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Explicit elastic solutions for a vertically loaded single pile embedded in multilayered soil are presented. Solutions are also provided for the case in
which the pile base rests on a rigid material. Energy principles are used in the derivation of the governing differential equations. The solutions, which
satisfy compatibility of displacement in the vertical and radial directions, were obtained by determining the unknown integration constants using the
boundary conditions, Cramer’s rule, and a recurrence formula. The solutions provide the pile vertical displacement as a function of depth, the load-
transfer curves, and the vertical soil displacement as a function of the radial distance from the pile axis at any depth. The use of the analysis is illustrated
for a pile that was load-tested under well-documented conditions by obtaining load--transfer and load--settlement curves that are then compared with
those obtained from the load test.
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1. Introduction

Analytical solutions for a vertically loaded pile in a homogeneous

single soil layer have been obtained by a number of authors.

Poulos and Davis (1968) and Butterfield and Banerjee (1971)

studied the response of axially loaded piles by integrating

Mindlin’s point load solution (Mindlin 1936). Motta (1994) and

Kodikara and Johnston (1994) obtained closed-form solutions for

homogeneous soil or rock using the load--transfer (t--z) method of

analysis to incorporate idealized elastic-plastic behaviour.

In reality, piles are rarely installed in an ideal homogeneous

single-soil layer. For this reason, analytical solutions for axially

loaded piles embedded in a nonhomogeneous soil deposit have

been sought. Randolph and Wroth (1978) proposed an approx-

imate closed-form solution for the settlement of a pile in a

Gibson soil (Gibson 1967). Poulos (1979) also presented a series

of solutions for the settlement of a pile in a Gibson soil and

applied the analysis to a pile in a three-layered soil. Rajapakse

(1990) performed a parametric study for the problem of an

axially loaded single pile in a Gibson soil based on a variational

formulation coupled with a boundary integral representation.

Lee (1991) and Lee and Small (1991) proposed solutions for

axially loaded piles in finite-layered soil using a discrete layer

analysis. Chin and Poulos (1991) presented solutions for an

axially loaded vertical pile embedded in a Gibson soil and a

two-layered soil using the t-z method. Guo and Randolph (1997)

and Guo (2000) obtained elastic--plastic solutions for the axial

response of piles in a Gibson soil. Most of the analytical studies

have been performed for a Gibson soil rather than for

a multilayered soil because the mathematical treatment is easier.

Vallabhan and Mustafa (1996) proposed a simple closed-form

solution for a drilled pier embedded in a two-layer elastic soil based

on energy principles. Lee and Xiao (1999) expanded the solution of

Vallabhan and Mustafa (1996) to multilayered soil and compared

their solution with the results obtained by Poulos (1979) for a three-

layered soil. Although Lee and Xiao (1999) suggested an analytical

method for a vertically loaded pile in a multilayered soil, they did

not obtain explicit analytical solutions.

In this paper we present explicit analytical solutions for a

vertically loaded pile in a multilayered soil. The soil is assumed

to behave as a linear elastic material. The governing differential

equations are derived based on energy principles and calculus of

variations. The integration constants are determined using

Cramer’s rule and a recurrence formula. In addition, solutions

for a pile embedded in a multilayered soil with the base resting on

a rigid material are obtained by changing the boundary conditions

of the problem. We first review the mathematical formulation and

the derivation of the equations using energy principles. We then

compare our solutions with others from the literature. Finally, we

use the results of a pile load test from the literature to verify the

results obtained using the solutions proposed in this paper.

2. Mathematical formulation

2.1 Definition of the problem and basic assumptions

We consider a cylindrical pile of length Lp and circular

cross section of radius rp. The pile, which is under an axial
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load P, is embedded in a total of N horizontal soil layers.

The pile itself crosses m layers, and there are N - m layers

below its base. All soil layers extend to infinity in the

radial direction, and the bottom (Nth) layer extends to

infinity downwards in the vertical direction. As shown in

Figure 1, Hi denotes the vertical depth from the ground

surface to the bottom of any layer i, which implies that the

thickness of layer i is Hi -- Hi--1 with H0 = 0.

We refer to the pile cross section at the top of the pile as the

pile head and to the pile cross section at the base of the pile as the

pile base. Since the problem is axisymmetric, we choose a

system of cylindrical coordinates with the origin coinciding

with the centre of the pile cross section at the pile head and the

z axis coinciding with the pile axis (z is positive in the downward

direction). One of the assumptions we have made is that the pile

and the surrounding soil have perfect compatibility of displace-

ment at the pile--soil interface and at the boundaries between soil

layers. In other words, it is assumed that there is no slippage or

separation between the pile and the surrounding soil and between

soil layers. Furthermore, the soil medium within each layer is

assumed to be isotropic, homogeneous, and linear elastic. Since

radial and tangential strains are very small compared with the

vertical strains, they can be neglected. The vertical displacement

uz(r, z) at any point in the soil is represented as follows:

uzðr; zÞ ¼ wðzÞ � �ðrÞ ð1Þ

where w(z) is the vertical displacement of the pile at a depth

equal to z, and �(r) is the soil displacement dissipation function

in the radial direction. The function �(r) is a shape function that

determines the rate at which the vertical soil displacement

decreases in the radial direction with increasing distance from

the pile. Since the vertical displacements within any given cross

section of the pile are the same, we assume that �(r) = 1 from

r = 0 to r = rp. As the vertical soil displacement is zero as r

approaches infinity, we assume that �(r) = 0 as r!1.

2.2 Stress--strain--displacement relationships

The stress--strain relationship in an isotropic elastic soil med-

ium can be expressed as:
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where Gs and ls are the elastic constants of the soil. The strain--

displacement relationship is given by:
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By substituting (3) into (2), we obtain the strain energy density

function W = sij"ij/2, with summation implied by the repeti-

tion of the indices i and j as required in indicial notation:

1

2
�ij"ij ¼

1

2
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� �2

þGs w
d�
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� �2
" #

ð4Þ

where sij and "ij are the stress and strain tensors.

2.3 Governing differential equation for the pile and soil
beneath the pile

The total potential energy � of an elastic body is defined as the

sum of the internal potential energy (the sum of the strain

energy U of the pile and soil) and the external potential energy

(equal to minus the work done by the external forces applied to

the pile in taking it from the at-rest condition to its configura-

tion under load). The total potential energy of the soil--pile

system subjected to an axial force P is given by:

� ¼ Upile þ Usoil � Pwð0Þ
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Substituting (4) into (5) and integrating with respect to �, we

obtain:
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Figure 1. Geometry of the pile--soil system.
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We can now use calculus of variations to obtain the equili-

brium equations. In order for a stable equilibrium state to be

reached, the first variation of the potential energy must be zero

(d� = 0). We then take variations on w and �. We obtain the

governing differential equations for each domain by equating

these variations to zero.

The following differential equation for the pile displacement

in any layer i is obtained for 0 � z � Lp:

� ðEpAp þ 2tiÞ
d2wi

dz2
þ kiwi ¼ 0 for 0 � z � Lp ð7Þ

where

ki ¼ 2�Gsi

Z 1
rp

r
d�

dr

� �2

dr ð8Þ

ti ¼ �ðlsi þ 2GsiÞ
Z 1

rp

r�2dr: ð9Þ

Since there are m layers in this interval, equation (7) is valid for

i = 1, . . ., m. The parameter ki has units of FL-2 (F and L

denote force and length, respectively) and represents the shear-

ing resistance of the soil in the vertical direction and hence the

change in shear stress along the radial direction. The parameter

ti has units of force and accounts for the soil resistance to

vertical compression.

Similarly, we obtain the following differential equation for

the soil displacement in any layer j beneath the pile:

� �r2
pðlsj þ 2GsjÞ þ 2tj

h i d2wj

dz2
þ kjwj ¼ 0

for Lp � z � 1 ð10Þ

where kj and tj are also defined by equations (8) and (9) with j

replacing i. Equation (10) is valid for j = m + 1, . . ., N.

Equations (7) and (10), which were obtained for different

domains, can be consolidated into a single governing differen-

tial equation. This can be done by noting that lsi + 2Gsi is a

function of the Poisson’s ratio nsi and the Young’s modulus Esi

of the soil. This leads to:

lsi þ 2Gsi ¼
Esið1� �siÞ

ð1þ �siÞð1� 2�siÞ
¼�Esi ð11Þ

where�Esi is the constrained modulus of the soil for a given layer

i. Using this notation, we obtain the governing differential

equation for the pile and soil below it:

�ðEiAi þ 2tiÞ
d2wi

dz2
þ kiwi ¼ 0 ð12Þ

where Ei = Ep and Ai = Ap when 1 � i � m, Ei ¼�Esi and

Ai = �rp
2 when (m + 1) � i � N. This notation for Ei and Ai

will be used hereafter unless otherwise stated. Note that both ki

and ti are a function of � and the shear modulus of the soil.

2.4 Governing differential equation for the soil surrounding
the pile

As done earlier, we obtain the governing differential equation

for the soil surrounding the pile by taking the variation of � and

then equating it to zero:

d2�

dr2
þ 1

r

d�

dr
� 	2� ¼ 0 ð13Þ

where

	 ¼
ffiffiffiffiffi
ns

ms

r
ð14Þ

and ms and ns are given by

ms ¼
XN

i¼1

Gsi

Z Hi

Hi�1

w2
i dz ð15Þ

ns ¼
XN

i¼1

ðlsi þ 2GsiÞ
Z Hi

Hi�1

dwi

dz

� �2

dz: ð16Þ

The parameter ms has units of FL, and ns has units of FL-1.

Therefore 	 has units of L-1, and it determines the rate at which

the vertical soil displacement diminishes in the radial direction.

3. Solutions for the governing differential equations

3.1 Solution for the displacement dissipation function f

Equation (13) is a form of the modified Bessel differential

equation, and its general solution is given by:

�ðrÞ ¼ c1I0ð	rÞ þ c2K0ð	rÞ ð17Þ

where I0(�) is a modified Bessel function of the first kind of zero

order, and K0(�) is a modified Bessel function of the second kind

of zero order.

As discussed earlier, �(r) = 1 at r = rp, and � = 0 at r!
1. These boundary conditions lead to:

�ðrÞ ¼ K0ð	rÞ
K0ð	rpÞ

: ð18Þ
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3.2 Solution for the pile displacement function w

The general solution of equation (12), which is a second-order

linear differential equation, is given by:

wiðzÞ ¼ Bie
liz þ Cie

�liz ð19Þ

where

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ki

EiAi þ 2ti

r
ð20Þ

and Bi and Ci are integration constants. We obtain the pile axial

strain by differentiating (19) with respect to z. Based on the

relationship between axial strain and axial force, we obtain:

QiðzÞ ¼ �ðEiAi þ 2tiÞ
dwi

dz
ð21Þ

where Qi(z) is the axial load acting on the pile at a depth z in the

ith layer. Then we obtain the following equation for the axial

load in the pile at a given cross section:

QiðzÞ ¼ �aiBie
liz þ aiCie

�liz ð22Þ

where

ai ¼ liðEiAi þ 2tiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðEiAi þ 2tiÞ

p
: ð23Þ

As we have 2N unknown integration constants (B1, C1, B2,

C2, . . ., BN, CN), we need to identify 2N boundary conditions in

order to determine their values. First, the vertical soil displace-

ment at an infinite depth below the pile base must be zero.

Secondly, the magnitude of the load at the pile head should be

equal to the applied external load. Finally, displacement and

force should be the same at the interface between any two layers

when calculated with the properties of either layer. These give

us the 2N boundary conditions, and we can determine all the

integration constants. These boundary conditions can be

expressed as follows:

wN zð Þjz!1¼ 0 ð24Þ

Q1 zð Þjz¼0 ¼ P ð25Þ

eliHi Bi þ e�liHi Ci � eliþ1Hi Biþ1 � e�liþ1Hi Ciþ1 ¼ 0

for 1 � i � N � 1 ð26Þ

�aie
liHi Bi þ aie

�liHi Ci þ aiþ1eliþ1Hi Biþ1 � aiþ1e�liþ1Hi Ciþ1 ¼ 0

for 1 � i � N � 1: ð27Þ

From equations (19) and (24) and equations (22) and (25), we

obtain:

BN ¼ 0 ð28Þ

�a1B1 þ a1C1 ¼ P: ð29Þ

No matter how many layers we have, equations (28) and (29)

always apply and remain unchanged. Equations (26) to (29) can

be expressed in matrix form as follows:

½M�½X� ¼ ½V � ð30Þ

where

½M� ¼

0 0 0 0 0 0 � � � 0 0 0 0 1 0

�a1 a1 0 0 0 0 � � � 0 0 0 0 0 0

el1H1 e�l1H1 �el2H1 �e�l2H1 0 0 � � � 0 0 0 0 0 0

�a1el1H1 a1e�l1H1 a2el2H1 �a2e�l2H1 0 0 � � � 0 0 0 0 0 0

0 0 el2H2 e�l2H2 �el3H2 �e�l3H2 � � � 0 0 0 0 0 0

0 0 �a2el2H2 a2e�l2H2 a3el3H2 �a3e�l3H2 � � � 0 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 0 0 � � � 0 0 elN�1HN�1 e�lN�1HN�1 �elN HN�1 �e�lN HN�1

0 0 0 0 0 0 � � � 0 0 �aN�1elN�1HN�1 aN�1e�lN�1HN�1 aNelN HN�1 �aNe�lN HN�1

2
66666666666664

3
77777777777775
ð31Þ

½X� ¼

B1

C1

B2

C2

..

.

BN�1

CN�1

BN

CN

2
66666666666664

3
77777777777775

ð32Þ

½V � ¼

0

P

0

0

..

.

0

0

0

0

2
6666666666664

3
7777777777775
: ð33Þ

The dimensions of [M], [X], and [V] are [2N · 2N], [2N · 1],

and [2N · 1], respectively. If we solve equation (30), which can

be done either analytically or numerically, we can determine
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the integration constants. However, a more efficient way of

determining all the integration constants is to find a recurrence

relation based on the boundary conditions. For this purpose, we

rewrite equations (19) and (22) in matrix form:

wiðzÞ
QiðzÞ

� �
¼ eliz e�liz

�aie
liz aie

�liz

� �
Bi

Ci

� �
ð34Þ

From the continuity condition of displacement and force at

the interface between layers, we obtain:

wiðHiÞ
QiðHiÞ

� �
¼ wiþ1ðHiÞ

Qiþ1ðHiÞ

� �
ð35Þ

Equations (34) and (35) give us the following recurrence

formula for the integration constants:

Bi

Ci

� �
¼ 1

2ai

ðai þ aiþ1Þe�ðliHi�liþ1HiÞ ðai � aiþ1Þe�ðliHiþliþ1HiÞ

ðai � aiþ1ÞeðliHiþliþ1HiÞ ðai þ aiþ1ÞeðliHi�liþ1HiÞ

" #
Biþ1

Ciþ1

� �

for 1 � i � N � 1: ð36Þ

Therefore, if we determine BN and CN, we can determine all the

Bi and Ci, in sequence.

Using Cramer’s rule, the constants Bi and Ci are obtained

from

Bi ¼
jM2i�1j
jMj ð37Þ

Ci ¼
jM2ij
jMj ð38Þ

where |M| is the determinant of [M], and |Mk| is the determinant

of [M] with the kth column replaced by the vector [V]. In order

for a given problem to have physical meaning, |M| must not be

zero. Therefore, from (28) and (37), we obtain:

jM2N�1j ¼ 0: ð39Þ

Similarly, CN is given by

CN ¼
jM2N j
jMj ð40Þ

where

jM2N j ¼

0 0 0 0 � � � 0 0 1 0

�a1 a1 0 0 � � � 0 0 0 P

el1 H1 e�l1 H1 �el2 H1 �e�l2 H1 � � � 0 0 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
. ..

.

0 0 0 0 � � � �aN�1elN�1 HN�1 aN�1e�lN�1 HN�1 aN elN HN�1 0

����������

����������
ð41Þ

The determinant of [M2N] is:

jM2N j ¼ 2N�1P
YN�1

i¼1

ai ð42Þ

where the symbol � indicates a product:

Yk

i¼1

xi ¼ x1x2x3 � � � xk:

If we substitute equations (37) and (38) into equation (36),

we obtain:

jM2i�1j
jM2ij

� �
¼ 1

2ai

ðai þ aiþ1Þe�ðliHi�liþ1HiÞ ðai � aiþ1Þe�ðliHiþliþ1HiÞ

ðai � aiþ1ÞeðliHiþliþ1HiÞ ðai þ aiþ1ÞeðliHi�liþ1HiÞ

" #
jM2iþ1j
jM2iþ2j

� �

for 1 � i � N � 1: ð43Þ
In order to obtain |M|, we use the boundary condition at the

pile head. By substituting B1 = |M1|/|M| and C1 = |M2|/|M|

into equation (29), we obtain the following relationship:

jMj ¼ a1

P
ðjM2j � jM1jÞ: ð44Þ

The numerators in equations (37) and (38) can be determined

recurrently from equation (43) by using equations (39) and (42)

as its ignition terms. The denominators in equations (37) and

(38) are obtained from equation (44). Finally, we determine all

the integration constants using equations (37) and (38). The

displacement and force at each layer follow from equations (19)

and (22), respectively.

Using this procedure, we can obtain explicit analytical solu-

tions for a vertically loaded pile installed in a soil with N layers.

Table 1 shows the analytical solutions for the cases of two,

three, and four layers. An example of the three-layer case is

given in the Appendix.

In design, we are interested in estimating the settlement at the

pile head when the pile is subjected to the design load. This can

be obtained from the solution for the displacement within the

first layer:

wt ¼ w1ð0Þ ¼ B1 þ C1 ¼
jM1j
jMj þ

jM2j
jMj ð45Þ

The explicit analytical solutions presented in this paper have

the advantage that they can easily be computer coded.

3.3 Solution for a pile embedded in a layered soil resting on
a rigid base

Piles are often socketed in a competent layer or rock to obtain

a large base capacity. If we know the elastic properties of

such a layer, we can use the solution presented in the pre-

vious section. We can also obtain analytical solutions for a

vertically loaded pile with the base resting on a rigid material

which can be used when the elastic properties of the bearing

layer are unknown but it is known that it is very stiff. We can

do this by restricting the vertical displacement at the base of

the pile to zero. The pile--soil system considered here is

shown in Figure 2.

In this case, we have zero displacement at the base of the pile

instead of at infinity. All other boundary conditions remain the

same. Therefore only equation (24) changes:

Vertically loaded pile in multilayered soil 5



wN zð Þjz!Lp
¼ 0: ð46Þ

This gives us:

elN Lp BN þ e�lN Lp CN ¼ 0: ð47Þ

We now have a new matrix [M] for the case of a vertically

loaded pile with the base over a rigid material. As before, we

can calculate |M2N--1| and |M2N|:

jM2N�1j ¼ �2N�1e�lN Lp P
YN�1

i¼1

ai ð48Þ

jM2N j ¼ 2N�1elN Lp P
YN�1

i¼1

ai: ð49Þ

Using these two ignition terms and (43), we can obtain explicit

analytical solutions for this case as well.

3.4 Solution scheme

Since the parameter 	 appearing in equation (18) is not known a

priori, an iterative procedure is required to obtain the exact

solutions. First an initial value is assumed for 	, and the ki and

ti values of equations (8) and (9) are calculated. The pile dis-

placements in each layer are calculated from these values using

the analytical solutions given in Table 1. The calculated pile

displacements in each layer are then used to obtain 	 using

equation (14), and the resulting value is compared with the

assumed initial value. Since 	 has units of L-1, iterations are

repeated until the difference between the values of the dimen-

sionless parameter 	rp obtained from two consecutive iterations

falls below the prescribed convergence tolerance. We found that

an exact solution is generally obtained in less than 10 iterations,

regardless of the initial value of 	 assumed. The details of the

solution steps are given in the form of a flowchart in Figure 3.

r
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Layer N

rigid material

M

M
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HN

2rp

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

P

Figure 2. Pile embedded in a multilayered soil with the base resting on a rigid
material.

Table 1. Analytical solutions for a vertically loaded pile installed in profiles consisting of two, three, and four layers

Number of layers

|Mi| Two layers Three layers Four layers

|M1| Pða1 � a2Þe�ðl1H1þl2H1Þ P½ða1 þ a2Þða2 � a3Þe�ðl1H1�l2H1þl2H2þl3H2Þ

þ ða1 � a2Þða2 þ a3Þe�ðl1H1þl2H1�l2H2þl3H2Þ�
P½ða1 þ a2Þða2 þ a3Þða3 � a4Þe�ðl1H1�l2H1þl2H2�l3H2þl3H3þl4H3Þ

þ ða1 þ a2Þða2 � a3Þða3 þ a4Þe�ðl1H1�l2H1þl2H2þl3H2�l3H3þl4H3Þ

þ ða1 � a2Þða2 � a3Þða3 � a4Þe�ðl1H1þl2H1�l2H2�l3H2þl3H3þl4H3Þ

þ ða1 � a2Þða2 þ a3Þða3 þ a4Þe�ðl1H1þl2H1�l2H2þl3H2�l3H3þl4H3Þ�

|M2| Pða1 þ a2Þeðl1H1�l2H1Þ P½ða1 � a2Þða2 � a3Þeðl1H1þl2H1�l2H2�l3H2Þ

þ ða1 þ a2Þða2 þ a3Þeðl1H1�l2H1þl2H2�l3H2Þ�
P½ða1 � a2Þða2 þ a3Þða3 � a4Þeðl1H1þl2H1�l2H2þl3H2�l3H3�l4H3Þ

þ ða1 � a2Þða2 � a3Þða3 þ a4Þeðl1H1þl2H1�l2H2�l3H2þl3H3�l4H3Þ

þ ða1 þ a2Þða2 � a3Þða3 � a4Þeðl1H1�l2H1þl2H2þl3H2�l3H3�l4H3Þ

þ ða1 þ a2Þða2 þ a3Þða3 þ a4Þeðl1H1�l2H1þl2H2�l3H2þl3H3�l4H3Þ�

|M3| 0 2Pa1ða2 � a3Þe�ðl2H2þl3H2Þ 2a1P½ða2 þ a3Þða3 � a4Þe�ðl2H2�l3H2þl3H3þl4H3Þ

þ ða2 � a3Þða3 þ a4Þe�ðl2H2þl3H2�l3H3þl4H3Þ�

|M4| 2Pa1 2Pa1ða2 þ a3Þeðl2H2�l3H2Þ 2a1P½ða2 � a3Þða3 � a4Þeðl2H2þl3H2�l3H3�l4H3Þ

þ ða2 þ a3Þða3 þ a4Þeðl2H2�l3H2þl3H3�l4H3Þ�

|M5| -- 0 4a1a2Pða3 � a4Þe�ðl3H3þl4H3Þ

|M6| -- 4Pa1a2 4a1a2Pða3 þ a4Þeðl3H3�l4H3Þ

|M7| -- -- 0

|M8| -- -- 8Pa1a2a3

|M| jMj ¼ a1
P
ðjM2j � jM1jÞ jMj ¼ a1

P
ðjM2j � jM1jÞ jMj ¼ a1

P
ðjM2j � jM1jÞ

6 H. Seo and M. Prezzi



4. Comparison with previous analyses

It is useful to compare our analysis and its results with previous

analyses of the same problem. We consider the analyses of

Poulos (1979) and Lee (1991).

Poulos (1979) analysed the settlement of a single pile in

nonhomogeneous soil using the method proposed by Mattes

and Poulos (1969). In this analysis, the pile is divided into a

number of equal cylindrical elements, with any element j

being acted upon by a shear stress tj. The expressions for the

pile displacements are obtained from the vertical equilibrium

of a small cylindrical element of the pile, assuming that the

pile deforms in simple axial compression. The vertical dis-

placements of the soil due to the shear stress along the pile

shaft are obtained by double integration of the Mindlin equa-

tion for vertical displacement. To calculate the displacement

of the soil at any element i due to the shear stress tj on element

j, the average of the Young’s moduli of soil elements i and j

was used for analysis of nonhomogeneous soils. By imposing

a no-slippage condition at the pile--soil interface, the shear

stresses and the displacements along the pile can be calcu-

lated. The solutions obtained were compared with those from

finite element analysis for the three idealized cases shown in

Figure 4. The solutions are given in terms of a settlement

influence factor Iw defined by:

Iw ¼
Es;ref Bwt

P
ð50Þ

where Es,ref is the reference Young’s modulus of soil, B (=2rp)

is the pile diameter, wt is the settlement at the pile head, and P is

the applied load.

Lee (1991) expanded the approach of Randolph and Wroth

(1978) to layered soil. Lee’s analysis accounts for the effect of

the change in shear stress in the radial direction. Like the

analysis of Randolph and Wroth (1978), it relies on the concept

of the magical radius rm at which the displacement becomes

negligible. Both Randolph and Wroth (1978) and Lee (1991)

did not include the vertical compressive stress in the equili-

brium equation.

To consider the differences between the three analyses, we

performed calculations for the same cases proposed by

Poulos (1979) which were also used by Lee (1991) for vali-

dation of his analysis. To use our analysis for these cases, we

divided the soil profile into five layers, with the bottom of the

third layer flush with the base of the pile. The fourth layer

extends from a depth of L to 2L, and the fifth layer extends

from 2L to infinity. The same value for the Young’s modulus

of the soil was used for the third and fourth layers. For the

rigid base (fifth layer), Es5 = 1010Ep was used. Our results

are given together with those of Poulos (1979) and Lee

(1991) in Table 2. The Poulos’s analysis produces the largest

values of Iw, while the results from the solutions proposed in

this paper yield the smallest values. Our solution is slightly

stiffer than that of Poulos (1979) who neglected the boundary

condition in the radial direction (zero soil displacement at

r = 1) and considered only the shear stress at the pile--soil

interface (the resistance of the soil to compression was

ignored). Lee (1991) also neglected the resistance of the

soil to compression.

The solutions proposed in this paper consider both the

resistance offered by the soil to shearing along the radial

direction and the resistance of the soil to vertical compres-

sion. These shear and compression soil resistances are

reflected in the parameters ki and ti, respectively, which

appear in equations (8) and (9). The smallest values of Iw

are obtained with the solutions presented in this paper

because they account for both these soil resistances.

5. Case study

Russo (2004) presented a case history of micropiles used for

underpinning a historical building in Naples, Italy. The micro-

piles were installed in a complex soil profile (there are thick

layers of man-made materials accumulated over millennia at the

site). According to Russo (2004), the installation steps were as

follows: (1) drilling a 200-mm-diameter hole using a continuous

flight auger, (2) inserting a steel pipe equipped with injection

valves, (3) filling the annular space between the pipe and the soil

with grout, (4) grouting the pile shaft through each valve using a

double packer, and (5) filling the steel pipe with grout. A

micropile (0.2 m in diameter and 19 m long) was load tested.

Two anchor piles were used to provide reaction to the loading

frame, and the compressive load was applied to the test pile with

a hydraulic jack. The vertical displacement of the pile head was

measured using linear variable differential transformers

(LVDTs), and the axial strain along the shaft was measured

with vibrating-wire strain gages.

Russo (2004) compared the pile load test results with those

obtained from finite element analysis. The soil profile and the

Assume initial β ini

Calculate ki, ti, λi, and ai

Input Lp, rp, Ep, Hi, Esi, si,            PInput Lp, rp, Ep, Hi, Esi, ,            P

Calculate |M2N-1| and |M2N |

Calculate Bi and Ci

Calculate all |Mi| from recurrence formula

Calculate ms, ns, and β new

|( ini – new)rp| < 0.00001|( βini –  βnew)rp| < 0.00001

ini = new

NoNo

Yes

Save all valuesSave all values

βini  =  βnew

ν

Figure 3. Flowchart for the iterative procedure used to determine the para-
meter 	.
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elastic properties of each soil layer are shown in Figure 5.

Young’s moduli of each soil layer were back-calculated

from the finite element analysis. The Poisson’s ratio was

assumed to be 0.3 for all the soil layers. Although Russo

(2004) did not provide information on the geometry and

properties of the steel pipe left inside the micropile, its

outer diameter and inner diameter were assumed to be

33.4 mm and 25.4 mm, respectively. Accordingly, assum-

ing that The Young’s moduli of the steel and grout are 200

GPa and 25 GPa, respectively, the equivalent Young’s

modulus of the composite steel--grout cross section is cal-

culated to be approximately 27 GPa.

Table 3 shows the input values used in the analysis. As the

soil profile consists of four layers, we used the analytical

solution given in Table 1. By following the iterative procedure

outlined in Figure 3, we obtained the results shown in Table 4.

All these calculations can be performed easily with mathema-

tical software such as MathCAD or MATLAB.

Es1 = Es,ref0.3L

0.4L

0.3L

Es2 = 2Es,ref

Es3 = 4Es,ref

L

/ / / / / / / / / / / / / / / / / /

Es1 = 4Es,ref

Es2 = 2Es,ref

Es3 = Es,ref

Es1 = 2Es,ref

Es2 = Es,ref

Es3 = 4Es,ref

CASE 1 CASE 2 CASE 3

2rp

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

Lp/rp = 50 Ep/Es,ref = 1000 s = 0.3

PP P

ν

Figure 4. Layered soil profiles for analyses (modified from Poulos 1979).

Table 2. Comparison of solutions in layered soil

Settlement influence factor Iw = Es,refBwt/P

Case Poulos 1979 Poulos 1979 (FEM) Lee 1991 Present solution

1 0.0386 0.0377 0.0361 0.0336
2 0.0330 0.0430 0.0372 0.0309
3 0.0366 0.0382 0.0358 0.0323

E = 50 MPa, ν = 0.3

E = 117 MPa, ν = 0.3

12 m

21 m

E = 138 MPa, ν = 0.3

pile

Ancient made ground

Cohesionless pozzolana

Depth (m)

19 m

Recent made ground

Figure 5. Soil profile and elastic properties of each layer (after Russo 2004).

Table 3. Input values for analysis (rp = 0.1 m, Ep = 27 GPa*)

Layer (i) Hi (m) Esi (MPa) nsi*

1 12 50 0.3
2 19 117 0.3
3 21 117 0.3
4 1 138 0.3

*Assumed values.

Table 4. Results of analysis (P = 542 kN)

Layer �(r) wi(z) Qi(z)

1 -1.239 · 10-5e0.1719z

+ 3.146 · 10-3e-0.1719z
-2.126 · 103e0.1719z

+ 5.399 · 105e-0.1719z

2
K0ð0:3344rÞ
K0ð0:03344Þ

1.650 · 10-7e0.2399z

+ 5.327 · 10-3e-0.2399z
4.748 · 101e0.2399z

+ 1.533 · 106e-0.2399z

3 -2.408 · 10-10e0.4400z

+ 3.105 · 10-1e-0.4400z
-3.777 · 10-2e0.4400z

+ 4.871 · 107e-0.4400z

4 2.849 · 10-1e-0.4400z 5.272 · 107e-0.4400z

8 H. Seo and M. Prezzi



Figure 6 shows measured and calculated load-transfer curves

for applied loads of 51, 253, and 542 kN. Figure 7 shows both

the measured load--settlement curve and that calculated using

the solution presented in this paper. These figures show that

there is very good agreement between the calculated and mea-

sured values, although the calculated pile head settlement is

smaller than the measured value for loads greater than about

400kN.

Figure 8 shows the calculated vertical pile displacement

versus depth. The vertical pile displacement decreases expo-

nentially with increasing depth. Figure 9 shows the vertical soil

displacement as a function of the radial distance from the pile.

20

16

12

8

4

0

)
m( htpe

D

0 100 200 300 400 500 600

Load (kN)

calculated
measured (51 kN)
measured (253 kN)
measured (542 kN)

Figure 6. Measured and calculated load--transfer curves for applied loads of
51, 253, and 542 kN.

8

6

4

2

0

)
m

m( tne
meltteS

0 100 200 300 400 500 600

Load (kN)

predicted
measured

Figure 7. Comparison of the calculated and measured pile head settlement
values as a function of the load applied at the pile head.

20

16

12

8

4

0

D
ep

th
(m

)

0 1 2 3 4

Displacement (mm)

Figure 8. Calculated vertical pile displacement versus depth.

4

3

2

1

0

)
m

m( tne
meltteS

0 5 10 15 20

Radial distance (m)

Figure 9. Calculated vertical soil displacement at the level of the pile head as
a function of the radial distance from the pile axis.
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Since the present solution satisfies radial boundary conditions,

the vertical soil displacement at the level of the pile head

becomes negligible at a distance of about 10 m from the pile

axis, which corresponds to 50 times the pile diameter.

6. Conclusions

Explicit analytical solutions for a vertically loaded pile

embedded in a multilayered soil have been presented in this

paper. The solutions satisfy the boundary conditions of the

problem. The soil is assumed to behave as a linear elastic

material. The governing differential equations are derived

based on the principle of minimum potential energy and calcu-

lus of variations. The integration constants are determined

using Cramer’s rule and a recurrence formula. In addition,

solutions for a pile embedded in a multilayered soil with the

base resting on a rigid material are obtained by changing the

boundary conditions of the problem. The solutions provide

the vertical pile displacement as a function of depth, the load-

transfer curves, and the vertical soil displacement as a function

of the radial direction at any depth if the following are known:

radius, length, and Young’s modulus of the pile, Poisson’s ratio

and Young’s modulus of the soil in each layer, thickness of each

soil layer, number of soil layers, and applied load. The use of

the analysis was illustrated by obtaining load--transfer and

load--settlement curves for a case available in the literature

for which pile load test results are available.
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Appendix. Analytical solution for a profile consisting of

three layers

We will illustrate how we can obtain analytical solutions using

the recurrence procedures described previously. Since we have

three layers, N = 3. From (39) and (42), we obtain:

jM5j ¼ 0 ðA1Þ

jM6j ¼ 22P
Y2

i¼1

ai ¼ 4Pa1a2 ðA2Þ

If we substitute equations (A1) and (A2) into equation (43),

we obtain:

jM3j
jM4j

� �
¼ 1

2a2

ða2 þ a3Þe�ðl2H2�l3H2Þ ða2 � a3Þe�ðl2H2þl3H2Þ

ða2 � a3Þeðl2H2þl3H2Þ ða2 þ a3Þeðl2H2�l3H2Þ

" #
0

4Pa1a2

� �

¼ 2a1P
ða2 � a3Þe�ðl2H2þl3H2Þ

ða2 þ a3Þeðl2H2�l3H2Þ

" #
ðA3Þ

jM1j
jM2j

� �
¼ 1

2a1

ða1 þ a2Þe�ðl1H1�l2H1Þ ða1 � a2Þe�ðl1H1þl2H1Þ

ða1 � a2Þeðl1H1þl2H1Þ ða1 þ a2Þeðl1H1�l2H1Þ

" #
jM3j
jM4j

� �

¼ P

ða1 þ a2Þða2 � a3Þe�ðl1H1�l2H1þl2H2þl3H2Þ

þða1 � a2Þða2 þ a3Þe�ðl1H1þl2H1�l2H2þl3H2Þ

ða1 � a2Þða2 � a3Þeðl1H1þl2H1�l2H2�l3H2Þ

þða1 þ a2Þða2 þ a3Þeðl1H1�l2H1þl2H2�l3H2Þ

2
6664

3
7775

ðA4Þ

Finally, |M| is obtained from equation (44):

jMj ¼ a1

P
ðjM2j � jM1jÞ

¼ a1ða1 � a2Þða2 � a3Þeðl1H1þl2H1�l2H2�l3H2Þ

þ a1ða1 þ a2Þða2 þ a3Þeðl1H1�l2H1þl2H2�l3H2Þ

� a1ða1 þ a2Þða2 � a3Þe�ðl1H1�l2H1þl2H2þl3H2Þ

� a1ða1 � a2Þða2 þ a3Þe�ðl1H1þl2H1�l2H2þl3H2Þ ðA5Þ

Now, by simply calculating |Mi|/|M|, we obtain the analytical

solutions for the vertical settlement of the pile and the axial load

in the pile at a given cross section.
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