
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust Nonlinear Control 2005; 15:691–711
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rnc.1018

Stochastic modelling of gene regulatory networks

Hana El Samad1, Mustafa Khammash1,n,y, Linda Petzold2 and Dan Gillespie3

1Mechanical Engineering, University of California at Santa Barbara, U.S.A.
2Computer Science, University of California at Santa Barbara, U.S.A.

3Dan T Gillespie Consulting, Castaic, California, U.S.A.

SUMMARY

Gene regulatory networks are dynamic and stochastic in nature, and exhibit exquisite feedback and
feedforward control loops that regulate their biological function at different levels. Modelling of such
networks poses new challenges due, in part, to the small number of molecules involved and the stochastic
nature of their interactions. In this article, we motivate the stochastic modelling of genetic networks and
demonstrate the approach using several examples. We discuss the mathematics of molecular noise models
including the chemical master equation, the chemical Langevin equation, and the reaction rate equation.
We then discuss numerical simulation approaches using the stochastic simulation algorithm (SSA) and its
variants. Finally, we present some recent advances for dealing with stochastic stiffness, which is the key
challenge in efficiently simulating stochastic chemical kinetics. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION: THE ROLE OF MATHEMATICS AND SYSTEMS THEORY
IN MODELLING BIOLOGICAL DYNAMICS

The large amounts of data being generated by high-throughput technologies have motivated the
emergence of systems biology, a discipline which emphasizes a system’s characterization of
biological networks. Such a system’s view of biological organization is aimed to draw on
mathematical methods developed in the context of dynamical systems and computational
theories in order to create powerful simulation and analysis tools to decipher existing data and
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devise new experiments. One goal is to generate an integrated knowledge of biological
complexity that unravels functional properties and sources of health and disease in cells, organs,
and organisms. This is commonly known as the ‘reverse engineering’ problem. Another goal is
to successfully interface naturally occurring genetic circuits with de novo designed and
implemented systems that interfere with the sources of disease or malfunction and revert their
effects. This is known as the ‘forward engineering’ problem. Although reverse and forward
engineering of even the simplest biological systems has proven to be a daunting task,
mathematical approaches coupled to rounds of iteration with experimental approaches greatly
facilitate the road to biological discovery in a manner that is otherwise difficult. This, however,
necessitates a serious effort devoted to the characterization of salient biological features,
followed by the successful extension of engineering/mathematical tools, and the creation of new
tools and theories to accommodate and/or exploit them.

Much of the mathematical modelling of genetic networks represents gene expression and
regulation as deterministic processes [1]. There is now, however, considerable experimental
evidence indicating that significant stochastic fluctuations are present in these processes, both in
prokaryotic and eukaryotic cells [2–6]. Furthermore, studies of engineered genetic circuits
designed to act as toggle switches or oscillators have revealed large stochastic effects [7–9].
Stochasticity is therefore an inherent feature of biological dynamics, and as such, should be the
subject of in depth investigation and analysis. A study of stochastic properties in genetic systems
is a challenging task. It involves the formulation of a correct representation of molecular noise,
followed by the formulation of mathematically sound approximations for these representations.
It also involves devising efficient computational algorithms capable of tackling the complexity of
the dynamics involved.

2. ELEMENTS OF GENE REGULATION

Computation in the cellular environment is carried out by proteins, whose abundance and
activity is often tightly regulated. Proteins are produced through an elaborate process of gene
expression, which is often referred to as the ‘Central Dogma’ of molecular biology.

2.1. Gene regulatory networks and the central dogma of molecular biology

The synthesis of cellular protein is a multi-step process that involves the use of various cellular
machines. One very important machine in bacteria is the so called RNA polymerase (RNAP).
RNAP is an enzyme that can be recruited to transcribe any given gene. However, RNAP bound
to regulatory sigma factors recognizes specific sequences in the DNA, referred to as the
promoter. Whereas the role of RNAP is to transcribe genes, the main role of s factors is to
recognize the promoter sequence and signal to RNAP in order to initiate the transcription of the
appropriate genes. The transcription process itself consists of synthesizing a messenger RNA
(mRNA) molecule that carries the information encoded by the gene. Here, RNAP acts as a
‘reading head’ transcribing DNA sequences into mRNA. Once a few nucleotides on the DNA
have been transcribed, the s-factor molecule dissociates from RNAP, while RNAP continues
transcribing the genes until it recognizes a particular sequence called a terminator sequence. At
this point, the mRNA is complete and RNAP disengages from the DNA. During the
transcription process, ribosomes bind to the nascent mRNA and initiate translation of the
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message. The process of translation consists of sequentially assembling amino acids in an order
that corresponds to the mRNA sequence, with each set of three nucleotides corresponding to a
single unique amino acid. This combined process of gene transcription and mRNA translation
constitutes gene expression, and is often referred to as the central dogma of molecular biology.

Gene regulatory networks can be broadly defined as groups of genes that are activated or
deactivated by particular signals and stimuli, and as such produce or halt the production of
certain proteins. Through various combinatorial logic at the gene or the end-product protein
level, these networks orchestrate their operation to regulate certain biological functions such as
metabolism, development, or the cellular clocks. Regulation schemes in gene regulatory
networks often involve positive and negative feedback loops. A simple scheme consists, for
example, of a protein that binds to the promoter of its own gene and shields it from the RNAP-s
complex, thereby auto-regulating its own production. When interfaced and connected together
according to a certain logic, a network of such building blocks (and possibly others possessing
different architectures and components) generates intricate systems that possess a wide range of
dynamical behaviours and functionalities.

3. MODELLING GENETIC NETWORKS

The mathematical approaches used to model gene regulatory network differ in the level of
resolution they achieve and their underlying assumptions. A broad classification of these
methods separates the resulting models into deterministic and stochastic, each class embodying
various subclasses with their different mathematical formalisms.

3.1. Deterministic rate equations modelling

Cellular processes, such as transcription and translation, are often perceived to be systems of
distinct chemical reactions that can be described using the laws of mass-action, yielding a set of
differential equations (linear or nonlinear) that give the succession of states (usually
concentration of species) adopted by the network over time. The equations are usually of the
form

dxi

dt
¼ fiðxÞ; 14i4n ð1Þ

where x ¼ ½x1; . . . ; xn�T is a vector of non-negative real numbers describing concentrations and
fi : R

n ! Rn is a function of the concentrations. Ordinary differential equations are arguably the
most widespread formalism for modelling gene regulatory networks and their use goes back to
the ‘operon’ model of Jacob and Monod [10] and the early work of Goodwin [11]. The main
rationale of deterministic chemical kinetics is that at constant temperature, elementary chemical
reaction rates vary with reactant concentration in a simple manner. These rates are proportional
to the frequency at which the reacting molecules collide, which is again dependent on the
molecular concentrations in these reactions.

3.2. Stochastic modelling

Although the time evolution of a well-stirred chemically reacting system is traditionally
described by a set of coupled, ordinary differential equations that characterize the evolution of
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the molecular populations as a continuous, deterministic process. Chemically reacting systems
in general, and genetic networks in particular, actually possesses neither of those attributes:
molecular populations are whole numbers, and when they change they always do so by discrete,
integer amounts. Furthermore, a knowledge of the system’s current molecular populations is
not by itself sufficient to predict with certainty the future molecular populations. Just as rolled
dice are essentially random or ‘stochastic’ when we do not precisely track their positions and
velocities and all the forces acting on them, so is the time evolution of a well-stirred chemically
reacting system for all practical purposes stochastic. If discreteness and stochasticity are not
noticeable, for example in chemical systems of ‘test-tube’ size or larger, then the traditional
continuous deterministic description seems to be adequate. But if the molecular populations
of some reactant species are very small, or if the dynamic structure of the system makes
it susceptible to noise amplification, as is often the case in cellular systems, discreteness and
stochasticity can play an important role. Whenever that happens, the ordinary differential
equations approach does not accurately describe the true behaviour of the system. Alternatively,
one should resort to an overtly discrete and stochastic description evolving in real (continuous)
time that accurately reflects how chemical reactions physically occur at the molecular level. We
first give a number of motivating examples that illustrate the importance of such stochastic
methods, then present the details of stochastic chemical kinetics.

3.3. Deterministic versus stochastic: some examples

Here, we present a number of examples that illustrate situations where accurate accounting of
noise dynamics is crucial. The first example depicts a situation where the deterministic
description of a genetic network does not correctly represent the evolution of the mean of the
inherently stochastic system. The second example illustrates the effect of noise on a system
exhibiting bistability, making the convergence to any one of the equilibria a probabilistic event,
and even causing random switching between these different equilibria. The third example
illustrates the effect of noise in inducing oscillations in an otherwise stable system. Finally, the
fourth example, which will also motivate the theoretical treatment in the rest of the paper,
illustrates the situation where fluctuations in the concentration of key cellular regulators are of
special interest even in the absence of a noise-induced change in the dynamical behaviour.

3.3.1. A monostable system. Molecular noise acting upon dynamical structures can generate
disorderly behaviour in homeostatic systems. Consider a simple example where protein
molecules X and Y are synthesized from the reservoirs A and B at an equal rate k: X and Y are
assumed to associate irreversibly with association rate constant ka in the formation of a
heterodimer C: Molecules of X and Y can also decay with first-order rate constant a1 and a2;
respectively, as described by the scheme

A!
k
X!

a1 f; B!
k
Y!

a2 f; X þ Y!
ka

C ð2Þ

In the deterministic setting, the reactions in (2) can be described by the rate equations

df1

dt
¼ k� a1f1 � kaf1f2

df2

dt
¼ k� a2f2 � kaf1f2

ð3Þ
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where f1 and f2 are the concentrations of X and Y ; respectively. The system in Equation (3) can
only have one stable equilibrium point in the positive quadrant whose region of attraction of
this equilibrium is the entire positive quadrant. For two sets of values the system’s parameters
given by

k ¼ 10; a1 ¼ 10�6; a2 ¼ 10�5; ka ¼ 10�5

k ¼ 103; a1 ¼ 10�4; a2 ¼ 10�3; ka ¼ 10�3
ð4Þ

the steady-state values for X and Y are equal and given by fss
1 ’

ffiffiffiffiffiffiffiffiffiffi
k=ka

p
¼ 1000 and fss

2 ’ 100:
Sample stochastic trajectories of the system are given in Figure 1. A plot for Y ; for example,
suggests that the mean follows closely the deterministic trajectory for the first set of parameters.
Furthermore, fluctuations around the mean are relatively small. For the second set of
parameters, however, there is a noticeable discrepancy between the behaviour of the mean and
that of the deterministic trajectory. Stochastic excursions reach up to four-fold the deterministic
trajectory, indicating a severe effect of the noise on the system. Such an effect indicates that a
deterministic approach to the analysis of such a system can be misleading and calls for a
thorough stochastic treatment.

3.3.2. A genetic switch. Multistable biological systems are abundant in nature [12,8]. Stochastic
effects in these systems can be substantial as noise can influence the convergence to equilibria or
even cause switching from one equilibrium to another. One of the best studied examples of
multistability in genetic systems is the bacteriophage l system [6]. A simplified model for the
bacteriophage l was proposed by Hasty and coworkers [13]. In their model, the gene cI
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Figure 1. Stochastic simulation of the system in (2). The first set of parameters in (4) yields the plot in
black while the second set of parameters yields the plot in gray.
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expresses the l repressor CI which dimerises and binds to DNA as a transcription factor at
either of two binding sites, OR1 or OR2. Binding of this transcription factor to OR1 enhances
transcription of CI (positive feedback), while binding to OR2 represses transcription of CI
(negative feedback) (see Figure 2(a)). The molecular reactions in this system proceed as follows:

2CIÐ
K1

CI2; CI2 þDÐ
K2

DCI2; CI2 þDÐ
Ks

DCIn2

DCI2 þ CI2Ð
K4

DCI2CI2; DCI2 þ P!
kt
DCI2 þ Pþ nCI; CI!

kd f

where the DCI2 and DCIn2 complexes denote the binding to OR1 and OR2; respectively, and
DCI2CI2 denotes binding to both sites. Ki are forward equilibrium constants, kt is protein
synthesis rate, and kd is degradation rate. P is the concentration of the RNA polymerase
assumed here to be constant, and n is the number of proteins per mRNA transcript, taken here
to be 2. Ordinary differential equations that describe these chemical reactions implement a
bistable system. In the deterministic setting, and for any given set of initial conditions, the
system’s trajectories converge to one or the other of the equilibria and stay there for all times.
However, as we incorporate the effect of molecular noise in this description, we notice that
switching between the two stable equilibria is possible if the noise amplitude is sufficient to drive
the trajectories occasionally out of the basin of attraction of one equilibrium into the basin of
attraction of the other equilibrium. This effect is shown in Figure 2(b).

3.3.3. A genetic oscillator. To adapt to natural periodicity, such as the alternation of day and
night, most living organisms have developed the capability of generating oscillating expressions
of proteins in their cells with a period close to 24 h. The molecular mechanisms that generate
these oscillations, known as the circadian rhythm, have been the subject of extensive
experimental and mathematical investigation in various organisms. The Vilar–Kueh–Barkai–
Leibler (VKBL in short) description of the circadian oscillator incorporates an abstraction of a
minimal set of essential, experimentally determined mechanisms for the circadian system [14].
More specifically, the VKBL model involves two genes, an activator A and a repressor R; which
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Figure 2. (a) A simple model of the lambda bacteriophage; and (b) stochastic time trajectory of CI. Noise
causes switching between the two equilibrium points of the system.
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are transcribed into mRNA and subsequently translated into proteins. The activator A binds to
the A and R promoters and increases their expression rate. Therefore, A implements a positive
loop acting on its own transcription. At the same time, R sequesters A to form a complex C;
therefore inhibiting it from binding to the gene promoter and acting as a negative feedback loop.
These interactions are depicted in Figure 3. For the parameter values given in Reference [14],
a differential equations model for the dynamics of Figure 3 exhibits autonomous oscillations
with an approximate period of 24 h. These oscillations, however, promptly disappear from the
deterministic model as the degradation rate of the repressor dR is decreased to the quarter of its
value. Actually, a bifurcation diagram shows that the system undergoes a supercritical Hopf
bifurcation in the neighbourhood of this value. The unique deterministic equilibrium of the
system becomes stable (see Figure 3(b)). However, as the effects of molecular noise are
incorporated into the description of the system, it is observed that oscillations in the stochastic
system pertain (see Figure 3(b)). In fact, the regularity of these noise-induced oscillations, in an
otherwise stable deterministic system, can be manipulated by tuning the level of noise in the
network. This can be done, for example, by changing the number of molecules or speed of
molecular reactions [15]. This phenomenon is a manifestation of coherence resonance, and
illustrates the crucial interplay between noise and dynamics.

3.3.4. Accounting for molecular fluctuations. Major regulators such as s-factors in prokaryotic
cells are present in small numbers and hence, removal or addition of a single regulator molecule
can have substantial effects. An example of such a situation is present in the heat shock response
of the bacterium Escherichia coli, which refers to the mechanism by which organisms react to a
sudden increase in the ambient temperature. The consequence at the cellular level is the
unfolding of cell proteins, which threatens the life of the cell. Under these circumstances, the
enzyme RNA polymerase (RNAP) bound to the regulatory sigma factor, s32; recognizes the HS
gene promoters and transcribes specific HS genes. The HS genes encode predominantly
molecular chaperones that are involved in refolding denatured proteins and proteases that
degrade unfolded proteins. In addition to their binding to unfolded proteins, chaperones can
also bind s32: Chaperone-bound s32 is incapable of binding to RNAP. This has the effect of a
negative feedback loop that modulates the activity of s32: Other feedback and feedforward loops
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Figure 3. (a) The molecular components of the VKBL model of the circadian oscillator;
and (b) noise induced oscillations.
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modulate the stability and synthesis of s32: A detailed mechanistic model for the heat shock
response was developed in Reference [16]. Here, we give an abstraction that illustrates the
challenges encountered in such systems, while keeping the presentation simple. The example
consists of the following molecular reactions:

S1Ð
c1

c2
S2!

c3
S3

For parameter values c1 ¼ 10; c2 ¼ 4� 104; and c3 ¼ 2; the average population of species S2 is
0.5. Most of the time, the S2 population is 0, sometimes it is 1, occasionally it is 2 or 3, and only
rarely is anything more. An S2 molecule here has a very short lifetime, usually turning into an S1

molecule. In our analogy to the heat shock model, s32 molecules would be sequestered by the
chaperones as soon as they become available. An S2 molecule occasionally turns into an S3

molecule, corresponding to an important event of gene expression. It is therefore of interest to
track precisely when this event happens, motivating a look at the statistics of the S2 molecule,
rather than an averaged behaviour of this quantity as depicted in a deterministic description of
the system. We will re-examine this example later in the context of the computational advances
and challenges in stochastic chemical kinetics.

4. MATHEMATICS OF MOLECULAR NOISE MODELS

4.1. Foundations of stochastic chemical kinetics

We consider a well-stirred system of molecules of N chemical species fS1; . . . ;SNg interacting
through M chemical reaction channels fR1; . . . ;RMg: The system is assumed to be confined to a
constant volume O; and to be in thermal (but not chemical) equilibrium at some constant
temperature. With XiðtÞ denoting the number of molecules of species Si in the system at time t;
we wish to study the evolution of the state vector XðtÞ ¼ ðX1ðtÞ; . . . ;XNðtÞÞ; given that the system
is initially in some state Xðt0Þ ¼ x0: Each reaction channel Rj is assumed to be ‘elemental’ in the
sense that it describes a distinct physical event which happens essentially instantaneously.
Reaction channel Rj is characterized mathematically by two quantities. The first is its state-
change vector nj ¼ ðn1j ; . . . ; nNjÞ; where nij is defined to be the change in the Si molecular
population caused by one Rj reaction; thus, if the system is in state x and an Rj reaction occurs,
the system immediately jumps to state xþ nj : The array fnijg is commonly known as the
stoichiometric matrix. The other characterizing quantity for reaction channel Rj is its propensity
function aj : It is defined so that ajðxÞ dt gives the probability, given XðtÞ ¼ x; that one Rj

reaction will occur somewhere inside O in the next infinitesimal time interval ½t; tþ dtÞ: If Rj is
the monomolecular reaction Si ! products, the underlying physics is quantum mechanical, and
implies the existence of some constant cj such that ajðxÞ ¼ cjxi: If Rj is the bimolecular reaction
Si þ Si0 ! products, the underlying physics implies a different constant cj ; and a propensity
function ajðxÞ of the form cjxixi0 if i=i0; or cj12xiðxi � 1Þ if i ¼ i0 [17,18]. The stochasticity of a
bimolecular reaction stems from the fact that we do not know the precise positions and
velocities of all the molecules in the system; thus we can predict only the probability that an Si

molecule and an Si0 molecule will collide in the next dt, and only the probability that such a
collision will result in an Rj reaction. It turns out that cj for a monomolecular reaction is
numerically equal to the reaction rate constant kj of conventional deterministic chemical
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kinetics, while cj for a bimolecular reaction is equal to kj=O if the reactants are different species,
or 2kj=O if they are the same [17–19].

4.2. The chemical master equation

Due to the probabilistic nature of the dynamics described above, we need to compute the
probability Pðx; t j x0; t0Þ that XðtÞ will equal x; given that Xðt0Þ ¼ x0: We can deduce a time-
evolution equation for this function by using the laws of probability to write

Pðx; tþ dt j x0; t0Þ ¼Pðx; t j x0; t0Þ � 1�
XM
j¼1

ajðxÞ dt

" #

þ
XM
j¼1

Pðx� nj ; t j x0; t0Þ � ajðx� njÞ dt

The first term on the right is the probability that the system is already in state x at time t and no
reaction of any kind occurs in ½t; tþ dtÞ; and the generic second term is the probability that the
system is one Rj reaction removed from state x at time t and one Rj reaction occurs in ½t; tþ dtÞ:
That these M þ 1 routes from time t to state x at time tþ dt are mutually exclusive and
collectively exhaustive is ensured by taking dt so small that no more than one reaction of any
kind can occur in ½t; tþ dtÞ: Subtracting Pðx; t j x0; t0Þ from both sides, dividing through by dt,
and taking the limit dt! 0; we obtain [17,20]

@Pðx; t j x0; t0Þ
@t

¼
XM
j¼1

½ajðx� njÞPðx� nj ; t j x0; t0Þ � ajðxÞPðx; t j x0; t0Þ� ð5Þ

This is the chemical master equation (CME). In principle, it completely determines the function
Pðx; t j x0; t0Þ: But the CME is really a set of nearly as many coupled ordinary differential
equations as there are combinations of molecules that can exist in the system. So it is not
surprising that the CME can be solved analytically for only a very few very simple systems, and
numerical solutions are usually prohibitively difficult. One might hope to learn something from
the CME about the behaviour of averages like hf ðXðtÞÞi �

P
x f ðxÞPðx; t j x0; t0Þ: For example,

it can be proved from Equation (5) that

dhXiðtÞi
dt

¼
XM
j¼1

nij hajðXðtÞÞi ði ¼ 1; . . . ;NÞ

If all the reactions were monomolecular, the propensity functions would all be linear in the state
variables, and we would have hajðXðtÞÞi ¼ ajðhXðtÞiÞ: The above equation would then become
a closed ordinary differential equation for the first moments, hXiðtÞi: But if any reaction
is bimolecular, the right-hand side will contain at least one quadratic moment of the form
hXiðtÞXi0 ðtÞi; and the equation then becomes merely the first of an infinite, open-ended set of
equations for all the moments. In the hypothetical case that there are no fluctuations, we would
have hf ðXðtÞÞi ¼ f ðXðtÞÞ for all functions f : The above equation for hXiðtÞi would then
reduce to

dXiðtÞ
dt
¼
XM
j¼1

nij ajðXðtÞÞ ði ¼ 1; . . . ;NÞ ð6Þ
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This is the reaction rate equation (RRE) of traditional deterministic chemical kinetics}
a set of N coupled first-order ordinary differential equations for the XiðtÞ; which are
now continuous (real) variables. The RRE is more commonly written in terms of the
concentration variables XiðtÞ=O as in Equation (1), but that scalar transformation is inconse-
quential for our purposes here. We shall later see how the RRE follows more deduc-
tively from a series of physically transparent approximating assumptions to the stochastic
theory.

4.3. The stochastic simulation algorithm

Since the CME (5) is rarely of much use in computing Pðx; t j x0; t0Þ of XðtÞ; we need
another computational approach. One approach that has proven fruitful is to construct
numerical realizations of XðtÞ; i.e. simulated trajectories of XðtÞ-versus-t: This is not the
same as solving the CME numerically; however, much the same effect can be achieved by
either histogramming or averaging the results of many realizations. The key to generating
simulated trajectories of XðtÞ is a new function, pðt; j j x; tÞ [19]. It is defined so that pðt; j j x; tÞ dt
is the probability, given XðtÞ ¼ x; that the next reaction in the system will occur in
the infinitesimal time interval ½tþ t; tþ tþ dtÞ; and will be an Rj reaction. Formally, this
function is the joint probability density function of the two random variables ‘time to the next
reaction’ ðtÞ and ‘index of the next reaction’ (j). To derive an analytical expression for
pðt; j j x; tÞ; we begin by noting that if P0ðt j x; tÞ is the probability, given XðtÞ ¼ x; that no
reaction of any kind occurs in the time interval ½t; tþ tÞ; then the laws of probability imply
the relations

pðt; j j x; tÞ dt ¼P0ðt j x; tÞ � ajðxÞ dt

P0ðtþ dt j x; tÞ ¼P0ðt j x; tÞ � 1�
XM
j0¼1

aj0 ðxÞ dt

" #

An algebraic rearrangement of this last equation and passage to the limit dt! 0 results in
a differential equation whose solution is easily found to be P0ðt j x; tÞ ¼ expð�a0ðxÞtÞ; where
a0ðxÞ �

PM
j0¼1 aj0 ðxÞ: When we insert this result into the previous equation, we get

pðt; j j x; tÞ ¼ ajðxÞ expð�a0ðxÞtÞ ð7Þ

Equation (7) is the mathematical basis for the simulation approach. It implies that the
joint density function of t and j can be written as the product of the t-density function,
a0ðxÞ expð�a0ðxÞtÞ; and the j-density function, ajðxÞ=a0ðxÞ: We can easily generate random
samples from these two density functions by using the inversion method of Monte Carlo theory
[19]: Draw two random numbers r1 and r2 from the uniform distribution in the unit-interval,
and select t and j according to

t ¼
1

a0ðxÞ
ln

1

r1

� �
ð8aÞ

Xj�1
j0¼1

aj0 ðxÞ4r2 a0ðxÞ5
Xj
j0¼1

aj0 ðxÞ ð8bÞ
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Thus we arrive at the following version of the stochastic simulation algorithm (SSA) [19,21]:

1. Initialize the time t ¼ t0 and the system’s state x ¼ x0:
2. With the system in state x at time t; evaluate all the ajðxÞ and their sum a0ðxÞ:
3. Generate values for t and j according to Equations (8).
4. Effect the next reaction by replacing t tþ t and x xþ nj :
5. Record ðx; tÞ as desired. Return to Step 2, or else end the simulation.

The XðtÞ trajectory that is produced by the SSA might be thought of as a ‘stochastic version’
of the trajectory that would be obtained by solving the RRE (6). But note that the time step t in
the SSA is exact, and is not a finite approximation to some infinitesimal dt; as is the time
step in most numerical solvers for the RRE. The SSA and the CME are logically equivalent
to each other; yet even when the CME is completely intractable, the SSA is straightforward
to implement. The problem with the SSA is that it is often very slow. The source of this
slowness can be traced to the factor 1=a0ðxÞ in Equation (8a); this factor will be very small
if the population of any reactant species is sufficiently large, and that is often the case in
practice. There are several variations to the above method for implementing the SSA, some of
which are more efficient than others [22,23]. But any procedure that simulates every reaction
event one at a time will inevitably be too slow for most practical applications. This prompts
us to look for ways of giving up some of the exactness of the SSA in return for greater
simulation speed.

4.4. Tau-leaping

One approximate accelerated simulation strategy is tau-leaping [24]. It advances the system by
a pre-selected time t which encompasses more than one reaction event. In its simplest form,
tau-leaping requires that t be chosen small enough that the following Leap Condition is satisfied:
The expected state change induced by the leap must be sufficiently small that no propensity
function changes its value by a significant amount. Therefore, if XðtÞ ¼ x; and if we choose t
small enough to satisfy the Leap Condition, so that the propensity functions stay approximately
constant, then reaction Rj should fire approximately PjðajðxÞ; tÞ times in ½t; tþ tÞ: So to the
degree that the Leap Condition is satisfied, we can leap by a time t from state x at time t by
taking [24]

Xðtþ tÞ8xþ
XM
j¼1

nj PjðajðxÞ; tÞ ð9Þ

where the Poisson random variable Pða; tÞ is by definition the number of events that will occur
in time t given that a dt is the probability that an event will occur in any infinitesimal time dt;
where a can be any positive constant. Doing this evidently requires generating M Poisson
random numbers for each leap. It will result in a faster simulation than the SSA to the degree
that the total number of reactions leapt over,

PM
j¼1 PjðajðxÞ; tÞ; is large compared to M: To

apply this simulation technique, we must be able to estimate in advance the largest value of t
that is compatible with the Leap Condition. At least one reasonably efficient way of doing that
has been developed [25]. In the limit that t! 0; tau-leaping becomes mathematically equivalent
to the SSA. But tau-leaping also becomes very inefficient in that limit because all the random
numbers in (9) will approach zero, giving a very small time step with usually no reactions firing.
As a practical matter, tau-leaping should not be used if the largest value of t that satisfies the
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Leap Condition is less than a few multiples of 1=a0ðxÞ; the expected time to the next reaction in
the SSA, since it would then be more efficient to use the SSA. Tau-leaping has been shown to
significantly speed up the simulation of some systems [24,25]. But it is not as foolproof as the
SSA. If one takes leaps that are too large, problems can arise; e.g. some species populations
might be driven negative [26–28]. If the system is ‘stiff’, meaning that it has widely varying time
scales with the fastest mode being stable, the Leap Condition will generally limit the size of t to
the time scale of the fastest mode, with the result that large leaps cannot be taken. Stiffness is
very common in cellular chemical systems, and is discussed in more detail in Section 5, along
with several possible remedies.

It is tempting to try to formulate a ‘higher-order’ tau-leaping formula by extending higher-
order ODE methods in a straightforward manner for discrete stochastic simulation. However,
to do this correctly is very challenging. Most such extensions give state updates whose stochastic
parts are not even correct to first order in t: A theory of consistency, order and convergence for
tau-leaping methods is given in Reference [29], where it is shown that the tau-leaping method
defined above, and the implicit tau-leaping method given in Section 5.1, are correct to first order
in t as t! 0:

4.5. Transitioning to the macroscale: the chemical Langevin equation and the reaction
rate equation

Suppose we can choose t small enough to satisfy the Leap Condition, so that approximation (9)
is good, but nevertheless large enough that

ajðxÞtc1 for all j ¼ 1; . . . ;M ð10Þ

Since ajðxÞt is the mean of the random variablePjðajðxÞ; tÞ; the physical significance of condition
(10) is that each reaction channel is expected to fire many more times than once in the next t: It
will not always be possible to find a t that satisfies both the Leap Condition and condition (10),
but it usually will be if the populations of all the reactant species are sufficiently large. When
condition (10) does hold, we can make a useful approximation to the tau-leaping formula (9).
This approximation stems from the purely mathematical fact that the Poisson random variable
Pða; tÞ can be well approximated when atc1 by a normal random variable with the same mean
and variance. Denoting the normal random variable with mean m and variance s2 by Nðm;s2Þ;
it thus follows that when condition (10) holds,

PjðajðxÞ; tÞ8NjðajðxÞt; ajðxÞtÞ ¼ ajðxÞtþ ðajðxÞtÞ
1=2 Njð0; 1Þ

The last step follows from the fact that Nðm; s2Þ ¼ mþ sNð0; 1Þ: Inserting this approximation
into Equation (9) gives the formula for leaping by t from state x at time t [30,31]

Xðtþ tÞ8xþ
XM
j¼1

njajðxÞtþ
XM
j¼1

nj
ffiffiffiffiffiffiffiffiffiffi
ajðxÞ

p
Njð0; 1Þ

ffiffiffi
t

p
ð11Þ

This is called the Langevin leaping formula. It evidently expresses the state increment
Xðtþ tÞ � x as the sum of two terms: a deterministic ‘drift’ term proportional to t; and a
fluctuating ‘diffusion’ term proportional to

ffiffiffi
t

p
: It is important to keep in mind that Equation

(11) is an approximation which is valid only to the extent that t is (i) small enough that no
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propensity function changes its value significantly during t; yet (ii) large enough that every
reaction fires many more times than once during t: The approximate nature of Equation (11) is
underscored by the fact that XðtÞ therein is now a continuous (real-valued) random variable
instead of discrete (integer-valued) random variable; we lost discreteness when we replaced the
integer-valued Poisson random variable with a real-valued normal random variable. The ‘small-
but-large’ character of t in Equation (11) marks that variable as a ‘macroscopic infinitesimal’. If
we subtract x from both sides and then divide through by t; the result can be shown to be the
following (approximate) stochastic differential equation, which we call the chemical Langevin
equation (CLE) [30–32]:

dXðtÞ
dt

8
XM
j¼1

njajðXðtÞÞ þ
XM
j¼1

nj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ajðXðtÞÞ

p
GjðtÞ ð12Þ

The GjðtÞ here are statistically independent ‘Gaussian white noise’ processes satisfying
hGjðtÞ Gj0 ðt0Þi ¼ djj0 dðt� t0Þ; where the first delta function is Kronecker’s and the second is
Dirac’s. The CLE (12) is mathematically equivalent to Equation (11), and is subject to the same
conditions for validity. Langevin equations arise in many areas of physics, but the usual way of
obtaining them is to start with a macroscopically inspired drift term (the first term on the right
side of the CLE) and then assume a form for the diffusion term (the second term on the right side
of the CLE) with an eye to obtaining some pre-conceived outcome. So it is noteworthy that our
derivation here inferred the forms of both the drift and diffusion terms from the premises
underlying the CME/SSA.

Molecular systems become ‘macroscopic’ in the thermodynamic limit. This limit is formally
defined when system volume O and the species populations Xi all approach1 in such a way that
the species concentrations Xi=O all remain constant. The large populations in chemical systems
near the thermodynamic limit generally mean that such systems will be well described by the
Langevin formulas (11) and (12). To discern the implications of those formulas in the
thermodynamic limit, we evidently need to know the behaviour of the propensity functions in
that limit. It turns out that all propensity functions grow linearly with the system size as the
thermodynamic limit is approached. For a monomolecular propensity function of the form cjxi
this behaviour is obvious, since cj will be independent of the system size. For a bimolecular
propensity function of the form cjxixi0 this behaviour is a consequence of the fact that
bimolecular cj’s are always inversely proportional to O; reflecting the fact that two reactant
molecules have a harder time finding each other in larger volumes. It follows that as the
thermodynamic limit is approached, the deterministic drift term in Equation (11) grows like the
size of the system, while the fluctuating diffusion term grows like the square root of the size of
the system. And likewise for the CLE (12). This establishes the well known rule-of-thumb in
chemical kinetics that relative fluctuation effects in chemical systems typically scale as the inverse
square root of the size of the system. In the full thermodynamic limit, the size of the second term
on the right-hand side of Equation (12) will usually be negligibly small compared to the size of
the first term, in which case the CLE reduces to the RRE (6). Thus we have derived the RRE as a
series of limiting approximations to the stochastic theory that underlies the CME and the SSA.
The tau-leaping and Langevin-leaping formulas evidently form a conceptual bridge between
stochastic chemical kinetics (the CME and SSA) and conventional deterministic chemical
kinetics (the RRE), enabling us to see how the latter emerges as a limiting approximation of
the former.
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5. ADVANCES IN THE SIMULATION OF MOLECULAR NOISE MODELS

5.1. SSA, tau-leaping, and connections to stiffness

Despite recent improvements in its implementation [22,23], as a procedure that simulates every
reaction event, the SSA is necessarily inefficient for most realistic problems. There are two main
reasons for this, both arising from the multiscale nature of the underlying problem: (1) stiffness,
i.e. the presence of multiple timescales, the fastest of which are stable; and (2) the need to include
in the simulation both species that are present in relatively small quantities and should be
modelled by a discrete stochastic process, and species that are present in larger quantities and
are more efficiently modelled by a deterministic differential equation.

We have already discussed tau-leaping, which accelerates discrete stochastic simulation for
systems involving moderate to large populations of all chemical species. There are two
limitations to the tau-leaping method as it has been described so far. The first is that it is not
appropriate or accurate for describing the evolution of chemical species that are present in very
small populations. In an adaptive algorithm, these can be handled by SSA. The second
limitation is that the stepsize t that one can take in the original tau-leaping method turns out to
be limited not only by the rate of change of the solution variables, but by the timescales of the
fastest reactions, even if those reactions are having only a slow net effect on the species
concentrations. This limitation is due to the explicit nature of the tau-leaping formula, and is
very closely related to a phenomenon called stiffness which has been studied extensively in the
context of simulation of deterministic (ODE) chemical kinetics. The second, and more serious
limitation can be handled by slow scale SSA, which will be discussed in Section 5.2, or by
implicit tau-leaping which will be discussed next.

In deterministic systems of ODEs, stiffness generally manifests itself when there are well
separated ‘fast’ and ‘slow’ time scales present, and the ‘fast modes’ are stable. Because of the fast
stable modes, all initial conditions result in trajectories which, after a short and rapid transient,
lead to the ‘stable manifold’ where the ‘slow modes’ determine the dynamics and the fast modes
have decayed. In general, a given trajectory of such a system will exhibit rapid change for a short
duration (corresponding to the fast time scales) called the ‘transient’, and then evolve slowly
(corresponding to the slow time scales). During the initial transient, the problem is said to be
non-stiff, whereas while the solution is evolving slowly it is said to be stiff. One would expect
that a reasonable numerical scheme should be able to take bigger time steps once the trajectory
has come sufficiently close to the slow manifold, without compromising the accuracy of the
computed trajectory. That this is not always the case is well known to numerical analysts and to
many practitioners, as is the fact that in general explicit methods must continue to take time
steps that are of the order of the fastest time scale. Implicit methods, on the other hand, avoid
the above described instability, but at the expense of having to solve a nonlinear system of
equations for the unknown point at each time step. In fact, implicit methods often damp the
perturbations off the slow manifold. Once the solution has reached the stable manifold, this
damping keeps the solution on the manifold, and is desirable. Although implicit methods are
clearly more expensive per step than explicit methods, this cost is more than compensated for in
solving stiff systems by the fact that the implicit methods can take much larger timesteps [33].

When stochasticity is introduced into a system with fast and slow time scales, with fast modes
being stable as before, one may still expect a slow manifold corresponding to the equilibrium of
the fast scales. But the picture changes in a fundamental way. After an initial rapid transient,
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while the mean trajectory is almost on the slow manifold, any sample trajectory will still be
fluctuating on the fast time scale in a direction transverse to the slow manifold. In some cases the
size of the fluctuations about the slow manifold will be practically negligible, and an implicit
scheme may take large steps, corresponding to the time scale of the slow mode. But in other
cases, the fluctuations about the slow manifold will not be negligible in size. In those instances,
an implicit scheme that takes time steps much larger than the time scale of the fast dynamics will
dampen these fluctuations, and will consequently fail to capture the variance correctly. This
can be corrected at relatively low expense via a procedure called down-shifting that we will
describe shortly.

The original (explicit) tau-leaping method is an explicit method because the propensity
functions aj are evaluated at the current known state, so the future unknown random state
Xðtþ tÞ is given as an explicit function of XðtÞ: It is the explicit construction of this formula that
leads to the problem with stiffness, just as in the case of explicit methods for ODEs. An implicit
tau-leaping method can be defined by [34]

Xðtþ tÞ ¼ XðtÞ þ
XM
j¼1

njajðXðtþ tÞÞtþ
XM
j¼1

njðPjðajðXðtÞÞ; tÞ � ajðXðtÞÞtÞ ð13Þ

In the implementation of the method (13), the random variables PjðajðXðtÞÞ; tÞ can be generated
without knowing Xðtþ tÞ: Also, once thePjðajðXðtÞÞ; tÞ have been generated, the unknown state
Xðtþ tÞ depends on PjðajðXðtÞÞ; tÞ in a deterministic way, even though this dependence is given
by an implicit equation. As is done in the case of deterministic ODE solution by implicit
methods, Xðtþ tÞ can be computed by applying Newton’s method for the solution of nonlinear
systems of equations to (13) where the PjðajðXðtÞÞ; tÞ are all known values. Just as the explicit-
tau method segues to the explicit Euler methods for SDEs and ODEs, the implicit-tau method
segues to the implicit Euler methods for SDEs and ODEs. However, while the implicit tau-
leaping method computes the slow variables with their correct distributions, it computes the fast
variables with the correct means but with distributions about those means that are too narrow.
A time-stepping strategy called down-shifting [34] can restore the overly-damped fluctuations in
the fast variables. The idea is to interlace implicit tau-leaps, each of which is on the order of the
time scale of the slow variables and hence ‘large’, with a sequence of much smaller time steps on
the order of the time scale of the fast variables. The smaller time steps are taken over a duration
that is comparable to the ‘relaxation/decorrelation’ time of the fast variables. These small
timesteps may be taken with either the explicit-tau method or the SSA. This sequence of small
steps is intended to ‘regenerate’ the correct statistical distributions of the fast variables. The fact
that the underlying kinetics is Markovian or ‘past-forgetting’ is key to being able to apply
this procedure.

5.2. The slow-scale SSA

When reactions take place on vastly different time scales, with ‘fast’ reaction channels firing very
much more frequently than ‘slow’ ones, a simulation with the SSA will spend most of its time on
the more numerous fast reaction events. This is an inefficient allocation of computational effort,
especially when fast reaction events are much less important than slow ones. One possibility for
speeding up the computation is the use of hybrid methods [35,36]. These methods combine
the RRE used to simulate fast reactions involving large populations, with the SSA used to
simulate slow reactions with small populations. However, these algorithms do not provide any
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efficient way to simulate fast reactions involving a species with small population (for example
the heat shock problem discussed in Section 3.3.4). Another possibility is to find a way to skip
over the fast reactions and explicitly simulate only the slow reactions. The recently developed
[37] slow-scale SSA (ssSSA) provides a way to do this. This algorithm is closely related to the
stochastic quasi steady-state assumption [38]. The first step in setting up the ssSSA is to divide
(and re-index) the M reaction channels fR1; . . . ;RMg into fast and slow subsets, fRf

1; . . . ;R
f
Mf
g

and fRs
1; . . . ;R

s
Ms
g; where Mf þMs ¼M: We initially do this provisionally (subject to possible

later change) according to the following criterion: the propensity functions of the fast reactions,
af1; . . . ; a

f
Mf
; should usually be very much larger than the propensity functions of the slow

reactions, as1; . . . ; a
s
Ms
:Due to this partitioning, the time to the occurrence of the next fast reaction

will usually be very much smaller than the time to the occurrence of the next slow reaction.
Next we divide (and re-index) the N species fS1; . . . ;SNg into fast and slow subsets,

fSf
1; . . . ;S

f
Nf
g and fSs

1; . . . ;S
s
Ns
g; where Nf þNs ¼ N: This gives rise to a partitioning of the state

vector XðtÞ ¼ ðX f ðtÞ;X sðtÞÞ; and also the generic state space variable x ¼ ðxf ; xsÞ; into fast and
slow parts. A fast species is defined to be any species whose population gets changed by some
fast reaction; all the other species are slow. Note the asymmetry in this definition: a slow species
cannot get changed by a fast reaction, but a fast species can get changed by a slow reaction.
Note also that afj and asj can both depend on both fast and slow variables. The state-change
vectors can now be re-indexed

nfj � ðn
ff
1j ; . . . ; n

ff
Nfj
Þ; j ¼ 1; . . . ;Mf

nsj � ðn
fs
1j ; . . . ; n

fs
Nfj
; nss1j ; . . . ; n

ss
Nsj
Þ; j ¼ 1; . . . ;Ms

where nsrij denotes the change in the number of molecules of species Ss
i ðs ¼ f ; sÞ induced by one

reaction R
r
j ðr ¼ f ; sÞ: We can regard nfj as a vector with the same dimensionality ðNf Þ as X f ;

because nsfij � 0 (slow species do not get changed by fast reactions).
The next step in setting up the ssSSA is to introduce the virtual fast process #X f ðtÞ: It is

composed of the same fast species state variables as the real fast process X f ðtÞ; but evolving only
through the fast reactions; i.e. #X f ðtÞ is X f ðtÞ with all the slow reactions switched off. To the
extent that the slow reactions do not occur very often, we may expect that #X f ðtÞ will provide a
good approximation to X f ðtÞ: But from a mathematical standpoint there is an profound
difference: X f ðtÞ by itself is not a Markov process, whereas #X f ðtÞ is. Since the evolution of X f ðtÞ
depends on the evolving slow process X sðtÞ; X f ðtÞ will not be governed by a master equation of
the simple Markovian form. But for the virtual fast process #X f ðtÞ; the slow process X sðtÞ stays
fixed at some constant initial value xs0; therefore, #X f ðtÞ evolves according to the master equation,

@ #Pðxf ; t j x0; t0Þ
@t

¼
XMf

j¼1

½afj ðx
f � nfj ;x

s
0Þ #Pðx

f � nfj ; t j x0; t0Þ � afj ðx
f ; xs0Þ #Pðx

f ; t j x0; t0Þ�

where #Pðxf ; t j x0; t0Þ is the probability that #X f ðtÞ ¼ xf ; given that Xðt0Þ ¼ x0:Note that the j-sum
here runs over only the fast reactions. In order to apply the ssSSA, two conditions must be
satisfied. The first is that the virtual fast process #X f ðtÞ be stable, in the sense that it approaches a
well defined, time-independent random variable #X f ð1Þ as t!1; i.e.

lim
t!1

#Pðxf ; t j x0; t0Þ � #Pðxf ;1 j x0Þ
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#Pðxf ;1 j x0Þ can be calculated from the stationary form of the master equation,

0 ¼
XMf

j¼1

½afj ðx
f � nfj ;x

s
0Þ #Pðx

f � nfj ;1 j x0Þ � afj ðx
f ;xs0Þ #Pðx

f ;1 j x0Þ�

which will be easier to solve since it is purely algebraic. The second condition is that the
relaxation of #X f ðtÞ to its stationary asymptotic form #X f ð1Þ happen very quickly on the time
scale of the slow reactions. More precisely, we require that the relaxation time of the virtual fast
process be very much less than the expected time to the next slow reaction. These two conditions
will usually be satisfied if the system is stiff. If these conditions cannot be satisfied for any
partitioning of the reactions, we shall take that as a sign that the fast reactions are no less
important than the slow ones, so it is not a good idea to skip over them.

Given these definitions and conditions, it is possible to prove the slow-scale approximation
[37]: If the system is in state ðxf ; xsÞ at time t; and if Ds is a time increment that is very large
compared to relaxation time of #X f ðtÞ but very small compared to the expected time to the next
slow reaction, then the probability that one Rs

j reaction will occur in the time interval ½t; tþ DsÞ
can be well approximated by %asj ðx

s; xf Þ Ds where

%asj ðx
s; xf Þ ¼4

X
xf
0

#Pðxf
0
;1 j xf ; xsÞ asj ðx

f 0 ;xsÞ ð14Þ

We call %asj ðx
s; xf Þ the slow-scale propensity function for reaction channel Rs

j : It is the average of
the regular Rs

j propensity function over the fast variables, treated as though they were
distributed according to the asymptotic virtual fast process #X f ð1Þ: The ssSSA is an immediate
consequence of this slow-scale approximation as we shall see in the next section.

5.3. Example: a toy model of a heat shock subsystem

To illustrate the ssSSA, we consider again the reaction set discussed in Section 3.3.4. depicting a
simplified model of the heat shock response

S1Ð
c1

c2
S2!

c3
S3 ð15Þ

under the condition c2cc3: An SSA simulation of this model will be mostly occupied with
simulating occurrences of reactions R1 and R2: These reactions are ‘uninteresting’ since they just
keep undoing each other. Only rarely will the SSA produce an important transcription-initiating
R3 reaction. We take the fast reactions to be R1 and R2; and the slow reaction to be R3: The fast
species will then be S1 and S2; and the slow species S3: The virtual fast process #X f ðtÞ will be the
S1 and S2 populations undergoing only the fast reactions R1 and R2:Unlike the real fast process,
the virtual fast process obeys the conservation relation

#X1ðtÞ þ #X2ðtÞ ¼ xT ðconstantÞ ð16Þ

This relation greatly simplifies the analysis of the virtual fast process, since it reduces the
problem to a single independent state variable. Eliminating #X2ðtÞ in favour of #X1ðtÞ by means of
Equation (16), we see that given #X1ðtÞ ¼ x01; #X1ðtþ dtÞ will equal x01 � 1 with probability c1x

0
1 dt;

and x01 þ 1 with probability c2ðxT � x01Þ dt: #X1ðtÞ is therefore what is known mathematically as a
‘bounded birth–death’ Markov process [18]. It can be shown [31] that this process has, for any
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initial value x1 2 ½0;xT�; the asymptotic stationary distribution

#Pðx01;1 j xTÞ ¼
xT!

x01!ðxT � x01Þ!
qx
0
1ð1� qÞxT�x

0
1 ðx01 ¼ 0; 1; . . . ;xTÞ ð17Þ

where q � c2=ðc1 þ c2Þ: Thus, #X1ð1Þ is the binomial random variable Bðq;xTÞ; whose mean and
variance are

h #X1ð1Þi ¼ xTq ¼
c2xT

c1 þ c2
ð18aÞ

varf #X1ð1Þg ¼ xTqð1� qÞ ¼
c1c2xT

ðc1 þ c2Þ
2

ð18bÞ

It can also be shown [37] that #X1ðtÞ relaxes to #X1ð1Þ in a time of order ðc1 þ c2Þ
�1:

The slow scale propensity function for the slow reaction R3 is, according to the result (5.2),
the average of a3ðxÞ ¼ c3x2 with respect to #X f ð1Þ: Therefore, using Equations (16) and (18a),

%a3ðx3; x1;x2Þ ¼ c3h #X2ð1Þi ¼
c3c1ðx1 þ x2Þ

c1 þ c2
ð19Þ

Since the reciprocal of %a3ðx3; x1; x2Þ estimates the average time to the next R3 reaction, the
condition that the relaxation time of the virtual fast process be very much smaller than the mean
time to the next slow reaction is

c1 þ c2c
c3c1ðx1 þ x2Þ

c1 þ c2
ð20Þ

This condition will evidently be satisfied if the inequality c2cc3 is sufficiently strong. When it is
satisfied, the ssSSA for reactions (15) goes as follows:

1. Given Xðt0Þ ¼ ðx10;x20; x30Þ; set t t0 and xi  xi0 ði ¼ 1; 2; 3Þ:
2. In state ðx1;x2;x3Þ at time t; compute %a3ðx3; x1; x2Þ from Equation (19).
3. Draw a unit-interval uniform random number r; and compute

t ¼
1

%a3ðx3; x1;x2Þ
ln

1

r

� �

4. Advance to the next R3 reaction by replacing t tþ t and

x3  x3 þ 1; x2  x2 � 1

Then, with xT ¼ x1 þ x2;
x1  sample of Bð c2

c1þc2
;xTÞ; and x2  xT � x1:

5. Record ðt;x1;x2;x3Þ if desired. Then return to Step 2, or else stop.

In Step 4, the first pair of updates actualizes the R3 reaction while the second pair of updates
‘relaxes’ the fast variables in a manner consistent with the stationary distribution (17) and the
new value of xT:

Figure 4(a) shows the results of an exact SSA run of reactions (15) for the parameter values

c1 ¼ 10; c2 ¼ 4� 104; c3 ¼ 2; x10 ¼ 2000; x20 ¼ x30 ¼ 0 ð21Þ
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The S1 and S3 populations here are plotted out immediately after each R3 reaction. There were
over 23 million reactions simulated here, but only about 600 of those were R3 reactions. The S2

population, which is shown on a separate scale, is plotted out at the same number of equally
spaced time intervals. This plotting gives a more typical picture of the behaviour of the S2

population than would be obtained by plotting it immediately after each R3 reaction, because R3

reactions are more likely to occur when the S2 population is larger.
For the parameter values (21), condition (20) is satisfied by 4 orders of magnitude initially,

and even more so as the total population of S1 and S2 declines; therefore, this reaction set
should be amenable to simulation using the ssSSA procedure. Figure 4(b) shows the results of
such a simulation, plotted after each R3 reaction. We note that all the species trajectories in this
approximate ssSSA run agree very well with those in the exact SSA run of Figure 4(a); even the
behaviour of the sparsely populated species S2 is accurately replicated by the ssSSA. But
whereas the construction of the SSA trajectories in Figure 4(a) required simulating over 23
million reactions, the construction of the slow-scale SSA trajectories in Figure 4(b) entailed
simulating only the 587 slow (R3) reactions. The slow-scale SSA run was over 1000 times faster
than the SSA run, with no perceptible loss of accuracy.

6. CONCLUSION

The dynamic and stochastic nature of gene networks offers new research opportunities in the
efficient modelling, simulation, and analysis of such networks. In this article, we motivated a
stochastic approach to modelling genetic networks and outlined some of the key mathematical
approaches to molecular noise modelling. We described numerical simulation approaches based
on the SSA and outlined recent advances in the simulation of molecular noise models.
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