Neurocomputing 99 (2013) 111-123

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at SciVerse ScienceDirect

Neurocomputing

Dynamical regimes and learning properties of evolved Boolean networks

Stefano Benedettini ** Marco Villani ¢, Andrea Roli?, Roberto Serra ¢, Mattia Manfroni ?,
Antonio Gagliardi®, Carlo Pinciroli ¢, Mauro Birattari ¢!

2 DEIS Alma Mater Studiorum Universita di Bologna Campus of Cesena, Via Venezia 52, 1-47521 Cesena, Italy

b Faculty of Mathematical, Physical and Natural Sciences, Universita di Modena e Reggio Emilia, Viale A. Allegri 9, 42121 Reggio Emilia, Italy
€ European Centre for Living Technology, Ca’ Minich, S. Marco 2940, 30124 Venezia, Italy

94 IRIDIA, Université libre de Bruxelles, 50, Av. F. Roosevelt, CP 194/6 B-1050 Brussels, Belgium

ARTICLE INFO

ABSTRACT

Article history:

Received 7 October 2011
Received in revised form

14 February 2012

Accepted 3 May 2012
Communicated by B. Apolloni
Available online 3 July 2012

Keywords:
Boolean networks
Machine learning
Metaheuristics

Boolean networks (BNs) have been mainly considered as genetic regulatory network models and are the
subject of notable works in complex systems biology literature. Nevertheless, in spite of their
similarities with neural networks, their potential as learning systems has not yet been fully investigated
and exploited. In this work, we show that by employing metaheuristic methods we can train BNs to
deal with two notable tasks, namely, the problem of controlling the BN's trajectory to match a set of
requirements and the density classification problem. These tasks represent two important categories of
problems in machine learning. The former is an example of the problems in which a dynamical system
has to be designed such that its dynamics satisfies given requirements. The latter one is a
representative task in classification. We also analyse the performance of the optimisation techniques
as a function of the characteristics of the networks and the objective function and we show that the

Density classification problem
State-controlled Boolean network

learning process could influence and be influenced by the BNs’ dynamical condition.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Models of neural networks can be roughly divided into two
classes, i.e., those where there is a directional flow of activation,
such as feed-forward layered networks [1], and those which are
truly dynamical systems, like, for example, those proposed by
Elman [2] and by Hopfield [3].

This is particularly clear in the case of the Boolean Hopfield
model, whose attractors are fixed points (in the usual case with
symmetric synaptic weights). Another well-known Boolean net-
work model is that of Random Boolean Networks (briefly, RBNs),
which display a much richer dynamics than that of the symmetric
Hopfield model. The attractors of finite RBNs are cycles, so the
dynamics are fairly trivial; however, it has been possible to
introduce a notion of ordered vs. disordered attractors, which
represents the analogue (in a finite discrete system) of the
distinction between regular and chaotic attractors in continuous
systems.

* Corresponding author. Tel.: +39 0547 339210; fax: +39 0547 339208.

E-mail addresses: s.benedettini@unibo.it (S. Benedettini),
marco.villani@unimore.it (M. Villani), andrea.roli@unibo.it (A. Roli),
rserra@unimore.it (R. Serra), manfroni2@alice.it (M. Manfroni),
cpinciro@ulb.ac.be (C. Pinciroli), mbiro@ulb.ac.be (M. Birattari).

! Mauro Birattari acknowledges support from the F.R.S.-FNRS of Belgium’s
Wallonia-Brussels Federation.

0925-2312/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2012.05.023

Interestingly, this distinction holds for many properties
usually associated to continuous chaotic systems, as, for example,
the stability of dynamical attractors with respect to small per-
turbations: in the case of ordered systems, small perturbations
usually die out, while in disordered ones they tend to grow.
In RBNs it has been observed that ordered systems usually have
fairly regular basins on attraction, so that two nearby states often
evolve to the same attractor, while in disordered systems they
often go to different attractors. This behaviour is reminiscent of
the “butterfly effect” and this provides a reason why disordered
RBNs are often called “chaotic” (in spite of the fact that, since the
attractors are cycles, the term “pseudo-chaotic” would be more
appropriate). The reason for this choice of terms is the following:
a deterministic discrete system composed by a finite number of
nodes N, each node taking one of M possible values, owns a finite
number of different states, and, evidently, sooner or later reaches
an already visited state: from that moment on the system starts
to repeat the same sequence of states. Nevertheless, the period of
a cycle can range from 1 to MM, and for large systems the
maximum value is so high that such a cycle could be covered
only in a period of time greater than the age of the universe. For
any purposes, a system owning cycles that long is called “pseudo-
chaotic”, or simply “chaotic” [4].

It turns out that the value of the so-called Derrida parameter
£ [4], which is the discrete analogue of the Lyapunov exponent of
continuous dynamical systems, determines whether a given


www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2012.05.023
dx.doi.org/10.1016/j.neucom.2012.05.023
dx.doi.org/10.1016/j.neucom.2012.05.023
mailto:s.benedettini@unibo.it
mailto:marco.villani@unimore.it
mailto:andrea.roli@unibo.it
mailto:rserra@unimore.it
mailto:manfroni2@alice.it
mailto:cpinciro@ulb.ac.be
mailto:mbiro@ulb.ac.be
dx.doi.org/10.1016/j.neucom.2012.05.023

112 S. Benedettini et al. / Neurocomputing 99 (2013) 111-123

family of RBNs tends to display ordered or chaotic behaviours—
£ <1 corresponding to ordered networks and £>1 to chaotic
ones. Particular interest has been raised by those networks which
are in a critical state with ¢ equal to (or close to) 1, i.e, an
intermediate state between order and chaos.

It has been proposed in the past that biological systems should
operate in critical states (or close to the boundary between
ordered and disordered regions, slightly into the ordered region),
on the basis of heuristic arguments which can be summarised as
follows. Biological systems need a certain level of stability, in
order not to be disrupted by fluctuations which can take place
either in the system or in the environment, and they need at the
same time to provide flexible responses to changes in the
environment. While a chaotic system would be poor at satisfying
the first need, a system deeply in the ordered region would fail to
meet the second requirement. A critical system should allow for
an optimal trade-off between the two, therefore natural evolution
should drive biological systems towards critical states [4].

These very same reasons should hold as well for an artificial
learning system. A question may arise as to what are the
conditions for critical networks to outperform ordered and
chaotic ones. A sound, theory-based approach to the design of
effective learning networks could try to answer this question.
Nevertheless, such a theory is still missing. In this work, we make
a first step towards it: we investigate whether and under what
conditions the network’s dynamical regime influences the learn-
ing performance, as long as static environments (i.e., not changing
in time) are concerned. Future work will be aimed at investigating
the case of changing environments.

Another reason of interest on learning Boolean networks
comes from progress in optimisation methods. Note that there
have been some attempts in the past to devise learning algo-
rithms for RBNs, which have met limited success [5,6]. However,
recent advances in the development of effective metaheuristics
offer new tools to tackle the problem of devising RBNs which are
able to perform well in difficult tasks through learning by
examples. In this paper, we propose a principled approach for
training Boolean networks and we show effective performance in
some selected tasks.

This work is structured as follows: Section 2 provides a brief
summary of the main concepts related to Boolean networks;
Section 3 illustrates the optimisation method we apply to train
our networks, whereas Sections 4 and 5 describe the two
applications we focus on, namely, the problem of controlling the
networks’ trajectory to reach a target and the Density Classifica-
tion Problem. In Section 6 we draw our conclusions and indicate
some promising directions for future work.

2. Boolean networks

Boolean networks (BNs) have been introduced by Kauffman
[7,4] as a genetic regulatory network model. BNs have been
proven to reproduce very important phenomena in genetics and
they have also received considerable attention in the research
communities on complex systems [8,4]. A BN is a discrete-state
and discrete-time dynamical system whose structure is defined
by a directed graph of N nodes, each associated to a Boolean
variable x;, i=1, ..., N, and a Boolean function f;(x;,, . . X ), where
K; is the number of inputs of node i. The arguments of the Boolean
function f; are the values of the nodes whose outgoing arcs are
connected to node i (see Fig. 1a). The state of the system at time ¢,
te N, is defined by the array of the N Boolean variable values at
time t: s(t) = (x1(t),...,xy(t)). The most studied BN models are
characterised by synchronous dynamics—i.e., nodes update their
states at the same instant—and deterministic functions (see

a b

100

| HﬁH

Fig. 1. An example of a BN with three nodes (a) and its corresponding state space
under synchronous and deterministic update (b). The network has three attrac-
tors: two fixed points, (0,0,0) and (1,1,1), and a cycle of period 2, <(0,0,1),(0,1,0))>.

Fig. 1(b)). However, many variants exist, including asynchronous
and probabilistic update rules [9]. BN models’ dynamics can be
studied by means of classic dynamical system methods [10,11],
hence the usage of concepts such as state (or phase) space,
trajectories, attractors and basins of attraction. BNs can exhibit
complex dynamics and some special ensembles have been deeply
investigated, such as that of random BNs. Recent advances in this
research field, along with efficient mathematical and experimen-
tal methods and tools for analysing BN dynamics, can be mainly
found in works addressing issues in genetic regulatory networks
or investigating properties of BN models [12-15]. A special
category of BNs that has received particular attention is that of
RBNs, which can capture relevant phenomena in genetic and
cellular mechanisms and complex systems in general. RBNs are
usually generated by choosing at random K inputs per node and
by defining the Boolean functions by assigning to each entry of
the truth tables a 1 with probability p and a 0 with probability
1—p. Parameter p is called bias. Depending on the values of K and
p the dynamics of RBNs is called either ordered or chaotic. In the
first case, the majority of nodes in the attractor is frozen and any
moderate-size perturbation is rapidly dampened and the network
returns to its original attractor. Conversely, in chaotic dynamics,
attractor cycles are very long and the system is extremely
sensitive to small perturbations: slightly different initial states
lead to divergent trajectories in the state space. RBNs temporal
evolution undergo a second order phase transition between order
and chaos, governed by the following relation between K and p:
K. =[2p.(1-p.)]~', where the subscript ¢ denotes the critical
values [16]. Networks along the critical line show equilibrium
between robustness and adaptiveness [12]; for this reason they
are supposed to be plausible models of the living systems
organisation. Recent results support the view that biological
genetic regulatory networks operate close to the critical region
[15,17,18].

3. Training Boolean networks by metaheuristics

BNs have been mainly considered as genetic regulatory net-
work models, enabling researchers to achieve prominent results
in the field of complex systems biology [19,20,12,9]. Nevertheless,
in spite of their similarities with neural networks, their potential
as learning systems has not yet been fully investigated and
exploited. In this section, we first summarise the works in the
literature that concern training or automatic designing BNs
(Section 3.1) and then, in Section 3.2, we illustrate our method
to tackle two notable applications: the problem of controlling the
BN'’s trajectory to reach a target state (Section 4) and the density
classification problem (Section 5).



S. Benedettini et al. / Neurocomputing 99 (2013) 111-123 113

We wish to remark that Section 3.2 contains basic definitions
and concepts from metaheuristics and learning theory; the novice
to these fields is encouraged to carefully read this section, whilst
the expert is advised to at least skim through it to familiarise with
the terminology we use throughout the paper.

3.1. Related work

The first work concerning BNs as learning systems has been
presented by Patarnello and Carnevali [5] who trained a feed-
forward Boolean network to perform binary additions. The train-
ing algorithm used was Simulated Annealing [21]. A study on the
automatic design of BNs appeared the same year and was
proposed by Kauffman [22]. The goal of the work was to generate
networks whose attractors matched a prescribed target state. The
algorithm proposed is a sort of genetic algorithm with only a
mutation operator (no crossover) that could either randomly
rewire a connection or flip a bit in a function’s truth table, and
extreme selection pressure: once a fitter individual was found it
would replace the whole population. The process is analogous to a
stochastic ascent local search. Lemke et al. extend this scenario
[23] in that they require a network to match a target cycle. In this
work a full-fledged genetic algorithm (with crossover) is
employed. Another evolutionary approach is adopted by Esmaeili
and Jacob in [24], where they require a population of RBNs to
maximise a fitness function defined by a combination of several
feature like network sensitivity, number of attractors and basin
entropy. In their algorithm, a network can undergo changes in
both functions and topology. Notably, mutation operator was
allowed to add or delete a node. Their study is limited to networks
of small size (N <10). Several works addressing evolution of
robust BNs have been proposed by Drossel and others. In these
works, robustness is intended as the capacity of a network to
return to the same attractor after a random flip occurs in one of its
nodes. Various search strategies have been employed and will be
outlined in the following. In [25] the authors applied a stochastic
ascent (called “adaptive walk” in the paper) to networks with
canalising functions; the move operator could rewire a connection
or replace a function with a canalising one. The next three
contributions revisited and extended this last paper, with the
same goals of finding robust networks. Mihaljev [26], instead of a
local search, proposes a genetic algorithm whose mutation opera-
tor is the move procedure described above. Fretter [27] studies the
dynamical properties of evolved networks with any functions, not
only canalising ones. Szejika [28] extends her previous work and
this time investigates the behaviour of evolved networks with
Boolean threshold functions. Another genetic algorithm was
proposed by Roli et al. to design network with prescribed attractor
length [29,56]. In a work by Espinosa-Soto and Wagner [30],
populations of random Boolean threshold networks (a special case
of RBNs) are evolved, by means of a genetic algorithm, to
investigate the relationship between modularity and evolvability
of genetic regulatory networks. The actual algorithm utilised is a
simple genetic algorithm with constant size population, no cross-
over and a mutation operator capable of modifying edge weights
in the topology graph. In a more recent work, Benedettini et al.
[31] employed an Iterated Local Search metaheuristic to auto-
matically design networks with maximally dissimilar attractors.
Finally, we mention a work in which probabilistic BNs are trained
so as to learn the equality function [6].

In summary, the techniques proposed in the literature to train
a BN belong to either of two families: local search (stochastic
ascent and variants, Simulated Annealing, etc.) and genetic algo-
rithms (with variants in the genetic operators). The methods used
are quite simple and might not be effective in tackling hard
learning tasks. Indeed, the goals addressed in the literature are

mainly concerned with investigating phenomena in evolutionary
biology, rather than tasks in machine intelligence. We believe that
the recent advances in engineering stochastic local search can be
fruitfully applied also in the task of training BNs. In this paper, we
show that advanced local search strategies, as well as algorithm
engineering and analysis, enable us to train BNs for accomplishing
difficult learning tasks.

In the next section we present our training methodology
which, by means of an optimisation algorithm, modifies the
structure of a RBN. For this reason, in the following we refer to
the objects manipulated by the optimisation algorithm with the
more general acronym “BNs”, remarking in such a way that they
are no longer RBNs.

3.2. Methods

In this work, we adopt the supervised learning paradigm. We
suppose that it is possible to define an objective function that
evaluates the performance of a network with respect to a given
task to be accomplished. Besides the objective function, the
learning process requires that some parameters of the system
can be subjected to variations according to a learning algorithm.
Since there are no dedicated algorithms for general BNs, we
formulate the learning process into an optimisation problem.
A prominent example of this approach is evolutionary robotics, in
which evolutionary computation techniques are used for design-
ing robots controlled by neural networks [32]. In this perspective,
the learning process of a BN can be modelled as a combinatorial
optimisation problem by properly defining the set of decision
variables, constraints and the objective function. In this work, we
employ metaheuristics to tackle this optimisation problem.
Metaheuristics (a.k.a. stochastic local search techniques [33])
are general search strategies upon which a specific algorithm
for solving an optimisation problem can be designed [34].
Examples of metaheuristics are Simulated Annealing, Tabu
Search, Iterated Local Search, Ant Colony Optimisation and
Genetic Algorithms. In our approach, which is illustrated in
Fig. 2, the metaheuristic algorithm manipulates the decision
variables which encode the Boolean functions of a BN. A complete
assignment to those variables defines an instance of a BN.
This network is then simulated and evaluated according to the
specific target requirements. A specific software component is
devoted to evaluate the BN and returns an objective function
value to the metaheuristic algorithm that, in turn, proceeds with
the search. Therefore, the evaluation provides the feedback used
in the learning process.

Many successful metaheuristics are based on the iterative
perturbation of a current candidate solution; notable instances
of this scheme are Simulated Annealing and Tabu Search.
The search process starts from an initial candidate solution and
iteratively produces new candidates by (slightly) perturbing the
current one, until some termination criterion is met (e.g., the

target
requirements

simulation

Boolean

evaluator x

Network

objective function
value

network
model

metaheuristic [<

Fig. 2. Scheme of the process for training a BN. The BN is simulated and its
behaviour is compared to the desired one defined by specific requirements. The
evaluator component provides a feedback to the metaheuristic, which manip-
ulates the BN parameters.



114 S. Benedettini et al. / Neurocomputing 99 (2013) 111-123

computation time limit is reached). Different search strategies can
be defined by instantiating the two basic choices in the scheme,
i.e., the generation and the choice of the next possible candidate
solution and the acceptance criterion. These search strategies
have been extended and improved, for example by adding
advanced exploitation and exploration strategies [35].

Another prominent family of metaheuristics is that of genetic
algorithms (GAs), which belong to the broad class of evolutionary
computation techniques [32]. The general scheme of GAs is
illustrated in Algorithm 1. The algorithm iteratively generates a
new population of candidate solutions by applying operators
such as selection, mutation and recombination to the current
population. This search strategy actually performs a biased
sampling of the search space; the parameters of the probabilistic
model used for sampling are iteratively adapted in order to
concentrate the search in promising areas of the search space.

Algorithm 1. Genetic algorithm high-level scheme.

P« GeneratelnitialPopulation()

Evaluate(P)

while termination conditions not met do
P’ « Recombine(P)
P’ «— Mutate(P')

Evaluate(P")

P« Select(P”,P)

end while

OO U D WN =

In the experiments that will be described in the following, a
specific metaheuristic has been used, namely Iterated Local
Search (ILS), which extends the basic perturbative search. ILS is
a well-known algorithmic framework, illustrated in Algorithm 2,
successfully applied to many hard combinatorial optimisation
problems [36,37]. ILS makes it possible to combine the efficiency
of local search with the capability of escaping from the basin of
attraction of local optima. ILS applies an embedded stochastic
local search method (line 6) to an initial solution until it finds a
local optimum; then it perturbs the solution (line 5) and it
restarts local search.

Algorithm 2. Iterated Local Search high-level framework.

—_

INPUT: A LOCAL SEARCH

s« generatelnitialSolution ()

s* «localSearch (s)

while termination conditions not met do
s’ —perturbation (Spes;)
sj, < localSearch (s')
s* —acceptanceCriterion (s*,s;.)

end while

return s*

A R

In this work we implemented the following choices to
instantiate the ILS framework.

Acceptance criterion: accept a new solution if it is better than
the current best one.

Perturbation: for each node function a random flip in the truth
table is performed. This choice makes ILS not too close to random
restart, while keeping the perturbation computationally fast and
easy to implement. As a drawback, local search moves can undo
such perturbation, albeit unlikely.

The last component to be defined is the embedded local search
procedure. We opted for Stochastic Descent (SD), a very basic
search strategy, which, despite its simplicity, proved to be very
effective. SD is a problem-independent local search algorithm
whose pseudo-code is shown in Algorithm 3.

Algorithm 3. Stochastic descent.

1: INPUT: A SOLUTION S, AN OBJECTIVE FUNCTION F,
a neighbour definition A/
2 Shest S
3 v ‘_N(Sbest)
4. repeat
5: randomly pick a neighbour sq € N without replacement
6 if F(sg) < F(Spes;) then
7 Shest < S0
8: V‘_N(Sbest)
9: else
10: VWS
11:  endif
12: wuntil timeout or v=0
13: return Spes

In order to apply this algorithm to our task, we need to
instantiate its problem-dependent components: the solution
representation, that is, a state in the search space, the objective
function and a suitable neighbour definition.

Search state: a search state is a BN.

Initial solution: a random BN with defined N, K and bias p.

Neighbour definition: this component defines the modification,
or move, performed on the current solution. For this experiment,
first we randomly choose a node function, then we flip a bit in its
truth table. The pair (node, truth table position) is uniformly
sampled without replacement.

The objective function depends on the specific task to be
accomplished, therefore it will be described separately for each
case study presented. In the problems that will be discussed, the
goal of the search is to minimise the objective function, which can
thus be considered as an error function.

4. Target state-controlled Boolean networks

In this section, we describe the experiments in which we train a
BN in such a way that some requirements on its trajectory are
fulfilled. The problem of designing a dynamical system such that its
trajectory in the state space satisfies specific constraints is a typical
control problem. In the case of BNs, which in the general case
exhibit complex dynamics, this task is not trivial for an automatic
procedure because an assignment of Boolean functions must be
found such that the resulting BN dynamics fulfils the requirements.
This problem has been chosen with the aim of assessing the
effectiveness of our approach. In fact, for a BN with N nodes and K
inputs per node, the whole search space has a cardinality of 2%V

In this work, we are concerned with tasks in which a target
state must be reached, subject to additional constraints. Given are
an initial state so, a target state § and a number of network
simulation steps T. The goal is to design a BN such that the
trajectory in the state space with origin in sy reaches the target
state § in one of the following conditions:

1. the target state § is reached in a number of steps less than or
equal to T;

2. the target state $ is reached for the first time at step t, such
that t e[z,T], 0 <z < T, where z is a parameter of the problem;

3. as point 2, but with the additional requirement that the target
state is a fixed point.

4.1. Experimental setting

The BNs used for this task have N=100 nodes and K=3 distinct
inputs per node (no self-connections). The connections of the
networks are randomly generated. The initial Boolean functions



S. Benedettini et al. / Neurocomputing 99 (2013) 111-123 115

are also randomly generated with bias p € {0.5,0.788675,0.85}. We
recall that, for RBNs, the Lyapunov exponent A can be analytically
calculated as follows: 1 =1log & =1log[2p(1—p)K] [38, equation 27],
where ¢ is the Derrida parameter. Such bias values, if substituted in
the previous equation, correspond to chaotic (1 > 0), critical (1= 0)
and ordered (4 < 0) regimes, respectively. For each value of p, 30
RBNs have been generated. The initial state s, of each BN is
generated according to a uniform distribution over the whole state
space. The target state § is likewise randomly generated.

The metaheuristic search used for designing the BN is ILS,
which has been described in Section 3.2. Since the goal, in all the
three cases, consists in reaching a given target state, the neigh-
bourhood of the current solution can be sampled with a heuristic
bias, trying to focus the search on promising neighbours of the
current solution. To this aim, the node function to be changed is
chosen among the ones corresponding to nodes whose values do
not match the target state. The rationale behind this heuristic is
that of “repair algorithms”, in which local search moves only
affect the parts of the current solution that contribute to increas-
ing the objective function (to be minimised).

For each experiment, 100 000 iterations of the optimisation
algorithm have been executed. Each iteration corresponds to a
simulation of the respective BN trajectory lasting T steps, with
T=1000 (i.e., 1000 BN state updates).

4.1.1. Task 1: reaching a target state

The goal of this case study is to train a BN in such a way that its
trajectory reaches a given a target state $ at least once within the
temporal left-open interval ]0,T]. The evaluation of a BN is done
on the basis of the evolution time step in which the BN presents
the largest number of Boolean variables matching the target state.
Let u(t) be the function returning the number of Boolean variables
matching the target state at each simulation step t, with t
belonging to the left-open interval 10,T]; the objective function
ftask1, to be minimised, can be described as follows:

. u(t)
ftaskl = tren]%)pf] (1 - T) .

To assess the robustness of the process, we compute the
fraction of successful runs at each iteration of the algorithm, i.e.,
we estimate the success probability at iteration t, defined as the
probability that a network with minimal objective function is
found at generation t’ <t. This kind of statistic is also known as
run length distribution [33]. The results obtained are shown in
Fig. 3. We first note that all the BNs with initial bias p=0.85 reach
the goal within 80 000 iterations of the optimisation algorithm.
Also BNs initially in critical regime attain good performances,
whereas only 10% of chaotic BNs reaches the goal. In order to
explain this phenomenon, it is necessary to study the character-
istics of the search landscape, as usually done in local search
applications to combinatorial problems [33]. The search land-
scape is defined as a labelled graph whose vertices represent the
search space states (in this case, the Boolean functions of the
network), edges connect neighbouring states (in this case the
topology of the graph is an hypercube, since we use a 1-Hamming
neighbourhood) and vertex labels denote the objective function
value associated to the search space states. It is commonly
acknowledged that when the landscape is smooth, i.e., when
neighbours have similar objective function values, local search
is more effective than in the rugged case, in which the values
across neighbouring states are characterised by high variance
[33]. This property can be assessed by estimating the autocorrela-
tion of the landscape. Smooth landscapes are characterised by
high autocorrelation, while rugged ones have low autocorrelation
[39]. The autocorrelation of a series G=(gy,...,8,) of objective

1.04 P +
........ +
e
-+
.+‘+
0.8+ e
+
+
+ A-- A
o A
% 064 4 &
o ¥ _a”
g + JUDEEEE a-
3 g a-"""
S 04 I A —6— chaotic
n Foa--f "
I oa - -A- - critical
s -+ ordered
024 &
E-Y
Py
: /o/°—°
004 a—°
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Iterations

Fig. 3. Run length distribution related to task 1: reaching a target state.

function values is computed as

_ P88 (8 1-8)
Sk (&8’
where g is the average value of the series. This definition refers to
the autocorrelation of length one, i.e., that corresponding to series
generated by sampling 1-Hamming neighbouring states in the
search space. In optimisation problems, landscape autocorrelation
obviously depends on the objective function and it is in general
impossible to know in advance whether the neighbourhood
structure combined with the objective function will produce a
smooth, hence easy to be explored, landscape. However, in the
case of BN design by metaheuristics, we can exploit a little piece
of information concerning the type of tasks BNs are trained to
perform. Indeed, the objective function is affected by BN
dynamics, especially in those tasks in which it is a direct function
of some properties of the BN trajectories in the state space. In
particular, the dynamical characteristics of the initial BNs may
have a strong impact on the effectiveness of local search, because
they set the autocorrelation values of the landscape in which the
search starts. BNs generated randomly with p=0.85 are very
likely to be ordered, therefore small changes in their Boolean
functions correspond to small variations in the BN dynamics,
hence small differences in the objective function values. Con-
versely, most of the BNs generated with p=0.5 behave chaoti-
cally: slightly differing chaotic networks have a very different
behaviour, similarly to what we have described in Section 2
concerning perturbations in the initial state. Therefore, the initial
search landscape is very likely to be smooth in the case of ordered
networks, whilst it is expected to be rather rugged for chaotic
ones. Since critical BNs? are known to exhibit characteristics
typical of ordered networks, but slightly perturbed towards
chaotic ones [40], they are expected to induce a landscape with
properties not dramatically differing from that of ordered ones.
For each network’s dynamic class we computed the empirical
autocorrelation of 1000 time series obtained by collecting the
objective function values along a random walk of 100 steps
starting from 30 randomly generated initial candidate networks
for each value of p €{0.85,0.788675,0.5}. The boxplots in Fig. 4
summarise the statistics of the values of autocorrelation of the
landscapes induced by the three BN dynamical regimes, respec-
tively. Boxplots represent the main statistical features of a

r

2 Generated with p=0.788675.



116 S. Benedettini et al. / Neurocomputing 99 (2013) 111-123

1.0

0.8} .i.

0.6t +

P
!
$

04+

02+

Landscape autocorrelation

0.0

—t

-0.2

Ordered Critical Chaotic

Fig. 4. Distribution of autocorrelation r of the landscapes corresponding to
networks in different dynamical regimes.

distribution in a compact way [41]. In particular, they show the
median (central segment) and the 1st and 3rd quartiles (lower
and upper sides of the box, respectively); sample minimum and
maximum, along with outliers, are depicted as segments and
points external to the box. We note that thelandscape corre-
sponding to ordered and critical networks is highly correlated
(median r~0.9), whilst the one of chaotic networks is not
(median r ~ 0.4). Critical BNs induce a correlated landscape, even
though not as much correlated as the one induced by ordered
ones. This result provides evidence to the hypothesis that initial
networks’ dynamical regime affects local search effectiveness. It is
important to point out that BN dynamics might be less relevant
when the objective function does not strongly depend upon BN
trajectories in the state space. In fact, when this dependence is
loose, we expect the impact of initial BN dynamics to be smaller,
as we will see in Section 5.

4.1.2. Task 2: reaching a target state within a given time window

The goal of this second case study is to design a BN whose
trajectory reaches a given a target state $ at least once within the
temporal interval [z,T], but not before z, with z € ]0,T]. In this case,
the objective function should be defined with care. Indeed, it is
important that the function not only reaches its minimum if the
constraint on the trajectory is reached, but it should also guide
the search toward the satisfaction of such constraint. Therefore,
we assign a certain reward also to those BNs whose trajectory
reaches a state either almost congruent to the target one or a
certain number of simulation steps t before z. To implement this
reward rule, we define a family of functions f(t; y) on the interval
[0,T] as follows:

0, t<z—1,
t—z|”
ft:y= 1—‘7 , z-T<t<z
1, t>z

The function f(t; y) is plotted in Fig. 5: note that BN states before z
can be rewarded in several ways, depending on the value of
parameters y and t. Let u(t) be the function returning the number
of nodes matching the target state at each simulation step t, with
t €]0,T], the objective function fi.sk> can be described as follows:

1 it YO 02—,
N
fmskz = u(t) . (M
1-f(t;7) N otherwise.

Note that this objective function does not reward at all those BNs
whose trajectory reaches the target state before z—.

In Fig. 6, we show the results attained with z=500 and
adopting the following parameter setting: t=10 and y=2.

1.0

0.8

0.6

f(t;y)

0.4

0.2

0.0

z-1 z T
BN simulation steps

o

Fig. 5. Function f(t;y) used to assign a reward to partially successful BNs. In the
figure, the function with y =2 is plotted.

1.0
0 —o— chaotic
--A-- critical

0.81 +-- ordered
i)
§ 0.6 . R
[2] .+
17, +
() +>.+
8 0.4 + s
3 + a--"""
w e + R a-”

0.2 ,.+":+____A-——"A’A’

A$‘JAA'
0.0 e=== °
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Iterations

Fig. 6. Run length distribution related to task 2: reaching a target state within a
given time window.

Analogous results have been obtained with z=50 and z=100,
the case of z=500 being the hardest for the learning process.
In addition, different values of 7 and y have been tested
(1t €{10,20,50,100} and y € {0.5,1,2}) and no statistically signifi-
cant difference was observed.?

The performances attained in this task are qualitatively the
same as for the previous case study, even if the overall perfor-
mance is lower with respect to the previous case. This is not
surprising, as this task is rather more difficult than the previous
one. Also for this task we computed the empirical autocorrelation
of the search landscape and we obtained the same qualitative
results as in the previous case.

4.1.3. Task 3: reaching a fixed point target state within a given time
window

The goal of this third case study is the same as the previous
one, with a further constraint: when a BN trajectory reaches the
target state, then such state must be kept. In other words, the
target state must be a BN fixed point. As in the previous case
study, we assign a certain reward also to those BNs whose
trajectory reaches a state either almost congruent to the target
one or a certain number of simulation steps t before z. At each
network evaluation, let z’ € [z—7,T] be the simulation step corre-
sponding to the state with the largest number of Boolean

3 We applied both y2 test and Fisher’s test [42] to the success percentages and
the null hypothesis (i.e., equal distributions) could not be rejected.



S. Benedettini et al. / Neurocomputing 99 (2013) 111-123 117

variables congruent to the target state. To verify that BN state in z’
is a fixed point of the BN, it is enough to check if the state at z/+1
is equal to the one in z'. If this occurs, then we can assert that the
BN trajectory has reached a fixed point. This statement is valid
because we are considering BNs with deterministic dynamics and
synchronous state updates.

Analysing the requirements, two different main features can
be noticed: first of all, the network must reach the target state,
but not before z—7. To evaluate this aspect, we can use the same
objective function as in the previous case study, which is defined
by Eq. (1). The second issue consists in making the target state a
fixed point for the BN. A way to merge these two aspects is to
define an objective function f.s3 based on a weighted mean,
as follows:

. u(t)
1 if —*=1, te]0,z—1],
ftask3 = N .
ax(z)+(1—w)y(z’) otherwise,

where x(z') is defined by Eq. (1) and y(z) is a function that
compares the BN states in z and z'+1, returning the ratio
between number of not congruent Boolean variables and the
total number of BN nodes. Thus, when y(z') = 0, the BN state in z/
represents a fixed point for the BN.

Different values for o account for different relative importance
between reaching the target state and keeping it. We tried several
values of this parameter (« e {0.25,0.5,0.75}) to estimate its
impact on the optimisation process. We noticed that small values
of o (i.e,, . <0.5) lead to a slightly better performance than the
one attained with o = 0.75. In Fig. 7, we show the results obtained
with oo =0.5 and other parameters set to the same values as the
results showed for the previous case study. We can note that the
overall performance is better than in the previous case. We
conjecture that the behaviour of the local search is positively
affected by the introduction of the objective function component
accounting for the fixed point constraint. In fact, once a BN is
tuned such that a fixed point is reached, it is not hard to further
change the Boolean functions so as to match the target state. This
conjecture finds an independent support in a recent work in
evolutionary robotics [43].

These experiments show that it is possible to train BNs to
reach a given target state, while fulfilling additional requirements
on the trajectory. The relevant point in these experiments is that
the automatic procedure which realises the learning process is
able to find a successful assignment of Boolean functions to the
nodes by exploring a very large search space, thus showing that it
is possible to control the dynamics of a BN. In addition, we also
explained the reason why the performance attained starting with
ordered and critical BNs is better than the one starting with

1.0 O RGGEEETEEEEY
e
&+
.A .+>
&+
0.8 1 ot
o
9 Yord
= a3
T 0.6 ar
@ af o .
8 3 JUE
S 0.4 woos
n Ia o
+4 ° .
0.2 rre —e— chaotic
+hor® --A-- critical
+ Ao
+ Ao
4 +- ordered
0.0{ >

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Iterations

Fig. 7. Run length distribution related to task 3: reaching a fixed point target state
within a given time window.

chaotic networks in terms of autocorrelation of the search
landscape.

In the next section, a more complex task will be discussed in
which a BN must tackle a classification problem.

5. Density classification problem

The Density Classification Problem (DCP), also known as
Density Classification Task, first introduced by Packard, is a
simple counting problem [44] born within the area of cellular
automata (CA), as paradigmatic example of a problem hardly
solvable for decentralised systems. Informally, it requires that a
binary CA (or more generally a discrete dynamical system—DDS)
recognise whether an initial binary string contains more 0s or
more 1s. In its original formulation, the nodes (or cells) are
arranged in a one-dimensional torus and can interact only with
the neighbouring ones. The problem is designing simple rules,
governing the dynamics of each node, in such a way that the
system is driven to a uniform state consisting of all 1 s, if the
initial configuration contains more 1s, or all 0s otherwise. In
other words, the convergence of the DDS should decide whether
the initial density of 1 s is greater or lower than 1/2.

Although the assignment might look trivial, it is a challenging
problem and it is known to have no exact solution in the case of
deterministic one-dimensional CA [45]. This difficulty stems from
the impossibility to centralise the information or to use counting
techniques: the convergence to a global uniform state must be
obtained by using only local decisions, i.e., by using just the
information available within the close neighbours of a node.
Given these difficulties, various modifications to the classical
problem have been proposed, including stochastic CA, CA with
memory, CA with different rules succeeding in time (see [46] and
references cited therein). Interestingly, some authors directly
investigated the dichotomy between the local nature of the CA
and the global requirements of the related DCP by allowing
the presence of long-range connections within the links of the
otherwise local neighbourhood [47-50]. In particular, it can be
shown that the simple majority rule applied on random topologies
outperforms all human or artificially evolved rules running on an
ordered lattice [49,50]; a performance gap that increases with the
number of nodes [50]. The majority rule states that the value of a
CA cell at time t+1 is O (resp. 1) if the majority of its neighbours
has value O (resp. 1) at time t.

These last two cited studies demonstrate that RBNs can
effectively deal with the DCP. Our aim in this section is demon-
strating that learning RBNs are flexible objects, able to attain a
performance comparable to a hard-to-match benchmark such as
the majority rule. Therefore, we do not use extremely large
neighbourhoods or network sizes, but rather we focus our atten-
tion to the learning process itself, leaving scaling issues to
further work.

In order to define the learning processes, we divide the nodes
of a BN into three (possibly overlapping) groups: input nodes,
output nodes and hidden nodes. This setting nevertheless does
not completely specify the overall learning scheme: in fact, input
nodes could maintain the initial values or could be involved in the
usual BN dynamics, output nodes could have or not have feed-
backs on the hidden/input nodes. Moreover, it is not clear what is
the influence on the final attractors of the initial conditions of
hidden and output nodes. A possibility, explored in the previous
studies [51,52,56], consists in partitioning network nodes into
input, hidden and output nodes. In this setting, the value of input
nodes is externally imposed and does not change during network
evolution, whereas hidden and output nodes are driven, as usual,
by their transition function. However, in [51,56] it is also shown



118 S. Benedettini et al. / Neurocomputing 99 (2013) 111-123

that different initial settings of hidden and output nodes typically
lead to different attractors, making the analysis of the network’s
answer difficult. For the DCP we opt for an easier choice: we
establish that (a) all network nodes are input nodes, (b) all nodes
are output nodes, and (c) there are no hidden nodes. In such a
way, no node has a characterisation different from the usual one,
the initial conditions are well defined and the correct answers can
be identified with the two vectors composed by “all 0” and “all 1”
values. Finally, and coherently with the Boolean nature of BNs, in
order to correctly interpret oscillating asymptotic states it is
enough to compute the time averages node per node, assigning
“0” to the averages lower than 0.5 and “1” otherwise.

In this paper we use two groups of RBNs having, respectively,
11 and 21 nodes (odd numbers, as usual in the DCP, in order to
avoid ambiguous situations where 0 s and 1 s are equally present;
moreover we wished to keep computation times manageable),
each with connectivity K=3: this choice makes the formation and
detection of local majorities possible. We create a training and a
testing set for each N e {11,21}, assembled in order to uniformly
sample the whole range of the density possibilities in initial
condition vectors. Thus, in the training set, if N is the number of
nodes, we have N vectors having one component set to 1 and the
others set to 0, N vectors having two components set to 1 and the
others set to 0, etc., up to N vectors having N—1 components set
to 1 and the other one set to 0. To that, we add N vectors having
all components set to 1 and N vectors having all components set
to 0, for a total of N(N+ 1) examples. This last addition emphasises
the importance of giving a correct answer when the example
coincide with one of the targets. The test set is similar, but lacks
the first two and the last two series of the training set, in order to
avoid useless reiterations of fitness evaluation. Therefore, the set
is composed of N(N—3) samples.

In order to employ a BN as a classifier, we need to specify some
kind of procedure, a classification function, that maps an example
to a class. In the following we detail such procedure. A network
assigns examples to classes by following these steps. Let us call
these classes gy (majority of zeroes) and ¢; (majority of ones).
Given an example s, a network is evolved up to an attractor
starting from initial condition s; the temporal average of the
attractor is computed and then the resulting vector is binarised
with threshold 0.5, that is, values are rounded to the nearest
integer*: a binary vector is so obtained. If this vector contains
more zeroes than ones (respectively, more ones than zeroes) the
network assigns s to oy class (resp., o1 class).

5.1. Experimental setting

We carried out our experiments on networks consisting of
classical RBNs with constant input connectivity K=3 and
N e {11,21}. BNs are labelled as critical, ordered or chaotic accord-
ing to the function bias values used to generate them. Details on
network parameters are given in the following:

Critical ensemble: for each number of nodes N e {11,21} and for
each function bias p € {0.211324,0.788675} we generated 50 net-
works for a total of 200 RBNs.

Ordered ensemble: for each number of nodes N e {11,21} and
for each function bias p € {0.15,0.85} we generated 50 networks
for a total of 200 RBNs.

Chaotic ensemble: for each number of nodes Ne{11,21} we
generated 100 networks with function bias p=0.5 for a total of
200 RBNs.

These networks are the initial solutions in our local search
algorithm and will be collectively referred to as initial set.

4 Values equal to 0.5 are rounded to 1.

The local search used for training the BNs is ILS, described in
Section 3.2. After preliminary experiments on a randomly
selected subset of networks, we determined the termination
criterion for the local search, which is also the only parameter
to configure. We decided to stop our ILS algorithm after 150 000
networks have been evaluated. Within this limit, we observed
that the local search reaches stagnation. At each improvement
over the previous incumbent—i.e., the currently best found
solution—we recorded the node functions of the new best
solution.®

The objective function evaluates a BN classifier on the training
examples. The objective function is to be minimised and has
values in the [0, 1] interval. The evaluation process is remarkably
similar to the definition of classification function given at the end
of paragraph 5, up to the computation of the binary vector:
we initialise the network to be evaluated with an example s,
we evolve it to an attractor A, we compute the temporal average
of A and binarise it with threshold 0.5 obtaining a Boolean
vector v. The contribution of s e {0, 1}" to the objective function
is the following: if s belongs to ago (resp., g;) the objective
function value is wy(v)/N (resp., (N—wy(v))/N), where wy(v) is
the Hamming weight of vector v—i.e,, the number of ‘1’
entries—and N is the network size. The contributes of all training
examples are added up and divided by the number of examples
seen. Notice that this definition entails that if the objective
function is 0 then the BN classifier correctly classifies all examples
in the training set. The converse, however, is not true: a BN might
correctly classify all training examples even if its objective
function is greater than zero.

In order to measure the classifying capabilities of the opti-
mised networks, we compared them to BNs with a very specific
structure. We thus generated a new ensemble, labelled benchmark
set, whose networks have random topology, input connectivity
equal to 3 and whose node functions are all equal to the Boolean
majority function on three inputs. The benchmark set contains
100 BNs with N=11 nodes and 100 BNs with N=21 nodes.

5.2. Results

In this section we outline the analysis performed on data
gathered from the experiments. We perform two kinds of analy-
sis. Firstly, we assess the classification error of our optimised
networks and we compare it with the BNs in the benchmark set
(Section 5.2.1). Secondly, we analyse the network generated
during the search process and show to what extent selected
network features are affected by the optimisation algorithm
(Section 5.2.2). Finally, we compare the performance of our ILS
with genetic algorithms (Section 5.2.3).

5.2.1. Performance analysis

The performance of the optimised networks is measured
by the classification error, that is, the fraction of misclassified
examples.

Fig. 9 depicts the main statistical features of the distribution of
the classification error on the test set. Each boxplot represents the
statistics of the classification error attained in 50 independent
runs (see Section 5.1), for each network category. These plots
compare the networks in the benchmark set (leftmost boxplot)
with the classifiers generated by our metaheuristic starting from
networks in the critical (second boxplot), ordered (third boxplot)
and chaotic (last boxplot) ensembles. Performances of optimised
networks do not significantly differ if the local search starts from
either ensemble, although the distribution of the error for the

5 We recall that the local search move does not change network topology.



S. Benedettini et al. / Neurocomputing 99 (2013) 111-123

chaotic ensemble has the lowest minimum (for N=11 it ties the
minimum on the ordered networks). We analysed the autocorre-
lation of the search landscapes, as done in Section 4. Since in this
case the classification error appears similarly distributed across
ordered, critical and chaotic BNs, we do not expect high variance
in landscapes autocorrelation. The boxplots showing the main
statistics of this analysis are depicted in Fig. 8. As in the previous
test case, the autocorrelation of the landscape corresponding to
ordered and critical BNs is higher than that of chaotic BNs.
Nevertheless, the median autocorrelation coefficient r is rather
low, ranging in [0.4,0.6] across all dynamical regimes. In addition,
both the difference among the medians is quite low and the
extreme values span across wide, overlapping, ranges. This result
explains why, in this case study, we do not observe a difference
across network’s dynamical regimes as striking as in the case
discussed in Section 4. It is important to stress that the objective
function used in this task only loosely depends upon the BN

1.0

0.8

0.6

04 |

0.2}

0.0 }

Landscape autocorrelation

!

b4 —t

3 00'-----'

-0.2

Critical Ordered Chaotic

Fig. 8. Distribution of landscape autocorrelation r for RBNs with N=21 in different
dynamical classes.

O]

0.25

0.20 P .

Jeo
1e
|

0.15

Ad
N
|
N
|

0.10 o= C

0.05 b

Classification error

0.00
Majority Critical Ordered Chaotic

119

trajectories in the state space, as it is rather affected by BNs
steady state behaviour.

The remarkable performance gap between the benchmark and
ILS observed when going from 11 to 21 nodes can be explained by
the fact that, as previously noted, the majority rule cannot be
improved and its classification performance increases with the
number of nodes [45,50]. As a matter of fact, Fig. 9 shows that
performances attained by ILS with both network sizes are similar
(the median for N=11 is actually slightly lower).

It is also important to mention that even this optimisation
scheme might be subject to overtraining. In this context, overtraining
means that the network returned by our local search might not be
the classifier that achieves the smallest classification error on the
test set. Fig. 10 shows two typical examples of overtraining. These
plots depict the classification error (y-axis) on both training and test
sets attained by the current best network for every iteration of the
local search (x-axis). As expected, the training error curve is non-
increasing since our objective function approximates from above the
classification error on the training set (see remarks at the end of
Section 5.1). On the other hand, the test error curve has a global
minimum before the local search reaches its optimal solution.
Specifically, in Fig. 10(a) the classification error on the test set has
a minimum at about iteration 10 000, while in Fig. 10(b) we have a
minimum around iteration 3000.

For this reason, for each algorithm execution we kept track of
all the networks generated whenever a new local optimum was
found; that way we could choose the BN which minimises the
classification error on the test set.

5.2.2. Analysis of learning process

In the following, we analyse statistical properties of the net-
works generated by the search process. Specifically, we compare
the initial networks in each ensemble with the best classifiers

(op

0.16
0.14
0.12 . -4 —_
0.10 3
008 =2 I
0.06 ate

0.04
0.02

Y]
wl
|
|

|

I

Classification error

Majority Critical Ordered Chaotic

Fig. 9. Comparison of optimised networks against benchmark networks. Boxplots show distribution of classification error (fraction of misclassified examples) on the test

set: (a) N=11; (b) N=21.

a

. 0.20 f

e :

¢0.15 §

k] :

8 0.10 :

b :

& 0.05 |

(@] -- Training set| :

0.00 |L=_Test set e \
10° 10* 10°

Iteration counter

b
0.25
5020 i
o :
_5 0.15 :---:
© H
¢ 0.10
a ",
8 0.05 -- Training set DR -
0.00 = Test set
10° 10* 10°

Iteration counter

Fig. 10. Example of overtraining phenomenon on two BNs in the critical ensemble, N=11. The plots show the evolution of the classification error (y-axis) on training (solid
line) and testing (dashed line) sets during the execution of our optimisation algorithm (x-axis shows the iteration counter). For clarity, we do not show the full range of

iterations, but only a smaller interval: (a) Network 58; (b) Network 20.



120

returned by our local search, i.e., the best BNs that achieve the
smallest error on the test set (henceforth referred to as “optimised
networks”).

The comparison is performed on the following network mea-
sures: number of attractors, average attractor period, average
network sensitivity and pattern distance. In order to calculate the
former two measures, we simulate a network up to an attractor
starting from all the possible initial conditions.

The average network sensitivity (or network sensitivity for
short) is a well-known measure often used in BN analyses [53,54].
Network sensitivity, determined according to the formulas in the
previously cited papers, is defined as the average of node function
sensitivities sz The sensitivity sy of a K-variable Boolean function
f measures how sensitive f is to a change in its inputs, and
is calculated as follows. Let us define sp(x)=|{X'|f(x) # f(x)A
du(x,x')=1}| where x € {0, 1}¢ and dy is the Hamming distance.
The sensitivity is thus sy = (1/2)3", . 0.1xS¢(%).

The pattern distance measures the average similarity of the
node functions to the Boolean majority function and is computed
as follows. Let us denote with v; {0, 1}® the truth table of the i-th
node transition function; we compute the average over all nodes
v=(1/N) Z?:o v;. We obtain a new binary vector 7 e {0,1}V by
rounding v to the nearest integer (0.5 is rounded to 1). We finally
compute the Hamming distance of 7 to (0,0, 0, 1, 0, 1, 1, 1), which
is the truth table of the Boolean majority function of three inputs.
Notice that a pattern distance equal to 0 does not imply that all
network functions match the majority rule.

Sensitivities of the optimised networks have similar character-
istics regardless of the dynamical regime of the initial networks
(Fig. 11). This is a further explanation for the similarity between
the distributions of the classification errors reported in Fig. 9.
However, the distribution of the number of attractors of opti-
mised networks and their average periods (not shown) just
slightly differ. This observation needs more detailed considera-
tions. Optimised networks show a sensitivity of about 1.3 regard-
less of both initial dynamical state and number of nodes.

V)

= =

L J
I

J——
U o

.

Sensitivity
e REEee
o N WMULO

Critical Ordered Chaotic

Fig. 11.

Q

N\
N

Pattern distance
COoOrHNNWW & p

.5
.0
5
.0
" \
.5
.0
.5
.0
1

0% 10" 10% 10® 10* 10° 10°

Iteration counter

S. Benedettini et al. / Neurocomputing 99 (2013) 111-123

A sensitivity greater than one indicates a network with chaotic
dynamics, as shown in [53], where an explicit relation between
network sensitivity and Lyapunov exponent is given, and in [54]
where the same conclusion is reached by a different argument.
Nevertheless, a recent work has shown that networks which
undergo an optimisation process could exhibit features from all
dynamical classes [27]. This fact has also been confirmed in [31]
and the actual results seem to provide further evidence for this
property. These issues need more extended analyses and will be
investigated in further work.

Fig. 12 illustrates the evolution of the pattern distance through-
out the search process. The y-axis represents the pattern distance
averaged over a network ensemble and the x-axis represents the
iteration index. Each data point (i,d) is obtained by calculating the
pattern distance d on the incumbent solution at iteration i and
averaging over all networks in the ensemble, thereby obtaining d
(we show only two examples, since the curves of all the other cases
are substantially identical). These plots further remark that opti-
mised networks have similar characteristics. Specifically, they show
that the search process is drawn towards networks with functions
similar to the majority rule.

5.2.3. Comparison with genetic algorithms

Since the search landscape of the DCP is not highly correlated
(see Fig. 8), a genetic algorithm (GA) could attain a better perfor-
mance because of its capability of sampling wide areas of the search
space. Therefore, we repeated the previous experiments by plugging
a GA as the optimisation component inside the training algorithm.
We tried a total of 12 different GAs which substantially differ in
behaviour by selecting different recombination operators and para-
meters (see below). Furthermore, by these further tests, we can
also address the question as to whether the results presented in
Section 5.2 depend on the search algorithm used.

Coherently with all other experiments described in this paper,
our genetic algorithm does not modify the network topology: all
solutions in the populations share the same topology, which is

b

1.5 .
43\ - R —_—
S14
2 L J s=s— ([ J
o 1.3 [ ]
(7p]

1.2 Be

Critical Ordered Chaotic

Distribution of average network sensitivity for optimised networks: (a) N=11; (b) N=21.

b
4.5
v 4.0 “\
€35 W
3 2.5 \
015
822 \
: N
0.0
10° 10 10% 10° 10* 10° 10°

Iteration counter

Fig. 12. Examples of typical pattern distance trend for optimised networks. Each data point represents the pattern distance value averaged on all optimised networks in

(a) the critical ensemble (N=11) and (b) the chaotic ensemble (N=21).



S. Benedettini et al. / Neurocomputing 99 (2013) 111-123 121

Table 1
Summary of GA parameters.

Name Values

Mutation operator
Mutation probability
Crossover probability

1-flip, 2-flip, node-function
0.1,0.2
0.1, 0.9

kept fixed throughout the search procedure. The individuals of
the candidate solution population in the GA are represented by
genomes. Formally, a genome is a vector <{fy,f,,....fy> of N
genes. A gene is a truth table f; € {0,1}® which defines the i-th
node transition function. The offspring of the current population
is built by generating new individuals by means of two genetic
operators, i.e., crossover and mutation. The crossover operator is a
standard two-parents one-point crossover. This operator is
applied with probability pgss. If crossover is not applied, the
two parents are simply cloned. As for mutation, we experimented
with two ad hoc operators. The first one, labelled X-flip, randomly
picks X bits in a truth table and negates them. The second
operator, labelled node-function, replaces a gene with another
randomly chosen K-variable Boolean function.® Both operations
are applied to all N genes with probability p,,.., meaning that, on
average, N - p,,.; genes are changed. We implemented a steady-
state genetic algorithm solver with population size of 100
genomes and roulette wheel selection. Population overlap for
the steady state is 50% meaning that at each generation an
offspring of 50% population size genomes is generated and added
to the current population. Afterwards, the current population is
shrunk back to the initial size by removing the worst genomes.

We tested several algorithm configurations which differed in
mutation operator (1-flip, 2-flip and node-function), mutation prob-
ability pye and crossover probability peoss for a total of 12 config-
urations (see Table 1 for a summary). The reason for the choice of
such extreme values for pgo.ss was to verify whether crossover
introduced a too disruptive change in the network structures so as
to degrade GA’s performances. As for mutation operators are con-
cerned, we chose 1- and 2-flip mutations because their effect on a BN
is comparable to the application of (a small number of) local search
moves. On the other hand, we chose an operator such as node-
function because we wanted to test the effect of a more radical
modification in a BN structure. For the sake of brevity, we will refer to
a configuration with a triple (mutation operator, ppus, Deoss)- Each
configuration was evaluated 30 times for each BN's dynamical class.
For each algorithm evaluation, the initial population was initialised
with 100 RBNs, all sharing the same topology, generated with
appropriate bias depending on the dynamical class. We terminated
each algorithm run after 150 000 objective function evaluations, the
same termination condition used for ILS.

We performed a full factorial analysis of the configuration
space and we subsequently applied a Mann-Whitney test [42],
with a significance level equal to 0.05, to all pairs of algorithm
configurations in order to obtain the best for each dynamical
class of the initial networks. The test is able to identify two
configuration, namely (node-function, 0.1, 0.9) and (node-function,
0.1, 0.1), that are significantly better than the others. This result
holds true for all dynamical classes. Since these configurations are
not distinguishable by the statistical test, we select the first one as
the competitor against ILS.

6 This last operator works only with topologies with constant in-degree,
which is the case in our experiments.

0.22
0.20 ILS
0.18
0.16
0.14
012} =+
0.10 O
-
0.08
0.06 |-==
0.04

PN

GA

>0
*

PO
P

-

Classification error
|
1

*

Critical Ordered Chaotic Critical Ordered Chaotic

Fig. 13. Comparison between ILS and GA performance. Boxplots report the
classification error distribution on the test set. Experimental setting consists of
300 RBNs with 21 nodes from each dynamical class.

Fig. 13 compares the performance of the selected GA configuration
(node-function, 0.1, 0.9) (rightmost boxplots) with our ILS (leftmost
boxplots) for all dynamical classes. The comparison was performed
on the same set of 300 RBNs with 21 nodes introduced in Section 5.1.

First of all, we observe that the GA attains results which do not
qualitatively differ from those obtained by ILS, because differences
among the three dynamical classes are rather small. However, the
overall performance of the GA is significantly lower” than that of ILS,
since notches of boxplot associated to ILS do not overlap to those
related to the GA [55]. This result might seem counterintuitive, given
the low correlation of the search landscape. Nevertheless, we should
remark that the values of autocorrelation we computed span across a
wide range, therefore ILS can take advantage of its full neighbourhood
exploration and find paths towards improving solutions which are
not easily found by the sampling process of the GA. A detailed
discussion of strengths and weaknesses of perturbative metaheuristic
methods, such as ILS, and population-based ones is out of the scope of
this work. However, we forward the interested reader to specialised
literature [33].

6. Conclusions and future work

BNs have been mainly considered as genetic regulatory net-
work models and are the subject of notable works in the complex
systems biology literature. Nevertheless, in spite of their simila-
rities with neural networks, their potential as learning systems
has not yet been fully investigated and exploited.

In this work we use BNs as flexible objects, which can evolve by
means of suitable optimisation processes, to deal with two notable
issues: the problem of controlling the BN’s trajectory to reach a target
state and the density classification problem. The two tasks have
different characteristics which have repercussions on the search
itself: in fact, the initial dynamical regime could facilitate or slow
down the learning process (as in the target state-controlled BN case
study), or could have no particular consequences (as in the density
classification problem). It is important to remark that the differences
we observed in the performances are to be found in the autocorrela-
tion of the search landscape, which depends on the objective function
(plus the neighbourhood relation used in the local search), in turn
affected by the BN dynamical class. If the objective function is directly
influenced by the properties of the BN trajectory in the state space,
then we expect the dynamical regime of initial BNs to impact search
performance. When, instead, the objective function depends upon
steady-state properties of the BNs, the dynamical regime is very likely
to have a shallow influence on the autocorrelation of the landscape.

7 With 95% confidence.



122 S. Benedettini et al. / Neurocomputing 99 (2013) 111-123

As a further observation, we can note that in both cases BNs
successfully deal with the proposed challenges, revealing flexibility.

Critical BNs have been shown to outperform ordered and
chaotic ones in terms of robustness and adaptiveness [12] and
one might observe that, in this work, the optimisation processes
starting from critical BNs do not show performances higher than
those starting from different dynamical regimes. This is very
likely to be a consequence of the static nature of the proposed
tasks that have not time dependent assignments: in these cases,
there are no particular reasons that can favour critical systems
with respect more ordered or chaotic ones.

Further work will address the interaction between the neighbour-
hood definition (that is, the allowed moves of the metaheuristic
algorithms) and the possibility of shaping the dynamical regime of
these nets, by involving not only the functions expressed by each
single networks’ node, but also more global network properties as, for
instance, their connectivity distribution, modularity and assortativity.
Although control theory offers mathematical tools for steering simple
engineered and natural systems towards a desired state, a framework
to control complex self-organised systems is still lacking. BNs and the
already present knowledge on their dynamical behaviour could help
in this enterprise, and allow in such a way the design of specialised
learning systems, able to dynamically shape their own learning
capabilities in relation to the characteristics of the problem and of
the search space.

References

[1] D.E. Rumelhart, J.L. McClelland, et al. (Eds.), Parallel Distributed Processing,
Foundations, vol. 1, MIT Press, Cambridge, MA, 1986.

[2] J.L. EIman, Finding structure in time, Cogn. Sci. 14 (1990) 179-211.

[3] JJ. Hopfield, Neural networks and physical systems with emergent collective
computational abilities, Proc. Natl. Acad. Sci. USA 79 (1982) 2554-2558.

[4] S. Kauffman, The Origins of Order: Self-Organization and Selection in
Evolution, Oxford University Press, UK, 1993.

[5] S. Patarnello, P. Carnevali, Learning networks of neuron with Boolean logic,
Europhys. Lett. 4 (1986) 503-508.

[6] M. Dorigo, Learning by probabilistic Boolean networks, in: Proceedings of
World Congress on Computational Intelligence—IEEE International Confer-
ence on Neural Networks, Orlando, FL, 1994, pp. 887-891.

[7] S. Kauffman, Metabolic stability and epigenesis in randomly constructed
genetic nets, J. Theoret. Biol. 22 (1969) 437-467.

[8] M. Aldana, S. Coppersmith, L. Kadanoff, Boolean dynamics with random
couplings, in: E. Kaplan, J. Marsden, K. Sreenivasan (Eds.), Perspectives and
Problems in Nonlinear Science. A Celebratory Volume in Honor of Lawrence
Sirovich, Springer Applied Mathematical Sciences Series, Springer, Heidel-
berg, Germany, 2003.

[9] 1. Shmulevich, E. Dougherty, Probabilistic Boolean Networks: The Modeling
and Control of Gene Regulatory Networks, SIAM, Philadelphia, PA, 2009.

[10] Y. Bar-Yam, Dynamics of Complex Systems, Studies in Nonlinearity, Addison-
Wesley, Reading, MA, 1997.

[11] R. Serra, G. Zanarini, Complex Systems and Cognitive Processes, Springer,
Heidelberg, Germany, 1990.

[12] M. Aldana, E. Balleza, S. Kauffman, O. Resendiz, Robustness and evolvability
in genetic regulatory networks, J. Theoret. Biol. 245 (2007) 433-448.

[13] C. Fretter, B. Drossel, Response of Boolean networks to perturbations, Eur.
Phys. J. B 62 (2008) 365-371.

[14] A. Ribeiro, S. Kauffman, ]. Lloyd-Price, B. Samuelsson, J. Socolar, Mutual
information in random Boolean models of regulatory networks, Phys. Rev. E
77 (2008) 011901:1-10.

[15] R. Serra, M. Villani, A. Graudenzi, S. Kauffman, Why a simple model of genetic
regulatory networks describes the distribution of avalanches in gene expres-
sion data, J. Theoret. Biol. 246 (2007) 449-460.

[16] B. Derrida, Y. Pomeau, Random networks of automata: a simple annealed
approximation, Europhys. Lett. 1 (1986) 45-49.

[17] 1. Shmulevich, S. Kauffman, M. Aldana, Eukaryotic cells are dynamically
ordered or critical but not chaotic, Proc. Natl. Acad. Sci. USA 102 (2005)
13439-13444.

[18] E. Balleza, E. Alvarez-Buylla, A. Chaos, S. Kauffman, I. Shmulevich, M. Aldana,
Critical dynamics in genetic regulatory networks: examples from four king-
doms, PLoS ONE 3 (2008) e2456.

[19] R. Serra, M. Villani, A. Semeria, Genetic network models and statistical
properties of gene expression data in knock-out experiments, J. Theoret.
Biol. 227 (2004) 149-157.

[20] R. Serra, M. Villani, A. Barbieri, S. Kauffman, A. Colacci, On the dynamics of
random Boolean networks subject to noise: attractors, ergodic sets and cell
types, ]. Theoret. Biol. 265 (2010) 185-193.

[21] S. Kirkpartick, C. Gelatt, M. Vecchi, Optimization by simulated annealing,
Science 220 (1983) 671-680.

[22] S. Kauffman, Adaptive automata based on Darwinian selection, Physica D 22
(1986) 68-82.

[23] N. Lemke, J. Mombach, B. Bodmann, A numerical investigation of adaptation
in populations of random Boolean networks, Physica A 301 (2001) 589-600.

[24] A. Esmaeili, C. Jacob, Evolution of discrete gene regulatory models,
in: Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation, GECCO '08, ACM, New York, NY, USA, 2008,
pp. 307-314.

[25] A. Szejka, B. Drossel, Evolution of canalizing Boolean networks, Eur. Phys. J. B
56 (2007) 373-380.

[26] T. Mihaljev, B. Drossel, Evolution of a population of random Boolean net-
works, Eur. Phys. J. B Condensed Matter Complex Syst. 67 (2009) 259-267.

[27] C. Fretter, A. Szejka, B. Drossel, Perturbation propagation in random and
evolved Boolean networks, New ]. Phys. 11 (2009) 033005:1-13.

[28] A. Szejka, B. Drossel, Evolution of Boolean networks under selection for a
robust response to external inputs yields an extensive neutral space, Phys.
Rev. E 81 (2010) 021908:1-9.

[29] A. Roli, C. Arcaroli, M. Lazzarini, S. Benedettini, Boolean networks design by
genetic algorithms, in: M. Villani, S. Cagnoni (Eds.), Proceedings of CEEI
2009—Workshop on Complexity, Evolution and Emergent Intelligence,
Reggio Emilia, Italy, 2009.

[30] C. Espinosa-Soto, A. Wagner, Specialization can drive the evolution of
modularity, PLoS Comput. Biol. 6 (2010), e1000719 +.

[31] S. Benedettini, A. Roli, R. Serra, M. Villani, Stochastic local search to
automatically design Boolean networks with maximally distant attractors,
in: C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekart, A. Esparcia-Alcazar,
J. Merelo, F. Neri, M. Preuss, H. Richter, J. Togelius, G. Yannakakis (Eds.),
Applications of Evolutionary Computation, Lecture Notes in Computer
Science, Springer, Heidelberg, Germany, 2011.

[32] S. Nolfi, D. Floreano, Evolutionary Robotics, The MIT Press, Cambridge, MA,
2000.

[33] H. Hoos, T. Stiitzle, Stochastic Local Search: Foundations and Applications,
Morgan Kaufmann Publishers, San Francisco, CA, 2005.

[34] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and
conceptual comparison, ACM Comput. Surv. 35 (2003) 268-308.

[35] C. Blum, M,]. Blesa Aguilera, A. Roli, M. Sampels (Eds.), Hybrid
Metaheuristics—An Emerging Approach to Optimization, Studies in Compu-
tational Intelligence, vol. 114, Springer, 2008.

[36] M. Chiarandini, T. Stiitzle, An application of iterated local search to graph
coloring problem, in: D.S. Johnson, A. Mehrotra, M. Trick (Eds.), Proceedings
of the Computational Symposium on Graph Coloring and its Generalizations,
pp. 112-125.

[37] H. Lourengo, O. Martin, T. Stiitzle, Iterated local search, in: F. Glover, G.
Kochenberger (Eds.), Handbook of Metaheuristics, International Series in
Operations Research & Management Science, vol. 57, Springer, New York, NY,
2003, pp. 320-353.

[38] B. Luque, R. Solé, Lyapunov exponents in random Boolean networks, Physica
A Stat. Mech. Appl. 284 (2000) 33-45.

[39] W. Hordijk, A measure of landscapes, Evol. Comput. 4 (1996) 335-360.

[40] A. Roli, S. Benedettini, R. Serra, M. Villani, Analysis of attractor distances in
random Boolean networks, in: B. Apolloni, S. Bassis, A. Esposito, C. Morabito
(Eds.), Neural Nets WIRN10 - Proceedings of the 20th Italian Workshop on
Neural Nets, Frontiers in Artificial Intelligence and Applications, vol. 226,
2011, pp. 201-208. Also available as arXiv:1011.4682v1 [cs.NE].

[41] M. Frigge, D. Hoaglin, B. Iglewicz, Some implementations of the boxplot, Am.
Stat. 43 (1989) 50-54.

[42] WJ. Conover, Practical Nonparametric Statistics, third edition, John Wiley
Sons, 1999.

[43] ].C. Bongard, Spontaneous evolution of structural modularity in robot neural
network controllers, in: N. Krasnogor, P.L. Lanzi (Eds.), 13th Annual Genetic
and Evolutionary Computation Conference—GECCO 2011, ACM, 2011.

[44] N. Packard, Adaptation toward the edge of chaos, in: ]. Kelso, A. Mandell,
M. Shlesinger (Eds.), Dynamic Patterns in Complex Systems, World Scientific,
Singapore, 1988, pp. 293-301.

[45] M. Land, RK. Belew, No perfect two-state cellular automata for density
classification exists, Phys. Rev. Lett. 74 (1995) 5148-5150.

[46] N. Fates, Stochastic cellular automata solve the density classification problem
with an arbitrary precision, in: T. Schwentick, C. Diirr (Eds.), 28th International
Symposium on Theoretical Aspects of Computer Science (STACS 2011), Leibniz
International Proceedings in Informatics (LIPIcs), vol. 9, Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2011, pp. 284-295.

[47] M. Tomassini, M. Giacobini, C. Darabos, Evolution of small-world networks of
automata for computation, in: X. Yao, E. Burke, J. Lozano, J. Smith, ]. Merelo-
Guervos, J. Bullinaria, J. Rowe, P. Tino, A. Kaban, H.-P. Schwefel (Eds.),
Proceedings of Parallel Problem Solving from Nature—PPSN 2004, Lecture
Notes in Computer Science, vol. 3242, Springer, Heidelberg, Germany, 2004,
pp. 672-681.

[48] D. Watts, Small Worlds: the Dynamics of Networks between Order and
Randomness, Princeton University Press, Princeton, NJ, 1999.

[49] R. Serra, M. Villani, Perturbing the regular topology of cellular automata:
implications for the dynamics, in: B. Chopard, M. Tomassini, S. Bandini (Eds.),
Cellular Automata, 5th International Conference on Cellular Automata for
Research and Industry—ACRI 2002, Lecture Notes in Computer Science, vol.
2493, Springer, Heidelberg, Germany, 2002, pp. 168-177.


arXiv:1011.4682v1

S. Benedettini et al. / Neurocomputing 99 (2013) 111-123 123

[50] B. Mesot, C. Teuscher, Deducing local rules for solving global tasks with
random Boolean networks, Physica D 211 (2005) 88-106.

[51] L. Ansaloni, M. Villani, R. Serra, Dynamical critical systems for information
processing: a preliminary study, in: M. Villani, S. Cagnoni (Eds.), Proceedings
of CEEI 2009—Workshop on Complexity, Evolution and Emergent Intelli-
gence, Reggio Emilia, Italy, 2009.

[52] A. Roli, M. Manfroni, C. Pinciroli, M. Birattari, On the design of Boolean network
robots, in: C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. EKart, A. Esparcia-Alcazar, .
Merelo, F. Neri, M. Preuss, H. Richter, ]. Togelius, G. Yannakakis (Eds.), Applications
of Evolutionary Computation, Lecture Notes in Computer Science, vol. 6624,
Springer, Heidelberg, Germany, 2011, pp. 43-52.

[53] L. Shmulevich, S. Kauffman, Activities and sensitivities in Boolean network
models, Phys. Rev. Lett. 93 (2004) 048701:1-10.

[54] ]. Kesseli, P. Rimo, O. Yli-Harja, On spectral techniques in analysis of Boolean
networks, Physica D Nonlinear Phenomena 206 (2005) 49-61.

[55] J.M. Chambers, W.S. Cleveland, B. Kleiner, P.A. Tukey, Graphical Methods for
Data Analysis, Chapman and Hall, New York, 1983.

[56] M. Villani, S. Cagnoni (Eds.), Proceedings of CEEI 2009—Workshop on
Complexity, Evolution and Emergent Intelligence, Reggio Emilia, Italy, 2009.

&
2

Stefano Benedettini is a Ph.D. student at Alma Mater
Studiorum Universita di Bologna (Italy) where he
received his Bachelor and Master Degrees in Computer
Science Engineering (2005). His main current research
interests include application of metaheuristic algo-
rithms to bioinformatics problems, complex systems
and software engineering.

Andrea Roli received the Ph.D. degree in Computer
Science and Electronic Engineering from Alma Mater
Studiorum Universita di Bologna, where he currently is
a assistant professor. He teaches subjects in artificial
intelligence, complex systems and computer science
basics. His main current research interests include
metaheuristics and complex systems, with applica-
tions to swarm intelligence, bioinformatics and genetic
regulatory network models. Andrea Roli is a member
of the steering committee of the Italian Association for
Artificial Intelligence (AI+IA).

Mattia Manfroni is a software engineer and collabo-
rates with Alma Mater Studiorum Universita di Bologna
(Italy) as a free researcher since September 2010. He
received his Bachelor and Master degrees in Computer
Science Engineering, both from Universita di Bologna,
in January 2008 and July 2010, respectively. His
research interests are in artificial intelligence and
swarm robotics.

™y

Marco Villani received his honours degree in Physics in
1992; in 1993 his thesis obtained the “Franco Viaggi”
awards of the SFI (the Italian Physic Society). He worked
at ENEA and then at the Environmental Research Centre
of Montacatini S.p.A (Montedison Group); from 2005 is a
researcher and professor in Engineering and Computer
Science at the University of Modena and Reggio Emilia,
where he also leads the Modelling and Simulation
Laboratory. Winner of the best paper awards at ACRI2006
and ECCS2010, the two major European conferences,
respectively, on cellular automata and complex systems,
Villani applies complex systems concepts in areas that
require strong interdisciplinary interactions.

Roberto Serra graduated in Physics at Alma Mater
Studiorum Universita di Bologna, and later performed
research activities in the industrial groups Eni and
Montedison, where he served as a director of the
Environmental Research Centre until 2003. Since
2004 he is a full professor of Computer Science and
Engineering at the Modena and Reggio Emilia Univer-
sity. His research interests concern several aspects of
the dynamics of complex systems, paying particular
attention to biological and social systems, and to the
dynamical approach to Artificial Intelligence. He pub-
lished more than 130 papers in international journals
and refereed conference proceedings, and is a co-
author of four books. He has been responsible of several research projects, funded
by companies, by the Italian Ministry for Scientific Research (Miur), by the
National Research Council (CNR) and by the European Union. He has served as a
member of the program committee of several international conferences, and has
delivered various invited talks and seminars. He recently chaired two interna-
tional conferences, one on Artificial Life and Evolutionary Computation (Venice,
2008) and one on Artificial Intelligence (Reggio Emilia, 2009). Roberto Serra has
also been president of AlxIA (Associazione Italiana per I'Intelligenza Artificiale)
and is currently chairman of the Science Board of the European Centre for Living
Technologies.

Antonio Gagliardi started out as an analyst and pro-
grammer for TELECOMSpA and TecnostMael SpA Olivetti
Group. In 1998 he began his activities as a lecturer for
computer courses in public and private education; he
worked for Modena Formazione on courses funded by the
European Community (2001-2003). In 2007 he graduated
in Hypermedia Communications at Parma University,
followed by a post-graduate degree in Economics and
Complex Systems at the University of Modena and Reggio
Emilia. Currently he works as a lab technician and
collaborates with the University of Modena and Reggio
Emilia. His research interests are in machine learning and
Boolean networks.

Carlo Pinciroli is a Ph.D. student at IRIDIA, CoDE,
Université Libre de Bruxelles in Belgium. Before joining
IRIDIA, in 2005 he obtained a Master's degree in
Computer Engineering at Politecnico di Milano, Milan,
Italy and a second Master's degree in Computer
Science at University of Illinois at Chicago, IL, USA.
In 2007 he also obtained a Diplome d’études appro-
fondies from the Université Libre de Bruxelles. The
focus of his research is computer simulation and
swarm robotics.

Mauro Birattari received his Master’s degree in Elec-
tronic Engineering from Politecnico di Milano, Italy, in
1997; and his Doctoral degree in Information Technol-
ogies from Université Libre de Bruxelles, Belgium, in
2004. He is currently with IRIDIA, Université Libre de
Bruxelles, as a research associate of the fund for
scientific research F.R.S.-FNRS of Belgium’s French
Community. Dr. Birattari co-authored about 100
peer-reviewed scientific publications in the field of
computational intelligence. Dr. Birattari is an associate
editor for the journal Swarm Intelligence and an area
editor for the journal Computers & Industrial
Engineering.



	Dynamical regimes and learning properties of evolved Boolean networks
	Introduction
	Boolean networks
	Training Boolean networks by metaheuristics
	Related work
	Methods

	Target state-controlled Boolean networks
	Experimental setting
	Task 1: reaching a target state
	Task 2: reaching a target state within a given time window
	Task 3: reaching a fixed point target state within a given time window


	Density classification problem
	Experimental setting
	Results
	Performance analysis
	Analysis of learning process
	Comparison with genetic algorithms


	Conclusions and future work
	References




