
Artificial Intelligence 138 (2002) 55–86

www.elsevier.com/locate/artint

Fixed-parameter complexity in AI
and nonmonotonic reasoning ✩

Georg Gottlob a, Francesco Scarcello b,∗, Martha Sideri c

a Institut für Informationssysteme, Technische Universität Wien, A-1040 Vienna, Austria
b Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria, I-87036 Rende (CS), Italy

c Department of Informatics, Athens University of Economics and Business, GR-10434 Athens, Greece

Received 15 May 2000

Abstract

Many relevant intractable problems become tractable if some problem parameter is fixed.
However, various problems exhibit very different computational properties, depending on how
the runtime required for solving them is related to the fixed parameter chosen. The theory of
parameterized complexity deals with such issues, and provides general techniques for identifying
fixed-parameter tractable and fixed-parameter intractable problems.

We study the parameterized complexity of various problems in AI and nonmonotonic reasoning.
We show that a number of relevant parameterized problems in these areas are fixed-parameter
tractable. Among these problems are constraint satisfaction problems with bounded treewidth and
fixed domain, restricted forms of conjunctive database queries, restricted satisfiability problems,
propositional logic programming under the stable model semantics where the parameter is the
dimension of a feedback vertex set of the program’s dependency graph, and circumscriptive inference
from a positive k-CNF restricted to models of bounded size. We also show that circumscriptive
inference from a general propositional theory, when the attention is restricted to models of bounded
size, is fixed-parameter intractable and is actually complete for a novel fixed-parameter complexity
class.  2002 Elsevier Science B.V. All rights reserved.

Keywords:Parameterized complexity; Fixed-parameter tractability; Nonmonotonic reasoning; Constraint
satisfaction; Conjunctive queries; Prime implicants; Logic programming; Stable models; Circumscription

✩ Part of this work has been published in preliminary form in the proceedings of the 5th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR ’99), El Paso, TX, 1999.

* Corresponding author.
E-mail addresses:gottlob@dbai.tuwien.ac.at (G. Gottlob), scarcello@deis.unical.it (F. Scarcello),

sideri@aueb.gr (M. Sideri).

0004-3702/02/$ – see front matter  2002 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(02) 00 18 2- 0

56 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

1. Introduction

Many hard decision or computation problems are known to become tractable if a
problem parameter is fixed or bounded by a fixed value. For example, consider the vertex-
cover problem. A vertex cover of a graph (V ,E) is a set of vertices S ⊆ V such that, for
each edge {u,v} ∈ E, at least one of u and v belongs to S. Deciding whether there is a
vertex cover of size at most k, and of computing such a vertex cover if so, are NP-hard
problems [23]. Nevertheless, both problems become tractable if the integer k is a fixed
constant, rather than being part of the problem instance. Similarly, the well known NP-
hard problem of finding a clique of size k in a graph becomes tractable for every fixed k.
Note, however, that there is an important difference between these problems:

• The vertex cover problem is solvable in linear time for every fixed constantk. Thus
the problem is not only polynomially solvable for each fixed k, but, moreover, can be
solved in time bounded by a polynomial pk whose degree does not depend onk.
• The best known algorithms for finding a clique of size k in a graph all require time

n�(k). Thus, for fixed k, the problem is solvable in time bounded by a polynomial pk ,
whose degree depends crucially onk.

Problems of the first type are called fixed-parameter(short: fp) tractable, while
problems of the second type can be classified as fixed-parameter intractable[14]. It is
clear that fixed-parameter tractability is a highly desirable feature.

The theory of parameterized complexity, mainly developed by Downey and Fellows [11,
12,14], deals with general techniques for proving that certain problems are fp-tractable,
and with the classification of fp-intractable problems into a hierarchy of fixed-parameter
complexity classes.

In this paper we study the fixed-parameter complexity of a number of relevant AI
and NMR problems. In particular, we show that the following problems are all fixed-
parameter tractable (the parameters to be fixed are added in square brackets after the
problem description):

• Constraint Satisfiability and computation of the solution to a constraint satisfaction
problem (CSP) [fixed parameters: (cardinality of) domain and treewidth of constraint
scopes].
• Satisfiability of CNF [fixed parameter: treewidth of variable connection graph].
• Prime Implicants of a q-CNF [fixed parameters: maximal number q of literals per

clause and size of the prime implicants to be computed].
• Propositional logic programming [fixed parameter: size of a minimal feedback vertex

set of a suitable atom connection graph].
• Circumscriptive inference from a positive q-CNF [fixed parameters: maximal number

q of literals per clause and size of the models to be considered].

We believe that these results are useful both for a better understanding of the com-
putational nature of the above problems and for the development of smart parameterized
algorithms for the solution of these and related problems.

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 57

We also study the complexity of circumscriptive inference from a general propositional
theory when the attention is restricted to models of size k. This problem, referred-to as
small model circumscription(SMC), is easily seen to be fixed-parameter intractable, but
it does not seem to be complete for any of the fp-complexity classes defined by Downey
and Fellows. We introduce the new class �2W [SAT] as a miniaturized version of the class
�P

2 of the polynomial hierarchy, and prove that SMC is complete for �2W [SAT]. This
seems to be natural, given that the nonparameterized problem corresponding to SMC is
�P

2 -complete [15]. Note, however, that completeness results for parameterized classes are
more difficult to obtain. In fact, for obtaining our completeness result we had to resort to the
general version of circumscription (called P ;Z-circumscription) where the propositional
letters of the theory to be circumscribed are partitioned into two subsets P and Z, and only
the atoms in P are minimized, while those in Z can float. The restricted problem, where
P consists of all atoms and Z is empty does not seem to be complete for �2W [SAT], even
though its nonparameterized version is still �P

2 -complete [15].
This paper is one of the first investigating fixed-parameter tractability in the context

of AI. Very interesting work concerning the computation of stable models was recently
carried out in [39]. There, the size of the stable models to be computed is taken as the
fixed parameter, while, in the present paper, we consider the computation of stable models
of any size, taking as the fixed parameter a suitable graph theoretical measure of the logic
program. In [39], the following remarkable result is proven: computing small stable models
is fixed-parameter intractable, whereas computing large stable models is fixed-parameter
tractable if the parameter is the number of rules in the program. These results, orthogonal
to ours, provide a wider picture of the fixed-parameter complexity of computing stable
models of logic programs.

The rest of this paper is organized as follows. In Section 2, we state the relevant
formal definitions related to fixed-parameter complexity. In Section 3, we deal with
constraint satisfaction problems. In Section 4, we study fp-tractable satisfiability problems.
In Section 5, we deal with logic programming. In Section 6, we study the problem of
circumscriptive inference with small models. Conclusions are given in Section 7.

2. Parameterized complexity

Parameterized complexity [14] deals with parameterized problems, i.e., problems with
an associated parameter. Any instance S of a parameterized problem P can be regarded as
consisting of two parts: the “regular” instance IS , which is usually the input instance of the
classical—nonparameterized—version of P ; and the associated parameter kS , usually of
integer type.

Definition 1. A parameterized problem P is fixed-parameter tractableif there is an
algorithm that correctly decides, for input S, whether S is a yes instance of P in time
f (kS)|IS |c, where |IS | denotes the size of IS , kS is the parameter, c is a constant, and f is
an arbitrary function.

58 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

A notion of problem reduction proper to the theory of parameterized complexity has
been defined.

Definition 2. A parameterized problem P fp-reducesto a parameterized problem P ′ by an
fp-reductionif there exist two functions f,f ′ and a constant c such that we can associate
to any instance S of P an instance S′ of P ′ satisfying the following conditions:

(1) the parameter kS ′ of S′ is f (kS);
(2) the regular instance IS ′ is computable from S in time at most f ′(kS)|IS |c;
(3) S is a yes instance of P if and only if S′ is a yes instance of P ′.

A parameterized class of problems C is a (possibly infinite) set of parameterized
problems. A problem P is C-complete if P ∈ C and every problem P ′ ∈C is fp-reducible
to P .1

A hierarchy of fp-intractable classes, called W -hierarchy, has been defined to properly
characterize the degree of fp-intractability associated to different parameterized problems.
The relationship among the classes of problems belonging to the W -hierarchy is given by
the following chain of inclusions:

W [1] ⊆W [2] ⊆ · · · ⊆W [SAT] ⊆W [P]
where, for each natural number t > 0, the definition of the class W [t] is based on the degree
t of the complexity of a suitable family of Boolean circuits.

The most prominent W [1]-complete problem is the parameterized version of CLIQUE,
where the parameter is the clique size. W [1] can be characterized as the class of
parameterized problems that fp-reduce to parameterized CLIQUE. Similarly, W [2] can be
characterized as the class of parameterized problems that fp-reduce to the parameterized
Hitting Set problem, i.e., to the problem of checking whether a collection C of subsets of
a finite set S has a hitting set of size at most k, where the parameter is the positive integer
k. (We recall that a hitting set for C is a subset of S that contains at least one element from
each subset in C .)

A k-truth value assignment for a formula E is a truth value assignment which assigns
true to exactlyk propositional variables of E. Consider the following problem

Parameterized SAT:
Instance: A Boolean formula E.
Parameter: k.
Question: Does there exist a k-truth value assignment satisfying E?

W [SAT] is the class of parameterized problems that fp-reduce to Parameterized SAT.
W [SAT] is contained in W [P], where Boolean circuits are used instead of formulae. It is

1 Typically, the functions f and f ′ used in fp-reductions are exponential in the parameter of the problem.

Usually, and in particular in the proofs in this paper, they are simple functions of the form k
c1k2+c2
1 , where k2 is

the parameter, c1, c2 are fixed constants, and k1 is either a fixed constant or the parameter.

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 59

not known whether any of the above inclusionships is proper or not, however the difference
of all classes is conjectured.

The AW -hierarchyhas been defined in order to deal with some problems that do not fit
the W -classes [14]. The AW -hierarchy represents in a sense the parameterized counterpart
of PSPACE in the classical complexity setting. In this paper we are mainly interested in
the class AW [SAT]. Consider the following problem

Parameterized QBFSAT:
Instance: A quantified boolean formula Φ =Q

k1
1 x1Q

k2
2 x2 · · ·Qkn

n xnE.
Parameter: k = 〈k1, k2, . . . , kn〉.
Question: Is Φ valid? (Here, E is a Boolean formula, and each quantifier Qki

i , 1 � i � n,
may be either ∃kix, or ∀kix. The former quantifier denotes the choice of some ki-truth
value assignment for the variables x, whilst the latter denotes all choices of ki-truth value
assignments for the variables x.)

AW [SAT] is the class of parameterized problems that fp-reduce to Parameterized
QBFSAT.

3. Constraint satisfaction problems, bounded treewidth, and fp-tractability

In this section we prove that constraint satisfaction problems of bounded treewidth
over a fixed domain are fp-tractable. In order to obtain these results we need a number
of definitions. In Section 3.1 we give a very general definition of CSPs; in Section 3.2 we
define the treewidth of CSP problems and quote some recent results; in Section 3.3 we
show the main tractability result.

3.1. Definition of CSPs

An instance of a constraint satisfaction problem(CSP) (also constraint network) is a
triple I = (Var,U,C), where Var is a finite set of variables, U is a finite domain of values,
and C = {C1,C2, . . . ,Cq} is a finite set of constraints. Each constraint Ci is a pair (Si, ri),
where Si is a list of variables of length mi called the constraint scope, and ri is an mi -
ary relation over U , called the constraint relation. The tuples of ri indicate the allowed
combinations of simultaneous values for the variables Si . A solution to a CSP instance
is a substitution θ : Var→ U , such that for each 1 � i � q , Siθ ∈ ri . The problem of
deciding whether a CSP instance has any solution is called constraint satisfiability(CS).
(This definition is taken almost verbatim from [28].)

To any CSP instance I = (Var,U,C), we associate a hypergraphH(I)= (V ,H), where
V = Var, and H = {var(S) | C = (S, r) ∈ C}, where var(S) denotes the set of variables in
the scope S of the constraint C.

Let H(I)= (V ,H) be the constraint hypergraph of a CSP instance I . The primal graph
of I is a graph G= (V ,E), having the same set of variables (vertices) as H(I) and an edge
connecting any pair of variables X,Y ∈ V such that {X,Y } ⊆ h for some h ∈H .

60 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

Fig. 1. The primal graph G(Ie) of the CSP instance Ie in Example 3.

Note that if all constraints of a CSP are binary, then its associated hypergraph is identical
to its primal graph.

Constraint Satisfaction is easily seen to be NP-complete. However, there are classes
of CSP instances such that either the constraint relations or the structure of the
constraint scopes have some properties that make these instances tractable. The most
basic and most fundamental structural property considered in the context of CSPs (and
conjunctive database queries) is acyclicity. It was recognized independently in AI and
in database theory that acyclic CSPs (respectively, conjunctive queries) are solvable in
polynomial time. There are many equivalent characterizations of acyclity [2]. We will use
a characterization in terms of join trees. A join tree JT(H) for a hypergraph H is a tree
whose vertices are the edges of H such that, whenever the same variable X ∈ V occurs in
two edges A1 and A2 of H, then A1 and A2 are connected in JT(H), and X occurs in each
vertex on the unique path linking A1 and A2 in JT(H). In other words, the set of vertices
in which X occurs induces a (connected) subtree of JT(H). A CSP I is acyclic if and only
if its constraint hypergraph H(I) has a join tree [2,30].

Example 3. Consider a CSP Ie having the following constraint scopes:

S1(a, b, d);S2(b, c, e);S3(b, d, e);S4(a, d, g);
S5(g,h);S6(e,h);S7(h,f);S8(c, f)

The constraint hypergraph H(Ie) associated to Ie contains the following edges: {a, b, d},
{b, c, e}, {b, d, e}, {a, d, g}, {g,h}, {e,h}, {h,f }, and {c, f }. The hypergraph H(Ie) is
cyclic. In fact, it can be verified that does not exist any join tree for H(Ie). Fig. 1 shows
the primal graph G(Ie) of Ie .

3.2. Treewidth of CSPs

The treewidth of a graph is a measure of the degree of cyclicity of a graph.

Definition 4 [38]. A tree decompositionof a graph G = (V ,F) is a pair 〈T ,λ〉, where
T = (N,E) is a tree, and λ is a labeling function associating to each vertex p ∈N a set of
vertices λ(p)⊆ V , such that the following conditions are satisfied:

(1) for each vertex b of G, there is a p ∈N such that b ∈ λ(p);
(2) for each edge {b, d} ∈ F , there is a p ∈N such that {b, d} ⊆ λ(p);
(3) for each vertex b of G, the set {p ∈N | b ∈ λ(p)} induces a (connected) subtree of T .

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 61

Fig. 2. A tree decomposition for the graph G(Ie) in Example 3.

The width of the tree decomposition is the maximum cardinality over the labels of the
vertices of T , i.e., maxp∈N {|λ(p)| − 1}. The treewidthof G is the minimum width over all
its tree decompositions.

Example 5. Fig. 2 shows a tree decomposition of the graph G(Ie) in Example 3. This
decomposition has width 3. Moreover, it is easy to see that G(Ie) has no tree decomposition
of width 2, and thus its treewidth is 3.

Bodlaender [4] has shown that, for each fixed k, there is a linear time algorithm for
checking whether a graph G has treewidth bounded by k and, if so, computing a tree
decomposition of G having width k at most. Thus, the problem of computing a tree
decomposition of a graph of width k is fp-tractable in the parameter k.

The treewidth of a CSP instance I is the treewidth of its primal graph G(I).
Accordingly, a tree decomposition of I is a tree decomposition of G(I).

3.3. Fp-tractable CSPs

The parameterized version of Constraint Satisfaction, where the parameter is the total
size of all constraint scopes, is W [1]-complete, and thus not fp-tractable. This follows
from well-known results on conjunctive query evaluation [13,35], which is equivalent
to constraint satisfaction (cf. [3,25,29]). Therefore, also bounded treewidth CSP is fp-
intractable and W [1]-hard. Indeed, the CSPs having total size of the constraint scopes
at most k form a subclass of the CSPs having treewidth at most k − 1. Note that, for each
fixed k, CSPs of treewidth at most k − 1 can be evaluated in time O(nk+1 logn) [26].

In this section we show that, however, if as an additional parameter we fix the size of
the domain U , then bounded treewidth CSPis fixed-parameter tractable.

It is worthwhile noting that the general CSP problem remains NP-complete even for
constant domain U . (See, e.g., the 3-SAT problem discussed below, or the 3-coloring
problem, where the universes are {0,1} or the three colors, respectively.)

Theorem 6. Constraint Satisfaction with parameters treewidthk and universe sizeu= |U |
is fp-tractable. So is the problem of computing a solution of a CSP problem with fixed
parametersk andu.

62 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

Proof. Let I = (Var,U,C) be a CSP instance having treewidth k and |U | = u. We exhibit
an fp-transformation from I to an equivalent instance I ′ = (Var,U,C ′). We assume without
loss of generality that no constraint scope S in I contains multiple occurrences of variables.
(In fact, such occurrences can be easily removed by a simple preprocessing of the input
instance.) Note that, from the bound k on the treewidth, it follows that each constraint
scope contains at most k + 1 variables, and thus the constraint relations have arity at most
k+ 1. (Indeed, any constraint scope of arity a+ 1 gives rise to a clique of size a+ 1 in the
primal graph, which implies that the primal graph has treewidth at least a.)

Let 〈T = (V ,E),λ〉 be a k-width tree decomposition of G(I) such that |V | �
c|G(I)|, for a fixed predetermined constant c. Note that this is always possible,
because Bodlaender’s algorithm [4] runs in linear time. Thus, also the size of any tree
decomposition of G(I) computed using this algorithm is O(|G(I)|). For each vertex
p ∈ V , the new instance I ′ has a constraint Cp = (S′, r ′) ∈ C ′, where the scope S′ is a
list containing the variables belonging to λ(p), and r ′ is the associated relation, computed
as described below.

The relations associated to the constraints of I ′ are computed through the following two
steps:

(1) For each constraint C′ = (S′, r ′) ∈ C ′, initialize r ′ as U |var(S ′)|, i.e., the |var(S′)|-fold
cartesian product of the domain U with itself.

(2) For each constraint C = (S, r) ∈ C , let C′ = (S′, r ′) ∈ C ′ be any constraint of I ′ such
that var(S)⊆ var(S′). Note that such a constraint must exist. Indeed, the variables in
the list S form a clique in G(I), and hence they should occur together in the label
λ(p) of some vertex p of the tree decomposition. Modify r ′ as follows. r ′:={t ′ ∈ r ′ |
∃ a substitution θ s.t. S′θ = t ′ and Sθ ∈ r}. (In database terms, r ′ is semijoin-reduced
by r .)

It is not hard to see that the instance I ′ is equivalent to I , in that they have exactly
the same set of solutions. Indeed, any solution of I is a solution of I ′, because the new
constraint relations added at step (1) above contain all the possible tuples for the variables
in their constraint scopes, and thus no combination of values for these variables is forbidden
by the new constraints belonging to I ′. Moreover, any solution of I ′ is a solution of I ,
because every constraint of I must be satisfied, after step (2) above.

Note that the size of I ′ is at most |U |k+1(c|G(I)|), and even computing I ′ from I is
feasible in linear time. Thus, this reduction is actually an fp-reduction.

The resulting instance I ′ is an acyclic constraint satisfaction problem. Indeed, from the
construction above and from property (3) of Definition 4, it follows that T corresponds to a
join tree of the hypergraph associated to I ′. Thus, I ′ is equivalent to an acyclic conjunctive
query over a fixed database [25]. Checking whether such a query has a nonempty result
and, in the positive case, computing a single tuple of the result, is feasible in linear time by
Yannakakis’ well-known algorithm [41]. ✷

There are many methods for solving constraint satisfaction problems whose cost
depends on some parameter of the constraint hypergraph. These methods are called
structural CSP decomposition methods, because they are based on suitable decompositions

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 63

that transform cyclic CSP instances into acyclic CSP instances. (See [7,26,36] for
descriptions and comparisons among these methods.) In particular, the tree-clustering
method [8] is based on the same kind of construction we used in the proof above. The
primal graph of a cyclic instance is first triangulated and then the maximal cliques of the
resulting graph are used for building an acyclic hypergraph. By exploiting this hypergraph,
one can build an acyclic CSP instance that is equivalent to the original (cyclic) instance.
From the proof of Theorem 6, it follows easily that Constraint Satisfaction having as
joint parameters the tree-clustering width and the universe size is fp-tractable. Similarly,
it can be shown that also Constraint Satisfaction having the biconnected width [22,26]
and the universe size as joint parameters, and Constraint Satisfaction having the cutset
width [7,26] and the universe size as joint parameters, are all fp-tractable problems. Indeed,
the construction used for the proof of Theorem 6 can be adapted to these problems,
too. Moreover, the biconnected decomposition of a CSP instance can be computed in
polynomial time, and finding a cutset (which is a synonym of feedback vertex set) of a
CSP instance, with the cutset width as the parameter, is fp-tractable [14].

Note that, since solving a CSP is equivalent to conjunctive query evaluation (CQ) [3,25,
29], we can obtain a similar result on the complexity of evaluating conjunctive queries over
a fixed size database. This is a generalization of the program complexity of conjunctive
queries, i.e., the complexity of evaluating conjunctive queries over a fixed database [40].

Let Q be the conjunctive query

ans(u)← r1(u1)∧ · · · ∧ rn(un),

where n � 0; r1, . . . , rn are relation names (not necessarily distinct); ansis a relation name
(ans�= ri , ∀1 � i � n); and u,u1, . . . ,un are lists of terms (i.e., variables or constants) of
appropriate length. The set of variables occurring in Q is denoted by var(Q). The answer
of Q on a database instance db with associated universe U , consists of a relation ans
whose arity is equal to the length of u, defined as follows. Relation anscontains all tuples
uθ such that θ : var(Q)→U is a substitution replacing each variable in var(Q) by a value
of U and such that for 1 � i � n, ri (ui)θ ∈ db. (For any atom r(u), r(u)θ denotes the
atom obtained from r(u) by uniformly substituting θ(X) for each variable X occurring
in u.) The conjunctive query Q is a Boolean conjunctive queryif its head predicate ans
has arity 0, thus the head is a purely propositional atom and does not contain variables.
A Boolean CQ Q evaluates to true if there exists a substitution θ such that, for 1 � i � n,
ri (ui)θ ∈ db; otherwise, the query evaluates to false. The size of the Conjunctive Query
problem instance 〈Q,db〉 is defined in the standard way, i.e., as the number of bits needed
for encoding the query Q plus the number of bits needed for encoding the database db
listing, for each relation r ∈ db occurring in Q, all the tuples belonging to r . The output
size of a nonboolean CQ instance is the size of the output relation ans, while the output
size of a Boolean CQ instance is one. Note that the output size of a conjunctive query
may be exponentially greater than its input size, because the answer relation may contain
exponentially many tuples.

The hypergraphH(Q)= (V ,H) associated to the conjunctive query Q has V = Var(Q)

and H = {var(ri(ui)) | 1 � i � n}, where var(ri(ui)) denotes the set of variables occurring
in ri (ui). The treewidth of Q is the treewidth of the primal graph of H(Q).

64 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

The following result complements some recent results on fixed-parameter tractability of
database problems by Papadimitriou and Yannakakis [35].

Corollary 7. The evaluation of Boolean conjunctive queries is fp-tractable if the
parameters are jointly the treewidth of the query and the size of the database universe.
Moreover, evaluating a nonboolean conjunctive query is fp-tractable in the input and
output size with respect to the treewidth of the query and the size of the database universe.

Proof. Let 〈Q,db〉 be a CQ instance. As shown in [25], 〈Q,db〉 is equivalent to a CSP
instance I = (Var,U,C) such that Q and I have the same set of variables, the same
universe, and the same associated hypergraph, i.e., H(Q)=H(I). It follows that Q and I

have the same treewidth, too. Moreover, there is a one-to-one correspondence between the
constraints in I and the atoms in Q, but the special output atom ans.

Exploiting this equivalence between CSP and CQ instances, the construction described
in the proof of Theorem 6 can be modified in a straightforward way for obtaining in linear
time an acyclic conjunctive query instance 〈Q′,db′〉 such that the answer of Q′ on db′ is
the same as the answer of Q on db.

Then, the corollary follows from the fact that computing the answer of an acyclic
conjunctive query is feasible in time polynomial in the input and output size [41]. ✷

Let us conclude this section by mentioning two very interesting recent papers [20,27]
that report independent work. These papers study the connection between parameterized
complexity and logic (specifically, model checking) and contain some further results on
the fp-tractability of constraint satisfaction problems.

4. Fp-tractable satisfiability problems

4.1. Bounded-width CNF formulae

As an application of our general result on fp-tractable CSPs we show that a relevant
satisfiability problem is also fp-tractable.

The graph G(F) of a CNF formula F has as vertices the set of propositional variables
occurring in F and has an edge {x, y} iff the propositional variables x and y occur together
in a clause of F . The treewidth of F is defined to be the treewidth of the associated graph
G(F).

Example 8. Consider the following formula:

F1 = (d ∨ a ∨¬g)∧ (b ∨ d ∨¬a)∧ (g ∨ h)∧ (¬e ∨ h)∧
(b ∨ c ∨ e)∧ (¬b ∨ d ∨¬e)∧ (c∨ f)∧ (h∨¬f)

Fig. 1 shows the graph of the formula F1. We already observed that the treewidth of this
graph is 3, and thus the treewidth of F1 is 3, too.

Theorem 9. CNF Satisfiability with parameter treewidthk is fp-tractable. So is the problem
of computing a model of a CNF formula with parameterk.

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 65

Proof. We fp-transform a CNF formula F into a constraint satisfaction instance I (F) =
(Var,U,C) defined as follows. Var contains a variable Xp for each propositional variable
p occurring in F ; U = {0,1}; and for each clause D of F , I (F) contains a constraint
(S, r) where the constraint scope S is the list containing all variables Xp such that p is a
propositional variable occurring in D, and the constraint relation r ⊆ U |D| consists of all
tuples corresponding to truth value assignments satisfying D.

For instance, consider the formula F1 in Example 8. For the first clause d ∨ a ∨ ¬g,
I (F1) contains the constraint (S1, r1), where S1 = (d, a, g) and r contains all tuples
corresponding to truth value assignment for (d, a, g) satisfying D1, such as 〈0,0,0〉,
〈1,0,1〉, and so on.

It is obvious that every model of F correspond to a solution of I (F) and vice versa.
Thus, in particular, F is satisfiable if and only if I (F) is a positive CSP instance.

Since G(F) is isomorphic to G(I (F)), both F and I (F) have the same treewidth.
Moreover, any CNF formula F of treewidth k has clauses of cardinality at most k + 1.
Therefore, our reduction is feasible in time O(2k+1|F |) and is thus an fp-reduction with
respect to parameter k.

By this fp-reduction, fp-tractability of CNF-SAT with the treewidth parameter follows
from the fp-tractability of CSPs with respect to treewidth, as stated in Theorem 6. ✷
4.2. CNF with short prime implicants

The problem of finding the prime implicants of a CNF formula is relevant to a large
number of different areas, e.g., diagnosis [37], truth maintenance systems [9], knowledge
compilation [5], and many other AI applications.

Clearly, the set of the prime implicants of a CNF formula F can be viewed as
a compact representation of the satisfying truth assignments for F . It is worthwhile
noting that the restriction of Parameterized SATto CNF formulae is fp-intractable. More
precisely, deciding whether a q-CNF formula F has a k-truth value assignment is W [2]-
complete [14]. (We recall that a k-truth value assignment assigns true to exactly k

propositional variables.)
Nevertheless, we identified a very natural parameterized version of the prime implicant

problem which is fp-tractable. We simply take as the parameter the length of the prime
implicants of the Boolean formula.

Given a q-CNF formula F , the Short Prime Implicants problem(SPI) is the problem
of computing the (consistent) prime implicants of F having length � k, with parameters k

and q .

Theorem 10. SPI is fixed-parameter tractable.

Proof. Let F be a q-CNF formula. Without loss of generality, assume that F does not
contain tautological clauses. We generate a set IMk(F) of implicants of F from which
it is possible to compute the set of all prime implicants of F having length � k. (This
is very similar to the well-known procedure of generating vertex covers of bounded size,
cf. [10,14].) Pick an arbitrary clause C of F . Clearly, each implicant I of F must contain
at least one literal of C. We construct a labeled tree t each of whose vertices V is labeled

66 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

Fig. 3. The tree for computing the short prime implicants of F1.

by a clause in F or by a special symbol Ω , and each of whose edges is labeled by a literal
occurring in F . The root of t is C. Each vertex D ∈ V , which is not labeled by Ω and has
level (strictly) less than k, has an edge labeled 4 to a descendant G4, for each literal 4 ∈D.
If there are some clauses of F that do not intersect the set of all edge-labels from the root
to the current position, then the vertex G4 is labeled by one of these clauses; otherwise,
G4 is labeled by the special symbol Ω . Vertices labeled by Ω are always leaves of t . Note
that, by construction, the maximum length of every branch in t is k.

As a running example, consider again the formula F1 in Example 8, and assume we
are going to compute the prime implicants of F1 having length � 3. Since F1 is a 3-CNF
formula, the parameters in this example are q = 3 and k = 3. Fig. 3 shows a tree computed
for F1 following the procedure above. For space reasons, sibling leaves sharing the same
label L are depicted just through their label L.

For each root-leaf branch β of the tree, let I (β) be the set containing the � k literals
labeling the edges of β . If the leaf of β is labeled by Ω and I (β) is a consistent set
of literals, then I (β) is an implicant of F and has no more than k literals. Indeed, by
construction, there is no clause of F that does not intersect I (β), and the length of any
root-leaf branch in T is bounded by k. In this case, we add I (β) to the set IMk(F). In our
running example, let β1 be the leftmost branch in the tree shown in Fig. 3. Since the set
I (β1)= {d, c,h} is a consistent set of literals, it is an implicant of F1, and will be included
in the set IM3(F1). Observe that, in this example, there are no further implicants of F1
having length 3. For instance, consider the branch β2 traversing the edge labeled by d, c,
and¬f . The set I (β2)= {d, c,¬f } is consistent, but it is not an implicant of F1 and hence
will not be included in IM3(F1). Indeed, at least the clause (g ∨ h) labeling the leaf of β2
is not satisfied by I (β2).

It is easy to see that the size of the tree t is bounded by qk+1 and that, for every prime
implicant S of F having length � k, S ⊆ I holds, for some implicant I ∈ IMk(F).

Moreover, note that there are at most qk implicants in IMk(F), as the maximum number
of leaves in t is qk . For each implicant I ∈ IMk(F), the set of all consistent prime
implicants of F included in I can be easily obtained in time O(2k|F |) from I . It follows
that SPI is fp-tractable with respect to parameters q and k. ✷

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 67

5. Logic programs with negation

Logic programming with negation under the stable model semantics [24] is a well-
studied form of nonmonotonic reasoning [31]. Moreover, there exist successful systems
implementing this form of reasoning, e.g., Smodels[33,34] and dlv [16,19].

A literal L is either an atom A (called positive) or a negated atom ¬A (called
negative). Literals A and ¬A are complementary; for any literal L, we denote by ¬.L
its complementary literal, and for any set Lit of literals, ¬.Lit = {¬.L | L ∈ Lit}.

A normal clauser is a rule of the form

A←A1 ∧ · · · ∧Am ∧¬Am+1 ∧ · · · ∧ ¬An (n � m � 0), (1)

where A is an atom called the head of r and denoted by H(r), and the conjunction of literals
is called the body of r . We denote the set of the literals occurring in the body of r by B(r).
Moreover, B+(r)= {A1, . . . ,Am} denotes the set of atoms occurring in positive literals in
the body of r , and B−(r)= {Am+1, . . . ,An} the set of atoms occurring in negative literals
in the body of r .

A normal logic programis a finite set of normal clauses. The Herbrand base BP of
a logic program P is the set of those atoms A such that either A or ¬A occurs in P .
Any subset I of BP (not necessarily proper) is an interpretation for P ; the atoms in I are
interpreted true, and the atoms in BP − I are interpreted false.

A normal logic program P is stratified[1], if there is an assignment str(·) of integers
0,1, . . . to the predicates p in P , such that for each clause r in P the following holds:
If p is the predicate in the head of r and q the predicate in an Li from the body, then
str(p) � str(q) if Li is positive, and str(p) > str(q) if Li is negative.

The reductof a normal logic program P by a Herbrand interpretation I [24], denoted
PI , is obtained from P as follows: first remove every clause r with a negative literal ¬p
in the body such that p ∈ I , and then remove all negative literals from the remaining rules.

An interpretation I of a normal logic program P is a stable modelof P [24], if I is the
least Herbrand model of PI . In general, a normal logic program P may have zero, one,
or multiple (even exponentially many) stable models. (See [6], for exact estimates on the
largest possible number of stable models of logic programs.) Denote by stabmods(P) the
set of stable models of P .

It is well known that every stratified logic program has a unique stable model which can
be computed in linear time.

The following problems are the main decision and search problems in the context of
logic programming.

Main logic programming problems. Let P be a logic program.

(1) Consistency: Determine whether P admits a stable model.
(2) Brave reasoning: Check whether a given literal is true in a stable model of P .
(3) Cautious reasoning: Check whether a literal is true in every stable model of P .
(4) SM Computation: Compute an arbitrary stable model of P .
(5) SM Enumeration: Compute the set of all stable models of P .

68 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

Example 11. Consider the following logic program P1:

p← q ∧¬r r← q ∧ s s←¬p ∧ r q←¬u u←¬q
Let I = {u}. The interpretation I is a stable model for P1. Indeed, the reduct PI

1 is the
program

p← q r← q ∧ s s← r u←
and the minimum model of this program is {u}. Thus, P1 is a “yes” instance of the
Consistency problem, because it has stable models. Moreover, u is a brave consequence
for P1, i.e., a consequence of P1 according to brave reasoning.

It is easy to see that {p,q} is another stable model for P1, and that there are no further
stable models for P1. It follows that both ¬r and ¬s are cautious consequences of P1,
because these literals are true according to both of the stable models for P1.

5.1. Breaking the cycles with negative edges

For a normal logic program P , the dependency graphG(P) is an arc-labeled directed
graph (N,A) where N is the set of atoms occurring in P and A is a set of arcs such that
(p, q) ∈ A if there exists a rule r ∈ P having p in its head and q in its body. Moreover,
if there is a rule having p in its head and with ¬q in its body, then the edge (p, q) is
labeled with the symbol ¬. The undirected dependency graphG∗(P)= (V ,E) of P is an
undirected and unlabeled version of G(P). The set of vertices V is given by N ∪N ′, where
N ′ is a set of new vertices, called negative verticescorresponding one-to-one to the labeled
arcs in G(P). The set of edges E is defined as follows:

• for each unlabeled arc (p, q) ∈A there is an edge {p,q} ∈E;
• for each labeled arc e= (p, q) ∈A there are two edges {p, re} and {re, q} in E, where

re ∈ N ′ is the vertex corresponding to the labeled arc e and is not connected to any
other vertex in V (different from p and q).

A feedback vertex setS of an undirected (directed) graph G is a subset X of the vertices
of G such that any cycle (directed cycle) contains at least one vertex in S. Clearly, if a
feedback vertex set is removed from G, then the resulting graph is acyclic. The feedback
width of G is the minimum size over its feedback vertex sets.

Example 12. Consider again the program P1 in Example 11. Fig. 4(a) shows the
dependency graph of P1, and Fig. 4(b) shows the undirected and unlabeled graph G∗(P1).
The circled vertices in Fig. 4(b) denote a feedback vertex set for G∗(P1). Indeed, dropping
the vertices q and s, we get an acyclic graph. Moreover, it is easy to verify that G∗(P1) has
no feedback vertex set of cardinality 1, and hence its feedback width is 2.

It was shown by Downey and Fellows [10,14] that determining whether an undirected
graph has feedback width k and, in the positive case, finding a feedback vertex set of size
k, is fp-tractable with respect to the parameter k.

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 69

Fig. 4. (a) The dependency graph G(P1), and (b) the graph G∗(P1) with a feedback vertex set for it.

Let P be a logic program defined over a set U of propositional atoms. A partial truth
value assignment(p.t.a.) for P is a truth value assignment to a subset U ′ of U . We say
that a positive literal p (respectively, a negative literal ¬p) contradicts τ if τ (p) = false
(respectively, τ (p) = true). If τ is a p.t.a. for P , denote by P [τ] the program obtained
from P as follows:

• eliminate all rules whose body contains a literal contradicting τ ;
• eliminate from every rule body all literals made true by τ , i.e., every positive literal p

such that τ (p)= true and every negative literal ¬p′ such that τ (p′)= false.

An interpretation M is said consistentwith a p.t.a. τ if both M ∩ {p | τ (p)= false} = ∅
and M ⊇ {p | τ (p)= true} hold.

Lemma 13. Let M be a stable model of some logic programP , and let τ be a p.t.a.
consistent withM. Then,M is a stable model ofP [τ].

Proof. Assume by contradiction that M is not a stable model of P [τ]. Then, M is not the
minimum model of the reduct P [τ]M and hence there exists a model M ′ ⊂M for P [τ]M .
However, M is a stable model for P and thus M ′ cannot be a model of PM . It follows
that there exists a rule r ∈ PM such that H(r) /∈M ′ and B(r)⊆M ′. This rule comes from
some rule r ′ of P such that H(r)=H(r ′), B(r)= B+(r ′), and B−(r ′)∩M = ∅. Note that
B+(r ′)⊆M ′ and M ′ ⊂M entail that B+(r ′)⊂M . Since τ is consistent with M , it follows
that there is no p ∈ B+(r ′) such that τ (p) = false. Let D = {p ∈ B+(r ′) | τ (p) = true},
and recall that all atoms in D will be deleted from r in the simplified program P [τ].
Moreover, since τ is consistent with M and B−(r ′)∩M = ∅, there is no atom p ∈B−(r ′)
such that τ (p) = true. Thus, the rule H(r ′)← B(r ′)−D belongs to P [τ], and the rule
H(r ′)← B+(r ′) − D belongs to P [τ]M . However, this is a contradiction, because the
latter rule is not satisfied according to M ′ and we assumed M ′ be a model for P [τ]M . ✷

Let P be a logic program. Given a set of vertices S of the graph G∗(P), let Atoms(S) be
any set of vertices (corresponding to atoms occurring in P) obtained from S replacing each
negative vertex q ∈ S by one of its adjacent vertices in G∗(P). Recall that, by definition of

70 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

G∗(P), such a negative vertex q has only two neighbours, which are not negative vertices
and correspond to the endpoints of the labeled arc of G(P) associated to q . Therefore,
it is easy to verify that, if S is a feedback vertex set for G∗(P), then also Atoms(S) is a
feedback vertex set for G∗(P). Indeed, deleting a negative vertex from G∗(P) cannot break
more cycles than deleting either of its neighbours. Moreover, |Atoms(S)| � |S| clearly
holds. It follows that, if G∗(P) has feedback vertex width w � k, for a fixed k, then
there is a feedback vertex set S for G∗(P) not containing negative vertices and having
cardinality w. Furthermore, since a bounded-width feedback vertex set of an undirected
graph is computable in linear time (see [14]), such a feedback vertex set without negative
vertices can be clearly computed in linear time, as well.

Theorem 14. The logic programming problems(1)–(5) listed above are all fp-tractable
with respect to the feedback width of the undirected dependency graph of the logic program.

Proof. Let P be a logic program whose graph G∗(P) = (V ,E) has feedback width k,
where the set of vertices V is partitioned into the two sets N = BP , which contains all the
atoms occurring in P , and N ′, which contains the negative vertices corresponding to the
negated arcs in the dependency graph G(P)—see the definition of these graphs above.

We compute in linear time a feedback vertex set S for G∗(P) without negative vertices
(see discussion above) s.t. |S| = k. Then, we consider the set T of all the 2k partial truth
value assignments to the atoms in S.

For each p.t.a. τ ∈ T , P [τ] is a stratified program whose unique stable model Mτ

can be computed in linear time. For each τ ∈ T , compute Mτ and check whether Mτ ∈
stabmods(P), where stabmods(P) denotes the set of all stable models of P (this latter can
be done in linear time, too, if suitable data structures are used).

Let Σ = {Mτ |Mτ ∈ stabmods(P)}. By definition of Σ , it suffices to note that every
stable model M for P belongs to Σ . Indeed, let τ be the p.t.a. on S determined by M . By
Lemma 13, it follows that M is a stable model of P [τ] and hence M ∈Σ .

Thus, P has at most 2k stable models whose computation is fp-tractable and actually
feasible in linear time. Therefore, the problem (5) above (Stable Model Enumeration) is
fp-tractable. The fp-tractability of all other problems follows. ✷

Here is an example of a class of programs having feedback width 2.

Example 15. Consider the class of all logic programs P whose undirected dependency
graph G∗(P) is the book-shaped graph book(n), for some n > 0. The graph book(n) has
2n+ 2 vertices and 3n+ 1 edges that form n squares (pages of the book) having exactly
one common edge {X,Y } (see also [26]). Fig. 5 shows the graph book(4).

No matter on how large n is and how many negative arcs G(P) contains, the feedback
width of P is two, because just deleting from G∗(P) the vertices corresponding to X and
Y we get an acyclic graph. Moreover, observe that the feedback width remains 2 even if
one replaces the pages of the book by cycles of any length.

It appears that an overwhelmingly large number of “natural” logic programs have very
low feedback width, thus the technique presented here seems to be very useful in practice.

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 71

Fig. 5. The graph book(4).

Note, however, that the technique does not apply to some important and rather obvious
cases. In fact, the method does not take care of the direction and the labeling of the arcs
in the dependency graph G(P). Hence, positive programs width large feedback width are
not recognized to be tractable, although they are clearly tractable. The same applies, for
instance, for stratified programs having large feedback width, or to programs whose high
feedback-width is exclusively due to positive cycles.

Unfortunately, it is not known whether computing feedback vertex sets of size k is
fixed-parameter tractable for directed graphs[14].

Another observation leading to a possible improvement is the following. Call an atom
p of a logic program P malignantif it lies on at least one simple cycle of G(P) containing
a marked (= negated) edge. Call an atom benignif it is not malignant. It is easy to see that
only malignant atoms can be responsible for a large number of stable models. In particular,
every stratified program contains only benign atoms and has exactly one stable model. This
suggest the following improved procedure:

• Compute the set of benign atoms occurring in P ;
• Drop these benign vertices from G∗(P), yielding a new graph H(P);
• Compute a feedback vertex set S of size � k of H(P);
• For each p.t.a. τ over S compute the unique stable model Mτ of P [τ] and check

whether this is actually a stable model of P , and if so, output Mτ .

It is easy to see that the above procedure correctly computes the stable models of P .
Unfortunately, as shown by the next theorem, it is unlikely that this procedure can run
in polynomial time.

Theorem 16. Determining whether an atom of a propositional logic program is benign is
co-NP-complete.

Proof. Membership in co-NP is obvious. For the hardness part, we reduce the node-
disjoint path problem for directed graphs, which is an NP-complete problem [23], to the
problem of deciding whether an atom q occurring in a logic program P is malign, which
is clearly the complement of our problem.

Let G= (N,A) be a directed graph, and 〈x1, y1〉 and 〈x2, y2〉 two pairs of nodes of G.
The problem is deciding whether there are two node-disjoint paths linking x1 to x2 and y1
to y2 [21]. From G, we construct a logic program PG containing a rule s← t for each arc

72 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

Fig. 6. Disjoint paths π1 and π2 in the proof of Theorem 16.

(s, t) ∈ A, plus three additional rules q← x1, y2← q , and x2←¬y1, where q is a fresh
atom not corresponding to any node of G. We show that q is a malignant atom for PG if
and only if there are two node-disjoint paths linking x1 to x2 and y1 to y2 in G.

If part. Assume there are two node-disjoint paths π1, linking x1 to x2, and π2, linking
y1 to y2. Fig. 6 shows these paths.

Then, there is a simple cycle which, starting from the arc (q, x1), reaches x2 via path
π1, traverses the labeled arc (x2, y1), and finally comes back to q via path π2 and the edge
(y2, q). Therefore, q is a malignant atom for GP .

Only if part. Assume q is a malignant atom for GP . Then there is a simple cycle
c that traverses the labeled arc (x2, y1). Indeed, this is the only labeled arc in GP . By
construction, q is just connected to x1 and y2 through the two arcs (q, x1) and (y2, q),
respectively. Thus, the cycle c contains a path from x1 to x2 and one from y1 to y2.
Moreover, since c is a simple cycle, there is no node of GP occurring two times in c,
and thus these paths are node disjoint. ✷
5.2. The weak feedback-width of a dependency graph

In this section, we propose another approach, which is somewhat weaker, but very
efficient and easy to deal with. The weaker notion that we propose is based on the notion
of benign and malignant atoms, but it is defined on the undirected graph G∗(P) of a logic
program P . An atom p occurring in P is called weakly malignantif it lies on at least
one simple cycle of G∗(P) containing a negative vertex, and hence corresponding to a
labeled arc of the dependency graph G(P). An atom is called strongly benignif it is not
weakly-malignant.

These atoms can be characterized usefully in terms of biconnected components. Recall
that a vertex-induced connected subgraph G′ of an undirected graph G is a biconnected
componentof G if it is a biconnected graph, i.e., it cannot be disconnected by any one-
vertex removal.

Lemma 17. An atom of a logic programP is weakly malignant if and only if it belongs to
a biconnected component ofG∗(P) containing some negative vertex.

Proof. Recall that an (undirected) graph G is biconnected if and only if, for each pair p,q
of vertices of G, p and q are biconnected, i.e., p remains reachable from q after any one-
vertex removal from G. By Menger’s theorem [32], p and q are biconnected if and only if
there are two vertex-disjoint paths from p to q in G. This is clearly equivalent to say that

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 73

p and q are biconnected in G if and only if there is a simple cycle in G containing both p

and q .
It follows that, if a biconnected component of G∗(P) contains a negative vertex q , then

any other vertex p in this component is biconnected to q . Hence, p lies on a simple cycle
containing q and is thus weakly malignant.

For the other direction of this lemma, assume p is a weakly malignant vertex in G∗(P).
Then, there is a negative vertex q in P such that there exists a simple cycle in G∗(P)

containing both p and q . Thus, p and q are biconnected in G∗(P), and hence there is a
biconnected component containing both of them. ✷
Lemma 18. Computing the set of strongly benign(weakly malignant) atoms of a logic
program can be done in linear time.

Proof. Follows immediately from Lemma 17, and from the fact that the biconnected
components of a graph can be computed in linear time [18]. ✷

We next present an improved algorithm for enumerating the stable models of a logic
program P based on the feedback width of a suitable undirected graph associated to P . For
a strongly connected component C of the dependency graph G(P), we define a program
P/C corresponding to C as follows. For each rule r ∈ P such that H(r) ∈ C, the program
P/C contains a rule r ′ where:

• the head H(r ′) coincides with the head H(r) of r; and
• the body of r ′ contains all the literals of B(r) whose atoms belong to C, i.e.,

B(r ′)= {p | p ∈ (B+(r)∩C)} ∪ {¬q | q ∈ (B−(r)∩C)}.

Modular Stable Model Enumeration procedure (MSME).

(1) Compute the set C of the strongly connected components of G(P);
(2) Determine the set UC ⊆ C of the strongly connected components of G(P) whose

corresponding program P/C is not stratified;
(3) For each strongly connected component C ∈ UC , compute the set of strongly benign

atoms SB(C) occurring in P/C;
(4) Let P ′ =⋃

C∈UC P/C;
(5) Let H(P ′) be the subgraph of G∗(P ′) obtained by dropping every vertex p occurring

in some set of strongly benign atoms SB(C), for any C ∈ UC;
(6) Compute a feedback vertex set S of H(P ′) having size at most k and not containing

negative vertices;
(7) For each p.t.a. τ over S compute the unique stable model Mτ of P [τ], check whether

this is actually a stable model of P , and if so, output Mτ .

The feedback width of the graph H(P ′) is called the weak feedback-widthof the
dependency graph of P .

74 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

Example 19. Let P2 be the following logic program:

a← c b← a b← e∧¬d c← b

c← h∧ d d← e e← f ∧ i f ←¬d ∧ h

g← f ∧ 4 h← g 4←¬i i←¬4
Fig. 7 shows the dependency graph of P2. The strongly connected components of G(P2)

are C1 = {a, b, c}, C2 = {d, e, f, g,h}, and C3 = {4, i}. At step (2) of algorithm MSME
we find the set UC of the strongly connected components of G(P2) whose corresponding
subprograms of P2 are stratified. It is easy to see that P2/C1 = {a← c, b← a, c← b,

b←, c←} is stratified, while P2/C2 and P2/C3 are unstratified programs. Thus, UC =
{C2,C3}.

Now, we have to compute the set of strongly benign atoms belonging to the components
in UC . Fig. 8 shows the graph G∗(P2/C2) that we use for the computation of SB(C2). This
graph has two biconnected components: {e, f, d, d ′} and {f,g,h}. Since d ′ is a negative
vertex (it corresponds to the labeled arc (f, d) in the dependency graph G(P2/C2)), the
atoms e, f , and d are weakly malignant. It follows that the set of strongly benign atoms
of C2 is SB(C2) = {g,h}. Similarly, it is easy to see that all the atoms in C3 are weakly
malignant, and hence SB(C3)= ∅.

Fig. 9 shows the graph H(P ′2) obtained dropping all the strongly benign atoms of C2

and C3 from P ′2 = (P2/C2 ∪ P2/C3). The feedback width of this graph, and hence the
weak feedback-width of P2, is 2. The set S containing the circled vertices d and 4 in Fig. 9
is a feedback vertex set of H(P ′2) without negative vertices.

For any p.t.a. τ over S, we compute a stable model M for the stratified program P2[τ],
and check whether M is actually a stable model for P2. For instance, from a p.t.a. τ1 that

Fig. 7. Dependency graph G(P2) of the program P2 in Example 19.

Fig. 8. The graph G∗(P2/C2) in Example 19. Fig. 9. The graph H(P ′2) with a feedback vertex set for it
in Example 19.

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 75

assigns falseto d and true to 4, we get a stable model {4} for P2[τ1] that is also a stable
model for P2.

Theorem 20. Given a logic programP , the MSME procedure computes all the stable
models ofP . Moreover, the logic programming problems(1)–(5) listed above are all fp-
tractable with respect to the weak feedback-width of the dependency graph of the logic
program.

Proof. Let P be a logic program whose graph H(P ′), constructed following the algorithm
MSME above, has feedback width k. Let S be a feedback vertex set of H(P ′) having width
k and not containing negative vertices.

We claim that, for any p.t.a. τ over S, the program P [τ] is stratified. Assume by
contradiction that this is not the case. Then, there is a cycle t = p1,p2, . . . , p4,p1 (with
4 > 1) in the graph G(P [τ]) such that (p1,p2) is an arc labeled by ¬. Clearly, G(P [τ])
is a subgraph of G(P), hence the cycle t occurs in G(P), too. It follows that the labeled
arc (p1,p2) occurs in a simple cycle, say t ′, in some strongly connected component C
of G(P). Let A be the set of atoms occurring in t ′. Note that A ⊆ {p1,p2, . . . , p4} and
hence A ∩ S = ∅, because t is a cycle in P [τ] and no atom in S occurs in this program.
By definition of strongly benign atoms, the atoms occurring in t ′ are not strongly benign,
i.e., A ∩ SB(C) = ∅. Therefore, (the undirected and unlabeled version of) t ′ is a cycle in
H(P ′), and thus S is not a feedback vertex set of H(P ′), a contradiction.

The theorem then easily follows from the fact that a feedback vertex set can be computed
in linear time and from Lemma 13, as already discussed in the proof of Theorem 14. ✷

Note that, for the sake of simplicity, in this paper we considered just propositional
logic programs, where no variable occurs in the literals. However, our algorithms can be
extended straightforwardly to non-propositional logic programs. Indeed, for each (non-
propositional) logic program P , there is a propositional logic program, called ground(P),
which is equivalent to P , in that it has the same models and the same stable models as
P . For each rule r ∈ P , ground(P) contains all the ground rules obtained by uniformly
replacing the variables occurring in r by the constants occurring in P .

Moreover, note that the methods used in this section can be adapted to show fixed-
parameter tractability results for extended versions of logic programming, such as
disjunctive logic programming, and for other types of nonmonotonic reasoning. In the
case of disjunctive logic programming, it is sufficient to extend the dependency graph to
contain a labeled directed edge between every pair of atoms occurring together in a rule
head.

5.3. Possible applications

We believe that the algorithms presented in this section, in particular, the MSME
procedure, can be profitably used both to construct new, more efficient AI systems, and
to improve current implementations such as existing systems for nonmonotonic logic
programming, e.g., Smodels[33,34] and dlv [16,19]. In fact, both Smodels and dlv use
powerful heuristics for finding stable models of logic programs very quickly. Roughly, they

76 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

first compute all the deterministic consequences of the given program, and then try to fix
the truth values of some atoms that heuristics select as the most promising for leading to a
stable model of the program. Such atoms are used as the choice points in backtracking-like
algorithms that generate the stable models. Our results could be exploited in these systems
in at least two ways.

Guarantee of fast answers for large classes of programs. If the weak feedback width
of a program is small, i.e., below some fixed threshold, the MSME procedure
provides an algorithm for computing the stable models of the program with a
known polynomial upper bound (of fixed degree). This provides a guaranteethat
large classes of programs can be solved efficiently. We believe that guarantees
of this type are important qualitative statements for assessing the efficiency of an
implemented system. Such qualitative statements should complement quantitative
arguments such as performance measurements on sample programs. For instance,
both Smodels and dlv guarantee that stratified logic programs are evaluated in
polynomial time. We believe that, due to its generality, the weak feedback width
could be a well-suited parameter for assessing a system.

The currently available systems do not explicitly guarantee efficient behaviour
on inputs of bounded weak feedback width. In case it turns out that a system
requires exponential runtime for some input classes of bounded weak feedback
width, we suggest to improve the system by adding a filter to deal with this
parameter. For instance, one can first compute the deterministic consequences
of the program and simplify the program (and hence its dependency graph)
according to this information. Then, one can compute the weak feedback width
of this program, and check whether it is smaller than some reasonable constant.
In this case, it should be convenient to evaluate the program according to the
MSME procedure; otherwise, the stable models can be computed through the
usual strategy.

New heuristics. The heuristics for choosing the most promising atoms to be fixed may
exploit the notion of weakly malignant atoms. Recall that the set of the weakly
malignant atoms can be computed very efficiently. As we have shown, by
fixing the truth values for these atoms, one gets a stratified program. Thus, the
number of weakly malignant atoms provides a measure of the amount of non-
determinism in the logic program. A heuristics strategy could prefer the atoms
whose deletion from the dependency graph minimizes the number of weakly
malignant atoms. Anyway, every strategy can also restrict its search space for
choice-point candidates to weakly malignant atoms, as fixing just their values
yields a linear time solvable program.

Of course, in practical systems many observations about typical structures of logic
programs may help in optimizing and tuning these procedures. For instance, many logic
programs for solving search NP problems in a declarative way are based on the “guess-
and-check” paradigm [17]. That is, they contain an unstratified component (a kind of
module) that “guesses” a solution of the problem at hand, and then other components
(modules) that “check” whether the guessed solution is actually a feasible solution of the

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 77

problem. The guessing component is usually very complex, i.e., full of cycles involving
negated atoms. However, the other components of the program that depends on it are
usually much simpler and easy to deal with. Thus, one can of course apply the MSME
procedure just to these “upper” components, once the “guessed” atoms have been fixed.

6. The small model circumscription problem

In this section we study the fixed-parameter complexity of a tractable parametric variant
of circumscription, where the attention is restricted to models of small cardinality.

6.1. Definition of small model circumscription

The Small Model Circumscription Problem(SMC) is defined as follows. Given a
propositional theory T , over a set of atoms A= P ∪Z, and given a propositional formula
φ over vocabulary A, decide whether φ is satisfied in a model M of T such that:

• M is of small size, i.e., at most k propositional atoms are true in M (written |M|� k);
and
• M is P ;Z-minimal with respect to all other small models,2 i.e., there is no model M ′

of T such that both |M ′|� k and M ′ ∩ P ⊂M ∩P hold.

This problem appears to be a miniaturization of the classical problem of (brave)
reasoning with minimal models. We believe that SMC is useful, since in many contexts, one
has large theories, but is mainly interested in small models (e.g. in abductive diagnosis).

Example 21. Let k = 2, let T be the theory

(x1 ∨ x2 ∨¬x3 ∨ x5)∧ (x2 ∨ x3 ∨¬x4)∧ (x1 ∨ x3 ∨ x4)∧ (¬x3 ∨ x4 ∨¬x5),

and let P = {x1, x2} and Z = {x3, x4, x5}.
The propositional formula φ = ¬x2 ∧ ¬x5 is a (brave) consequence of T according

to small model circumscription. Indeed, the model M = {x1, x3} is small, as |M| = 2,
M |= φ holds, and it is P ;Z-minimal with respect to all other small models for T . Indeed,
any other model of T having a smaller set of atoms from P is not small. E.g., the model
M ′ = {x3, x4, x5} is a model for T and does not contain any atom from P . However, since
M ′ contains three atoms and k = 2, M ′ is not a small model and hence it cannot disprove
the P ;Z-minimality of M . For completeness, note that φ is not a consequence of every
small P ;Z-minimal model for T . For instance, {x2, x4} is a small P ;Z-minimal model for
T that does not entail φ.

2 In this paper, whenever we speak about P ;Z-minimality, we mean minimality as defined here. Note that
our requirement A= P ∪ Z makes the specification of Z redundant, and we could just speak of P -minimality.
However, since we will often explicitly refer to the Z-variables, we keep the P -Z notation.

78 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

Clearly, for each fixed k, SMC is tractable. In fact it sufficed to enumerate |A|k candidate
interpretations in an outer loop and for each such interpretation M check whether M |= T ,
M |= φ, and M is P ;Z-minimal. The latter can be done by an inner loop enumerating all
small interpretations and performing some easy checking tasks.

It is also not hard to see that SMC is fp-intractable. In fact the Hitting Set problem,
which was shown to be W [2]-complete [14], can be fp-reduced to SMC and can be actually
regarded as the restricted version of SMC where P = A, Z = ∅, and T consists of a CNF
having only positive literals. In Section 6.2 we present the fp-tractable subclass of this
version of SMC, where the maximum clause length in the theory is taken as an additional
parameter. However, in Section 6.3 we show that, as soon as the set Z of floating variables
is not empty, this problem becomes fp-intractable.

Since brave reasoning under minimal models was shown to be �P
2 complete in [15],

and is thus one level above the complexity of classical reasoning, it would be interesting
to determine the precise fixed-parameter complexity of the general version of SMC with
respect to parameter k. This problem too is tackled in Section 6.3.

6.2. A tractable restriction of SMC

We restrict SMC by requiring that the theory T be a q-CNF with no negative literal
occuring in it, and by minimizing over all atoms occurring in the theory. The problem
Restricted Small Model Circumscription(RSMC) is thus defined as SMC except that T

is required to be a purely positive q-CNF formula, the “floating” set Z is empty, and the
parameters are the maximum size k of the models to be considered, and the maximum size
q of the number of literals in the largest conjunct (= clause) of T .

Theorem 22. RSMC is fixed-parameter tractable.

Proof. Since T is positive and Z = ∅, the set of minimal models of T to be considered are
exactly the prime implicants of T having size � k. By Theorem 10, computing these prime
implicants for a q-CNF theory is fp-tractable with respect to parameters k and q . Thus, the
theorem easily follows. ✷
6.3. The fixed-parameter complexity of SMC

We first show that the slight modification of the fp-tractable problem RSMC where
Z �= ∅ is fp-intractable and in fact W [SAT] hard.

The problem Positive Small Model Circumscription(PSMC) is defined as SMC except
that T is required to be a purely positive q-CNF formula, and the parameters are the
maximum size k of the models to be considered, and the maximum clause length q .

Let us define the Boolean formula countk(x), where x = (x1, . . . , xn) is a non-empty
list of variables and 0 � k � n, as follows:

• if k = 0, then countk(x)=∧
1�i�n¬xi ;

• if k � 1, then countk(x)=A∧B ∧C, where

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 79

A=
∧

1�i�n

∧
1�j�min{i,k+1}

((∨
j−1�t�i−1

(
q
j−1
t ∧

∧
t+1�s�i−1

¬xs
)
∧ xi

)
≡ q

j

i

)
,

B =
∧

k+1�r�n

¬qk+1
r and C =

∨
k�r�n

qk
r .

All the indices in the above formula are greater than zero. Any literal having an index
less than one or not satisfying the prescribed bounds with respect to the other indices does
not belong to the formula. (See the example below.)

Intuitively, countk(x) “counts” whether exactly k variables among x1, . . . , xn are “true.”
If k > 0, in any satisfying truth value assignment for countk(x), the propositional variable
q
j

i gets the value true iff xi is the j th true variable among x1, . . . , xi . Note that the size of
countk(x) is O(kn2) if k � 1, and O(n) if k = 0. Moreover, the same bounds hold for the
time needed for computing this formula.

Example 23. We next describe the formula count2(x1, x2, x3, x4) that “counts” whether ex-
actly two variables among variables x1, x2, x3, x4 are “true”. By definition, count2(x1, x2,

x3, x4) is the following formula:

x1 ≡ q1
1 ∧

¬x1 ∧ x2 ≡ q1
2 ∧

q1
1 ∧ x2 ≡ q2

2 ∧
¬x1 ∧¬x2 ∧ x3 ≡ q1

3 ∧((
q1

1 ∧¬x2
)∨ q1

2

)∧ x3 ≡ q2
3 ∧

q2
2 ∧ x3 ≡ q3

3 ∧
¬x1 ∧¬x2 ∧¬x3 ∧ x4 ≡ q1

4 ∧((
q1

1 ∧¬x2 ∧¬x3
)∨ (

q1
2 ∧¬x3

)∨ q1
3

)∧ x4 ≡ q2
4 ∧((

q2
2 ∧¬x3

)∨ q2
3

)∧ x4 ≡ q3
4 ∧

¬q3
3 ∧¬q3

4 ∧
q2

2 ∨ q2
3 ∨ q2

4

There is a one-to-one correspondence between the truth value assignments that make this
formula true and the truth value assignments to x1, x2, x3, x4 that assign true to exactly
two variables among them. For instance, consider the truth value assignment σ such that
σ(x1) = σ(x3)= true and σ(x2) = σ(x4)= false. Note that σ determines the truth value
for all the other variables in the formula. Indeed, from x1 ≡ q1

1 , it follows that q1
1 must

be true. Moreover, since x2 is false, both q1
2 and q2

2 must be false. Similarly, q1
3 must be

false, because the first true variable is x1 and, in fact, the conjunction ¬x1 ∧¬x2 ∧ x3 that
“defines” q1

3 is false. However, x3 is the second true variable and q2
3 is true, as q1

1 ∧ ¬x2

holds. In the same way, it can be verified that q3
3 , q

1
4 , q

2
4 , and q3

4 must be false. Therefore,
the unique extension of σ to all the variables occurring in the count2 formula is the truth

80 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

value assignment σ ′ that assigns true to x1, x3, q
1
1 , and q2

3 , and false to all the other
variables.

The variables x1, . . . , xn in the formula above are called the externalvariables of the
formula, while all the other variables occurring in the formula are called privatevariables.

Whenever a theory T contains a countsubformula, we assume without loss of generality
that the private variables of this subformula do not occur in T outside the subformula.
In particular, if T contains two countsubformulas, then their set of private variables are
disjoint.

The following lemma easily follows from the definition of the countformula and from
the discussion above.

Lemma 24. LetF be a formula andx a list of variables occurring inF . Then

• F ∧ countk(x) is satisfiable if and only if there exists a truth value assignmentσ for
F assigning true to exactlyk variables fromx.
• Everyk-truth value assignmentσ satisfyingF can be extended in a unique way to an

assignmentσ ′ satisfyingF ∧ countk(x).
• Every satisfying truth value assignment forF ∧ countk(x) assigns true to exactlyk

private variables of countk(x) and true to exactlyk variables fromx.

Theorem 25. PSMC isW [SAT]-hard. The problem remains hard even for2-CNF theories.

Proof. Let Φ be a Boolean formula over propositional variables {x1, . . . , xn}. We fp-
reduce the W [SAT]-complete problem of deciding whether there exists a k-truth value
assignment satisfying Φ to an instance of PSMC where the maximum model size is 2k+1,
and the maximum clause length is 2.

Without loss of generality, assume that k > 0 and n > 2. Let

Φ ′ =Φ ∧ countk(x1, . . . , xn),

and let y1, . . . , ym be the private variables of the countk subformula. Moreover, let T be
the following 2-CNF positive theory:

(p ∨ x1)∧ · · · ∧ (p ∨ xn)∧ (p ∨ y1)∧ · · · ∧ (p ∨ ym).

We take P = {p} and Z = {x1, . . . , xn, y1, . . . , ym}.
From the definition of countk and the assumptions that k > 0 and n > 2, it is easy to

verify that n+m > 2k + 1 holds. It follows that a set M is a P ;Z minimal model of T

having size at most 2k + 1 if and only if M = {p} ∪ S, where S is any subset of Z such
that |M|� 2k.

From Lemma 24, every satisfying truth value assignment for Φ ′ must make true exactly
k variables from {x1, . . . , xn}, and k variables from the set of private variables of countk .
It follows that there exists a P ;Z minimal model M of T such that |M|� 2k + 1 and M

satisfies Φ ′ if and only if there exists a k-truth value assignment satisfying Φ . ✷
Let us now focus on the general SMC problem, where both arbitrary theories are

considered and floating variables are permitted. It does not appear that SMC is contained

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 81

in W [SAT]. On the other hand, it can be seen that SMC is contained in AW [SAT], but
it does not seem to be hard (and thus complete) for this class. In fact, AW [SAT] is
the miniaturization of PSPACE and not of �P

2 . No class corresponding to the levels of
the polynomial hierarchy have been defined so far in the theory of the fixed-parameter
intractability. Nonmonotonic reasoning problems, such as SMC, seem to require the
definitions of such classes. We next define the exact correspondent of �P

2 at the fixed-
parameter level.

6.3.1. Definition of the class�2W [SAT]
�2W [SAT] is defined similarly to AW [SAT], but the quantifier prefix is restricted

to �2.

Parameterized QBF2SAT.
Instance: A quantified boolean formula ∃k1x∀k2yE.
Parameter: k = 〈k1, k2〉.
Question: Is ∃k1x∀k2yE valid? (Here, ∃k1x denotes the choice of some k1-truth value

assignment for the variables x, and ∀k2y denotes all choices of k2-truth value assignments
for the variables y.)

Definition 26. �2W [SAT] is the set of all problems that fp-reduce to Parameterized
QBF2SAT.

6.3.2. Membership of SMC in�2W [SAT]
Let the problem Parameterized QBF2SAT� be the variant of the problem Parameterized

QBF2SAT where the quantifiers ∃k1x and ∀k2y are replaced by quantifiers ∃�k1x and
∀�k2y with the following meaning. ∃�k1x α means that there exists a truth value
assignment making at most k1 propositional variables from x true such that α is valid.
Symmetrically, ∀�k2y α means that α is valid for every truth value assignment making at
most k2 propositional variables from y true.

Lemma 27. Parameterized QBF2SAT� is in �2W [SAT].

Proof. It suffices to show that Parameterized QBF2SAT� is fp-reducible to Parameterized
QBF2SAT.

Let Φ = ∃�k1x1x2 . . . xn∀�k2y1y2 . . . ym E(x1, . . . , xn, y1, . . . , ym) be an instance of
Parameterized QBF2SAT�. It is easy to see that the following instance Φ ′ of Parameterized
QBF2SAT is equivalent to Φ:

∃2k1x1x2 . . . xnx
′
1x
′
2 . . . x

′
n∀2k2y1y2 . . . ymy ′1y ′2 . . . y ′m

E(x1 ∧ x ′1, . . . , xn ∧ x ′n, y1 ∧ y ′1, . . . , ym ∧ y ′m),

where x ′1, x ′2, . . . , x ′n, y ′1, y ′2, . . . , y ′m are new variables and E(x1 ∧ x ′1, . . . , xn ∧ x ′n, y1 ∧
y ′1, . . . , ym ∧ y ′m) is obtained from E by substituting xi ∧ x ′i for xi (1 � i � n) and yj ∧ y ′j
for yj (1 � j � m). ✷
Theorem 28. SMC is in�2W [SAT].

82 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

Proof. By Lemma 27 it is sufficient to show that every SMC instance S can be fp-
reduced to an equivalent instance Φ(S) of Parameterized QBF2SAT�. Let S = (A =
P ∪Z,T (P,Z),φ, k) be an SMC instance, where P = {p1, . . . , pn} and Z = {z1, . . . , zm}.
Let P ′ = {p′1, . . . , p′n} and Z′ = {z′1, . . . , z′m} be two sets of fresh variables. Φ(S) is defined
as follows:

∃�kp1 . . .pnz1 . . . zm∀�kp′1 . . . p′nz′1 . . . z′m
T (P,Z)∧ φ ∧
T (P ′,Z′)⇒

(∧
1�i�n

pi ≡ p′i
)
∨

(∨
1�i�n

p′i ∧¬pi

)
,

where T (P ′,Z′) is obtained from T (P,Z) by substituting p′i for pi (1 � i � n) and z′j for
zj (1 � j � m).

The first part of Φ(S) guesses a model M of T with at most k atoms among P ∪ Z

which satisfies φ. The second part makes sure that the M is P ;Z minimal by checking that
each model M ′ of T is either equivalent to M over the P variables, or has at least one P

variable true whereas the same variable is false in M . Hence T bravely entails φ under
small models P ;Z circumscription if and only if Φ(S) is valid. ✷
6.3.3. �2W [SAT]-hardness of SMC

Theorem 29. SMC is�2W [SAT]-hard, and thus�2W [SAT]-complete.

Proof. We show that Parameterized QBF2SAT is fp-reducible to SMC. Let Φ be the
following instance of Parameterized QBF2SAT.

∃k1x1x2 . . . xn∀k2y1y2 . . . ym E(x1, . . . , xn, y1, . . . , ym).

We define a corresponding instance of SMC S(Φ)= (A= P ∪ Z,T , φ = w, k = 2k1 +
2k2 + 1), where w is a fresh variable, T = (E(x,y)⇒ w) ∧ countk1(x) ∧ countk2(y),
P = x ∪{w}, and Z consists of all the other variables occurring in T , namely, the variables
in y and the private variables of the two countsubformulae.

We prove that Φ is valid if and only if S(Φ) is a yes instance of SMC.
(Only if part) Assume Φ is valid. Then, there exists a k1-truth value assignment σ to the

variables x such that for every k2-truth value assignment to the variables y, the formula E

is satisfied.
Let M be an interpretation for T constructed as follows. M contains the k1 variables

from x which are made true by σ and the first k2 variables of y; in addition, M contains w

and k1 + k2 private variables which make true the two countsubformulae. This is possible
by Lemma 24.

It is easy to see that M is a model for T . We now show that M is a P ;Z minimal model
of T . Assume that M ′ is a P ;Z smaller model. Due to the countk1(x) subformula, M ′
must contain exactly k1 atoms from x and therefore M and M ′ coincide with respect to
the x atoms. It follows that w /∈M ′. However, by validity of Φ and the construction of M ,
M ′ |=E holds, and therefore M ′ |=w, as well. Contradiction.

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 83

(If part) Assume there exists a P ;Z minimal model M of T such that M entails w and
|M|� k. Note that, by Lemma 24, it must hold that M contains exactly k1 true variables
from x and exactly k2 true variables from y.

Towards a contradiction, assume that Φ is not valid. Then it must hold that for every
k1-truth value assignment σ to the variables x, there exists a k2-truth value assignment σ ′
to the variables y, such that σ ∪ σ ′ falsifies E. In particular, for the k1 variables from x

which are true according to M , it is possible to make true exactly k2 variables from y such
that the formula E is not satisfied. Consider now the interpretation M ′ containing these
k1 + k2 true variables plus the k1 + k2 made true by the two countsubformulae. M ′ is a
model of T whose P variables coincide with those of M except for w which belongs to
M , but not to M ′. Therefore, M is not P ;Z minimal, a contradiction.

Finally, note that the transformation from Φ to S(Φ) is an fp-reduction. Indeed it is
feasible in polynomial time and is just linear in k. ✷
Corollary 30. Parameterized QBF2SAT� is �2W [SAT]-complete.

Proof. Completeness follows from the fact that, as shown in Lemma 27, this problem
belongs to �2W [SAT], and by Theorem 29, which shows that the �2W [SAT]-hard problem
SMC is fp-reducible to Parameterized QBF2SAT�. ✷

Downey and Fellows [14] pointed out that completeness proofs for fixed-parameter
intractability classes are generally more involved than classical intractability proofs.
Note that this is also the case for the above proof, where we had to deal with subtle
counting issues. A straightforward downscalingof the standard �P

2 -completeness proof
for propositional circumscription appears not to be possible.

In particular, observe that we have obtained our completeness result for a very
general version of propositional minimal model reasoning, where there are variables to be
minimized (P) and floating variables (Z). It is well-known that minimal model reasoning
remains �P

2 -complete even if all variables of a formula are minimized (i.e., if Z is empty).
This result does not seem to carry over to the setting of fixed-parameter intractability.
Clearly, this problem, being a restricted version of SMC, is in �2W [SAT]. Moreover it
is easy to see that the problem is hard for W [2] and thus fixed-parameter intractable.
However, we were not able to show that the problem is complete for any class in the range
from W [2] to �2W [SAT], and leave this issue as an open problem.

Open problem. Determine the fixed-parameter complexity of SMC when all variables of
the theory T are to be minimized.

7. Conclusion

In this paper we have studied the fixed-parameter tractability of several problems in
AI and nonmonotonic logic programming. We could show that many relevant problems
in these areas are fixed-parameter tractable with respect to natural problem parameters.
We have proposed new algorithms for the considered problems, and believe that these

84 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

algorithms can be used profitably both to construct new, more efficient AI systems, and
to improve current implementations such as existing systems for nonmonotonic logic
programming, e.g., Smodels[33,34] and dlv [16,19].

As a more theoretical result we have shown that the problem of small model
circumscription (SMC) is fixed-parameter intractable. This problem does not resemble any
other fp-intractable problem previously studied in the literature [14]. In order to determine
its exact degree of fp-intractability, we had to define the new fixed-parameter complexity
class �2W [SAT] and show that SMC is complete for this class. Note that this result holds
for the general version of SMC; the case where all variables are minimized is also fp-
intractable, but its exact complexity is open.

This paper and the paper by Truszczyński [39] are the first to explore fp-tractability
issues in the context of AI. There are many further AI problems that call for an fp-
complexity analysis. We are confident that interesting and useful results can be obtained in
the areas of planning and automatic configuration.

Acknowledgements

We thank the anonymous referees for their useful comments and suggestions.
Research supported by FWF (Austrian Science Funds) under the project Z29-INF. Part

of the work of Francesco Scarcello has been carried out while visiting the Technische
Universität Wien.

References

[1] K. Apt, H. Blair, A. Walker, Towards a theory of declarative knowledge, in: J. Minker (Ed.), Foundations of
Deductive Databases and Logic Programming, Morgan Kaufmann, Washington, DC, 1988, pp. 89–148.

[2] C. Beeri, R. Fagin, D. Maier, M. Yannakakis, On the desirability of acyclic database schemes, J. ACM 30 (3)
(1983) 479–513.

[3] W. Bibel, Constraint satisfaction from a deductive viewpoint, Artificial Intelligence 35 (1988) 401–413.
[4] H.L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J.

Comput. 25 (6) (1996) 1305–1317.
[5] M. Cadoli, L. Palopoli, F. Scarcello, Propositional lower bounds: Generalization and algorithms, Ann. Math.

Artif. Intell. 27 (1999) 129–148.
[6] P. Cholewiński, M. Truszczyński, Extremal problems in logic programming and stable model computation,

J. Logic Programming 38 (1999) 219–242.
[7] R. Dechter, Constraint networks, in: Encyclopedia of Artificial Intelligence, 2nd edition, Wiley, New York,

1992, pp. 276–285.
[8] R. Dechter, J. Pearl, Tree clustering for constraint networks, Artificial Intelligence 38 (1989) 353–366.
[9] J. de Kleer, A perspective on assumption-based truth maintenance, Artificial Intelligence 59 (1–2) (1993)

63–67.
[10] R.G. Downey, M.R. Fellows, Fixed parameter tractability and completeness, Congr. Numer. 87 (1992) 161–

187.
[11] R.G. Downey, M.R. Fellows, Fixed parameter intractability (extended abstract), in: Proc. 7th Annual

Structure in Complexity Theory Conference, Boston, MA, 1992, pp. 36–49.
[12] R.G. Downey, M.R. Fellows, Fixed parameter tractability and completeness I: Basic results, SIAM J.

Comput. 24 (1995) 873–921.

G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86 85

[13] R.G. Downey, M.R. Fellows, On the parametric complexity of relational database queries and a sharper
characterization of W [1], in: Proc. DMTCS’96 Combinatorics Complexity and Logics, Springer, Berlin,
1996, pp. 164–213.

[14] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer, New York, 1999.
[15] T. Eiter, G. Gottlob, Propositional circumscription and extended closed world reasoning are �P

2 -complete,
Theoret. Comput. Sci. 114 (2) (1993) 231–245, Addendum, Theoret. Comput. Sci. 118 (1993) 315.

[16] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, F. Scarcello, The KR system dlv: Progress report comparisons
and benchmarks, in: Proc. Sixth International Conference on Principles of Knowledge Representation and
Reasoning (KR’98), Trento, Italy, Morgan Kaufmann, San Mateo, CA, 1998, pp. 406–417.

[17] T. Eiter, W. Faber, N. Leone, G. Pfeifer, Declarative problem-solving using the DLV system, in: J. Minker
(Ed.), Logic-Based Artificial Intelligence, Kluwer Academic, Dordrecht, 2000.

[18] S. Even, Graph Algorithms, Computer Science Press, Potomac, MD, 1979.
[19] W. Faber, N. Leone, G. Pfeifer, Pushing goal derivation in DLP computations, in: M. Gelfond, N. Leone,

G. Pfeifer (Eds.), Proc. 5th International Conference on Logic Programming Nonmonotonic Reasoning
(LPNMR’99), El Paso, TX, Lecture Notes in Computer Science, Vol. 1730, Springer, Berlin, 1999, pp. 177–
191.

[20] J. Flum, M. Grohe, Fixed-parameter tractability and logic, Preprint Nr. 23/1999, Mathematische Fakultät,
University of Freiburg, Freiburg, Germany, 1999.

[21] S. Fortune, J.E. Hopcroft, J. Wyllie, The directed subgraph homeomorphism problem, Theoret. Comput.
Sci. 10 (2) (1980) 111–121.

[22] E.C. Freuder, A sufficient condition for backtrack-bounded search, J. ACM 32 (4) (1985) 755–761.
[23] M.R. Garey, D.S. Johnson, Computers and Intractability. A Guide to the Theory of NP-completeness,

Freeman, New York, 1979.
[24] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: Logic Programming: Proc.

Fifth Internat. Conference Symposium, MIT Press, Cambridge, MA, 1988, pp. 1070–1080.
[25] G. Gottlob, N. Leone, F. Scarcello, The complexity of acyclic conjunctive queries, J. ACM 48 (3) (2001)

431–498. An extended abstract concerning part of this work has been published in: Proc. IEEE Symposium
on Foundations of Computer Science (FOCS’98), Palo Alto, CA, 1998, pp. 706–715.

[26] G. Gottlob, N. Leone, F. Scarcello, A comparison of structural CSP decomposition methods, Artificial
Intelligence 124 (2000) 243–282. An extended abstract concerning part of this work has been published
in: Proc. IJCAI-99, Stockholm, Sweden, 1999, pp. 394–399.

[27] M. Grohe, Descriptive and parametrized complexity, in: Proc. 13th International Workshop on Computer
Science Logic (CSL’99), Lecture Notes in Computer Science, Vol. 1683, Springer, Berlin, 1999, pp. 264–
273.

[28] P. Jeavons, D. Cohen, M. Gyssens, Closure properties of constraints, J. ACM 44 (4) (1997) 527–548.
[29] Ph.G. Kolaitis, M.Y. Vardi, Conjunctive-query containment and constraint satisfaction, in: Proc. of

Symposium on Principles of Database Systems (PODS’98), 1998, pp. 205–213.
[30] D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville, MD, 1986.
[31] W. Marek, M. Truszczyński, Nonmonotonic Logics—Context-Dependent Reasoning, Springer, Berlin,

1993.
[32] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96–115.
[33] I. Niemelä, P. Simons, T. Soininen, Stable model semantics of weight constraint rules, in: M. Gelfond,

N. Leone, G. Pfeifer (Eds.), Proc. 5th International Conference on Logic Programming Nonmonotonic
Reasoning (LPNMR’99), El Paso, TX, Lecture Notes in Computer Science, Vol. 1730, Springer, Berlin,
1999, pp. 317–331.

[34] I. Niemelä, P. Simons, Smodels—An implementation of the stable model and well-founded semantics
for normal LP, in: J. Dix, U. Furbach, A. Nerode (Eds.), Proc. 4th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’97), Dagstuhl, Germany, Lecture Notes in Computer
Science, Vol. 1265, Springer, Berlin, 1997, pp. 421–430.

[35] C.H. Papadimitriou, M. Yannakakis, On the complexity of database queries, in: Proc. of Symp. on Principles
of Database Systems (PODS’97), Tucson, AZ, 1997, pp. 12–19.

[36] J. Pearson, P.G. Jeavons, A survey of tractable constraint satisfaction problems, CSD-TR-97-15, Royal
Holloway, Univ. of London, 1997.

[37] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1) (1987) 57–95.

86 G. Gottlob et al. / Artificial Intelligence 138 (2002) 55–86

[38] N. Robertson, P.D. Seymour, Graph minors II. Algorithmic aspects of tree-width, J. Algorithms 7 (1986)
309–322.

[39] M. Truszczyński, Computing large and small stable models, in: Proc. 16th International Conference on Logic
Programming (ICLP’99), Las Cruces, NM, 1999, pp. 169–183.

[40] M. Vardi, Complexity of relational query languages, in: Proc. 14th ACM Symposium on Theory of
Computing (STOC’82), San Francisco, CA, 1982, pp. 137–146.

[41] M. Yannakakis, Algorithms for acyclic database schemes, in: C. Zaniolo, C. Delobel (Eds.), Proc. Internat.
Conference on Very Large Data Bases (VLDB’81), Cannes, France, 1981, pp. 82–94.

