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Abstract—This paper describes two mechanisms that aug-
ment the common automatic speech recognition (ASR) front end
and provide adaptation and isolation of local spectral peaks. A
dynamic model consisting of a linear filterbank with a novel
additive logarithmic adaptation stage after each filter output is
proposed. An extensive series of perceptual forward masking
experiments, together with previously reported forward masking
data, determine the model’s dynamic parameters. Once parame-
terized, the simple exponential dynamic mechanism predicts the
nature of forward masking data from several studies across wide
ranging frequencies, input levels, and probe delay times. An
initial evaluation of the dynamic model together with a local peak
isolation mechanism as a front end for dynamic time warp (DTW)
and hidden Markov model (HMM) word recognition systems
shows an improvement in robustness to background noise when
compared to Mel-frequency cepstral coefficients (MFCC), lin-
ear prediction cepstral coefficients (LPCC), and relative spectra
(RASTA) based front ends.

Index Terms—Dynamic auditory perception, forward masking,
robust speech recognition.

I. INTRODUCTION

M OST MODERN automatic speech recognition (ASR)
systems model speech as a nonstationary stochastic

process by statistically characterizing a sequence of spectral
estimations [1]. The common technique for spectral estimation
includes an approximation of auditory filtering, a compressive
nonlinearity (usually the logarithm), and decorrelation of the
spectral estimation through an approximate Karhunen–Loève
(KL) transform (the discrete cosine transform). These steps
represent rough approximations of the most fundamental as-
pects of auditory processing: frequency selectivity and magni-
tude compression. In the last five to ten years, the frequency
selectivity for ASR front-ends has migrated from a linear to a
perceptually based frequency scale [2]. This progress, toward
a better auditory model for ASR, has improved robustness [3].

A large discrepancy remains between current auditory mod-
els and the approximations used in ASR front ends. Recent
efforts to incorporate more sophisticated auditory models with
ASR systems, however, have shown little to no improvements,
typically at a severe increase in computational costs [3]. The
challenges are to determine what auditory functionality miss-
ing from the current front end would be useful for improving
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recognition robustness and to design efficient mechanisms
which reproduce that functionality.

This paper focuses on two aspects of audition not included
in current representations: short-term adaptation and sensitivity
to the frequency position of local spectral peaks. For each, a
mechanism with low computational complexity is described,
which adds to the common front end and provides a represen-
tation that is more robust to background noise. The dynamic
mechanism is parameterized by psychophysical data described
here and in the literature [4]. The peak isolation mechanism is a
simple modification of a previous cepstral liftering technique
[5]. Emphasizing dynamic local peaks is shown to be more
robust than emphasizing either dynamics or local peaks.

To incorporate a dynamic mechanism within a front end, a
method of quantifying auditory adaptation must first be iden-
tified. There is considerable physiological and psychophysical
evidence of dynamic audition. Short-term adaptation, usu-
ally defined as a decreasing response after the onset of a
constant stimulus, has been measured in individual auditory
nerve firings [6]. The neural response to a stimulus is also
reduced during the recovery period following adaptation to a
prior stimulus [7]. Here the general termadaptation is used
for both dynamic processes (short-term adaptation and post-
adaptation recovery), and its direction is explicitly specified
when significant.Attack refers to the decreasing response
following stimulus onset, whilerelease and recovery both
refer to the increasing response following stimulus offset.
Motility of outer hair cells, the likely source of an active
cochlear response, also adapts with time constants which
may be significant when quantifying short-term adaptation
[8]. Finally, neural responses to onsets and abrupt spectral
changes are substantial [9], providing a physiological substrate
for the sensitivity of human speech perception to onsets and
dynamic spectral cues [10]. Although recognition systems
typically statistically characterize the evolution of relatively
static spectral segments, the auditory system responds most
strongly to dynamic segments. This response strength is a
consequence of adaptation. What remains is to quantify the
adaptation, and to design a mechanism that reproduces it.

The task is similar to observing evidence of frequency
selectivity and requiring a specification (critical bandwidths)
and a mechanism for its realization (a filterbank). Following
the example of using static masking data to quantify fre-
quency selectivity [11], adaptation was quantified from a series
of dynamic, forward-masking experiments. The adaptation
mechanism designed is a modified form of automatic gain
control (AGC), which adds an exponentially adapting linear
offset to logarithmic intensity. Just as the current triangular
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(a) (b)

(c)

Fig. 1. Forward-masking stimuli. (a) Large time-scale view of a single 2AFC trial. (b) Fourier transform of the probe signal (128 ms rectangular window).
(c) Smaller time-scale view of the probe following the masker by 15 ms.

filters used in the common ASR front end are first-order
approximations of auditory frequency selectivity, the simple
dynamic mechanism provides a first-order approximation of
auditory adaptation. The strategy is to parameterize simple
dynamic mechanisms from forward masking thresholds to
provide a better approximation of the auditory response to
dynamic stimuli.

Dynamic auditory models [12]–[16] are often physiolog-
ically based computational models that characterize only a
relatively low level of the complete auditory system, or
resort to some speculation either about higher level processing
and/or about appropriate dynamic parameters. Because these
systems usually require processing time-domain signals for
each auditory filter (often 100 filters) at the full sampling
rate, they imply a large computational burden, making them
difficult to use in engineering applications [3]. Also, success-
fully separating and quantifying measurable functionality (e.g.,
frequency selectivity, or short-term adaptation), which may be
distributed across several related physiological processes, is
not a simple task. Some researchers [17], [18] propose novel
computationally efficient techniques, targeted at automatic
speech recognition, which emphasize spectral dynamics with
varying perceptual accuracy and recognition improvements.
The approach here differs from most detailed physiological
models in that it “closes the loop” with observations of top-
level functionality. Because the relatively simple model of
frequency selectivity followed by additive adaptation is con-
sistent with underlying physiological processes, the resulting
quantified nonlinear model provides useful approximations of
the perception of (nonstationary) speech.

II. FORWARD MASKING

Forward masking reveals that over short durations the usable
dynamic range of the auditory system is relatively small, and
largely dependent on the intensity and spectral characteristics
of previous stimuli. A probe following a masker is less audible
than a probe following silence. As the duration between the
masker and probe decreases, the probe threshold is increas-
ingly a function of the intensity of the preceding masker,
and decreasingly a function of the absolute probe threshold in
silence. Forward masking can be viewed as a consequence of
auditory adaptation. After adaptation to the masker, recovery
time is necessary before the relatively less intense probe
becomes audible. The amount of forward masking is also a
function of the duration of the masker, reflecting the time
required for the auditory system to adapt completely to the
masker. Forward masking, therefore, provides an opportunity
to measure the rate and magnitude of effective auditory
adaptation and recovery.

To build the dynamic model, data describingsinusoidal
forward masking were desirable. The most complete data of
pure-tone forward masking experiments is from [19]. Although
[19] includes a wide range of frequencies and masker levels,
the longest probe delay measured is 40 ms, short of the
duration necessary for complete adaptation. To obtain recovery
parameters, a set of pure-tone forward-masking experiments
that included probe delays from 15 to 120 ms across wide
ranging frequencies and masker levels was performed. Short-
delay pure-tone forward-masking data, from [4], as a function
of masker duration, were used to quantify attack parame-
ters.
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Fig. 2. Average forward masking data (circles), and standard deviation (error bars), together with the model fit (lines) as a function of masker level
across five octaves, with probe delay of 15, 30, 60, and 120 ms as parameter.

A. Experiments

The forward-masking experiments used long-tone maskers
followed by short tonelike probes of the same frequency
and phase. The masker was long enough to ensure complete
auditory adaptation before masker offset, while the probe was
short enough to measure the response of the auditory system
at a relatively specific time. A two alternative forced choice
(2AFC) experimental paradigm was used.

1) Stimuli: Fig. 1 shows an example of the stimuli. A
decaying 60 ms probe tone followed one of two 300 ms
maskers, which were separated by 500 ms (in Fig. 1(a) the
probe follows the second masker). The subjects chose which
masker the probe followed. Masker and probe frequencies
ranged from 250–4000 Hz in octave intervals, probe delays
were 15, 30, 60, and 120 ms, and masker levels spanned
roughly 50 dB with three points. All signals were ramped
on and off in 5 ms with the appropriate half period of a raised

cosine. Probe-delay times are specified between the peaks of
the envelopes of the masker offset and probe onset.

In forward masking, it is often difficult to determine what
cue subjects are using, or when the subject detects the probe.
The solution here is similar to that in [20]. Both the probe and
the masker in the nonprobe interval decay with the same 20
ms time constant, and both end at the same time relative to
the masker onset. With this arrangement, detecting the probe
onset was a sufficient cue to determine the probe interval, but
detecting a decaying sinusoid (the tail of the probe) was not.
Subjects were not given feedback.

To reduce the spectral splatter of transitions, the entire
stimulus was filtered through a linear-phase, finite impulse
response (FIR) filter, with a bandwidth of one critical band
[21]. In the Fig. 1 example, the frequency is 1 kHz [Fig.
1(b)], the delay from masker to probe is 15 ms [Fig. 1(c)], and
(measured at the envelope peak) the probe is 8 dB less intense
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(a) (b)

Fig. 3. Average forward masking data at 1 kHz: (a) as a function of the log
delay with contours for constant masker levels and (b) as the dynamic range
below masker as a function of the masker level with contours for constant
probe delays. The dotted line reflects the probe threshold in quiet.

than the masker. The stimulus is shown after the critical band
filter.

2) Subjects:Five subjects, including the first author, par-
ticipated in the experiments. All were native speakers of
American English. One subject was female, and the others
were male. Their ages ranged from 23 to 28 years. Hearing
thresholds for each were at or below 20 dB HL at frequencies
used in this study.

3) Methods: For each condition, the level of the probe was
adaptively varied to find its threshold. An adaptive “trans-
formed up-down” procedure [22] determined the 79% correct
point, defined as the threshold for the 2AFC task. The initial
adaptation step size of 4 dB was reduced to 2 dB and 1
dB after the first and third reversals. The initial probe was
clearly audible. The experiment continued for nine reversals.
The probe levels at the last six reversals were averaged to
determine the threshold. Thresholds were averaged across the
five subjects to obtain the values used for parameterizing the
model.

4) Equipment and Calibration:Computer software gen-
erated the appropriate digital stimuli before each trial.
The sampling rate was 16 kHz, and the quantization was
16-b linear. An Ariel Pro Port 656 converted the digital
samples into an analog waveform, and the preamp of a
Sony 59ES DAT recorder drove TDH-49P earphones. Tests
were performed in a double-walled sound-isolated chamber.
Stimuli were presented binaurally with identical waveforms
to each ear. The system was calibrated by measuring the
response to digitally synthesized sine waves using a 6-
cc coupler and a Larson–Davis 800B Sound Level Meter.
Preamp levels and digital internal level offsets were set to
place an 80 dB SPL (sound pressure level) 1 kHz tone
within 0.2 dB. A linear-phase FIR equalization filter was
adjusted until pure tones from 125–7500 Hz measured within
0.5 dB.

B. Results

Fig. 2 summarizes the average threshold increase (circles)
across the five subjects as a function of masker level with
probe delay as a parameter. The solid lines in Fig. 2 indicate
the model’s fit to the forward masking data. The derivation of
the model is described in the following sections.

C. Modeling Implications

The amount of forward masking (in dB) decays as a straight
line as a function of the logarithm of the probe delay (first
described in [20]). A straight line with respect to logarithmic
probe delay can be approximated by an exponential with re-
spect to linear probe delay. This suggests additive exponential
adaptation in decibels.

Fig. 3(a) plots the threshold increase as a function of probe
delay, and Fig. 3(b) shows the effective dynamic range below
masker, defined as the difference between the masker and
probe threshold levels, as a function of masker level. Fig. 3(a)
shows that the rate of decay of the forward masking (shown
on a log time scale) increases with an increasing amount of
masking. These data may suggest different adaptation rates for
different masker intensities, or complexity beyond a simple
exponential adaptation of dB level. Such complexity is not
necessary. The adapting mechanism derived below has a
greater initial distance to target after a more intense masker
offset. Exponential processes decay more quickly over the
same amount of time when the output is further from the
final static target. Therefore, a simple exponential dynamic
mechanism can predict a faster rate of decay of forward
masking with more intense maskers.

Fig. 3(b) shows that even at short delays the dynamic range
below masker depends on the level of the masker. At short
delays there is little to no time for adaptation. Without time for
adaptation, the static characteristics of the dynamic mechanism
determine the forward masking threshold.

III. FROM EXPERIMENTAL RESULTS TOMODEL PARAMETERS

In the perceptual model, a dynamic adaptation stage follows
each output of a linear filterbank. At every time sample, each
adaptation stage slowly adjusts an internal offset to move its
output incrementally closer to an input/output (I/O) target,
specified on a log/log scale.

The dynamic adaptation stages are referred to as automatic
gain control (AGC). However, it is significant that the AGC is
implemented as an adaptingadditiveoffset to the log energy of
the signal, and not as an adapting multiplicative gain. There
are at least two points that appear to require additive, and
not multiplicative, adaptation. First, the measured incremental
neural response to a second onset after partial adaptation to a
first is not proportional to an adapted amount of multiplicative
gain [6]. Second, AGC that adjusts a multiplicative gain
proportional to the linear distance to the I/O target does not
predict a higher rate of decay of forward masking for greater
amounts of masking.

A. AGC: I/O Curves, Attack, and Release Times

Time constants describing the rate of adaptation for the
dynamic mechanisms are defined here as the time required
for the logarithmic distance to target to reduce by a factor of

Different time constants are used for attack (decreasing
offset), and release (increasing offset). Over short durations,
the AGC stage has little time to adapt, and is therefore nearly
linear. I/O graphs do not include a time axis, so to discuss
the temporal evolution of the system, we describe trajectories
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(a)

(b) (c)

Fig. 4. (a) Prototypical I/O curve for a single channel in the dynamic model. Schematic output trajectories corresponding to a level change at three different
rates for (b) decreasing inputs from 80 to 30 dB SPL, and (c) increasing inputs from 30 to 80 dB SPL.

that characterize the motion of the instantaneous I/O point on
the I/O graph. When the input changes abruptly, the output
initially tracks the input, moving in nearly a 45line. Over
long durations with static inputs, the output asymptotically
approaches the I/O target.

Fig. 4(a) shows a prototypical I/O curve for a single channel
in the dynamic model. At low levels, the I/O function is
nearly linear, over normal levels it is compressive, and at
extremely high levels it is again linear. The general shape
of the prototypical I/O curve was motivated by the saturating
response of the basilar membrane [23]. For each adaptation
stage, a fixed internal threshold, corresponding to the static
audibility threshold, is imposed at the compression threshold.
Similarly, the compression region ends, and the model again
becomes linear, at a high level of equal loudness (near 90 dB
SPL), which varies with the center frequency of the adaptation
stage. By carefully choosing the threshold and I/O curve for
each adaptation stage, the AGC sections map a specified static
input range as a function of center-frequency into a normalized
internal level consistent with constant loudness contours.

Fig. 4(b) and (c) schematically show the response of the
model to decreasing and increasing inputs, respectively. When
the input changes abruptly, the trajectory on the I/O curve
moves along a 45 angle, and then slowly settles to the
target on the I/O curve. When the input changes slowly,

the output trajectory follows the I/O curve more closely.
The model predicts forward masking when output trajectories
momentarily fall below the internal threshold, as in Fig. 4(b).

B. Derivation of Model Parameters

The model’s forward-masking prediction is derived from
the response of the dynamic mechanism to forward-masking
stimuli. When the output of the adapting (dynamic) mechanism
is just at threshold during the onset of the probe, the model
predicts a forward-masking threshold.

To simplify the model and this derivation, a constant I/O
slope is imposed across the compressive region. Fig. 5 de-
scribes the geometries necessary to measure the model’s
prediction of the forward-masking threshold with long maskers
as a function of masker level and probe delay. Before the
masker offset, the output trajectory reaches the target on the
I/O curve (point A in Fig. 5). As the masker shuts off abruptly,
the output trajectory instantly falls along the diagonal (from A
to B). Once the trajectory is below the compressive region, the
distance to target is constant, and the model adapts by slowly
increasing toward maximum additive offset (from B toward
C). At some point during this adaptation (point C), the onset
of the probe causes an abrupt transition from below threshold
back up along a new diagonal (from C to D). If the probe
level is intense enough to place the trajectory above threshold
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Fig. 5. Geometry to derive recovery (upward adaptation) parameters from
forward-masking thresholds.

(at the instant of the probe onset) the probe is audible. If
the internal level just reaches threshold, the model predicts a
forward masking threshold (at point D).

Incremental adaptation of the model is implemented using a
(nonconstant coefficient) first-order difference equation lead-
ing to an exponential decay of the logarithmic distance to
target. From the geometry in Fig. 5, probe level at threshold

as a function of masker level discrete-time probe delay
I/O slope and incremental adaptation is

where and are both referenced to the static threshold.
Instantaneously, or with no delay the model predicts
a short-term dynamic range below masker equal to
the vertical distance between the static I/O curve and threshold

Therefore, the data points at the shortest delay [Fig. 3(b)]
provide an approximation for the I/O slope parameter
An iterative procedure was used to minimize the total mean
squared error (MSE) between the model predictions of the
probe thresholds and the average forward masking data for
all data points at each center frequency, as a function of the
two model parameters and The total MSE is relatively
insensitive to the I/O slope, compared to the adaptation
parameter Therefore, the initial estimate of from the
short-delay conditions was averaged with the value that min-
imizes total MSE, to determine a final estimate. A second
MSE minimization as a function of only determined the
final estimate.

Just as forward-masking data as a function of probe delay
are used to characterize recovery, the change of forward
masking with the duration of the masker is used to characterize
attack. Short-duration maskers reduce the time for downward
adaptation, which decreases the amount of adaptation, and in
turn, reduces the time to recovery. Geometries necessary to
derive attack (downward adaptation) parameters are described
in Fig. 6. Before the onset of the masker, the model reaches
the static threshold (at point A in Fig. 6). At the abrupt masker

Fig. 6. Geometry to derive attack (downward adaptation) parameters from
forward-masking thresholds as a function of masker duration.

onset, the output trajectory translates diagonally upward (from
A to B) and then slowly drops toward the I/O target as the
model adapts (from B to C to D). If the duration of the masker
is short relative to the downward time constant, the trajectory
will not reach the I/O target by the time of the abrupt masker
offset (point C). In response to the masker offset, the output
trajectory corresponding to the short masker moves diagonally
(from point C), crossing the internal threshold at a lower point
than the trajectory corresponding to the longer masker (from
point D). After brief recovery during a short probe delay, the
model predicts less forward masking from the short-duration
masker.

Following incomplete downward adaptation (or attack), and
as a function of the attack parameterdiscrete-time masker
duration and probe delay the model predicts a probe
threshold of

The probe threshold difference, between short and long
masker durations is

This probe threshold difference equation was solved for the
model parameter and then its value was estimated from
the differences reported in [4], using the and parameters
derived above. Table I summarizes the model parameters and
adaptation time constants across frequencies. Theand
terms are with respect to a 100 Hz spectral sampling rate.
Adaptation stages with center frequencies between measured
points use a weighted average of neighboring parameters.
Attack time constants are approximately three to four times
shorter than release time constants. These times, and more
accurately their ratio, approximate those derived from physi-
ological data [13].

Fig. 7 shows the model’s prediction of the decay of masking
at 1 kHz. Note that the decay rate of forward masking is
greater with more intense maskers, and that the decay is nearly
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(a) (b)

Fig. 7. Model’s prediction of the decay of forward masking as a function of masker level at 1 kHz with (a) linear time reference and (b) loga-
rithmic time reference.

(a)

(b)

Fig. 8. Adaptation to, and recovery after, a pulse. (a) Response to the second pulse is diminished. (b) Impulses, corresponding to onsets, are initially
masked (similar to figures in [13]).

linear with logarithmic time. Fig. 8 shows two examples of the
model’s behavior at 1 kHz. Fig. 8(a) shows the response to
two consecutive pulses. The model adapts in response to the
onset of the first pulse, and the response to the onset of the
second pulse “rides on top of” the recovery from adaptation.
Fig. 8(b) shows forward-masking examples. The model starts
adapting at the onset of the long pulse, and then recovers after
its offset. Lower-intensity impulses following the long pulse,
corresponding to potential probe onset points, again ride on
top of the model’s recovery from adaptation to the pulse.
The responses to the impulses are initially below threshold
(masked) and with time, rise above threshold.

Fig. 2, includes the model’s fit to the average forward-
masking data. The computational model approximates
forward-masking data for a wide range of masker levels
and probe delays across several frequencies. The standard
deviation of the error is: 2.7, 2.9, 3.2, 3.1, and 2.4 dB, at 250,
500, 1k, 2k, and 4k Hz, respectively. Most notably, however,
the model consistently underestimates forward masking at the
shortest probe delays. At least two factors contribute to this
error.

First, the exponential derivation assumes the 15 ms delay
between the masker and probe is silence. This assumption
provides the maximum possible distance to target during the
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(a) (b) (c)

(d)

Fig. 9. Using the model to predict other forward masking data. (a) Wideband masker and probe [20]. (b) Wideband masker, sinusoidal probe at 1 kHz [24].
(c) Sinusoidal masker and probe at 1 kHz [19]. (d) Equation provided in [19] predicting the present data.

15 ms, the maximum amount of recovery, and the lowest
prediction of forward masking. In fact, the stimuli had 5 ms
of offset, 5 ms of silence, and 5 ms of onset during this
interval. Any nonsilence during the 15 ms delay decreases
the distance to target, reduces the amount of recovery, and
increases the estimation of forward masking. Ignoring the
finite onsets and offsets reduces the model’s predictions of
the amount of forward masking at short delays.

Second, in this derivation, forward masking is assumed to
occur when insufficient auditory recovery keeps the response
to the probe below threshold. However, at shorter (near zero)
delays, with extremely similar maskers and probes, the probe
may only be audible as a change in level at the end of the
masker [24], and not as a separate event. Even though the
response to the probe is above threshold, the subject may
not distinguish the probe from the masker, and therefore not
detect the probe. Because the derivation requires the model’s
response to the probe to be below threshold to be masked, it
underestimates the amount of forward masking, especially at
short delays with intense maskers.

C. Predicting Other Data

Fig. 9 (a)–(c) shows the model’s predictions of previous
forward masking data. Fig. 9(a) shows the model’s prediction
of average data with wideband stimuli [20]. These data provide
relatively complete measurements of forward masking across
level and delay. In the results shown in Fig. 2, there is only
slight variation of forward masking with frequency. Because
the adapting response of the model to wideband stimuli
approximates the response at middle frequencies, the wideband
data were predicted using the model parameters derived from
the 1 kHz data. Although the model underestimates these data,
the trends are consistent.

Figs. 9(b) and 9(c) show the predictions for wideband and
pure-tone maskers of 1 kHz pure tones, respectively [19], [24].

TABLE I
MODEL PARAMETERS RELATIVE TO A 100 Hz SPECTRAL RATE

These measurements were made at relatively short delays.
Authors have historically disagreed on how to specify delay
in a forward-masking experiment [20]. In this paper, delay is
measured between the envelope peaks, while [19] used zero-
voltage points, and [24] chose half-voltage points between the
masker and probeoffset. The present study used 5 ms ramps,
[19] used 10 ms, and [24] used 5 ms for the masker and
10 ms for the probe. To compensate for these differences,
2.5 ms is subtracted from the delay reported in [24], and
10 ms is added to the numbers in [19]. The masker level
in the 1 kHz band for the wideband masker is determined
by the energy in the critical band [21] centered at 1 kHz.
Although comparisons are only possible at relatively short
delays, the model overestimates the amount of masking by
wideband noises, and underestimates masking by pure tones.
Once parameterized, however, the simple dynamic mechanism
approximates dynamic psychophysical responses.

Fig. 9(d) shows the prediction of data from this study by
an equation proposed in [19]

and are the levels of the probe and masker above
threshold, and the constants and are chosen to fit the
average forward-masking data at 1 kHz in [19]. Even though
the parameters in this equation were chosen from a data set that
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did not include measurements at the longer delays used in this
study, it provides an excellent prediction of the present data.

D. Other Models Predicting Forward Masking

Other auditory models have been derived which, in general,
provide a better fit to forward-masking data. Most, however,
do not readily extend to a general processing scheme suitable
for an ASR front end. For the dynamic mechanism derived
in this paper, a signal is masked when the response is below
threshold. To fit forward-masking data, other models typically
parameterize a decision device, and thereby impose explicit
interpretations of the front end’s response. If the parameterized
decision device is removed to use the auditory model for an
ASR front end, it is less clear how the recognition system
would correctly interpret a masked signal.

Forward, backward, and forward/backward masking combi-
nations have been predicted with great precision assuming a
relatively standard model of filtering, rectification, power-law
compression, temporal integration and a decision device [25].
In its original derivation, however, there was no mechanism
to account for the level-dependence of forward masking.
Either the temporal window shape [25] or the power-law
compression [26] may vary with level. The decision device
required an unusually high minimum detectable temporal
amplitude variation of 6 dB, which may not extend well to
a general processing scheme. Finally, if forward masking is
entirely a consequence of temporal integration, physiological
measurements of adaptation are ignored, and there is no mech-
anism that explains physiological and perceptual sensitivity to
onsets and transitions.

Other researchers have proposed models using adaptation
mechanisms to explain forward masking [27]–[29]. The first
of these [27] uses a modified version of a previous model
[30] that includes filtering, envelope detection, power-law
compression, rapid and short-term adaptation, and long-term
integration. The long-term integrator is bypassed in forward-
masking tasks. Immediately following a stimulus, the model
assumes that there is no rapid onset component in response
to a probe, that this component recovers exponentially with
time, and that the relative level of this component is used
to determine forward masking. The model is somewhere
between a complete processing mechanism and an equation
summarizing psychophysical responses, and therefore, is also
difficult to incorporate into ASR systems. The exponential
recovery of the rapid onset component has similarities to
the exponential adaptation used in the dynamic mechanism
described in this paper.

More recently, other researchers have developed a general
auditory model that, together with an optimal decision device,
predicts well a wide variety of psychophysical data [28], [29].
In each auditory channel, the model uses linear filtering, half-
wave rectification, and lowpass filtering, followed by five
adaptation stages. The output is correlated with templates
that store the model’s response to other (masker-only) con-
ditions to predict masking thresholds, thereby imposing a
relatively complex postprocessing mechanism to predict the
data. The model provides a dynamic spectral representation

of speech that is likely to improve recognition robustness;
potential application improvements may warrant the significant
computational complexity.

IV. PEAK ISOLATION

Both speech perception and the response of individual au-
ditory nerves are extremely sensitive to the frequency position
of local spectral peaks. There are several mechanisms and
corresponding modeling approaches that may explain this
sensitivity. Physiologically motivated by the local fan-out
of the neural connection to outer hair cells, [14] suggests
cross-coupling AGC stages to improve static spectral contrast,
providing functionality similar to the higher level lateral
inhibitory network in [31]. Significant effort [15], [16], [32]
also focuses on modeling how the auditory system derives, and
makes use of, redundant temporal microstructure. Auditory
nerves with center frequencies as far as an octave away
from a local spectral peak can synchronize their response
to the frequency of the peak, providing a composite neural
representation dominated by that frequency [33]. Similarly,
perceptual discrimination of vowels is more sensitive to the
frequency location of spectral peaks than to other aspects of
the spectral shape [34]. These data suggest that the auditory
system may derive a noise-robust representation by attending
to the frequency locations of local spectral peaks.

The dynamic model was therefore also evaluated with
a novel processing technique, based on raised-sine cepstral
liftering [5] together with explicit peak normalization, which
isolates local spectral peaks. Raised-sine cepstral liftering is
weighting the cepstral vector by the first half-period of a
raised-sine function.

The cepstral vector is an expansion of the even log spectrum
in terms of cosine basis functions. The term specifies
the log-spectrum average, the term approximates the log-
spectrum tilt, etc., and high cepstral terms represent quickly
varying ripples across the log spectrum. Weighting the cepstral
vector specifies the relative emphasis of different types of log-
spectrum variations. A raised-sine lifter deemphasizes slow
changes with frequency, often associated with overall level and
vocal driving-function characteristics, as well as fast changes
that may reflect numerical artifacts [5].

It is helpful to view the effects of cepstral liftering in the
log spectral domain. Fig. 10(a) starts with the log spectrum,
from a vowel implied by a truncated cepstral vector.
Fig. 10(b) shows the log spectrum implied after raised-sine
cepstral liftering. The average level as well as slow (and
fast) variations with frequency are deemphasized, leaving
components that change at a moderate rate with frequency.
This process emphasizes both spectral peaks and valleys.

The valleys are removed by half-wave rectifying the log
spectral estimate implied after raised-sine liftering, and a
final vector is obtained by transforming back to the cepstral
domain. Because the half-wave rectifier is nonlinear, explicit
transformation from cepstrum to log spectrum (processing
through the rectifier) and then transformation back to cepstrum
are required. The raised-sine lifter also affects the magnitude
of the peaks. Therefore, before transforming back to the
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(a) (b) (c)

Fig. 10. Peak isolation processing. Log spectrum of the vowel=i= after (a) cepstral truncation, (b) raised-sine cepstral liftering, and (c) half-wave
rectification and peak normalization.

cepstrum, peaks are scaled to the level measured in the original
log spectrum. The final peak-isolated estimation is shown in
Fig. 10(c).

V. ROBUST RECOGNITION EVALUATION

The model was evaluated as the front end for two
word recognition systems. The first is a talker-dependent
dynamic time warp (DTW) system, and the second uses
talker-independent hidden Markov models (HMM). The
DTW system provides an initial assessment of the model
and the HMM evaluations are better approximations of
potential ASR applications. The vocabulary for all systems is
limited to the ten digits. Finally, a comparison with RASTA-
based processing is included. The inputs to all recognition
experiments are corrupted with additive noise shaped to
match the long-term average speech spectrum [35]. Test words
are embedded in (noisy) silence, so that the recognizers are
required to both isolate and recognize the discrete words.

Two versions of the dynamic model were implemented:
a full-rate system and a downsampled version. The full-
rate system uses rounded exponential filter shapes [36], and
then adapts the envelope of each filter output at the full
sampling rate. The downsampled system obtains Mel-scale
power spectrum estimations every 10 ms by weighting and
adding power spectrum points from a fast Fourier transform
(FFT), and then adapts these outputs at the downsampled rate.
On an HP715 workstation, the downsampled system runs at
0.43 real time, while the full-rate implementation requires
9.4 real time. The recognition evaluations below used the
downsampled implementation.

Three basic front ends are compared: linear prediction
cepstral coefficients (LPCC), Mel-frequency cepstral coeffi-
cients (MFCC), and mel-frequency cepstral coefficients with
adaptation (MFCCA). Each front end computes a spectral
estimation every 10 ms using overlapping 30 ms Hamming
windows. LPCC are computed in two stages [1]: 12th-order,
autocorrelation-based linear prediction provides an all-pole
vocal-tract transfer function. Real cepstral coefficients are
then recursively computed for this minimum-phase estimation.
MFCC are computed in three stages [2]. The power spectrum is
computed using a zero-padded FFT. To estimate the energy at
the output of each approximate auditory filter, power spectrum

outputs are weighted by a triangular filter shape and then
summed. The filters have a half-power bandwidth of 100 Hz
up to center frequencies of 1 kHz, and a bandwidth of 0.1
times the center frequency above 1 kHz. A DCT converts
the spectral estimation obtained from the logarithmic energy
across filters into a final cepstral vector. Before the DCT,
the logarithmic filter energies of MFCC are also processed
through the dynamic stages derived in Section III to obtain
the adapting spectral estimation vector MFCCA. A 13-element
cepstral vector and its temporal derivative (approximated by
the slope of a linear fit to seven cepstral points) are obtained
for each front end, but the undifferentiated spectral level term

is ignored during recognition.
For the initial DTW evaluation, the peak isolation mecha-

nism was applied only to the MFCCA to obtain MFCCAP. For
subsequent HMM evaluations, all front ends were compared
with and without peak isolation.

Fig. 11 shows spectral representations of the digits “nine six
one three” from MFCC, MFCCA, and MFCCAP. The dynamic
model emphasizes spectral changes in time, while peak isola-
tion enhances spectral contrast in frequency. Together, these
mechanisms highlight the spectro-temporal representation of
changing frequency peaks. The second half of this picture
shows representations at 5 dB signal-to-noise ratio (SNR).
Onsets, transitions, and changing local spectral peaks may
remain as robust cues for recognizing speech in a noisy
background.

A. DTW Evaluation

An initial evaluation with a simple dynamic programming-
based isolated word recognition system [1] and a single talker
was performed. A system was constructed that used an Itakura
path constraint [1], and a Euclidean local distance metric
excluding the undifferentiated term. Clean templates were
isolated from surrounding silence, but test tokens were not.
As more noise is added, word isolation, or endpoint detection,
becomes more difficult. To asses the robustness of the system,
it is therefore, unrealistic to assume the temporal placement
of the speech within the background noise is known. Instead,
dynamic programming is used to find the speech within the
noise. At each time slice in the test token, a new path starts at
the beginning of the template and an accumulated distance
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Fig. 11. Spectrogram representations of the words “nine six one three” from MFCC analysis, the dynamic model MFCCA, and the dynamic model with
peak isolation MFCCAP, at greater than 40 dB SNR and at 5 dB SNR.

propagates through the end of the template. Accumulated
distances usually reach a minimum at the end of the speech
in the test token, marking the best alignment for that test
token/template pair, without explicit endpoint detection. The
accumulated distances are divided by their path lengths to
normalize for templates of different duration. The minimum
normalized distance specifies the distance to each template,
and the minimum template distance determines the word
recognized.

The data were digitally recorded from a single talker in a
sound-isolated room using a close-talking microphone. Fig. 12
shows the degradation of recognition performance in back-
ground noise across the four front ends: LPCC, MFCC,
dynamic model (MFCCA), and the dynamic model with peak
isolation (MFCCAP). Consistent with [3], the MFCC is more
robust than LPCC. However, both the dynamic model MFCCA
and the dynamic model with spectral peak isolation MFCCAP
are significantly more robust to background noise than MFCC.

B. HMM Evaluations

Using the male talkers in the TI-46 data base and the HTK-
Toolkit, a series of talker-independent HMM-based robust digit
isolation and recognition evaluations were also conducted. The
TI-46 database is hand segmented so that words are placed in

the center of each file. Before adding background noise to
these files, random amounts of silence were added before and
after each token. Two sets of evaluations were performed. The
first used only clean data for training while the second trained
both clean and noisy models.

For all models, six-states per word, simple left-to-right state
transitions, continuous Gaussian densities, diagonal covari-
ances, and fixed global variances were used. Mean feature
vectors and transition probabilities for each state were trained
as described below, but variances were set to the global
variance estimated over all tokens in the training set. This
technique is useful with limited training data and when the
testing environment is significantly different from the training
environment [3].

The clean models were trained in two stages. Training words
were first isolated from the surrounding silence based on the
total signal energy. The models were initialized assuming a
uniform distribution of the words across the six states in the
model. Iterative Viterbi (max-path) alignment and training was
then applied until the average log probability decreased by
less than a threshold. Finally, the forward-backward algo-
rithm improved the estimate for each model using a similar
convergence criterion.

When the test environment differs from the training en-
vironment, recognition performance deteriorates. A common
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Fig. 12. Talker-dependent DTW recognition performance in noise.

approach to address this issue is to train models using noisy
data [1]. One set of clean models was built, as described
above, and then a second set of “noisy models” was built using
training data at an SNR of 12 dB. Both sets of models were
used for recognition; the model with the highest probability
(from either set) determined the word recognized. To train
the noisy models, stationary background noise was added,
and then forced-Viterbi alignment with the corresponding
clean model was used to isolate the noisy speech from the
background. The same Viterbi and forward-backward training
algorithms, used for training clean models, were used to train
noisy models from the isolated noisy words.

For Viterbi alignment in training and recognition, silence
models were used together with a “grammar” of silence-
word-silence. In a fixed-variance system, the silence models
were simply the long-term moving average of the front end’s
response to the background noise. As the SNR changed, the
silence model’s mean updated to the new background noise.

Fig. 13(a) shows the increasing error rate at lower SNR’s
for the different front ends. Each front end was evaluated
with and without the peak isolation mechanism. The dynamic
model MFCCA by itself shows no improvement over stan-
dard MFCC, however, adaptation improves the robustness of
MFCCP, and MFCCAP remains the most robust front end.
Isolating peaks is helpful, but isolating changing peaks is
perhaps more helpful.

There are at least two reasons to expect the performance of
the dynamic model to degrade when using HMM-based recog-
nition in a noisy environment. The dynamic model provides
a context-dependent response that may increase differences
between onset responses in clean and noisy environments.
However, MFCCA improves DTW performance over MFCC.
The difference may be that in the DTW system, templates are
continuously varying over the utterance. The HMM system
requires discretizing the variation over the utterance into a
finite number of states. The nonstationary response of the
dynamic model (as seen in Fig. 11) may not be as well-

suited to segmentally stationary statistical characterization as
the MFCC representations; intrasegment changes are reduced
to averages.

Fig. 13(b) shows the evaluation using models of both clean
and noisy data. Performance across all front ends improves,
and MFCCAP continues to provide the most robust represen-
tation. This evaluation removes some of the context-dependent
mismatch between training and testing.

Fig. 13(c) and (d) compare the performance using the
dynamic mechanism and the perceptually motivated RASTA
technique [18]. RASTA involves filtering the logarithmic
temporal trajectories (log energy temporal excitation patterns)
with a bandpass filter that has a sharp zero at DC. By
deemphasizing slow and fast changes with time, RASTA also
provides an adapting response. Both front ends were evaluated
with and without the peak-isolation algorithm. Fig. 13(c)
shows the performance with clean models, and Fig. 13(d)
compares the performance with clean and noisy models. Our
dynamic mechanism is more robust for these tasks. In this
comparison, the RASTA technique was applied directly to
the logarithmic filter energies, without the perceptual linear
prediction (PLP) processing used in its original optimization
[18]. The “standard” RASTA filter

was used and performance was not compared with other
RASTA variations that optimize the compressive and expan-
sive nonlinearities for the specific acoustic environment.

Spectral estimations on a perceptual frequency scale
(MFCC) are more robust than those on a linear scale (LPCC).
Adaptation provides sensitivity to onsets, enhancing spectral
contrast in time. Unlike the RASTA technique, which can
be described as a (smoothed) first-order differentiation,
the dynamic model proposed here does not provide zero
output for constant input. Instead, the adaptation stages
converge to static targets on the I/O curves. Also unlike
the RASTA technique, recovery is roughly three times
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Fig. 13. Talker-independent HMM comparisons: LPCC, MFCC, and MFCCA with (a) clean models, (b) clean and noisy models. MFCCA and RASTA with
(c) clean models, (d) clean and noisy models.(+) indicates with peak isolation, (�) indicates without peak isolation.

slower than attack. Finally, peak isolation enhances spectral
contrast in frequency. The combination of adaptation and
peak isolation provides a spectral estimation sensitive to
changing local spectral peaks, enhancing the representation
of speech in a noise background. The dynamic mechanism
with peak isolation (MFCCAP) reduced the word recog-
nition error in background noise by a factor of two to
three over common (MFCC) front ends in each of these
evaluations, and provided an improvement over the RASTA
technique.

VI. CONCLUSIONS

Current speech recognition systems use a simplified au-
ditory model to transform a temporal pressure wave into
a sequence of spectral estimations. Specifically, ASR front
ends approximate auditory frequency selectivity and magni-
tude compression. This paper provides two simple nonlinear
mechanisms that extend the front end to include adaptation
and sensitivity to the frequency location of local spectral
peaks. These mechanisms impose additional computational
requirements roughly equal to that of the common ASR
front end. Forward-masking data parameterize the adapta-

tion mechanisms. Using additive exponential adaptation after
logarithmic conversion, the dynamic mechanism predicts a
nearly linear decay of the amount of forward masking (in
decibels) as a function of logarithmic probe delay, and faster
rates of decay of forward masking from more intense for-
ward maskers. The output is below threshold when forward
masking is predicted to occur (a decision device is not used),
allowing for direct connection to current recognition systems.
The peak isolation mechanism is an extension of raised-sine
cepstral liftering. Together with the common MFCC front end,
these mechanisms imply an auditory system with frequency
selectivity and magnitude compression that is highly sensi-
tive to onsets, transitions, and changing local spectral peaks.
Each of these mechanisms improves the noise-robustness of
a simple word recognition system. Together they reduce the
error rate by a factor of two to three over an MFCC front
end.
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