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Abstract—In this paper we present an improvement of the
algorithm based on recursive de Casteljau subdivision over an n-
dimensional bounded domain (simplex or box). The modification
consists of a novel end condition and a way of calculation
the root in subdomain. Both innovations are based on linear
approximation of polynomials in a system. This improvement
results in that our approach takes almost half of the time of
the standard approach: it can be stopped much earlier than
using standard diameter condition and getting midpoint of a
subdomain as a root.

I. INTRODUCTION

S
OLVERS of systems of algebraic equations are a very

important part of today’s CAD/CAM systems. Issues such

as the numerical representation of curves and surfaces [1],

physical contacts between objects, collision detection, repre-

sentations of Voronoi diagrams of set-theoretic models [2]

or formulation of configuration space of a robot in motion

planning applications [3] are reduced to finding solutions of

the systems of polynomial equations.

Finding roots of polynomials (one equation) is well re-

searched. Unfortunately, the problem of solving systems of

polynomial equations goes back to the ancient Greeks and

Chinese and still there is no one good solving method. There

are a number of algorithms invented over the years based on

different approaches. For details, see section II. It is worth

noticing that in many of applications, especially CAD/CAM,

like collision detection or curves intersection, there is no need

to find all solutions in R
n and problem is narrowed to a

bounded domain, which can be approximated (bounded) by

n-dimensional box or simplex. That is why algorithms which

can be applied only to a specific domain are so desirable.

The method described in this paper is a multidimensional

bisection algorithm that uses multivariate Bernstein represen-

tation of polynomials, de Casteljau subdivision and convex

hull property. Brief review of the algorithm is presented in

next sections, but for further details we refer readers to [4],

[5].

First of all, the method can be applied to an n-dimensional

box or simplex domain. Such domains are used in curves

and surfaces representation, so the algorithm can be used

naturally in CAD/CAM applications. The further advantages

of the method are a numerical stability, finding all zeros in

the domain and no need for entering a starting point. A major

drawback is the exponential complexity O(2n) where n is a

number of equations. However, a number of publications in

recent years have proved that this algorithm is effective for

surfaces or curves intersections, where a number of equations

in the system is equal to one or two [6].

In addition, research on the use of graphics cards (CUDA

technology) were conducted to improve the execution time of

the algorithm [7].

Our contributions are twofold:

1) We show novel end condition in multidimensional bisec-

tion algorithm which is based on linear approximation

of equations

2) We show a novel way of computing the root in multidi-

mensional bisection algorithm which is based on solving

a linear system of the linear approximations

In this paper we consider a unit n-simplex as a domain of

a system of polynomial equations.

The paper is organized as follows: in Section II we discuss

related work, in Section III we briefly introduce the theoretical

background for a multidimensional bisection algorithm. After

that we describe two geometrical interpretations in Section IV.

In the Section V we discuss the details of our method (espe-

cially end condition and calculation of the root in subdomain).

In the Section VI reader can find numerical results obtained

for various sets of equations. Section VII provides conclusions

drawn from the presented analysis.

II. RELATED WORK

Current methods of solving systems of polynomial equa-

tions can be divided into three groups: symbolical, geometrical

and numerical (in particular subdivision) solvers.

A. Symbolical/Algebraic solvers

Symbolical methods are based on resultants and Gröbner

bases. Those methods eliminate variables and reduce problem

to finding roots for univariate polynomial using rational uni-

variate representation. Those methods, however, are efficient

only for systems of three up to four polynomials of low degree,

such as 2 or 3. After reducing those polynomials, we obtain

one univariate polynomial of degree close to 15. As it was

shown by Wilkinson [8], computing roots of polynomial of

degree greater than 15 can be ill-conditioned. What is more,

these methods are difficult to implement for computers that
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use finite precision arithmetic and that also slows down the

resulting algorithm. Symbolical methods should be considered

a success in theoretical area, but practical impact is unclear.

An example of such an approach is [9], [10].

B. Geometrical solvers

For some specific applications, particular methods have been

developed. Those methods use geometrical formulation of a

problem. For example, for curves and surface intersection or

ray tracing the algorithms are based on subdivision. How-

ever, these methods have limited applications in the general

case [11].

C. Numerical/Analytic solvers

Numerical methods are probably the most known. They can

be classified into iterative methods and homotopy methods.

The most popular iterative method is Newton’s method and it

works well locally and only if initial point is a good guess,

which is difficult in solving systems of polynomial equations.

Other methods are Newton like methods, minimization meth-

ods or Weierstrass method [12], [13].

Homotopic methods have a well-explored theoretical back-

ground. They are based on proceeding path in a complex

space. Theoretically, every path should converge to an isolated

solution. In practice, however, there are many issues as the

paths are not geometrically isolated, which causes problems

with robustness of the approach. Moreover, those methods are

rather computationally demanding. Example of this approach

is [14], [15], [16].

Subdivision methods use an exclusion criterion to remove

a domain if it does not contain a root. These solvers are often

used to isolate the real roots. Exclusion criteria are based on

Taylor exclusion function [17], interval arithmetic [18], Turan

test [19], Sturm method [20], Descartes rule [21]. In this paper

we propose an improvement to subdivision algorithm, where

excluding is based on properties of Bernstein representation

of polynomials. More information about that method can be

found in [4], [5], [7].

Interestingly, computing on GPU becomes more and more

popular, recently there are attempts to calculate many nu-

merical problems on GPU, in particular solving polynomial

equations systems [7], [15], [22], [23].

III. PROBLEM FORMULATION AND ALGORITHM IDEA

Consider a set of n polynomial equations in n independent

variables

p(x) = 0 (1)

where p = (p1, p2, . . . , pn) : S
n
1 → R

n (Sn
1 is a unit n-

simplex). The problem is to calculate numerically, with a given

accuracy ǫ, all real roots {x0} of the system (1). The method

can also be used when the number of equations is not equal

to the number of variables, but it is not in the scope of this

paper.

This algorithm uses a simplex (also known as barycentric)

Bernstein representation of multivariate polynomials. Vectors

of this basis are as follows (N - degree of Bernstein polyno-

mial):

BN
(j1,...,jn)

(x1, . . . , xn) =
N !

j0! · j1! · . . . · jn!
·xj0

0 ·xj1
1 · . . . ·xjn

n

(2)

where

jk ∈ N∪{0}, xk ∈ [0, 1]∧x0+ · · ·+xn ≤ 1∧k ∈ {1, . . . , n}

and

j1+· · ·+jn ≤ N, j0 = N−(j1+· · ·+jn), x0 = 1−(x1+· · ·+xn)

so each polynomial pk, after conversion to Bernstein repre-

sentation bk is of the form

bk(x) =
∑

(j1,...,jn)∈{(j1,...,jn):j1+···+jn≤N}

b
(k)
(j1,...,jn)

BN
(j1,...,jn)

(x)

(3)

and b
(k)
(j1,...,jn)

are called Bernstein coefficients. We will also

use coefficients of the system:

b(j1,...,jn) =















b
(1)
(j1,...,jn)

b
(2)
(j1,...,jn)

...

b
(n)
(j1,...,jn)















n×1

From that point we will refer to a system of polynomial

equations in Bernstein basis as b(x), so we can rewrite the

main problem as

b(x) = 0 (4)

Definition III.1 (Extreme coefficients of polynomial in Bern-

stein form). Extreme coefficients of polynomial in Bernstein

form are

Ie = {(j1, . . . , jn) : j1 + · · ·+ jn ≤ N

∧(∀k∈{1,...,n}jk = 0 ∨ ∃k∈{1,...,n}jk = N) ∧ jk ∈ N ∪ {0}}

In other words, extreme coefficients of polynomial bk are

b
(k)
0,...,0, b

(k)
N,0,...,0, . . ., b

(k)
0,0,...,N .

Example III.1. For polynomial bk of three variables and

second degree extreme coefficients are b
(k)
000,b

(k)
200,b

(k)
020,b

(k)
002.

A pseudocode is listed in Algorithm 1. Firstly, we have to

convert input polynomials from p1, . . . , pn to b1, . . . , bn. An

efficient, robust algorithm is presented e.g. in [24]. After that,

we create two queues S and Q, the first with root of the system

and second with areas (simplexes) to be processed.

Routine is that: get one subsimplex (in the very beginning

it is the initial simplex, where our system is defined), which

means get coefficients of polynomials in the system defined on

that subsimplex. After that, perform root exclusion tests. The

tests can exclude subdomain, where there is no root with 100%

certainty. Therefore, all of those tests have 100% true negative

ratio. However, tests differ in false positive ratio. The fastest
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Fig. 1: Algorithm idea, division of domain

Algorithm 1 Bisection algorithm to solve a system of poly-

nomial equations

Require: Polynomials b1 . . . bn in a system

Ensure: List of roots of the system

Initialize empty queue Q of n-tuples of polynomials;

2: Add b1 . . . bn to Q

Initialize empty queue S of solutions;

4: while Q is not empty do

Get n-tuple of b1 . . . bn polynomials from Q

6: Perform end condition test

if End condition is true then

8: Calculate root and add it to S queue

CONTINUE;

10: end if

Divide b1 . . . bn polynomials using de Casteljau method

into ba1 . . . b
a
n and bb1 . . . b

b
n polynomials

12: Perform tests (from fastest to slowest) and determine if

every ba1 . . . b
a
k is suspected to have a root.

if Every ba1 . . . b
a
n is suspected to have a root then

14: Add ba1 . . . b
a
n into Q;

end if

16: Perform tests (from fastest to slowest) and determine if

every bb1 . . . b
b
n is suspected to have a root.

if Every bb1 . . . b
b
n is suspected to have a root then

18: Add bb1 . . . b
b
n into Q;

end if

20: end while

return S

test has the highest false positive ratio (the most subdomains

are not excluded from consideration even though they should

be). The slowest test has the lowest false positive ratio and is

used only for those subdomains, which are not excluded by

earlier tests. Details about the tests can be found in section V.

It should be stressed here that in general, de Casteljau

division produces n+1 smaller simplexes from one input sim-

plex. However, for simplicity and universality of the algorithm

regardless of the number of equations, we make subdivision

along one consecutive variable xi, producing 2 smaller sim-

plexes. Subdivision along the consecutive variable xi has one

more important advantage: we are assured that subdomains

(diameter of subdomain) will be decreasing. More information

about the diameter can be found in the section V. In other

words, input simplex is a domain, and two output simplexes

are subdomains, which added (in a set theory sense) are equal

to input domain. Intersection of interiors of the subdomains is

empty. Obtained polynomials, ba1 , . . . , b
a
n and bb1, . . . , b

b
n, are

the same as input polynomials, but specified to new, smaller

(scaled) unit simplex subdomain.

Subdomains not excluded from consideration are enqueued

to Q.

Every subdomain dequeued from Q is tested for the end

condition. If it is true, the root is calculated and enqueued in

S. Thus the subdomain is excluded from consideration. The

end condition and the root calculation are the centerpiece of

this paper and will be discussed in section V.

When queue Q is empty, algorithm returns queue of solu-

tions S.

In the Fig. 1 we can see an exemplary use of the algorithm.

We have a two-dimensional domain (it means n = 2, so there

are two polynomial equations in a system) and two roots x0

and x1 in the domain. The grey area represents a subdomain

excluded by tests. We can see that the de Casteljau division is
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Fig. 2: Extended space representation for 2-dimensional box

performed along the longest edge of subsimplex, so diameters

of the consecutive subsimplexes are getting smaller.

IV. GEOMETRICAL INTERPRETATIONS

Note that the problem can be geometrically interpreted in

two ways.

A. Extended space representation

The extended space representation is used in the end con-

dition and the root calculation. Consider a coordinate system

with n+1 axes. n of them represent a domain. If we consider

polynomial pk(x), the vector x has coordinates in those n
axes. The n + 1 axis is the value of the polynomial, so it is

the value of pk(x). It implies that the polynomial pk(x) creates

a surface in the coordinate system, where every point of that

surface consists of n coordinates from domain (simplex) and

last one which is value of the polynomial in that point.

Solving a system of polynomial equations (and equations

in general) is finding points, where all of the surfaces have a

zero value in the last, n + 1, coordinate. The root is a point

that consist of first n coordinates of such a point.

In the Fig. 2 we can see an example for n-dimensional

box, where n = 2. One polynomial in the domain is pink, the

second is blue, and value of zero is represented by a green

plane.

B. n-dimensional mapping representation

The n-dimensional mapping representation can be applied

to any system of functions. We can see the system as mapping

B : Sn
1 → R

n. This function maps simplex Sn
1 to B(Sn

1 ), so

coordinate system has n axes.

This geometrical interpretation is used to understand tests

that exclude subdomains from consideration. Those tests base

on a Bernstein polynomial convex hull property, where coef-

ficients b(j1,...,jn) of the system are the corners. More details

can be found in [4].

Please note that:

(0 ∈ B(Sn
1 )) ⇔ ((∃x0 ∈ Sn

1 ) : B(x0) = 0) (5)

Of course, even though this logical relationship is true, it

is not very practical. It would be computationally demanding

to check 0 ∈ B(Sn
1 ). However, we can use the convex hull

property of Bernstein polynomial:

(∃x0 ∈ Sn
1 : w(x0) = 0) ⇒

(0 ∈ conv({b(j1,...,jn) : j1 + · · ·+ jn ≤ N}) (6)

Contraposition, however, of the above may be more conve-

nient in practice:

(0 /∈ conv({b(j1,...,jn) : j1 + · · ·+ jn ≤ N}) ⇒

(∀x0 ∈ Sn
1 : w(x0) 6= 0) (7)

After obtaining certainty that the convex hull of the system

of polynomial equations does not contain 0 point, we can see

that we are able to exclude that system as it has no root. And

if it contains 0, we can only suspect that a root is present in

the system (because it is only in a convex hull).
We can see an example in the Fig. 3. It is a system of two

polynomial equations of second degree. In Fig. 3a we can see

a domain of the system and in the 3b there is the same system

after mapping B(Sn
1 ). Coefficients of the system are marked as

circles. Convex hull of the system is a green polygon. Vertices

of red polygon are extreme coefficients of the system and they

are marked as red circles. It is worth noticing that this system

has two roots in the domain and both of them map to 0 in

B(Sn
1 ).

Definition IV.1 (Hyperplane). A hyperplane passing through

the point h0 and defined by a vector p is a set of points:

Hm(p,h0) = {h ∈ R
m : pT ·(h−h0) = 0,h0,p ∈ R

m,p 6= 0}
(8)

where · is a dot product.

V. ALGORITHM DETAILS

All three described tests are based on hyperplanes. It can

be proved that if we can find a hyperplane which separates

the convex hull and 0, then convex hull does not include

0 point. More complicated tests use more interesting (and

computationally damanding) hyperplanes.
As we wrote above, all three tests are based on finding a

hyperplane that separates the convex hull and 0 point. Testing

if all vertices of the convex hull are on one side of a hyperplane

can be computed by checking a sign of dot product. More

details about excluding tests can be found in [4].

A. Test of signs

This test checks hyperplanes Hn(ei,0), where ei is a base

unit vector, for i = 1, . . . , n. It can be performed as checking,

if every polynomial in a system has coefficients of both

signs, positive and negative. If at least one polynomial has

all coefficients positive only or negative only, this test rejects

that system as it does not have a root.
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B. Test of midpoint

Let M =
(

n+N

N

)

be a number of polynomial’s coefficients.

This equality can be proved by Stars and bars theorem, which

can be found in [25].

Midpoint test (which should be performed as a second

one) calculates a vector which is an average of Bernstein

coefficients of set:

pmid =
1

M

∑

(j1,...,jn)∈{(j1,...,jn):j1+···+jn≤N}

b(j1,...,jn)

Test verifies if all coefficients (points) are on one side of

hyperplane Hn(pmid, 0).

C. Test of hyperplanes

The last, most complex test is a side test. Hyperplanes in

this test are determined by Bernstein coefficients of the system.

We get every n linearly independent points from Bernstein

coefficients b(j1,...,jn) and create a hyperplane Hn. Again,

coefficients of the system are tested if they are on one side of

the hyperplane (exclude) or not (further subdivision is needed).

There are two variants of this test. The first is that we get n
linear independent points from extreme coefficients only. The

second takes all coefficients into account. We have decided

to implement the second variant in our work, as it tests more

hyperplanes and can exclude more subdomains.

D. End condition and a root computation

The end condition used in literature is checking a diameter

of the subdomain. A diameter, by definition, is the longest side

of a simplex. If it is less than tolerance ǫ, algorithm assumes

this area has a root and returns the midpoint of the simplex

(adds it to the list of solutions). Such an approach can be found

in [4], [5], [7].

We have found better approach, where a lower recursion

level is needed. Using the de Casteljau division gives us

smaller domains and we have observed that polynomials in

these smaller domains are getting closer to linear functions.

We decided to check if polynomials on the subdomain are

close enough to linear functions. If they are, then we change

the problem to a system of linear equations (all polynomials

on the subdomain are substituted to linear approximations) and

solve it (find intersections of those approximations). Details

are discussed below. In this part of the paper we should think

of it according to the extended space representation, where

every polynomial makes its own surface over the domain.

Definition V.1 (Control points of polynomial in Bernstein

form). Control point b
(k)
(j1,...,jn)

corresponding to a coefficient

b
(k)
(j1,...,jn)

of a polynomial bk is a point (according to extended

space representation) which first n coordinates are coordinates

of the corresponding point of the domain (see Fig. 3a) and last

n+ 1 coordinate is the value of coefficient b
(k)
(j1,...,jn)

.

Definition V.2 (Extreme control points of polynomial in

Bernstein form). Extreme control point b
(k)
ie

(ie ∈ Ie) is a

control point corresponding to an extreme coefficient b
(k)
ie

of

a polynomial bk.

We can see an example in the Fig. 4. It is a surface created

by polynomial according to extended space representation.

Extreme control points are marked as red and the rest of

control points are marked as blue.

After defining extreme control points, we can say that, after

concluding that a polynomial is sufficiently linear on a subdo-

main, we can create a hyperplane passing through the extreme

control points of the polynomial and the hyperplane will be

an aformentioned linear approximiation of the equation.

The last thing we have to specify is a method to determine
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Fig. 4: Control points. Extreme control points are red.

when a polynomial is so similar to a linear function, that we

can approximate the polynomial with the linear function with

given error ǫ.

It should be stressed that there are n + 1 extreme control

points and we would denote them as eb
(k)
0 , eb

(k)
1 , . . ., eb

(k)
n

for polynomial bk.

Definition V.3 (Thickness of a polynomial in Bernstein form).

Consider extreme control points eb
(k)
0 , eb

(k)
1 , . . ., eb

(k)
n of

polynomial bk. Vectors eb
(k)
1 − eb

(k)
0 , . . .,eb

(k)
n − eb

(k)
0

span an n-dimensional subspace. For every control point

b
(k)
(j1,...,jn)

(not only extreme control points) we can calculate

the distance from the subspace by projecting b
(k)
(j1,...,jn)

on

this subspace and computing the distance d
(k)
(j1,...,jn)

from this

point b
(k)
(j1,...,jn)

to its projection. Thickness of a polynomial

bk is max{d
(k)
(j1,...,jn)

: j1 + · · ·+ jn ≤ N}.

E. Calculating thickness

Assume that we have vector p ∈ R
n+1 and subspace of n-

dimensions U . We want to project p on U . It means R
n+1 =

U⊕V where dimV = 1. We say that V is the complementary

(orthogonal) subspace to U . That means that p breaks up into:

p = proj(p, U) + proj(p, V ) (9)

So to find proj(p, U), we can simply find proj(p, V ), which

is a projection onto a 1-dimensional subspace.

Assume that vectors {v1, . . . ,vn} span U . We want to find

vector v which is orthogonal to those vectors:

v · v1 = 0

v · v2 = 0
...

v · vn = 0

We obtain linear system with n equations and n + 1
unknowns. We have to add one constraint, e.g. v is unit vector

or one of its coordinates is equal to 1. When we have v, we

get:

proj(p, V ) =
p · v

v · v
v (10)

So

proj(p, U) = p− proj(p, V ) = p−
p · v

v · v
v (11)

End condition is checking if thicknesses of all polynomials

in system are less than ǫ. If so, linear approximations lk of

polynomials bk are created and system of linear equations is

solved. Solution of the linear system is taken as a root of the

system of polynomial equations. If not, further subdivision is

needed.

VI. EXPERIMENTAL RESULTS

The numerical experiments were performed on a PC with

Intel Core i5-2500K CPU 3.30GHz and 8 GB of RAM. The

goal of our research was to compare time and recursion level

for different end conditions and root computation methods.

The input systems of equations differed in the number n of

variables and equations (2 or 3) and the degree N (ranging

from 1 to 20). Intersection of two or three curves or surfaces

is a common case in CAD/CAM applications and that is why

we limited our research to 2 or 3 equations.

Four cases were tested:

1) end condition was thickness of polynomials less than

ǫ and root computation was solving a linear system of

equations (our approach),

2) end condition was diameter of subdomain less than ǫ and

root computation was returning midpoint of subdomain

(standard approach),

3) end condition was diameter of subdomain less than ǫ
and root computation was solving a linear system of

equations,

4) end condition was thickness of polynomials less than ǫ
and root computation was returning midpoint of subdo-

main.

Last two scenarios, which are mixture of our and standard

approach, did not yield better results. In third case too many

divisions were performed for given error ǫ, so time results

were unsatisfactory. In fourth case too few divisions were

performed, so accuracy of solutions was too small. Therefore

results of genuine approaches are presented only.
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We present results on Fig. 5–7. The tolerance ǫ for all tests

was equal to 10−6. It should be noted that all polynomials in a

system were normalized so all coefficients were in set [−1; 1].
All polynomials in one tested system are of the same degree.

In Fig. 5 we can see maximal recursion level (number of

de Casteljau divisions) needed to compute roots depending on

the polynomials’ degree. For standard approach it is constant

number, because there is always the same number of divisions

needed to obtain given diameter equal to ǫ of subdomain.

Unlike standard approach, recursion level in our approach

varies. Number of divisions depends on degree of polynomials.

When polynomial is of higher degree, more recursions are

required to get desirable linear approximation. When we use

standard end condition, linear system is treated as always and

many unnecessary subdivisions are performed.

It can be seen that obtaining the same thickness of hyper-

plane as diameter of subdomain (equal to ǫ) needs about half

the number of recursions. What is more, a number of necessary

recursions grows very slowly in degree of polynomials.

Nice feature of our approach is that, when a system of

polynomial equations is in fact linear (all polynomials are

polynomials of first degree), this case is detected in the first

recursion level and system is solved by method dedicated for

those systems.

In Fig. 6 we can see how much time it takes to compute

roots depending on the polynomials’ degree. As we can

see, smaller number of recursion results in shorter time of

computation. On average, our approach takes 60% time of the

standard approach.

It can be seen that the method is good for polynomials of

low degree. Detailed time of computation for those polynomi-

als can be seen in Fig. 7. Unfortunately, for higher polynomi-

als’ degree time of computation becomes unacceptable: over

0.015 seconds for two equations (up to 0.05 for 20 degree)

and over 0.5 seconds for three equations (up to 2.5 seconds

for 20 degree).

We compared our approach with well-known application

for computations, Mathematica. In Mathematica we used the

function NSolve which is designed for numerical computation

(Mathematica can perform symbol computations as well). We

chose arguments “Reals” and “6”, which means we are inter-

ested in real roots only and results should have 6 significant

digits. What is more, in addition to the polynomial equations,

we added inequalities such as x ≥ 0 or x+ y ≤ 1.

Results of this comparison can be seen in Fig. 8. As we can

see, the computation time of Mathematica is incomparable to

our method so much we decided to plot it on a logarithmic

scale. For example, for polynomials of fifth degree time of our

method’s computation is 0.0011 seconds, while Mathematica

needs 0.0590 seconds. The time difference is even greater as

a degree gets bigger and for degree of 16 execution times are

0.0190 and 4505 seconds, respectively.

Mathematica’s function NSolve finds all roots in whole

domain. We did not find method other than adding inequalities

to bound domain. Adding inequalities means that NSolve finds

all roots and after that it excludes those, which are not in
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Fig. 8: Comparison of Mathematica and our approach compu-

tation time

domain. This is reflected at computation time. It is much

worse than our approach. There is no sense using NSolve for

polynomials of degree higher than five if we can bound domain

in simplex.

We tried to use NSolve for a system of three polynomial

equations, but a difference of computation time was even

bigger. For example, for three polynomials of fifth degree time

of execution NSolve was 976 seconds.

VII. CONCLUSION

In this paper a new algorithm isolating the roots of systems

of polynomial equations has been introduced. An algorithm

based on the general multivariate Bernstein representation and

the systematic search of a given domain has been imple-

mented.

The main objective of this research was verification of ap-

plicability of novel end condition and computation of root by

linear approximations. It was shown that this novel approach

is nearly two times faster than standard methods.

Main advantage of this method is finding all roots in

the given domain. Many known methods base on Newton’s

method which can converge to the solution in another sim-

plex [12], [13]. This implies that some solutions may be

missed and some may be found several times. Other methods,

e.g. symbolic or homotopic, find all roots in R
n, from which

we can choose those in a domain (n-dimensional box or

simplex). Unfortunately, this approach unnecessarily increase

computation time, especially when most roots are outside of

the domain, because many solutions are calculated and after

that they are excluded from final set of roots. What is more,

our algorithm is one of the fastest methods when there are no

roots, because it is detected in the very first step. The next case,

for which this method is doing exceptionally well is system

of linear equations. In first step thickness is equal to zero and

system is solved (approximations lk and polynomials pk from

the system are the same).

MACIEJ BARTOSZUK: SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS: A NOVEL END CONDITION AND ROOT COMPUTATION METHOD 549



●

● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ●

●

degree

m
a
x
 r

e
c
u
rs

io
n
 l
e
v
e
l

●

●

standard approach

our approach

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1

6

11

16

21

26

31

36

41

(a) Recursion level for two equations

●

● ●

● ●
● ● ● ●

● ● ● ●

●
●

degree

m
a
x
 r

e
c
u
rs

io
n
 l
e
v
e
l

●

●

standard approach

our approach

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1

9

17

25

33

41

49

57

65

(b) Recursion level for three equations

Fig. 5: Recursion level depending on the polynomials’ degree
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The algorithm has one interesting feature, when system has

infinitely many solutions. If given ǫ is not too big, it can

calculate some points which are roots of a system, and after

connecting those points, we obtain a polyline, which approxi-

mates an infinite family of roots. A method for detecting this

case in the beginning is needed.

The algorithm is at a disadvantage in the case where a root

is in a corner or on a side of a subdomain. That causes many

subdivisions and many simplexes to be considered because in

many areas tests are passed. Detecting this case and evaluating

only one simplex should be another area of exploration. How-

ever, it should be noted that a little perturbation of coefficients

solves the problem.

A way for further development can be indicated. Some of

the equations in the system can be close enough to linear func-

tion in earlier iterations of the algorithm than others. So we

can substitute those equations to linear approximations. After

that, one variable in the system (for one linear approximation)

can be ousted. It would be very effective, because it would

decrease the dimension of the problem. The algorithm has

exponential computational complexity according to number of

variables. That is why decreasing the number of variables is so

important. One of the way to eliminate variables in a system

of polynomial equations is using Gröbner basis.

Summarizing, this is an excellent method for surface in-

tersections or for the visualization of curves and surfaces,

because of finding all roots in a given domain. This is a

well-conditioned numerical algorithm which can be useful for

three to four equations [4]. It has some disadvantages like

exponential computational complexity according to number of

unknowns or vulnerability to roots in the corners or sides of a

domain, but when we exclude those cases, it can be a powerful

tool in computer graphics and computer-aided design.
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