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In complex systems, multiple aspects interact and influence each other. A vast number of entities are present in the
system. Traditional modeling and simulation techniques fail to capture interactions between loosely coupled aspects
of a complex distributed system. The objective of this work is to formalize and to specify a part of the Agent-oriented
Software Process for Engineering Complex Systems methodology (Problem and Agency Domains) for modeling the
holarchy of studied system by using a formal specification approch based on two formalisms: Petri Net and Object-Z
language. Such a specification style facilitates the modeling of complex systems with both structural and behavioural
aspects. Our generic approach is illustrated by applying it to FIRA Robot Soccer and is validated with the Symbolic
Analysis Laboratory framework.
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1. Introduction

In computer science, a formal specification is a mathematical

description of software or hardware that may be used to

develop an implementation. It describes what the system

should do but not (necessarily) how the system should

proceed. Given such a specification, it is possible to use

formal verification techniques to demonstrate that a

candidate system design is correct with respect to the

specification. This has the advantage that incorrect candi-

date system designs can be revised before a major investment

has been made in actually implementing the design. An

alternative approach is to use provably correct refinement

steps to transform a specification into a design, and

ultimately into an actual implementation that is correct by

construction.

A design (or implementation) can never be declared

correct in isolation, but only ‘correct with respect to a given

specification’. Whether the formal specification correctly

describes the problem to be solved is a separate issue. It is

also a difficult issue to address, since it ultimately concerns

the problem constructing abstracted formal representations

of an informal concrete Problem Domain, and such an

abstraction step is not amenable to formal proof. However,

it is possible to validate a specification by proving

challenging theorems concerning properties that the specifi-

cation is expected to exhibit. If correct, these theorems

reinforce the specifier’s understanding of the specification

and its relationship with the underlying Problem Domain. If

not, the specification probably needs to be changed to better

reflect the understanding domain of those involved in

producing (and implementing) the specification.

In the specification domain, there are several methodol-

ogies to help the modelling and analysis phase of Multi-

Agent Systems (MAS) and Holonic systems. Among these

methodologies, we point out the well known: Tropos

(Giorgini, 1995), PASSI (Azaiez, 1992) and Agent-oriented

Software Process for Engineering Complex Systems

(ASPECS) (Object Management Group, 2003; Gaud, 2007).

ASPECS uses UML as a semi-formal modeling language

and consequently it makes this meta-model ambiguous. In

D’inverno and Luck (2003), a principled theory of agency is

developed by describing just such a framework, called the

SMART agent framework. Using Z specification formal

language, a sophisticated model of agent and their relation-

ships is built up and illustrated with some applications. They

demonstrated that Z language is well suited to model data

structures and functionalities in a highly abstract fashion

but do not treat the behavioral aspect. In this work, we use

our specification language called PNOZ, based on two

formalisms: Petri Nets (PN) and Object-Z (OZ). Such a

specification style facilitates the modeling of systems with

functional and behavioral aspects. The objective of this work

consists of consolidating the ASPECS methodology by using

our formal specification and analysis and validates such a

specification with the framework SAL (Symbolic Analysis*M Garoui, Department of Computer Science, Monastir 5000, Tunisia.
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Laboratory). This consolidation is done by formalizing the

core concepts of the first two domains (Problem and Agency

Domain) of ASPECS meta-model.

After a brief presentation of the simulator for the FIRA

Robot Soccer competition, a quick overview of the ASPECS

process and modelling approach will be presented in Section

3. Section 4 presents formal specifications of the first two

domains (Problem and Agency Domains) of ASPECS

process based on composition of PN and OZ language

named PNOZ. Section 5 presents the validation process of

PNOZ specification with the framework SAL. Finally,

Section 6 summarises the results of the paper and describes

some future work directions.

2. Case study: FIRA Robot Soccer

This case study intends to model a simulator for the

FIRA Robot Soccer competition (FIRA Robot Soccer-

ASPECSWiki).

This competition involves two teams of five autonomous

robots playing a game similar to soccer (Figure 1). This is a

classical example where real-time coordination is required.

It constitutes a well-known benchmark for several research

fields, such as MAS, image processing and control.

Robot soccer players are two wheel-driven small mobile

robots, which are controlled by a host computer. A soccer

team in the category of MiroSOT (Micro Robot World Cup

Soccer Tournament) consists of five players, one goal keeper

and four players for each team. There are several game

categories. The size and form of the robot in each category

is fixed by rules.

Robot soccer competitions give an opportunity to foster

intelligent techniques and intelligent robotics research by

providing a standard problem where a wide spectrum

of technologies can be developed, tested and integrated,

for example, collaborative multiple agent robotics, autono-

mous computing, real-time reasoning and sensor fusion.

From a scientific point of view, the robot soccer players are

‘intelligent, autonomous agents’. They have a global goal

like ‘win the game’. Robot soccer aims at promoting the

developments in small autonomous robots and intelligent

system (agent) that can cooperate with each other.

3. A quick overview of the used ASPECS process

As proposed by Gaud (2007) and Cossentino et al (2007),

ASPECS is a step-by-step requirement to code software

engineering process based on a meta-model, which defines

the main concepts for the proposed Holonic Multi-Agent

Systems (HMAS) analysis, design and development based

on Capacities, Role, Interaction and Organization (CRIO)

framework. The target scope for the proposed approach can

be found in complex systems, and especially in hierarchical

complex ones. The main vocation of ASPECS is towards

the development of societies of holonic (as well as non-

holonic) MAS. ASPECS has been built by adopting the

Model-driven architecture (Object Management Group,

2003). In Cossentino et al (2010), they label the three

metamodels ‘domains’ thus maintaining the link with the

PASSI metamodels. The three definite fields are:

� The Problem Domain: It provides the organizational

description of the problem independently of a specific

solution. The concepts introduced in this domain are used

mainly during the analysis phase and at the beginning of

the design phase.

� The Agency Domain: It introduces agent-related concepts

and provides a description of the holonic, multiagent

solution resulting from a refinement of the Problem

Domain elements.

� The Solution Domain: It is related to the implementation

of the solution on a specific platform Janus Project; (Gaud

et al, 2008). This domain is thus dependent on a particular

implementation and deployment platform.

A downfall in ASPECS is that it uses UML as a modelling

language. Because of the specific needs of agents and holonic

organizational design, the UML semantics and notation are

used as reference points, which makes ASPECS meta-model

ambiguous.

Our contribution will relate to the consolidation of

ASPECS process by formalizing the Problem Domain and

the Agency Domain associated with the ASPECS meta-

model, therefore facilitating the Solution Domain.

4. Formal languages

4.1. PN

PN (Murata, 1989) are 3-tuple N¼ (P,T,F), where P and T

are finite, non-empty and disjoint sets. P is the set of places

and T is the set of transitions. The flow relation between

P and T is denoted by FD(P�T)\(T�P). The preset of

a node xAP[T is defined by Kx¼ {yAP[T/(y,x)AF}. TheFigure 1 FIRA Robot Soccer.
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postset of a node xAP[T is defined by xK.¼ {yAP[T/
(x, y)AF}. The preset (postset) of a set is defined by the

union of the presets (postsets) of their elements. A marking

of N is a mapping M:P-N. (N,M ) is called a net system or

a marked net. A transition t is said to be enabled if each of

its input place p is marked with at least w( p, t) tokens, where

w(p, t) is the weight of arc from p to t. M[tS means that

transition t is enabled under M. After t fires at M, a new

marking M
0
results. This is denoted as M[tSM0. The set of

all markings reachable from a marking M0, in symbols

R(N,M0), is the smallest set in which M0AR(N,M0) and

M0AR(N,M0) if bothMAR(N,M0) andM0[tSM0 hold. For

a PN with n places and m transitions, its incidence matrix A

is an n�m matrix of integers and its typical entry is given by

aij¼ aij
þ�aij�, where aijþ ¼w(i, j) is the weight of arc to place

pi from its input transition tj and aij
�¼w(i, j) is the weight of

arc from place pi to its output transition tj. An example

of PN is shown in Figures 2(a) and (b).

In Figure 2, one can verify that P¼ {p1, p2}, T¼ {t1} and

F¼ {(p1, t1),(t1, p1)}. Moreover, p1K¼ {t1}, t1K¼ {p2}, p2K¼{,
Kp1¼{, Kt1¼ p1, Kp2¼ t1. The initial marking is

M0¼ [1, 0]T under which t1 is enabled since M(p1, t1)¼
1Xw(p1, t1). After t1 fires, one token is removed from its

preceding place, that is, p1, and deposited into its succeeding

place, that is, p2.

4.2. OZ

OZ (Smith, 1995) is an extension of the Z formal specification

language to accommodate object orientation. The essential

extension to Z in OZ is the class construct, which groups the

definition of a state schema with the definitions of its

associated operations. A class is a template for objects of that

class: the states of each object are instances of the state

schema of the class, and its individual state transitions

conform to individual operations of the class. An object is

said to be an instance of a class and to evolve according to

the definitions of its class. For example, operation schemas

have a D-list of those attributes whose values may change. By

convention, no D-list means that no attribute changes value.

The standard behavioral interpretation of OZ objects is as a

transition system (Duke and Rose, 2000).

5. Our formal specification language: PNOZ

In this section, we present an integration method of PN

and OZ by defining a coherent formalism called PNOZ

(Garoui, 2011).

In others works, Xudong (2001) proposes a formal

method, PZ Nets, integrating PN with Z. He have provided

a unified formal definition of combining PN and Z, an

approach for developing PZ net specifications and a

technique for analyzing invariant properties of PZ net

specifications. He believes that PZ nets are a powerful formal

method for specifying and analysing many different system

aspects (structure, control, data and functionality) and

system kinds (sequential, concurrent and distributed). But

this formal method has disadvantages: we notice that this

method specified each aspects (structural and behavioral)

separately and have not integrated in the same formalism.

Considerable work has been devoted to formal specifica-

tions that combine two or more languages. The main

advantage of the multi-formalism approaches comes from

a substantial gain in expressive facility. For instance, the

approach presented in this paper assigns to OZ, the

description of data structures and functions, and to the

PN, the description of behavioural aspects. This section

presents a simplified description of the operational syntax

and semantics of PNOZ specification models. An electronic

key system will be used along with this work to illustrate

different aspects of the approach. The system was treated

with greater details in Duke et al (2005) in which an effective

solution to the problem is given.

5.1. PNOZ syntax

Syntactically, PNOZ specification units are like OZ classes,

with the addition of a Behavior schema, which includes a

PN. We add the given type [Event] to allow for the

declaration of Petri Nets primitive events as variables of

the class.

The Door class below specifies a component of the

electronic key system. The class schema Door includes, from

top to bottom, an abbreviation declaration, the behavior

schema, containing a Petri Nets. Next comes an unnamed

schema generally called the state schema, including the

declaration of all class attributes. Next schema, named

(INIT or Init), includes a list of predicates that characterize

the initial state of the class. The two last schemas define

specific operations of the class.

Formally, a PNOZ class C is defined by giving a triple

(VC,BC,OC). The set VC includes the variables of the class, as

named in the state schema. BC is the behavior PN and OC is

the set of operations of the class, the names of the operation

schemas of the class. For the Door class, variables and

operations are:

VDoor ¼ fclosed; openedg
ODoor ¼ fopen; closeg

Operations Open and Close determine the opening and

closing of the door.

Formally, the PN BC is defined by giving the structure

c:(V,T,f). Symbol V denotes a set of state variables. In theFigure 2 A Petri Nets example.
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rest of the paper, we assume V¼ {x1yxn} unless otherwise

stated. A state s is an interpretation of V. Symbol T denotes

a set of transitions; each transition tAT is defined by a

transition relation rt, a first-order formula in which the

unprimed variables refer to the values in the current state

and the primed variables refer to the values in the next

state. Symbol f denotes an assertion over V that represents

the initial condition. The assertion f is assumed to be

satisfiable. Each one of these sets can be precisely determined

by giving an inductive definition of its syntax.

As an example, the BDoor PN has:

V ¼ fclosed; openedg

T ¼ fopen; closeg

5.2. PNOZ semantics

The semantic description of a PNOZ class C consists in

representing the set of computations that C can yield.

Computations are sequences of states subject to causal

restrictions imposed by the elements and the structure of C.

The state of class C, which we call a situation, is essentially

a pair s¼ (v,k). Symbol v: VC-D denotes a valuation of all

the variables of C, with D denoting the super domain where

all the variables take values, each one according to its type.

Symbol k represents a state configuration of the Behavior

PN. A state configuration is a maximal subset of states that

can be active. The initial situation s0¼ (v0, k0) is determined

as follows. The initial valuation v0 is a valuation that satisfies

the predicates of the INIT schema. Variables that do not

appear in the INIT schema usually are given default values.

k0 is the initial state configuration. The basic evolution stage

is the situation change, called step, which we describe now.

Step iþ 1 takes the system from situation i to situation iþ 1

and is noted

ðvi; kiÞ!
Ei ðviþ 1; kiþ 1Þ ð1Þ

where Ei is the set of events activated at step i. The step

occurs when at least one of the PN’s transitions is active.

To describe the situation transformation produced by a

step, we adopt the formalism of transition systems,

particularly the Mana and Pnueli notation style by means

of predicates (Manna and Pnueli, 1995). With class C, we

associate the transition system SC¼ (V,Y,T). Symbol

V¼VC[{k} represents the set of variables. Variable k takes

value in 2
P

and represents PN’s state configuration. The

states of the transition system SC are the situations of C, that

is, valuations of the variables in V. If s denote a state of SC,

we simplify notation as follows: for all vAV, s[v] denotes the

value of v at s. Symbol Y represents the initial state

predicate. Any valuation of V that satisfies is an initial

state of the system: s is an initial state if s[Y]¼ true (where

s[Y] denotes the valuation of formulaY from the value of its

variables in s). Symbol T represents the set of transitions.

A transition tiAT defines an elementary change of the state

of the transition system. Such a change is described by a

transition relation

ri ¼ V�V0 ! fTRUE; FALSEg ð2Þ

Generally, a transition tiAT is characterized by its

transition relation ri (see expression (3)), that is, a predicate

conjunction.

For the notations Z/OZ, we adopt the conventions before/

after (Pre/Post) to define predicates. Among the general

forms possible for the transition relation, we adopt the

following form:

ri ¼ PreðtiÞ ^ ðv01 ¼ Exp1Þ ^ . . . ^ ðv0n ¼ ExpnÞ ð3Þ

where Pre(i) is the pre-condition of the transition ri and s

is a source state for the transition ri if and only if s|¼Pre(t).

For each partner of the expression (3), (v
0

j¼Expj)

vjAV�V0 and Expj, jA[1,n] is an expression without primed

variables.

To the set V of variable symbols, we add the set V0 of

variable symbols decorated with a prime character (’). For

any vAV, an occurrence of symbol v in ri represents the

valuation of v in the source state of transition ti and an

occurrence of v0, the valuation of v in the destination

state of ti.
To illustrate the general principle for the derivation of T

from the PNOZ model, let us consider the PN specifying the

behaviour of the class Door (Figure 3). It shows some

portion of the behaviour PN of a PNOZ class.

It is easily inferred that the PN of Figure 4 yields t1, t2
with

r1 ¼ðstatus ¼ closedÞ ^ ðOpen ¼ TRUEÞ
^ ðstatus0 ¼ openedÞ

r2 ¼ðstatus ¼ openedÞ ^ ðClose ¼ TRUEÞ
^ ðstatus0 ¼ closedÞ

Transition relation r1, r2 describes the case where both

PN transitions are triggered in diverse step. Note that an

event is represented by a Boolean variable that gets value

TRUE during a step and goes back to FALSE in the

following step, unless the environment or the system itself

assert it again.

The treatment, within the transition system SC, of events

produced by the environment (external, input events) is not

trivial, but seems more adequate to consider this question in

the section devoted to the timed version of the PNOZ

semantics.

As an example, consider some elements of the transitions

system associated with the PNOZ class Door, introduced in

section 3. The initial state predicate is

YDoor � ðk ¼ closedÞ ^ ðstatus ¼ openedÞ
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PN transitions outing state opened and state closed yields

transition relations

r1 �ðk ¼ openedÞ ^ ðstatus ¼ closedÞ
^ ðOpen ¼ TRUEÞ

r2 �ðk ¼ closedÞ ^ ðstatus ¼ openedÞ
^ ðClose ¼ TRUEÞ

6. Formal ASPECS metamodel

We use our specification formalism PNOZ introduced in

Garoui (2011); Mazigh et al (2011); for efficiency modelling

and analysis of FIRA Robot Soccer competition. This

specification formalism combines two formal languages: PN

(Vinh Duc, 2005; Smith, 1995) and OZ (Vinh Duc, 2005;

Smith, 1995).

Our approach consists in giving a formal modeling based

on PNOZ language. To validate our formalization ap-

proach, we have limited our work to the specification of the

Team Simulation Organization, which is a part of the holonic

structure of the system studied.

6.1. Problem Domain associated with our case study

In this section, we use the ASPECS methodology to describe

partially the Problem Domain in the form of concepts: Role,

Organization, Interaction and Capacity. All these concepts

are inherited from the classes of CRIO framework.

To do this work, we use our PNOZ language introduced

in previous sections to formalize the main concepts of the

Problem Domain associated with ASPECS metamodel. The

organization Team Simulation (Figure 5) is composed of

four roles (PlayersSimulator, RoleAssigner, StrategySelector

and GameObserver), six interactions between these roles and

three capacities (PlayStrategy, ObserveGame and Choose-

Strategy) required by the roles.

Formally, the roles are specified by OZ classes containing

behaviour schemas. These schemas include the PN which

specifies the system’s behaviour. The incoming and outgoing

arrows indicate that the behaviour of such a role is related to

the behaviour of another role. They explain that there is an

information exchange between the roles.

The class PlayersSimulatorRole (Figure 6) specifies the

role PlayersSimulator. It inherits from the role class and

adds these attributes: requiredCapacity, which is a set of

Capacities required by the role.

The role requires a capacity which is named PlayStrategy.

The behaviour of the PlayerSimulatorRole specified by the

behaviour schema consists of four states. We suppose that

our system can be in these four different states (PlayersSi-

mulatorReady, PlayersReady, InitializationDone and Play-

ing). For this reason, we use a type State to describe the

system states. The incoming and outgoing arrows show, as

we said, the interconnection between different roles of the

same organization. The role PlayersSimulatorRole exchange

data with the others roles of Team Simulation organization

such as RoleAssignerRole, GameObserver Role and other

external actions.

Figure 3 Door system specification based on the syntax
PNOZ.

Figure 4 Petri Nets associated with Door’s behaviour.
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The class PlayStrategy (Figure 7) specifies the PlayStrat-

egy Capacity. Its inputs are a set of Strategies and it

produces a PlayingStrategy as output.

The class Perceives (Figure 8) specifies the Perceives

Interaction. It adds the following attributes: orig and dest to

specify the origin and destination of an interaction between

two roles.

The other roles of Team Simulation organization

(Figure 9) will be specified in the same way as Player-

SimulatorRole. The class StrategySelectorRole, Role-

AssignerRole and GameObserverRole specify, respectively,

the role StrategySelector, RoleAssigner and GameObserver.

Remark: The class TeamSimulation (Figure 9) specifies

the TeamSimulation Organization. It has the following

attributes: roles representing a set of Role, interactions

representing a set of Interaction in the same organization.

Figure 5 Team Simulation Organization.

Figure 6 PlayersSimulatorRole class.

Figure 7 PlayStrategyCapacity class.

Figure 8 PerceivesInteraction class.

Figure 9 Team SimulationOrganization class.
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6.2. Agency Domain associated with our case study

In this section, the ASPECS methodology is used to describe

partially the analysis phase, the design of the agent society

and propose a holonic structure of the FIRA Robot Soccer

system.

The Agency Domain includes the elements that are used

to define an agent-oriented solution for the problem depicted

in the previous stage. Among these elements, we will focus

on the most important elements such as AgentRole, Agent,

Holon, HolonicGroup and ProductionGroup.

AgentRole is an instance of the Problem Domain Role. It is

a behaviour and it owns a set of rules in a specific group

context.

AutonomousEntity is an abstract rational entity that

adopts a decision in order to obtain the satisfaction of one

or more of its own goals. An autonomous entity may play a

set of Agent Roles within various groups. These roles

interact with each other in the specific context provided by

the entity itself. The entity context is given by the knowledge,

the capacities owned by the entity itself. Roles share this

context by the simple fact of being part of the same entity.

An Agent is an autonomousEntity that has specific

individual goals and the intrinsic ability to fulfil some

capacities. Holon is an autonomousEntity that has collective

goals (shared by all members) and may be composed of

other holons, called members or sub-holons. A composed

holon is called super-holon. The concept Group is an

instance in the Agency Domain of an Organization defined

in the Problem Domain. It is used to model an aggregation of

AgentRoles played by Holons.

The structure of the holonic solution dealing with our

Robot Soccer simulator is presented in Figure 10, Groups

(g1, g5, g3 and g7) are holonic ones (HG). At Level 2 of the

holarchy, two super-holons H1 and H2 play the role of the

Team Role in g0 group. Thus, g0 is an instance of a Game

Simulation Organization. Each of these two super-holons

contains an instance of Team Simulation Organization

(group g2 and g6). Inspired by a monarchic government

type, holon members playing the roles of StrategySelector

(H5 and H9) are automatically named Head and Repre-

sentative of the other members. Holon Part H3 playing the

role of PlayersSimulator is decomposed and contains an

instance of the PlayerSimulator Organization. Its govern-

ment is inspired by the Apanarchy where all the members are

implied in the process of decision making (all holons are

Heads). The atomic holon H6 plays the role of Multipart as

it is shared by two couples of super holons (H1, H2) and

(H3, H7). This holon represents the environmental part of

the application.

The class PlayersSimulatorAgentRole (Figure 11) specifies

the PlayersSimulator AgentRole. It has the following

attributes: its requiredCapacity is a set of Capacities and it

provide services illustrated by a set of services (provided-

Service) and agenttask is a set of actions specific to agent.

Figure 10 Holonic Structure of the FIRA Robot Soccer.

Figure 11 PlayersSimulatorAgentRole class.

B Mazigh et al—Use of formal languages to consolidate a Holonic MAS methodology 7



The behaviour of the PlayersSimulatorAgentRole is specified

by the behaviour schema. This schema contains PN, which

are used to describe the behaviour of the class Player-

SimulatorAgentRole. This is last played by the holon H3.

Class H3 (Figure 12) specifies the PlayersSimulatorHolon

of the holonic structure. It has the following attributes:

agentrole (a set of played AgentRole),Holonicgroups (a set of

HolonicGroup), productiongroup (a set of ProductionGroup)

and collective Goal, which contains all goals of holon.

Class g3 (Figure 13) specifies the HolonicGroup g3. It adds

the following attributes: its members are a set of Holonic-

Members.

Class g4 (Figure 14) specifies the ProductionGroup g4. It

has the following attributes: its agents are a set of Agent.

Among these agents, class H11 (Figure 15) specifies

Agent H11. It introduces the following attributes: its

agentroles is a set of AgentRole played by Agent H11 and

individualgoal is a set of Goals used by agents to achieve

some tasks.

7. Validation of PNOZ specification with SAL

SAL (Natarajan, 2000a, b) stands for Symbolic Analysis

Laboratory. It is a framework for combining different tools

for abstraction, programme analysis, theorem proving and

model checking towards the calculation of properties

(symbolic analysis) of transition systems. A key part of the

SAL framework is a language for describing transition

systems. This language serves as a specification language and

as the target for translators that extract the transition system

description for popular programming languages such as

Esterel, Java and Statecharts. The language also serves as a

common source for driving different analysis tools through

translators from the SAL language to the input format for

the tools, and from the output of these tools back to the SAL

language.

The SAL distribution includes the following primary

tools: the SAL well-formedness checker (sal-wfc), the SAL

symbolic model checker (sal-smc), sal-deadlock-checker and

so on. The other SAL tools should not be applied until the

errors identified by the well-formedness checker have been

corrected. Note that sal-wfc is not a full typechecker, so

some type-incorrect SAL specifications will escape detection

and produce unpredictable results. A BDD (Binary Decision

Diagrams)-based model checker for finite state systems is

used. SAL uses the CUDD (CU Decision Diagram) BDD

package and provides access to many options for variable

ordering, and for clustering and partitioning the transition

relation. The model checker can perform both forward and

backward search, and also prioritized traversal. Sal-deadlock-

checker, an auxiliary tool is based on the symbolic model

checker for detecting deadlocks in finite state systems. The

SAL bounded model checker (sal-bmc) is a model checker for

finite state systems based on SAT solving. In addition to

refutation (ie, bug detection and counter-example genera-

tion), the SAL-bounded model checker can perform verifica-

tion by k-induction. Sal-path-finder is an auxiliary tool based

on the bounded model checker that generates random paths.

The SAL simulator (sal-sim) is an interactive front end to

other SAL tools.

In this section, we validate our specification with SAL

tools. Each specification in PNOZ is transformed into SAL

CONTEXT (the framework for declaring types, constants,

modules and module properties).

7.1. From PNOZ to SAL

This approach of translation allows the flexibility required

to directly translate PNOZ specification into SAL. The

translation process is done by following steps: (1) Each OZ

class is represented by SAL MODULE (is a self-contained

specification of a transition system in SAL) in a specific SAL

CONTEXT. (2) The variables of the state schema become

local variables of the module, and inputs and outputs of the

operations become input and output variables of the

module.

Guarded commands may be used in the initialization and

transition sections of a SAL module. (3) The initialization

section of a SAL module may comprise a single guarded

command. (4) The transition section may comprise a choice

between several guarded commands separated by the syntax

‘[ ]’. These guarded commands may be labelled to aid the

understanding of counter-examples generated by the SAL

model checkers.

The part of PN describing the behaviour of class PNOZ

converted into type represented by an enumerated state of

Figure 12 Holon H3 class.

Figure 13 Holonicgroup g3 class.

Figure 14 ProductionGroup g4 class.
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the system and the transitions of PN are converted into

INPUT variables of type Boolean in state schema of

OZ class.

Figure 16 represents SAL CONTEXT associated with the

class PlayersSimulatorRole role. This CONTEXT contains a

definition of type State, which is a set that enumerates all

possible states of the system. In addition, this CONTEXT

also contains a SAL MODULE named PlayersSimulator-

Role, which includes the declaration of Inputs (INPUT),

Outputs (OUTPUT) and Locals variables.

OZ class operations are converted into a set of transitions

in the section TRANSITION of the SAL MODULE. The

translation of OZ operation schemas into SAL consists of

three stages. First, all input and output variables are

extracted and converted into their similar forms in SAL.

In addition, each operation schema is converted into a single

transition, knowing that the OZ schema predicate becomes

the guard for the guarded command, expressing the

relationship between the primed and unprimed versions of

variables. The primed status is added to the guard to indicate

that the state must hold after firing each transition.

SALenv contains a symbolic model checker called sal-smc,

which allows users to specify properties in Linear Temporal

Logic (LTL) and Computation Tree Logic (CTL). However,

in the current version, SALenv does not print counter-

examples for CTL properties. When users specify an invalid

property in LTL, a counter-example is produced. LTL

formulas state properties about each linear path induced by

a module. Typical LTL operators are:

� G(p) (read as ‘always p’), stating that p is always true.

� F(p) (read as ‘eventually p’), stating that p will be

eventually true.

� U(p, q) (read as ‘p until q’), stating that p holds until a

state is reached where q holds.

� X(p) (read as ‘next p’), stating that p is true in the next

state.

For instance, the formula G(p ) F(q)) states that

whenever p holds, q will eventually hold. The formula

G(F(p)) states that p often holds infinitely.

7.2. Properties and proofs

The example illustrated by Figure 16 shows some properties

of the system written in the form of theorems with the LTL

and CTL formulas. The SAL language includes the clause

theorem for declaring that a properties is valid with respect

to a modelled system by a CONTEXT. These properties can

be verified using the following commands:

The first theorem th1 can be interpreted as ‘whenever Play

transition holds, the system will be in Playing State’. The

following command line is used:

./sal-smc PlayersSimulator th1

proved.

The second theorem th2 can be interpreted as ‘whenever

StopGame transition holds, the system will be in Ready

State’. The following command line is used:

./sal-smc PlayersSimulator th2

proved.

Figure 15 Agent H11 class.

Figure 16 SAL CONTEXT associated with the class Players-
Simulator.
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SALenv also contains a Bounded Model Checker called sal-

bmc. This model checker only supports LTL formulas and is

basically used for refutation, although it can produce proofs

by induction of safty properties. The following command

line is used:

./sal-smc PlayersSimulator th2

no counterexample between depths [0, 10].

Remark: The default behaviour is to look for counter-

example up to a depth of 10??. The option �depth¼onum4
can be used to control the depth of the search. The option

iterative forces the model checker to use iterative deepening

and is useful to find the shortest counter-example for a

given property.

Before proving a livness property, we must check if the

transition relation is total, that is, if every state has at least

one successor. The model checker may produce unsound

results when the transition relation is not total. The totality

property can be verified using the sal-deadlock-checker.The

following command line is used:

./sal-deadlock-checker PlayersSimulator PlayersSimulator-

Role

Ok (module does NOT contain deadlock state.

The livness theorem can be interpreted as ‘the initial state of

the system is always Ready state’. Now, we use sal-smc to

check the property livness with the following command line:

./sal-smc -v 3 PlayersSimulatorRole livness

proved.

7.3. Compositions and proofs

SAL provides two composition operators for building

complex systems from other modules. The asynchronous

composition operator is denoted by the syntax ‘[]’. SAL also

provides a synchronous composition operator denoted by

the syntax ‘||’. The two types of compositions can be freely

mixed. For example, one may construct a system as the

synchronous composition of two modules that are them-

selves built by asynchronous composition of other sub-

modules.

The composition operators have the usual semantics. In

an asynchronous composition, only one module makes a

transition at a time. In a synchronous composition, all

modules must make simultaneous transitions.

In our work, we will specify TeamSimulationOrganization

with the framework SAL. TeamSimulation Organization is

represented with a module SAL named TeamSimulation.

This module is the main module of specification, which is a

synchronous composition of all the modules associated with

the roles of this organization: the module PlayersSimula-

torRole refers to the PlayersSimulator Role, the module

StrategySelectorRole refers to the StrategySelector Role, the

module RoleAssignerRole refers to the RoleAssigner Role

and the module GameObserverRole refers to the GameOb-

server Role.

%––––––––––––––––

%Full system : synchronous composition

%––––––––––––––––

TeamSimulation : MODULE¼PlayersSimulatorRole ||

StrategySelectorRole || RoleAssignerRole ||GameObserver-

Role;

8. Conclusion

In this article, we showed that HMAS is well adapted to

analyse and design hierarchical complex systems. The meta-

model utilized can be exploited in the implantation stage

with the advantage of having formally validated its structure

and behaviour by using our composition formalism

approach based on PN and OZ named PNOZ. Our future

works will focus on a quantative analysis and behavioural

validation of different models of ASPECS metamodel. At

the same time, it will be interesting to extend PN with

FNLOG (A Logic-Based Function Specification Language)

(Mosbahi et al, 2002).
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10 Journal of Simulation



the Sixth International Workshop on Programming Multi-Agent
Systems (ProMAS 08) of the Seventh International Conference
on Autonomous agents and Multi-agent Systems (AAMAS),
Springer: Berlin, Heidelberg.

Giorgini P (1995). The Tropos Metamodel and Its Use. University of
Trento, via Sommarive 14, I-38050 Trento-Povo: Italy.

Janus Project developed by the multiagent teams of the Laboratoire
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