Algorithm 2. Afterwards the
SM can reconfigure the two ASGs and increase their period
to the one which makes the system utilization the smallest.
The SM can use Algorithm 5 with K = 1 to reconfigure the
system from (4.7, 12.5) and (1, 12.5) to (7, 22.5) and (2, 22.5).

Scenario 2: When application 1 has to switch back to
mode 1, it first notifies the SM which by using Algorithm 6
with K = 1 reconfigures the two servers from (7, 22.5) and
(2, 22.5) back to (4.7, 12.5) and (1, 12.5). Then the SM in-
creases the budget for application 1 using Algorithm 4 from
4.7 to 8. Afterwards, application 1 is notified and can safely
switch to mode 1.

Note that the SM takes advantage of the fact that mode 1
is more heavily loaded than mode 2 for application 1. There-
fore, the SM optimizes the server period when the appli-
cation is in the lightly loaded mode. This means that in
Scenario 1, the application mode change is done before the
resource optimization. And in Scenario 2, it is done after
the resource optimization. This is feasible with our algo-
rithms as they are completely deterministic and the time
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Figure 18: Total utilization for period varying from
1ms up-to 50ms considering the two different modes
of application 1. The circles on the graphs denote
the points of minimum utilization.

needed for a reconfiguration can be safely and accurately
upper bounded in advance. It is also possible to perform
the resource optimization when the system is more heavily
loaded however, the reconfiguration process will take longer.

In summary, we can guarantee an optimal resource al-
location in environments where applications are added or
removed dynamically, or perform mode-changes. With the
proposed algorithms, the schedulability of the applications
is never compromised during the reconfiguration process.

Setup: The servers and applications have been modeled
with the Matlab Real-Time Calculus Toolbox [32]. The ex-
ploration of the minimum required budgets for different pe-
riods in Figure 18 has been done with the Real-Time In-
terfaces methodology as described in [31]. The exploration
took less than 15s to perform on a commodity laptop consid-
ering discretization of the period with steps of 0.1ms. The
feasibility check for the value of K took less than 1s.

6. CONCLUSION
The paper considers the problem of adaptive resource re-

servations using servers in hard real-time systems. It clas-
sifies the possible problems that may occur during online
server reconfigurations and establishes conditions of how to
avoid them. It defines a statically TDMA scheduled adap-
tive server that provides resource guarantees not only during
operation, but also during reconfigurations. The paper iden-
tifies the possible reconfiguration scenarios for such a server
and provides algorithms and schedulability analysis for each
of them. The analysis is based on Real-Time Calculus which
even for the simplest case of TDMA scheduled servers is not
trivial. The future direction of this work is to explore the
problem for other kinds of servers such as the deferrable
server and the CBS, and establish similar algorithms and
analysis for their online reconfigurations.
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