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Abstract

Many relevant intractable problems become tractable if some problem parameter is fixed.
However, various problems exhibit very different computational properties, depending on how
the runtime required for solving them is related to the fixed parameter chosen. The theory of
parameterized complexity deals with such issues, and provides general techniques for identifying
fixed-parameter tractable and fixed-parameter intractable problems.
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propositional logic programming under the stable model semantics where the parameter is the
dimension of afeedback vertex set of the program’s dependency graph, and circumscriptive inference
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1. Introduction

Many hard decision or computation problems are known to become tractable if a
problem parameter is fixed or bounded by afixed value. For example, consider the vertex-
cover problem. A vertex cover of agraph (V, E) isaset of vertices S C V such that, for
each edge {u, v} € E, at least one of u and v belongs to S. Deciding whether there is a
vertex cover of size at most k, and of computing such a vertex cover if so, are NP-hard
problems [23]. Nevertheless, both problems become tractable if the integer & is a fixed
constant, rather than being part of the problem instance. Similarly, the well known NP-
hard problem of finding a clique of size k in a graph becomes tractable for every fixed k.
Note, however, that there is an important difference between these problems:

e The vertex cover problem is solvable in linear time for every fixed constarit. Thus
the problem is not only polynomially solvable for each fixed &, but, moreover, can be
solved in time bounded by a polynomial p;, whose degree does not dependkon

e The best known algorithms for finding a clique of size k in a graph all require time
n2® Thus, for fixed k, the problem is solvable in time bounded by a polynomial py,
whose degree depends crucially an

Problems of the first type are caled fixed-parameter(short: fp) tractable while
problems of the second type can be classified as fixed-parameter intractablgl4]. It is
clear that fixed-parameter tractability is a highly desirable feature.

Thetheory of parameterized complexitsnainly developed by Downey and Fellows[11,
12,14], deals with genera techniques for proving that certain problems are fp-tractable,
and with the classification of fp-intractable problems into a hierarchy of fixed-parameter
complexity classes.

In this paper we study the fixed-parameter complexity of a number of relevant Al
and NMR problems. In particular, we show that the following problems are all fixed-
parameter tractable (the parameters to be fixed are added in square brackets after the
problem description):

e Constraint Satisfiability and computation of the solution to a constraint satisfaction
problem (CSP) [fixed parameters:. (cardinality of) domain and treewidth of constraint
scopes|.

o Satisfiability of CNF [fixed parameter: treewidth of variable connection graph].

e Prime Implicants of a ¢-CNF [fixed parameters: maximal number ¢ of literals per
clause and size of the primeimplicants to be computed].

e Propositional logic programming [fixed parameter: size of a minimal feedback vertex
set of a suitable atom connection graph].

e Circumscriptive inference from a positive ¢g-CNF [fixed parameters. maximal number
g of literals per clause and size of the modelsto be considered].

We believe that these results are useful both for a better understanding of the com-
putational nature of the above problems and for the development of smart parameterized
algorithmsfor the solution of these and related problems.
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We al so study the complexity of circumscriptive inference from a general propositional
theory when the attention is restricted to models of size k. This problem, referred-to as
small model circumscriptiofSMQ, is easily seen to be fixed-parameter intractable, but
it does not seem to be complete for any of the fp-complexity classes defined by Downey
and Fellows. We introduce the new class o> W[SAT] as a miniaturized version of the class
EE’ of the polynomial hierarchy, and prove that SMC is complete for Lo W[SAT]. This
seems to be natural, given that the nonparameterized problem corresponding to SMC is
25’ -complete [15]. Note, however, that completeness results for parameterized classes are
moredifficult to obtain. In fact, for obtaining our completeness result we had to resort to the
general version of circumscription (called P; Z-circumscription) where the propositional
letters of the theory to be circumscribed are partitioned into two subsets P and Z, and only
the atomsin P are minimized, while those in Z can float. The restricted problem, where
P consists of all atomsand Z is empty does not seem to be completefor o, W[SAT], even
though its nonparameterized version is till 25’ -complete[15].

This paper is one of the first investigating fixed-parameter tractability in the context
of Al. Very interesting work concerning the computation of stable models was recently
carried out in [39]. There, the size of the stable models to be computed is taken as the
fixed parameter, while, in the present paper, we consider the computation of stable models
of any size, taking as the fixed parameter a suitable graph theoretical measure of the logic
program. In[39], thefollowing remarkableresult is proven: computing small stable models
is fixed-parameter intractable, whereas computing large stable models is fixed-parameter
tractable if the parameter is the number of rulesin the program. These results, orthogonal
to ours, provide a wider picture of the fixed-parameter complexity of computing stable
models of logic programs.

The rest of this paper is organized as follows. In Section 2, we state the relevant
formal definitions related to fixed-parameter complexity. In Section 3, we dea with
constraint satisfaction problems. In Section 4, we study fp-tractable satisfiability problems.
In Section 5, we deal with logic programming. In Section 6, we study the problem of
circumscriptive inference with small models. Conclusions are given in Section 7.

2. Parameterized complexity

Parameterized complexity [14] deals with parameterized problems, i.e., problems with
an associated parameter. Any instance S of a parameterized problem P can be regarded as
consisting of two parts: the “regular” instance I, which isusually the input instance of the
classical—nonparameterized—version of P; and the associated parameter ks, usualy of

integer type.

Definition 1. A parameterized problem P is fixed-parameter tractabléf there is an
algorithm that correctly decides, for input S, whether S is a yes instance of P in time
f(ks)|Is|¢, where | Is| denotesthe size of I, kg isthe parameter, ¢ isaconstant, and f is
an arbitrary function.
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A notion of problem reduction proper to the theory of parameterized complexity has
been defined.

Definition 2. A parameterized problem P fp-reducego a parameterized problem P’ by an
fp-reductionif there exist two functions f, f” and a constant ¢ such that we can associate
toany instance S of P aninstance S’ of P’ satisfying the following conditions:

(1) the parameter kg of S’ is f(ks);
(2) theregular instance Iy is computablefrom S intimeat most f/(ks)|Is|¢;
(3) Sisayesinstanceof P if and only if S’ isayesinstance of P’.

A parameterized class of problems C is a (possibly infinite) set of parameterized
problfms A problem P is C-completeif P € C and every problem P’ € C isfp-reducible
to P.

A hierarchy of fp-intractable classes, called W-hierarchy, has been defined to properly
characterize the degree of fp-intractability associated to different parameterized problems.
The relationship among the classes of problems belonging to the W-hierarchy is given by
the following chain of inclusions:

WLl c W[2] < --- < W[SAT| € W[P]

where, for each natural number ¢ > 0, the definition of the class W([¢] isbased on the degree
t of the complexity of a suitable family of Boolean circuits.

The most prominent W[1]-complete problem is the parameterized version of CLIQUE,
where the parameter is the clique size. W[1] can be characterized as the class of
parameterized problems that fp-reduce to parameterized CLIQUE. Similarly, W[2] can be
characterized as the class of parameterized problems that fp-reduce to the parameterized
Hitting Set problem, i.e., to the problem of checking whether a collection C of subsets of
afinite set S has ahitting set of size at most k, where the parameter is the positive integer
k. (We recall that a hitting set for C isasubset of S that contains at least one element from
each subsetinC.)

A k-truth value assignment for aformula E is a truth value assignment which assigns
true to exactlyk propositional variables of E. Consider the following problem

Parameterized SAT:
Instance A Boolean formula E .
Parameterk.
Question Doesthere exist a k-truth value assignment satisfying E?

W[SAT] is the class of parameterized problems that fp-reduce to Parameterized SAT.
WI[SAT] is contained in W[ P], where Boolean circuits are used instead of formulae. It is

1 Typicaly, the functions f and f’ used in fp-reductions are exponential in the parameter of the problem.

Usually, and in particular in the proofs in this paper, they are simple functions of the form kilkz‘“'z, where ks is
the parameter, c1, ¢ are fixed constants, and k1 is either afixed constant or the parameter.
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not known whether any of the aboveinclusionshipsis proper or not, however the difference
of all classesis conjectured.

The AW-hierarchyhas been defined in order to deal with some problemsthat do not fit
the W-classes[14]. The AW -hierarchy representsin a sense the parameterized counterpart
of PSPACE in the classical complexity setting. In this paper we are mainly interested in
the class AW[SAT]. Consider the following problem

Parameterized QBFSAT:

Instance A guantified boolean formula @ = Qlillelézxz o Qfx,E.

Parameterk = (k1, ko, ..., k).

Questionls @ valid? (Here, E isaBoolean formula, and each quantifier Qf" ,1<i<n,
may be either 3% x, or Vi x. The former quantifier denotes the choice of some k;-truth
value assignment for the variables x, whilst the latter denotes all choices of k;-truth value
assignments for the variables x.)

AWI[SAT] is the class of parameterized problems that fp-reduce to Parameterized
QBFSAT.

3. Constraint satisfaction problems, bounded treewidth, and fp-tractability

In this section we prove that constraint satisfaction problems of bounded treewidth
over a fixed domain are fp-tractable. In order to obtain these results we need a number
of definitions. In Section 3.1 we give a very genera definition of CSPs; in Section 3.2 we
define the treewidth of CSP problems and quote some recent results; in Section 3.3 we
show the main tractability result.

3.1. Definition of CSPs

An instance of a constraint satisfaction probleffCSPB (also constraint networkis a
triple I = (Var, U, C), where Var is afinite set of variables, U is afinite domain of values,
andC ={C1, Ca, ..., C4} isafinite set of constraints. Each constraint C; isapair (S;, r;),
where S; isalist of variables of length m; called the constraint scopeand r; is an m;-
ary relation over U, caled the constraint relation The tuples of r; indicate the allowed
combinations of simultaneous values for the variables S;. A solutionto a CSP instance
is a substitution 6 :Var — U, such that for each 1 <i < ¢, S;0 € r;. The problem of
deciding whether a CSP instance has any solution is called constraint satisfiabilityCS).
(This definition is taken almost verbatim from [28].)

Toany CSPinstance I = (Var, U, C), we associate ahypergraphH (1) = (V, H), where
V =Var,and H = {var(S) | C = (S, r) € C}, where var(S) denotes the set of variablesin
the scope S of the constraint C.

Let H(I) = (V, H) bethe constraint hypergraph of a CSP instance 1. The primal graph
of I isagraph G = (V, E), having the same set of variables (vertices) as H (/) and an edge
connecting any pair of variables X, Y € V suchthat {X, Y} C h forsomeh € H.
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a b c

Fig. 1. The primal graph G (I,) of the CSP instance I, in Example 3.

Notethat if all constraintsof a CSP are binary, then its associated hypergraphisidentical
to its primal graph.

Constraint Satisfaction is easily seen to be NP-complete. However, there are classes
of CSP instances such that either the constraint relations or the structure of the
constraint scopes have some properties that make these instances tractable. The most
basic and most fundamental structural property considered in the context of CSPs (and
conjunctive database queries) is acyclicity. It was recognized independently in Al and
in database theory that acyclic CSPs (respectively, conjunctive queries) are solvable in
polynomial time. There are many equivalent characterizations of acyclity [2]. We will use
a characterization in terms of join trees. A join tree JT(H) for a hypergraph H is atree
whose vertices are the edges of H such that, whenever the same variable X € V occursin
two edges A1 and A3 of H, then A1 and A are connected in JT(H), and X occursin each
vertex on the unique path linking A1 and A2 in JT(H). In other words, the set of vertices
in which X occursinduces a (connected) subtree of JT(H). A CSP I isacyclicif and only
if its constraint hypergraph H (/) has ajoin tree [2,30].

Example 3. Consider a CSP I, having the following constraint scopes:

S1(a, b, d); Sa2(b, c, e); S3(b,d, e); Sala, d, g);

Ss5(g, h); Se(e, h); S7(h, f); Ss(c, f)
The constraint hypergraph H(1,) associated to I, contains the following edges: {«, b, d},
{b,c,e}, {b,d, e}, {a.d, g}, (g, h}, {e.h}, {h, [}, and {c, f}. The hypergraph H(I,) is

cyclic. In fact, it can be verified that does not exist any join tree for H(/,). Fig. 1 shows
the primal graph G (I,.) of I,.

3.2. Treewidth of CSPs

The treewidth of a graph is a measure of the degree of cyclicity of agraph.
Definition 4 [38]. A tree decompositionf a graph G = (V, F) isapair (T, 1), where
T = (N, E) isatree, and A isalabeling function associating to each vertex p € N aset of
vertices A(p) C V, such that the following conditions are satisfied:
(1) for eachvertex b of G, thereisa p € N suchthat b € A(p);

(2) for eachedge {b,d} € F, thereisap € N suchthat {b,d} C A(p);
(3) for each vertex b of G, theset {p € N | b € A(p)} induces a (connected) subtree of T'.
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Fig. 2. A tree decomposition for the graph G (1.) in Example 3.

The width of the tree decomposition is the maximum cardinality over the labels of the
verticesof 7', i.e., max,en{|A(p)| — 1}. The treewidthof G isthe minimum width over all
its tree decompositions.

Example 5. Fig. 2 shows a tree decomposition of the graph G(1.) in Example 3. This
decomposition haswidth 3. Moreover, it iseasy to seethat G (1.) hasno tree decomposition
of width 2, and thusits treewidth is 3.

Bodlaender [4] has shown that, for each fixed k, there is a linear time algorithm for
checking whether a graph G has treewidth bounded by & and, if so, computing a tree
decomposition of G having width £ at most. Thus, the problem of computing a tree
decomposition of a graph of width k is fp-tractablein the parameter k.

The treewidth of a CSP instance I is the treewidth of its prima graph G([I).
Accordingly, atree decomposition of I isatree decomposition of G(1).

3.3. Fp-tractable CSPs

The parameterized version of Constraint Satisfaction, where the parameter is the total
size of al constraint scopes, is W[1]-complete, and thus not fp-tractable. This follows
from well-known results on conjunctive query evaluation [13,35], which is equivalent
to constraint satisfaction (cf. [3,25,29]). Therefore, also bounded treewidth CSP is fp-
intractable and W[1]-hard. Indeed, the CSPs having total size of the constraint scopes
at most k& form a subclass of the CSPs having treewidth at most k — 1. Note that, for each
fixed k, CSPs of treewidth at most k — 1 can be evaluated in time O(n**1logn) [26].

In this section we show that, however, if as an additional parameter we fix the size of
the domain U, then bounded treewidth CSPis fixed-parameter tractable.

It is worthwhile noting that the general CSP problem remains NP-complete even for
constant domain U. (See, e.g., the 3-SAT problem discussed below, or the 3-coloring
problem, where the universes are {0, 1} or the three colors, respectively.)

Theorem 6. Constraint Satisfaction with parameters treewidthnd universe size = |U |
is fp-tractable. So is the problem of computing a solution of a CSP problem with fixed
parametersc andu.
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Proof. Let I = (Var, U, C) be a CSP instance having treewidth k and |U| = u. We exhibit
an fp-transformationfrom I to an equivalentinstance I’ = (Var, U, C’). We assume without
loss of generality that no constraint scope S in I contains multiple occurrencesof variables.
(In fact, such occurrences can be easily removed by a simple preprocessing of the input
instance.) Note that, from the bound k& on the treewidth, it follows that each constraint
scope contains at most k£ + 1 variables, and thus the constraint relations have arity at most
k + 1. (Indeed, any constraint scope of arity a + 1 givesriseto aclique of sizea + 1inthe
primal graph, which impliesthat the primal graph has treewidth at least a.)

Let (T = (V,E),A) be a k-width tree decomposition of G(I) such that |V| <
c|G(I)|, for a fixed predetermined constant ¢. Note that this is always possible,
because Bodlaender’s algorithm [4] runs in linear time. Thus, also the size of any tree
decomposition of G (/) computed using this algorithm is O(|G(I)]). For each vertex
p €V, the new instance /' has a constraint C, = (S, r’) € C’, where the scope §’ is a
list containing the variables belonging to A(p), and r’ is the associated relation, computed
as described below.

The relations associated to the constraints of 1’ are computed through the following two

steps:

(1) For each constraint C’ = (§',r') € C', initidlize v’ as UMY e, the |var(s")|-fold
cartesian product of the domain U with itself.

(2) For each congtraint C = (S,r) €C, let C' = (8, ") € C’ be any constraint of I’ such
that var(S) C var(S’). Note that such a constraint must exist. Indeed, the variablesin
the list S form a clique in G(I), and hence they should occur together in the label
A(p) of some vertex p of the tree decomposition. Modify ' as follows. r":={t" € r’ |
J asubstitution § s.t. S0 =" and SO € r}. (In database terms, r’ is semijoin-reduced

by r.)

It is not hard to see that the instance I’ is equivalent to I, in that they have exactly
the same set of solutions. Indeed, any solution of 7 is a solution of I’, because the new
congtraint relations added at step (1) above contain al the possible tuples for the variables
intheir constraint scopes, and thus no combination of valuesfor these variablesisforbidden
by the new constraints belonging to I’. Moreover, any solution of I’ is a solution of I,
because every constraint of 7 must be satisfied, after step (2) above.

Note that the size of 1’ is at most |U|[¥t1(c|G (1)), and even computing I’ from I is
feasiblein linear time. Thus, this reduction is actually an fp-reduction.

Theresulting instance I’ is an acyclic constraint satisfaction problem. Indeed, from the
construction above and from property (3) of Definition 4, it followsthat 7' correspondsto a
jointree of the hypergraph associated to I’. Thus, I’ is equivalent to an acyclic conjunctive
query over a fixed database [25]. Checking whether such a query has a nonempty result
and, in the positive case, computing asingle tuple of theresult, isfeasiblein linear time by
Yannakakis well-known algorithm [41]. O

There are many methods for solving constraint satisfaction problems whose cost
depends on some parameter of the constraint hypergraph. These methods are called
structural CSP decomposition methods, because they are based on suitable decompositions
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that transform cyclic CSP instances into acyclic CSP instances. (See [7,26,36] for
descriptions and comparisons among these methods.) In particular, the tree-clustering
method [8] is based on the same kind of construction we used in the proof above. The
primal graph of a cyclic instance is first triangulated and then the maximal cliques of the
resulting graph are used for building an acyclic hypergraph. By exploiting this hypergraph,
one can build an acyclic CSP instance that is equivalent to the original (cyclic) instance.
From the proof of Theorem 6, it follows easily that Constraint Satisfaction having as
joint parameters the tree-clustering width and the universe size is fp-tractable. Similarly,
it can be shown that also Constraint Satisfaction having the biconnected width [22,26]
and the universe size as joint parameters, and Constraint Satisfaction having the cutset
width [7,26] and the universe size asjoint parameters, are all fp-tractable problems. Indeed,
the construction used for the proof of Theorem 6 can be adapted to these problems,
too. Moreover, the biconnected decomposition of a CSP instance can be computed in
polynomial time, and finding a cutset (which is a synonym of feedback vertex set) of a
CSP instance, with the cutset width as the parameter, is fp-tractable [14].

Note that, since solving a CSP is equivalent to conjunctive query evaluation (CQ) [3,25,
29], we can obtain asimilar result on the complexity of evaluating conjunctive queries over
a fixed size database. This is a generalization of the program complexity of conjunctive
gueries, i.e., the complexity of evaluating conjunctive queries over afixed database [40].

Let O bethe conjunctive query

ansu) < ri(u) A+ Ary(uy),

wheren > 0; r1, ..., r, arerelation names (not necessarily distinct); ansis arelation name
(ans#£r;,V1<i<n);andu,us,...,u, arelists of terms (i.e,, variables or constants) of
appropriate length. The set of variables occurring in Q is denoted by var(Q). The answer
of O on a database instance db with associated universe U, consists of a relation ans
whose arity is equal to the length of u, defined as follows. Relation anscontains all tuples
u6 suchthat 6 :var(Q) — U isasubgtitution replacing each variablein var(Q) by avalue
of U and such that for 1 <i < n, r;(u;)0 € db. (For any atom r(u), r(u)0 denotes the
atom obtained from r(u) by uniformly substituting 6 (X) for each variable X occurring
in u.) The conjunctive query Q is a Boolean conjunctive quely its head predicate ans
has arity 0, thus the head is a purely propositional atom and does not contain variables.
A Boolean CQ Q evaluatesto trueif there exists a substitution 6 such that, for 1 <i < n,
ri(u;)0 € db; otherwise, the query evaluates to false The size of the Conjunctive Query
problem instance (Q, db) is defined in the standard way, i.e., as the number of bits needed
for encoding the query Q plus the number of bits needed for encoding the database db
listing, for each relation r € db occurring in Q, al the tuples belonging to ». The output
size of a nonboolean CQ instance is the size of the output relation ang while the output
size of a Boolean CQ instance is one. Note that the output size of a conjunctive query
may be exponentially greater than its input size, because the answer relation may contain
exponentially many tuples.

ThehypergraphH(Q) = (V, H) associated to the conjunctivequery Q hasV = Var(Q)
and H = {var(r; (u;)) | 1 <i < n}, wherevar(r; (u;)) denotesthe set of variablesoccurring
inr;(u;). Thetreewidth of Q isthetreewidth of the primal graph of H(Q).
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Thefollowing result complements some recent results on fixed-parameter tractability of
database problems by Papadimitriou and Yannakakis[35].

Corollary 7. The evaluation of Boolean conjunctive queries is fp-tractable if the
parameters are jointly the treewidth of the query and the size of the database universe.
Moreover, evaluating a nonboolean conjunctive query is fp-tractable in the input and
output size with respect to the treewidth of the query and the size of the database universe.

Proof. Let (Q, db) be a CQ instance. As shown in [25], (Q, db) is equivalent to a CSP
instance I = (Var, U,C) such that Q and I have the same set of variables, the same
universe, and the same associated hypergraph, i.e., H(Q) = H(I). It followsthat Q and 1
have the same treewidth, too. Moreover, there is a one-to-one correspondence between the
constraintsin 7 and the atomsin Q, but the special output atom ans

Exploiting this equival ence between CSP and CQ instances, the construction described
in the proof of Theorem 6 can be modified in a straightforward way for obtaining in linear
time an acyclic conjunctive query instance (Q’, do’) such that the answer of Q' ondb’ is
the same as the answer of Q on db.

Then, the corollary follows from the fact that computing the answer of an acyclic
conjunctive query isfeasible in time polynomial in the input and output size [41]. O

Let us conclude this section by mentioning two very interesting recent papers [20,27]
that report independent work. These papers study the connection between parameterized
complexity and logic (specifically, model checking) and contain some further results on
the fp-tractability of constraint satisfaction problems.

4, Fp-tractable satisfiability problems
4.1. Bounded-width CNF formulae

As an application of our general result on fp-tractable CSPs we show that a relevant
satisfiability problemis also fp-tractable.

The graph G(F) of a CNF formula F has as vertices the set of propositional variables
occurringin F and hasan edge {x, y} iff the propositional variablesx and y occur together
inaclause of F. Thetreewidth of F is defined to be the treewidth of the associated graph
G(F).

Example 8. Consider the following formula:
Fi=dvav-g)AnbVvdV—-a)AN(gVh)A(—eVh)A
(bveveyn(=bvdv—=e)A(cV fYNhV=))
Fig. 1 shows the graph of the formula F;. We already observed that the treewidth of this
graphis 3, and thus the treewidth of F7 is 3, too.

Theorem 9. CNF Satisfiability with parameter treewidkhs fp-tractable. Sois the problem
of computing a model of a CNF formula with parameter



G. Gottlob et al. / Artificial Intelligence 138 (2002) 55-86 65

Proof. We fp-transform a CNF formula F' into a constraint satisfaction instance I (F) =
(Var, U, C) defined as follows. Var contains a variable X, for each propositional variable
p ocecurring in F; U = {0, 1}; and for each clause D of F, I(F) contains a constraint
(S, r) where the constraint scope S is the list containing all variables X, such that p isa
propositional variable occurring in D, and the constraint relation » < U'P! consists of all
tuples corresponding to truth val ue assignments satisfying D.

For instance, consider the formula Fy in Example 8. For the first clause d v a v —g,
I (F1) contains the constraint (S1,71), where S1 = (d,a, g) and r contains al tuples
corresponding to truth value assignment for (d, a, g) satisfying D1, such as (0, 0, 0),
(1,0, 1), and so on.

It is obvious that every model of F correspond to a solution of 7(F) and vice versa.
Thus, in particular, F is satisfiableif and only if I(F) isapositive CSP instance.

Since G(F) is isomorphic to G(I(F)), both F and I(F) have the same treewidth.
Moreover, any CNF formula F of treewidth & has clauses of cardinality at most k¥ + 1.
Therefore, our reduction is feasible in time O(2¥+1| F|) and is thus an fp-reduction with
respect to parameter k.

By this fp-reduction, fp-tractability of CNF-SAT with the treewidth parameter follows
from the fp-tractability of CSPs with respect to treewidth, as stated in Theorem6. O

4.2. CNF with short prime implicants

The problem of finding the prime implicants of a CNF formula is relevant to a large
number of different areas, e.g., diagnosis [37], truth maintenance systems [9], knowledge
compilation [5], and many other Al applications.

Clearly, the set of the prime implicants of a CNF formula F can be viewed as
a compact representation of the satisfying truth assignments for F. It is worthwhile
noting that the restriction of Parameterized SATo CNF formulage is fp-intractable. More
precisely, deciding whether a ¢-CNF formula F has a k-truth value assignment is W[2]-
complete [14]. (We recall that a k-truth value assignment assigns true to exactly k
propositional variables.)

Nevertheless, we identified a very natural parameterized version of the primeimplicant
problem which is fp-tractable. We simply take as the parameter the length of the prime
implicants of the Boolean formula.

Given a g-CNF formula F, the Short Prime Implicants problerfSPI) is the problem
of computing the (consistent) primeimplicants of F having length < &, with parameters k
and gq.

Theorem 10. SPI is fixed-parameter tractable.

Proof. Let F be a ¢-CNF formula. Without loss of generality, assume that F does not
contain tautological clauses. We generate a set IM; (F) of implicants of F from which
it is possible to compute the set of al prime implicants of F having length < k. (This
is very similar to the well-known procedure of generating vertex covers of bounded size,
cf. [10,14].) Pick an arbitrary clause C of F. Clearly, each implicant I of F must contain
at least one literal of C. We construct alabeled tree r each of whose vertices V is labeled
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Fig. 3. The tree for computing the short prime implicants of F;.

by aclausein F or by a special symbol §2, and each of whose edgesis labeled by aliteral
occurringin F. Theroot of ¢ is C. Each vertex D € V, which is not labeled by §2 and has
level (strictly) lessthan &, has an edge labeled ¢ to adescendant G, for each literal £ € D.
If there are some clauses of F that do not intersect the set of al edge-labels from the root
to the current position, then the vertex G, is labeled by one of these clauses; otherwise,
G islabeled by the special symbol §2. Verticeslabeled by 2 are always|leaves of ¢. Note
that, by construction, the maximum length of every branchint isk.

As arunning example, consider again the formula Fy in Example 8, and assume we
are going to compute the prime implicants of F1 having length < 3. Since F1 isa3-CNF
formula, the parametersin thisexampleare g = 3 and k = 3. Fig. 3 shows atree computed
for F1 following the procedure above. For space reasons, sibling leaves sharing the same
label L are depicted just through their [abel L.

For each root-leaf branch g of the tree, let 7(8) be the set containing the < k literals
labeling the edges of B. If the leaf of 8 is labeled by §2 and I(B) is a consistent set
of literals, then 1(B) is an implicant of F and has no more than k literals. Indeed, by
construction, there is no clause of F that does not intersect 7(8), and the length of any
root-leaf branchin T' is bounded by k. In this case, we add 7 (8) to the set IMy (F). In our
running example, let 81 be the leftmost branch in the tree shown in Fig. 3. Since the set
1(B1) =1{d, c, h} isaconsistent set of literals, it isanimplicant of F1, and will beincluded
in the set IM3(Fy). Observe that, in this example, there are no further implicants of F;
having length 3. For instance, consider the branch 8, traversing the edge labeled by 4, c,
and—f.Theset I(B82) ={d, ¢, —~f} isconsistent, but it isnot an implicant of F1 and hence
will not beincluded in IM3(F1). Indeed, at least the clause (g Vv &) labeling the leaf of 2
isnot satisfied by 7(82).

It is easy to see that the size of the tree ¢ is bounded by ¢**1 and that, for every prime
implicant S of F having length < k, S C I holds, for someimplicant 7 € IMy(F).

Moreover, notethat there are at most ¢* implicantsin IM (F), as the maximum number
of leaves in r is ¢*. For each implicant I € IMi(F), the set of al consistent prime
implicants of F included in I can be easily obtained in time O(2%| F|) from I. It follows
that SPI is fp-tractable with respect to parametersq and k. O
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5. Logic programswith negation

Logic programming with negation under the stable model semantics [24] is a well-
studied form of nonmonotonic reasoning [31]. Moreover, there exist successful systems
implementing this form of reasoning, e.g., Smodel$33,34] and div [16,19].

A literal L is either an atom A (called positivg or a negated atom —A (called
negativg. Literals A and —A are complementaryfor any literal L, we denote by —.L
its complementary literal, and for any set Lit of literals, —.Lit = {—.L | L € Lit}.

A normal clause- isarule of theform

A< AN NAZA=ApiaA---A—A, (n>2m2=0), (D]

where A isan atom called the head of r and denoted by H (r), and the conjunction of literals
is called the body of r. We denote the set of the literals occurring in the body of » by B(r).
Moreover, B (r) = {A1, ..., A,,} denotes the set of atoms occurring in positive literalsin
thebody of r,and B~ (r) = {Apm+1, . .., An} the set of atoms occurring in negative literals
in the body of r.

A normal logic programis a finite set of normal clauses. The Herbrand base Bp of
alogic program P is the set of those atoms A such that either A or —A occursin P.
Any subset 7 of Bp (not necessarily proper) is an interpretation for P; the atomsin I are
interpreted true, and the atomsin Bp — I areinterpreted false.

A normal logic program P is stratified[1], if there is an assignment str(-) of integers
0,1, ... to the predicates p in P, such that for each clause r in P the following holds:
If p isthe predicate in the head of » and ¢ the predicate in an L; from the body, then
str(p) > str(q) if L; ispositive, and str(p) > str(q) if L; isnegative.

The reductof a normal logic program P by a Herbrand interpretation 1 [24], denoted
P!, is obtained from P asfollows: first remove every clause r with a negative literal —p
inthe body such that p € 1, and then remove al negative literals from the remaining rules.

Aninterpretation / of anormal logic program P isastable modebf P [24],if I isthe
least Herbrand model of P’. In general, a normal logic program P may have zero, one,
or multiple (even exponentially many) stable models. (See [6], for exact estimates on the
largest possible number of stable models of logic programs.) Denote by stabmodéP) the
et of stable modelsof P.

Itiswell known that every stratified logic program has a unique stable model which can
be computed in linear time.

The following problems are the main decision and search problems in the context of
logic programming.

Main logic programming problems. Let P be alogic program.

(1) ConsistencyDetermine whether P admits a stable model.

(2) Brave reasoningCheck whether agiven literal istruein astable model of P.
(3) Cautious reasoningCheck whether aliteral istruein every stable model of P.
(4) SM ComputationCompute an arbitrary stable model of P.

(5) SM EnumerationCompute the set of all stable models of P.
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Example 11. Consider the following logic program Ps:
P<gAN—TF T <qgAS S<TDAFr g<"U U< Tq

Let I = {u}. The interpretation I is a stable model for P;. Indeed, the reduct P1’ is the
program

pP<q r<gANs S<r U<

and the minimum model of this program is {u}. Thus, Py is a “yes’ instance of the
Consistency problem, because it has stable models. Moreover, u is a brave consequence
for Py, i.e., aconsequence of Py according to brave reasoning.

Itiseasy to seethat {p, ¢} is another stable model for Py, and that there are no further
stable models for P;. It follows that both —r and —s are cautious consequences of P,
because these literals are true according to both of the stable modelsfor P;.

5.1. Breaking the cycles with negative edges

For anormal logic program P, the dependency grapt (P) is an arc-labeled directed
graph (N, A) where N isthe set of atoms occurring in P and A is a set of arcs such that
(p.q) € A if thereexistsaruler € P having p inits head and ¢ in its body. Moreover,
if there is a rule having p in its head and with —¢ in its body, then the edge (p, q) is
|abeled with the symbol —. The undirected dependency gragh'(P) = (V, E) of P isan
undirected and unlabeled version of G(P). The set of vertices V isgivenby N UN’, where
N’ isaset of new vertices, called negative verticesorresponding one-to-oneto the labeled
arcsin G(P). Theset of edges E is defined asfollows:

e for each unlabeled arc (p, gq) € A thereisanedge {p,q} € E;

e foreachlabeledarce = (p, q) € A therearetwo edges{p,r.} and {r., g} in E, where
r. € N’ is the vertex corresponding to the labeled arc e and is not connected to any
other vertex in V (different from p and ¢).

A feedback vertex sétof an undirected (directed) graph G isasubset X of the vertices
of G such that any cycle (directed cycle) contains at least one vertex in S. Clearly, if a
feedback vertex set is removed from G, then the resulting graph is acyclic. The feedback
width of G isthe minimum size over its feedback vertex sets.

Example 12. Consider again the program P; in Example 11. Fig. 4(a) shows the
dependency graph of Pq, and Fig. 4(b) shows the undirected and unlabeled graph G*(Py).
Thecircled verticesin Fig. 4(b) denote a feedback vertex set for G*(P1). Indeed, dropping
thevertices¢g and s, we get an acyclic graph. Moreover, it is easy to verify that G*(P1) has
no feedback vertex set of cardinality 1, and hence its feedback width is 2.

It was shown by Downey and Fellows [10,14] that determining whether an undirected
graph has feedback width k and, in the positive case, finding a feedback vertex set of size
k, is fp-tractable with respect to the parameter k.
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Fig. 4. (a) The dependency graph G(Py), and (b) the graph G* (P1) with afeedback vertex set for it.

Let P be alogic program defined over aset U of propositional atoms. A partial truth
value assignmen(p.t.a) for P is atruth value assignment to a subset U’ of U. We say
that a positive literal p (respectively, a negative literal —p) contradicts 7 if (p) = false
(respectively, t(p) = true). If T isap.t.a for P, denote by P[] the program obtained
from P asfollows:

e eliminate all rules whose body contains aliteral contradicting t;
e eliminate from every rule body al literals made true by z, i.e., every positive litera p
such that = (p) = true and every negative literal —p’ such that 7 (p’) = false

Aninterpretation M issaid consistenwithap.t.a r if bothM N{p | t(p) =falsg =9
and M 2 {p | t(p) =true} hold.

Lemma 13. Let M be a stable model of some logic prograf and lett be a p.t.a.
consistent with\/. Then,M is a stable model oP[].

Proof. Assume by contradictionthat M isnot astable model of P[z]. Then, M isnot the
minimum model of the reduct P[t]™ and hence there existsamodel M’ c M for P[t]™.
However, M is a stable model for P and thus M’ cannot be a model of P¥. It follows
that there existsaruler € PM suchthat H(r) ¢ M’ and B(r) € M’. Thisrule comesfrom
someruler’ of P suchthat H(r) = H(r'), B(r) = BT (+),and B~ (+') N M = . Notethat
Bt (Y S M and M’ C M entail that BT (') C M. Since t isconsistent with A, it follows
that thereisno p € BT (+') such that t(p) =false Let D = {p € BT (+") | T(p) = trug},
and recall that all atoms in D will be deleted from r in the smplified program P[z].
Moreover, since T isconsistent with M and B~ (r’) N M = @, thereisno atom p € B~ (r')
such that T(p) = true. Thus, the rule H(+") < B(r") — D belongsto P[z], and the rule
H(r") < BT (') — D belongsto P[t]M. However, this is a contradiction, because the
latter rule is not satisfied according to M’ and we assumed M’ be amodel for P[z1M. 0O

Let P bealogic program. Given aset of vertices S of the graph G*(P), let AtomgS) be
any set of vertices(corresponding to atoms occurringin P) obtained from S replacing each
negative vertex g € S by one of its adjacent verticesin G*(P). Recall that, by definition of
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G*(P), such anegative vertex ¢ has only two neighbours, which are not negative vertices
and correspond to the endpoints of the labeled arc of G(P) associated to g. Therefore,
it is easy to verify that, if S is afeedback vertex set for G*(P), then also AtomgS) isa
feedback vertex set for G*(P). Indeed, deleting a negative vertex from G* (P) cannot break
more cycles than deleting either of its neighbours. Moreover, |AtomgS)| < |S]| clearly
holds. It follows that, if G*(P) has feedback vertex width w < k, for a fixed k, then
there is a feedback vertex set S for G*(P) not containing negative vertices and having
cardinality w. Furthermore, since a bounded-width feedback vertex set of an undirected
graph is computablein linear time (see [14]), such a feedback vertex set without negative
vertices can be clearly computed in linear time, as well.

Theorem 14. The logic programming problemd)—(5) listed above are all fp-tractable
with respect to the feedback width of the undirected dependency graph of the logic program.

Proof. Let P be alogic program whose graph G*(P) = (V, E) has feedback width &,
where the set of vertices V is partitioned into the two sets N = Bp, which contains all the
atoms occurring in P, and N’, which contains the negative vertices corresponding to the
negated arcs in the dependency graph G (P)—see the definition of these graphs above.

We compute in linear time a feedback vertex set S for G*(P) without negative vertices
(see discussion above) sit. |S| = k. Then, we consider the set T of all the 2¢ partial truth
value assignments to the atomsin S.

For each pta r € T, P[r] is a dtratified program whose unique stable model M,
can be computed in linear time. For each r € T, compute M, and check whether M, €
stabmodéP), where stabmodgP) denotesthe set of all stable modelsof P (thislatter can
be donein linear time, too, if suitable data structures are used).

Let ¥ = {M; | M, € stabmodéP)}. By definition of X, it suffices to note that every
stable model M for P belongsto X'. Indeed, let T bethe p.t.a. on S determined by M. By
Lemma13, it followsthat M isastable model of P[t] andhence M € X.

Thus, P has at most 2* stable models whose computation is fp-tractable and actually
feasible in linear time. Therefore, the problem (5) above (Stable Model Enumeration) is
fp-tractable. The fp-tractability of all other problemsfollows. O

Hereis an example of aclass of programs having feedback width 2.

Example 15. Consider the class of all logic programs P whose undirected dependency
graph G*(P) is the book-shaped graph book(n), for some rn > 0. The graph bookin) has
2n + 2 vertices and 3n + 1 edges that form n squares (pages of the book) having exactly
one common edge { X, Y} (seeaso [26]). Fig. 5 shows the graph book(4).

No matter on how large » is and how many negative arcs G (P) contains, the feedback
width of P istwo, because just deleting from G*(P) the vertices corresponding to X and
Y we get an acyclic graph. Moreover, observe that the feedback width remains 2 even if
one replaces the pages of the book by cycles of any length.

It appears that an overwhelmingly large number of “natural” logic programs have very
low feedback width, thus the technique presented here seems to be very useful in practice.
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X

Y

Fig. 5. The graph book(4).

Note, however, that the technique does not apply to some important and rather obvious
cases. In fact, the method does not take care of the direction and the labeling of the arcs
in the dependency graph G (P). Hence, positive programs width large feedback width are
not recognized to be tractable, although they are clearly tractable. The same applies, for
instance, for stratified programs having large feedback width, or to programs whose high
feedback-widthis exclusively due to positive cycles.

Unfortunately, it is not known whether computing feedback vertex sets of size k is
fixed-parameter tractable for directed graph$14].

Another observation leading to a possible improvement is the following. Call an atom
p of alogic program P malignantif it lieson at least one simple cycle of G(P) containing
amarked (= negated) edge. Call an atom benignif it is not malignant. It is easy to see that
only malignant atoms can be responsible for alarge number of stable models. In particular,
every stratified program contains only benign atoms and has exactly one stable model. This
suggest the following improved procedure:

Compute the set of benign atoms occurringin P;

Drop these benign verticesfrom G*(P), yielding anew graph H (P);

Compute a feedback vertex set S of size < k of H(P);

For each p.t.a. ¢ over § compute the unique stable model M, of P[r] and check
whether thisis actually a stable model of P, and if so, output M- .

It is easy to see that the above procedure correctly computes the stable models of P.
Unfortunately, as shown by the next theorem, it is unlikely that this procedure can run
in polynomial time.

Theorem 16. Determining whether an atom of a propositional logic program is benign is
co-NP-complete.

Proof. Membership in co-NP is obvious. For the hardness part, we reduce the node-
digoint path problem for directed graphs, which is an NP-complete problem [23], to the
problem of deciding whether an atom ¢ occurring in alogic program P is malign, which
is clearly the complement of our problem.

Let G = (N, A) beadirected graph, and (x1, y1) and (x2, y2) two pairs of nodesof G.
The problem is deciding whether there are two node-digoint paths linking x; to x> and y1
to y2 [21]. From G, we construct alogic program Pg containing arule s < ¢ for each arc
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Fig. 6. Digjoint paths 774 and 72 in the proof of Theorem 16.

(s, 1) € A, plus three additional rules g < x1, y2 < ¢, and x < —y1, where ¢ isafresh
atom not corresponding to any node of G. We show that ¢ is a malignant atom for Pg if
and only if there are two node-disoint paths linking x1 to x2 and y1 to y2 in G.

If part. Assume there are two node-digoint paths 1, linking x1 to x2, and 2, linking
y1 to yo2. Fig. 6 shows these paths.

Then, there is a simple cycle which, starting from the arc (¢, x1), reaches x2 via path
71, traversesthe labeled arc (x2, y1), and finally comes back to ¢ viapath > and the edge
(y2, q). Therefore, g isamalignant atom for Gp.

Only if part Assume ¢ is a malignant atom for G p. Then there is a simple cycle
¢ that traverses the labeled arc (x2, y1). Indeed, this is the only labeled arc in Gp. By
construction, ¢ is just connected to x1 and y, through the two arcs (¢, x1) and (y2, q),
respectively. Thus, the cycle ¢ contains a path from x; to x2 and one from y1 to y».
Moreover, since ¢ is a simple cycle, there is no node of Gp occurring two times in ¢,
and thus these paths are node digoint. O

5.2. The weak feedback-width of a dependency graph

In this section, we propose another approach, which is somewhat weaker, but very
efficient and easy to deal with. The weaker notion that we propose is based on the notion
of benign and malignant atoms, but it is defined on the undirected graph G*(P) of alogic
program P. An atom p occurring in P is caled weakly malignanif it lies on at least
one simple cycle of G*(P) containing a negative vertex, and hence corresponding to a
labeled arc of the dependency graph G(P). An atom is called strongly benigrif it is not
weakly-malignant.

These atoms can be characterized usefully in terms of biconnected components. Recall
that a vertex-induced connected subgraph G’ of an undirected graph G is a biconnected
componentf G if it is a biconnected graph, i.e., it cannot be disconnected by any one-
vertex removal.

Lemma 17. An atom of a logic progran® is weakly malignant if and only if it belongs to
a biconnected component 6 (P) containing some negative vertex.

Proof. Recall that an (undirected) graph G isbiconnected if and only if, for each pair p, g
of verticesof G, p and ¢ are biconnected, i.e., p remains reachable from ¢ after any one-
vertex removal from G. By Menger’stheorem [32], p and ¢ are biconnected if and only if
there are two vertex-digoint paths from p to ¢ in G. Thisis clearly equivalent to say that
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p and g arebiconnectedin G if and only if thereisasimple cyclein G containing both p
and gq.

It followsthat, if abiconnected component of G*(P) contains a negative vertex ¢, then
any other vertex p in this component is biconnected to g. Hence, p lies on asimple cycle
containing g and is thus weakly malignant.

For the other direction of thislemma, assume p isaweakly malignant vertexin G*(P).
Then, there is a negative vertex ¢ in P such that there exists a simple cycle in G*(P)
containing both p and ¢. Thus, p and ¢ are biconnected in G*(P), and hence thereis a
biconnected component containing both of them. O

Lemma 18. Computing the set of strongly benigweakly malignantatoms of a logic
program can be done in linear time.

Proof. Follows immediately from Lemma 17, and from the fact that the biconnected
components of agraph can be computed in linear time[18]. O

We next present an improved algorithm for enumerating the stable models of a logic
program P based on the feedback width of a suitable undirected graph associated to P. For
a strongly connected component C of the dependency graph G (P), we define a program
P/C corresponding to C asfollows. For eachruler € P suchthat H (r) € C, the program
P/C containsaruler’ where:

e thehead H (+") coincideswith the head H (r) of r; and
o the body of ' contains all the literals of B(r) whose atoms belong to C, i.e,
B(r')={plpeBT(NNC)}U{—~qlqge B (r)NC)}.

Modular Stable M odel Enumeration procedure (MSME).

(1) Computetheset C of the strongly connected componentsof G (P);

(2) Determine the set UC < C of the strongly connected components of G(P) whose
corresponding program P/ C isnot stratified;

(3) For each strongly connected component C € UC, compute the set of strongly benign
atoms SB(C) occurringin P/C;

(4) Let P"=Uceyc P/C;

(5) Let H(P') bethe subgraph of G*(P’) obtained by dropping every vertex p occurring
in some set of strongly benign atoms SB(C), for any C € UC,;

(6) Compute a feedback vertex set S of H(P’) having size at most k and not containing
negative vertices,

(7) For each p.t.a. T over S compute the unique stable model M, of P[], check whether
thisisactually a stable model of P, andif so, output M.

The feedback width of the graph H(P’) is called the weak feedback-widtlof the
dependency graph of P.
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Example 19. Let P be the following logic program:

a<c b<«a b<«—en—d c<b
c<hnd d<«e e« fNi f<—dnh
g fAL h<g £« i i<« L

Fig. 7 shows the dependency graph of P».. The strongly connected components of G (P2)
aeCi1=1{a,b,c},Co=1{d,e, f,g,h}, and C3 = {£,i}. At step (2) of algorithm MSME
we find the set 2/C of the strongly connected components of G (P2) whose corresponding
subprograms of P, are dtratified. It is easy to seethat Po/C1=1{a < ¢, b < a, ¢ < b,
b <, ¢ <} isdratified, while P,/ C> and P>/ C3 are ungtratified programs. Thus, UC =
{C2, C3}.

Now, we have to compute the set of strongly benign atoms belonging to the components
inUC. Fig. 8 showsthe graph G*( P2/ C>2) that we use for the computation of SB(C2). This
graph has two biconnected components: {e, f,d,d’} and {f, g, h}. Since d’ is a negative
vertex (it corresponds to the labeled arc (f, d) in the dependency graph G(P2/C>)), the
atomse, f, and d are weakly malignant. It follows that the set of strongly benign atoms
of C2 is SBC2) = {g, h}. Similarly, it is easy to see that al the atomsin C3 are weakly
malignant, and hence SB(C3) = @.

Fig. 9 shows the graph H (P,) obtained dropping al the strongly benign atoms of C>
and C3 from P; = (P2/C2 U P2/C3). The feedback width of this graph, and hence the
weak feedback-width of P>, is2. Theset S containing the circled verticesd and £ in Fig. 9
is afeedback vertex set of H (P,) without negative vertices.

For any p.t.a. T over S, we compute a stable model M for the stratified program Po[t],
and check whether M is actually a stable model for P». For instance, from ap.t.a. 71 that

_
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Fig. 7. Dependency graph G (P») of the program P in Example 19.
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Fig. 8. Thegraph G*(P/C2) in Example 19. Fig. 9. Thegraph H(Pz/) with afeedback vertex set for it
in Example 19.
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assigns falseto d and true to ¢, we get a stable model {¢} for P»[11] that is aso a stable
model for Ps.

Theorem 20. Given a logic programP, the MSME procedure computes all the stable
models ofP. Moreover, the logic programming probleni®)—(5) listed above are all fp-
tractable with respect to the weak feedback-width of the dependency graph of the logic
program.

Proof. Let P bealogic program whose graph H (P’), constructed following the algorithm
MSME above, has feedback width k. Let S be afeedback vertex set of H (P’) having width
k and not containing negative vertices.

We claim that, for any p.t.a. t over S, the program P[t] is stratified. Assume by
contradiction that this is not the case. Then, thereisacycler = p1, p2, ..., p¢, p1 (with
¢ > 1) in the graph G(P[t]) such that (p1, p2) isan arc labeled by —. Clearly, G(P[t])
is a subgraph of G(P), hence the cycle r occursin G(P), too. It follows that the labeled
arc (p1, p2) occurs in a simple cycle, say ¢/, in some strongly connected component C
of G(P). Let A be the set of atoms occurring in ¢'. Notethat A C {p1, p2, ..., p¢} and
hence A NS =@, because r isacyclein P[zr] and no atom in S occurs in this program.
By definition of strongly benign atoms, the atoms occurring in ¢” are not strongly benign,
i.e, AN SBC)=@. Therefore, (the undirected and unlabeled version of) ¢’ isacyclein
H(P’), andthus S is not a feedback vertex set of H(P'), acontradiction.

Thetheoremthen easily followsfrom the fact that afeedback vertex set can be computed
in linear time and from Lemma 13, as aready discussed in the proof of Theorem 14. O

Note that, for the sake of simplicity, in this paper we considered just propositional
logic programs, where no variable occurs in the literals. However, our algorithms can be
extended straightforwardly to non-propositional logic programs. Indeed, for each (non-
propositional) logic program P, there is a propositional logic program, called ground P),
which is equivalent to P, in that it has the same models and the same stable models as
P. For each rule r € P, ground P) contains al the ground rules obtained by uniformly
replacing the variables occurring in r by the constants occurringin P.

Moreover, note that the methods used in this section can be adapted to show fixed-
parameter tractability results for extended versions of logic programming, such as
digunctive logic programming, and for other types of honmonotonic reasoning. In the
case of digunctive logic programming, it is sufficient to extend the dependency graph to
contain a labeled directed edge between every pair of atoms occurring together in a rule
head.

5.3. Possible applications

We believe that the algorithms presented in this section, in particular, the MSME
procedure, can be profitably used both to construct new, more efficient Al systems, and
to improve current implementations such as existing systems for nonmonotonic logic
programming, e.g., Smodel$33,34] and dl v [16,19]. In fact, both Smodelsand dl v use
powerful heuristicsfor finding stable models of logic programsvery quickly. Roughly, they
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first compute all the deterministic consequences of the given program, and then try to fix
the truth values of some atoms that heuristics select as the most promising for leading to a
stable model of the program. Such atoms are used as the choice pointsin backtracking-like
algorithmsthat generate the stable models. Our results could be exploited in these systems
in at least two ways.

Guarantee of fast answersfor large classes of programs. If the weak feedback width
of a program is small, i.e.,, below some fixed threshold, the MSME procedure
provides an algorithm for computing the stable models of the program with a
known polynomial upper bound (of fixed degree). This provides aguaranteghat
large classes of programs can be solved efficiently. We believe that guarantees
of this type are important qualitative statements for assessing the efficiency of an
implemented system. Such qualitative statements should complement quantitative
arguments such as performance measurements on sample programs. For instance,
both Smodels and dI v guarantee that stratified logic programs are evaluated in
polynomial time. We believe that, due to its generality, the weak feedback width
could be awell-suited parameter for assessing a system.

The currently available systems do not explicitly guarantee efficient behaviour
on inputs of bounded weak feedback width. In case it turns out that a system
requires exponential runtime for some input classes of bounded weak feedback
width, we suggest to improve the system by adding a filter to dea with this
parameter. For instance, one can first compute the deterministic consequences
of the program and simplify the program (and hence its dependency graph)
according to this information. Then, one can compute the weak feedback width
of this program, and check whether it is smaller than some reasonable constant.
In this case, it should be convenient to evaluate the program according to the
MSME procedure; otherwise, the stable models can be computed through the
usual strategy.

New heuristics. The heuristics for choosing the most promising atoms to be fixed may
exploit the notion of weakly malignant atoms. Recall that the set of the weakly
malignant atoms can be computed very efficiently. As we have shown, by
fixing the truth values for these atoms, one gets a stratified program. Thus, the
number of weakly malignant atoms provides a measure of the amount of non-
determinism in the logic program. A heuristics strategy could prefer the atoms
whose deletion from the dependency graph minimizes the number of weakly
malignant atoms. Anyway, every strategy can also restrict its search space for
choice-point candidates to weakly malignant atoms, as fixing just their values
yields a linear time solvable program.

Of course, in practical systems many observations about typical structures of logic
programs may help in optimizing and tuning these procedures. For instance, many logic
programs for solving search NP problemsin a declarative way are based on the “ guess-
and-check” paradigm [17]. That is, they contain an unstratified component (a kind of
module) that “guesses’ a solution of the problem at hand, and then other components
(modules) that “check” whether the guessed solution is actually a feasible solution of the
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problem. The guessing component is usually very complex, i.e., full of cycles involving
negated atoms. However, the other components of the program that depends on it are
usually much simpler and easy to deal with. Thus, one can of course apply the MSME
procedure just to these “ upper” components, once the “guessed” atoms have been fixed.

6. Thesmall model circumscription problem

In this section we study the fixed-parameter complexity of atractable parametric variant
of circumscription, where the attention is restricted to models of small cardinality.

6.1. Definition of small model circumscription

The Small Model Circumscription ProblefSMQ) is defined as follows. Given a
propositional theory T, over aset of atoms A = P U Z, and given a propositional formula
¢ over vocabulary A, decide whether ¢ is satisfied inamodel M of T such that:

e M isof small size, i.e., a most k propositional atomsare truein M (written |[M| < k);
and

e M is P;Z-minimal with respect to all other small models,? i.e., there is no model M’
of T suchthat both |[M'| <kand M'N P c M N P hold.

This problem appears to be a miniaturization of the classical problem of (brave)
reasoning with minimal models. We believethat SMC isuseful, sincein many contexts, one
has large theories, but is mainly interested in small models (e.g. in abductive diagnosis).

Example21. Let k = 2, let T be the theory
(X1 Vx2V=x3Vx5) A2V X3V —xg) A(x1Vx3Vxg) A(—x3VxaV —xs),

andlet P = {x1, x2} and Z = {x3, x4, x5}.

The propositional formula ¢ = —x2 A —x5 is a (brave) consequence of T according
to small model circumscription. Indeed, the model M = {x1, x3} is small, as |M| = 2,
M = ¢ holds, and it is P; Z-minimal with respect to al other small modelsfor 7. Indeed,
any other model of T having asmaller set of atomsfrom P is not small. E.g., the model
M’ = {x3, x4, x5} isamodel for T and does not contain any atom from P. However, since
M’ contains three atoms and k = 2, M’ is not a small model and hence it cannot disprove
the P;Z-minimality of M. For completeness, note that ¢ is not a consequence of every
small P; Z-minimal model for 7. For instance, {x2, x4} isasmall P;Z-minima model for
T that does not entail ¢.

2 In this paper, whenever we speak about P;Z-minimality, we mean minimality as defined here. Note that
our requirement A = P U Z makes the specification of Z redundant, and we could just speak of P-minimality.
However, since we will often explicitly refer to the Z-variables, we keep the P-Z notation.



78 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55-86

Clearly, for each fixed k, SMCistractable. Infact it sufficed to enumerate | A |* candidate
interpretationsin an outer loop and for each such interpretation M check whether M =T,
M = ¢,and M is P;Z-minimal. The latter can be done by an inner loop enumerating all
small interpretations and performing some easy checking tasks.

It is aso not hard to see that SMC is fp-intractable. In fact the Hitting Set problem,
which was shown to be W[2]-complete[14], can be fp-reduced to SMC and can be actually
regarded as the restricted version of SMC where P = A, Z =, and T consists of a CNF
having only positive literals. In Section 6.2 we present the fp-tractable subclass of this
version of SMC, where the maximum clause length in the theory is taken as an additional
parameter. However, in Section 6.3 we show that, as soon asthe set Z of floating variables
is not empty, this problem becomes fp-intractable.

Since brave reasoning under minimal models was shown to be Eg’ complete in [15],
and is thus one level above the complexity of classical reasoning, it would be interesting
to determine the precise fixed-parameter complexity of the genera version of SMC with
respect to parameter k. This problem too istackled in Section 6.3.

6.2. A tractable restriction of SMC

We restrict SMC by requiring that the theory T be a ¢-CNF with no negative literal
occuring in it, and by minimizing over all atoms occurring in the theory. The problem
Restricted Small Model CircumscriptidRSMQ is thus defined as SMC except that T
is required to be a purely positive ¢g-CNF formula, the “floating” set Z is empty, and the
parameters are the maximum size k of the modelsto be considered, and the maximum size
g of the number of literalsin the largest conjunct (= clause) of T.

Theorem 22. RSMC is fixed-parameter tractable.

Proof. Since T ispositiveand Z = ¢, the set of minimal modelsof T to be considered are
exactly the primeimplicantsof T having size < k. By Theorem 10, computing these prime
implicantsfor a ¢-CNF theory is fp-tractable with respect to parametersk and ¢. Thus, the
theorem easily follows. O

6.3. The fixed-parameter complexity of SMC

We first show that the slight modification of the fp-tractable problem RSMC where
Z # @ isfp-intractable and in fact W[SAT] hard.

The problem Positive Small Model Circumscriptiof®SMQ is defined as SMC except
that T is required to be a purely positive ¢g-CNF formula, and the parameters are the
maximum size k of the modelsto be considered, and the maximum clause length g .

Let us define the Boolean formula count (x), where x = (x1, ..., x,) iS a non-empty
list of variablesand 0 < k < n, asfollows:

o if k=0, then count (x) = A1, —xi;
e if k =1, thencount(x) = A A B A C, where
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D B0 A ))

1<i<n 1< <min{i k+1} 1+1<s<i—

k+1 k
B= /\ —q, and C= \/ qy.
k+1<r<n k<r<n

All the indices in the above formula are greater than zero. Any literal having an index
less than one or not satisfying the prescribed bounds with respect to the other indices does
not belong to the formula. (See the example below.)

Intuitively, counf (x) “counts’ whether exactly k variablesamong x1, . . ., x, are“true.”
If k > 0, in any satisfying truth value assignment for count (x), the propositional variable
qif getsthe value trueiff x; isthe jth true variable among x1, .. ., x;. Note that the size of
counf (x) is O(kn?) if k > 1, and O(n) if k = 0. Moreover, the same bounds hold for the
time needed for computing this formula.

Example 23. We next describetheformulacoung(x1, x2, x3, x4) that “counts’ whether ex-
actly two variables among variables x1, xo, x3, x4 are “true”. By definition, coun(x1, x2,
x3, x4) isthefollowing formula:

1

X1 =4g; N
—-xl/\xzzq%/\

LAy = g2
qiNxX2 = g5 N
—-xl/\—-xz/\xgzq%/\

1 1 _ 2
(g1 A —x2) vg3) Axs = g5 A
qzz/\x3zq§/\
—'x1/\—-x2/\—-x3/\x4zqi'/\
(gt A=x2 A=x3) V (g3 A —x3) V q3) Axa = g2 A
(43 A —x3) v gd) A xa = g3 A

3 3

AT AL

There is a one-to-one correspondence between the truth value assignments that make this
formula true and the truth value assignments to x1, x2, x3, x4 that assign true to exactly
two variables among them. For instance, consider the truth value assignment o such that
o(x1) = o (x3) =true and o (x2) = o (x4) = false Note that o determines the truth value
for al the other variables in the formula. Indeed, from x; = ¢1, it follows that ¢} must
be true. Moreover, since x» is false, both ¢3 and ¢3 must be false. Similarly, g3 must be
false, because the first true variableis x1 and, in fact, the conjunction —x; A —x2 A x3 that
“defines’ ¢3 is false. However, x3 is the second true variable and ¢3 is true, as g1 A —x2
holds. In the same way, it can be verified that ¢3, ¢3. ¢2, and g3 must be false. Therefore,
the unique extension of o to al the variables occurring in the count formulais the truth
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value assignment o’ that assigns true to x1,x3, ¢1, and ¢2, and false to al the other
variables.

The variables x1, .. ., x, in the formula above are caled the externalvariables of the
formula, while all the other variables occurring in the formulaare called privatevariables.

Whenever atheory T containsacountsubformula, we assume without loss of generality
that the private variables of this subformula do not occur in T outside the subformula
In particular, if T contains two countsubformulas, then their set of private variables are
digoint.

The following lemma easily follows from the definition of the countformula and from
the discussion above.

Lemma 24. Let F be a formula and a list of variables occurring inF. Then

e F Acount(x) is satisfiable if and only if there exists a truth value assignraefar
F assigning true to exactly variables fromy.

e Everyk-truth value assignmemnt satisfyingF' can be extended in a unique way to
assignment’ satisfyingF A count (x).

e Every satisfying truth value assignment fBra counf (x) assigns true to exactly
private variables of coufitx) and true to exactly variables fromx.

Theorem 25. PSMC isW[SAT]-hard. The problem remains hard even f3CNF theories.

Proof. Let @ be a Boolean formula over propositional variables {x1, ..., x,}. We fp-
reduce the W[SAT]-complete problem of deciding whether there exists a k-truth value
assignment satisfying @ to an instance of PSM C where the maximum model sizeis 2k + 1,
and the maximum clause length is 2.

Without loss of generality, assumethat k > Oandn > 2. Let

@' =@ Acount(xi, ..., xn),

and let y1, ..., y, bethe private variables of the count subformula. Moreover, let T be
the following 2-CNF positive theory:

(PVXD)AN--APVX)ANPV YDA APV Yp).
Wetake P ={p}tand Z ={x1, ..., X, Y1, .-, Ym}-

From the definition of counf and the assumptions that k > 0 and n > 2, it is easy to
verify that n + m > 2k 4+ 1 holds. It follows that a set M isa P;Z minimal model of T
having size at most 2k 4+ 1 if and only if M = {p} U S, where S is any subset of Z such
that |M| < 2k.

From Lemma 24, every satisfying truth value assignment for @’ must make true exactly
k variables from {x1, ..., x,}, and k variables from the set of private variables of count.
It follows that there existsa P; Z minima model M of T such that |M| <2k +1and M
satisfies @ if and only if there exists a k-truth value assignment satisfying . 0O

Let us now focus on the general SMC problem, where both arbitrary theories are
considered and floating variables are permitted. It does not appear that SMC is contained

an
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in W[SAT]. On the other hand, it can be seen that SMC is contained in AW[SAT], but
it does not seem to be hard (and thus complete) for this class. In fact, AW[SAT] is
the miniaturization of PSPACE and not of EE’ . No class corresponding to the levels of
the polynomial hierarchy have been defined so far in the theory of the fixed-parameter
intractability. Nonmonotonic reasoning problems, such as SMC, seem to require the
definitions of such classes. We next define the exact correspondent of x5 at the fixed-
parameter level.

6.3.1. Definition of the class, W[SAT]
Yo WISAT] is defined similarly to AW[SAT], but the quantifier prefix is restricted
to X».

Parameterized QBF,SAT.

Instance A quantified boolean formula3*1xv*2y E.

Parameter k = (k1, k2).

Question Is F1xvk2y E valid? (Here, 3*1x denotes the choice of some k1-truth value
assignment for the variables x, and V2 y denotes all choices of k,-truth value assignments
for the variables y.)

Definition 26. X>2W[SAT] is the set of al problems that fp-reduce to Parameterized
QBF>SAT.

6.3.2. Membership of SMC B, W[SAT]

L et the problem Parameterized QBF,SAT ¢ bethe variant of the problem Parameterized
QBF,SAT where the quantifiers 3*1x and V*2y are replaced by quantifiers 3<1x and
vsk2y with the following meaning. 3SK1x o means that there exists a truth vaue
assignment making at most k1 propositional variables from x true such that « is valid.
Symmetrically, VS*2y o meansthat « is valid for every truth value assignment making at
most k2 propositional variablesfrom y true.

Lemma 27. Parameterized QBF2SAT ¢ is in X, W[SAT].

Proof. It sufficesto show that Parameterized QBF,SAT ¢ isfp-reducibleto Parameterized
QBF>SAT.

Let @ = 3Sx1x0. .. x,VSR2y1y0. .y E(x1,..., %0, Y1, ..., ym) be an instance of
Parameterized QBF>SAT <. It iseasy to seethat thefollowing instance @’ of Parameterized
QBF>SAT isequivaent to @:

2k /! 1\ 2k: /7 /
IMx1x2. X X1 X5 X,V TRY1Y2 Y Y1Yo - Y
E(XLAXL ooy Xn AKXy VLA YL e evs Ym A Vi)

where x, x5, ..., X}, Y1, ¥ps - - > ¥y, @€ NeW variables and E(x1 A X3, ..., X, A X, Y1 A
Yis--+» Ym A Yy,) iSobtained from E by substituting x; A x; for x; (1 <i <n)andy; /\y;.
fory,; (A<j<m). O

Theorem 28. SMC is inX,W[SAT].
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Proof. By Lemma 27 it is sufficient to show that every SMC instance S can be fp-
reduced to an equivalent instance @ (S) of Parameterized QBF.SAT¢. Let S = (A =
PUZ,T(P,Z),¢,k)beanSMCinstance,where P ={p1,..., pptand Z ={z1, ..., z2m}.
Let P’ ={p},...,p,yand Z' ={z}, ..., z,,} betwo setsof fresh variables. ®(S) isdefined
asfollows:

<k <k 7 ] ’
AN p1..ppza. VYD P2 2y

T(P,Z)A¢ A

T(PCZ/):/( A\ pisp;)v( \/ p;mp,),

1<i<n 1<i<n

where T'(P’, Z") is obtained from T'(P, Z) by substituting p; for p; (1<i <n)and Z/; for
z; (A< j<m).

The first part of @(S) guesses a model M of T with at most k atoms among P U Z
which satisfies ¢. The second part makes sure that the M is P; Z minimal by checking that
each model M’ of T iseither equivalent to M over the P variables, or has at least one P
variable true whereas the same variable is fase in M. Hence T bravely entails ¢ under
small models P; Z circumscriptionif and only if @(S) isvalid. O

6.3.3. 22 W[SAT]-hardness of SMC
Theorem 29. SMC isZ, W[SAT]-hard, and thusZ,; W[SAT]-complete.

Proof. We show that Parameterized QBF>SAT is fp-reducible to SMC. Let @ be the
following instance of Parameterized QBF2SAT.

Elklx1x2...xn‘v’k2y1y2...ym E(X1,..., X0, Y1, -+ > Ym)-

We define a corresponding instance of SMC S(®) =(A=PUZ, T, ¢ =w, k=2k; +
2k + 1), where w is a fresh variable, T = (E(x, y) = w) A counfi(x) A count2(y),
P =xU{w}, and Z consists of all the other variablesoccurringin T, namely, the variables
in y and the private variables of the two countsubformulae.

We provethat @ isvalidif and only if S(®) isayesinstance of SMC.

(Only if part) Assume @ isvalid. Then, there exists ak-truth value assignment o to the
variables x such that for every k»-truth value assignment to the variables y, the formula E
is satisfied.

Let M be an interpretation for T constructed as follows. M contains the k1 variables
from x which are made true by o and thefirst k> variablesof y; in addition, M contains w
and k1 + k2 private variables which make true the two countsubformulae. Thisis possible
by Lemma 24.

Itiseasy to seethat M isamodel for 7. We now show that M isa P; Z minima model
of 7. Assume that M’ is a P;Z smaller model. Due to the count(x) subformula, M’
must contain exactly k1 atoms from x and therefore M and M’ coincide with respect to
the x atoms. It followsthat w ¢ M’. However, by validity of @ and the construction of M,
M’ = E holds, and therefore M’ = w, aswell. Contradiction.
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(If part) Assume there existsa P; Z minimal model M of T such that M entails w and
|M| < k. Note that, by Lemma 24, it must hold that M contains exactly k1 true variables
from x and exactly k» true variablesfrom y.

Towards a contradiction, assume that @ is not valid. Then it must hold that for every
ky-truth value assignment o to the variables x, there exists a ko-truth value assignment o
to the variables y, such that o U o’ falsifies E. In particular, for the k; variables from x
which are true according to M, it is possible to make true exactly k variablesfrom y such
that the formula E is not satisfied. Consider now the interpretation M’ containing these
k1 + k2 true variables plus the k1 + k2 made true by the two countsubformulae. M’ is a
model of T whose P variables coincide with those of M except for w which belongs to
M, but not to M’. Therefore, M isnot P; Z minimal, a contradiction.

Finally, note that the transformation from & to S(®) is an fp-reduction. Indeed it is
feasible in polynomial time and isjust linear ink. O

Corollary 30. Parameterized QBF,SAT ¢ is X, W[SAT]-complete.

Proof. Completeness follows from the fact that, as shown in Lemma 27, this problem
belongsto X, W[SAT], and by Theorem 29, which showsthat the X, W[SAT]-hard problem
SMC isfp-reducible to Parameterized QBF,SAT¢. O

Downey and Fellows [14] pointed out that completeness proofs for fixed-parameter
intractability classes are generaly more involved than classical intractability proofs.
Note that this is aso the case for the above proof, where we had to deal with subtle
counting issues. A straightforward downscalingof the standard 25’ -compl eteness proof
for propositional circumscription appears not to be possible.

In particular, observe that we have obtained our completeness result for a very
general version of propositional minimal model reasoning, where there are variablesto be
minimized (P) and floating variables (Z). It is well-known that minimal model reasoning
remains Eg-compl eteeven if all variables of aformulaare minimized (i.e., if Z isempty).
This result does not seem to carry over to the setting of fixed-parameter intractability.
Clearly, this problem, being a restricted version of SMC, is in X, W[SAT]. Moreover it
is easy to see that the problem is hard for W[2] and thus fixed-parameter intractable.
However, we were not able to show that the problem is complete for any classin the range
from W[2] to £, W[SAT], and leave this issue as an open problem.

Open problem. Determine the fixed-parameter complexity of SMC when all variables of
thetheory T areto be minimized.

7. Conclusion

In this paper we have studied the fixed-parameter tractability of several problems in
Al and nonmonatonic logic programming. We could show that many relevant problems
in these areas are fixed-parameter tractable with respect to natural problem parameters.
We have proposed new agorithms for the considered problems, and believe that these
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algorithms can be used profitably both to construct new, more efficient Al systems, and
to improve current implementations such as existing systems for nonmonotonic logic
programming, €.9., Smodel$33,34] and dl v [16,19].

As a more theoretical result we have shown that the problem of small model
circumscription (SMC) is fixed-parameter intractable. This problem does not resemble any
other fp-intractable problem previoudly studied in the literature [14]. In order to determine
its exact degree of fp-intractability, we had to define the new fixed-parameter complexity
class X2 W[SAT] and show that SMC is complete for this class. Note that this result holds
for the general version of SMC; the case where all variables are minimized is aso fp-
intractable, but its exact complexity is open.

This paper and the paper by Truszczyhski [39] are the first to explore fp-tractability
issues in the context of Al. There are many further Al problems that call for an fp-
complexity analysis. We are confident that interesting and useful results can be obtained in
the areas of planning and automatic configuration.
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