
Filtering for Private Collaborative

Benchmarking

Florian Kerschbaum1 and Orestis Terzidis1

SAP Research, Karlsruhe, Germany
Florian.Kerschbaum@sap.com

Orestis.Terzidis@sap.com

Abstract. Collaborative Benchmarking is an important issue for mod-
ern enterprises, but the business performance quantities used as input
are often highly confidential. Secure Multi-Party Computation can offer
protocols that can compute benchmarks without leaking the input vari-
ables. Benchmarking is a process of comparing to the “best”, so often
it is necessary to only include the k-best enterprises for computing a
benchmark to not distort the result with some outlying performances.
We present a protocol that can be used as a filter, before running any col-
laborative benchmarking protocol that restricts the participants to the
k best values. Our protocol doesn’t use the general circuit construction
technique for SMC aiming to optimize performance. As building blocks
we present the fastest implementation of Yao’s millionaires’ protocol and
a protocol that achieves a fair shuffle in O(log n) rounds.

1 Introduction

Benchmarking is a management process where multiple companies evaluate their
processes in comparison to each other, usually their competitors in their indus-
try segment. Collaborative benchmarking is when multiple companies engage in
this process together. Common statistical quantities, such as the average or vari-
ance, of business process performance quantities, e.g. time to ship, cash flow or
return on investment, are used to compare performance. But many of the input
variables to this stochastic calculation are very sensitive and highly confidential,
even within one company. Gathering statistics over these variables is therefore
a privacy-critical task. Current solutions solve this problem by anonymizing the
data and use a trusted third party. Protocols that don’t require a trusted third
party are expected to increase customer acceptance.

Secure Multi-Party Computation (SMC) allows to compute such statistics
without revealing anything about the input variables that cannot be inferred by
the result. This paper focuses on enabling an important calculation for bench-
marking. Often there is a small fraction of the participating companies whose
performance is so outrageously bad that their inclusion in the benchmark, e.g.
average, would distort the result and hamper the benchmarking process. Since
benchmarking aims at process performance improvement, one could get a falsi-
fied picture of his standing compared to the competition.



We present a filter protocol that runs before the protocol that computes the
statistical quantity and restricts the computation to the k best values. Restrict-
ing to the k best values is equivalent to excluding the n − k worst values when
n is publicly known. It is general, because it can be applied before most other
protocols that collaboratively compute benchmarks, e.g.[12], and that wants to
exclude outlying values. The protocol is multi-party and each party holds one
input value to the computation. The privacy requirements are that no one learns
anything about anybody else’s value, i.e. each value is kept private to its party.
Also no one should learn anything about the k-partitioning of the values, i.e. no
one should know whether anybody’s - including his own - value is in the set of
the k included values or not.

The protocol sorts privately the input values: Each participant is assigned
a rank (1...n) and the idea is that at the end of the protocol, the values are
sorted, such that the ith-ranked element is at the ith participant. The protocol
emulates a sorting network [10] where each participant is connected to one input
wire. The only operation in a sorting network is the comparison of two values
at two participants, and eventually exchanging them. In a sorting network there
are many comparison gates that are arranged in layers. Executing all compar-
ison gates will sort the values. Each comparison gate performs the comparison
between two parties’ values and exchanges them if necessary. We are using an
implementation of Yao’s millionaire’s protocol to protect the values during the
comparison. Yao’s millionaires’ protocols make the result of the comparison pub-
lic and in order to avoid leaking information in the sorting network we shuffle
the input values with a random permutation unknown to all participants. Then
the result of the comparison is a random variable and no one can track his own
value through the sorting network. The only cryptographic tools our protocol
uses are mix networks [9] and homomorphic encryption [21, 22].

The remainder of this paper is organized as follows: The next section reviews
related work, section 3 presents one comparison step in the sorting network,
section 4 shows how to start the protocol using mix networks and section 5
concludes the paper.

2 Related Work

There are few business-oriented applications of SMC related to our application
of SMC to benchmarking in the literature. Specifically for benchmarking there
is only one [7]. It presents a protocol to compute division with a secret divisor.
It is extended to a number of useful protocols for benchmarking and forecasting
and is an ideal candidate to be applied after our filter protocol. Another busi-
ness application of SMC has been presented in [2]. Protocols for secure supply
chain management are defined that protect a retailer such that its profit is not
consumed by the supplier. Most protocols are simple, yet well motivated for this
business application.

There are several protocols that solve algorithms privately that are related
to our sorting problem. There is a protocol in [3] that finds the maximum of



two additively split vectors. It uses homomorphic encryption and a protocol for
Yao’s millionaire’s problem. In [1] the kth ranked element is computed. The
solution for the two-party case is very clever, if k is close to the median. It
uses a solution to Yao’s millionaire’s problem. Its multiparty solution guesses
the element by searching over its domain. Frikken et al. present solutions to
private binary sort [12]. In several of their protocols they use solutions to Yao’s
millionaire’s protocol.

Our protocol is also not the first to use mix networks for SMC. There is a
class of protocols for private distributed constraint solving that use mix networks
[25, 26]. For general SMC circuit constructions Jakobsson and Juels present a
solution using homomorphic encryption and mix networks [19]. In addition to
the examples above there are many SMC protocols not listed here that use
homomorphic encryption.

Mix networks were invented in [9]. Many different cryptographic protocols
have been derived from it. The idea of [9] has been put to practice for anonymous
communication in [28]. The research in this area is very active and there are many
more excellent results also not listed here.

Homomorphic encryption is available for many homomorphisms. We need a
homomorphism over the addition group and two encryption schemes that can
achieve that in practice are [21, 22].

We have avoided general SMC constructions, even though there are clever
results on special protocols such as Yao’s millionaire’s problem. In [8] a proto-
col using a third party and a clever number theoretic construction is presented.
Homomorphic encryption solves the problem in [11]. Although [11] is the best
two-party solution known, it is still linear in the number of bits. Another crypto-
graphic tool we have avoided for performance reasons in our protocol is Oblivious
Transfer [23] which can be used to solve any SMC problem.

SMC was introduced in [30]. [30] also presents a general solution and Yao’s
millionaire’s problem in which two millionaires want to compare their wealth, but
do not want to reveal the exact number. Clever general constructions for SMC
have been found in [6, 14]. Goldreich extends their presentation into an excellent
expose [13]. The general idea is to construct a binary circuit of the function
and evaluate it obviously. This can be done in one round, but the constructed
circuit can be quite large. There exists a practical implementation of this general
solution for two-party problems [20]. Nevertheless it is argued that for practical
problems, faster solution are sought [15].

3 A Comparison Gate in the Sorting Network

Our protocol emulates a sorting network where each participant is connected to
one input wire. The sorting then proceeds by executing the “compare and ex-
change” gates for all pairs of input wires. The gates in one layer of the network
can be executed in parallel. Most practically efficient sorting networks have a
depth of O(log2 n) and a communication complexity of O(n log2 n) and, since
our comparison gates operate in O(1) rounds, this step of the protocol can be



completed in O(log2 n) rounds with a communication complexity of O(n ·log2 n).
The comparison gates are preceded by a secret, random permutation protocol
that can be of independent interest. Our protocol uses a solution to Yao’s mil-
lionaires’ problem that outperforms the best-known solution which can also be
used in other contexts. The complexity of O(log2 n) rounds and communication
complexity of O(n log2 n) of the overall protocol is therefore as efficient as the
non-secure version.

3.1 Preliminaries

Security Model Our protocol works in the semi-honest or honest-but-curious
model [13]. Each party follows the protocol as specified, but keeps a record of
the messages and tries to gain as much information as possible from them.

Fig. 1. A section of the sorting network

Definitions Let p1, . . . , pn be the participants of the protocol and x = (x1, . . .,
xn) be their input values, i.e. pi has input value xi for i = 1, . . . , n.

Figure 1 shows a section of a sorting network. We compare the input values
of the participants pi : A (Alice) and pj : B (Bob). Without loss of generality we
will assume that i < j. We also assume that k 6= j and i 6= l, since duplicate gates
in subsequent layers are superfluous and can safely be removed. Furthermore,
we assume, also without loss of generality, that k < i and j < l, as depicted in
figure 1.

We use public-key, semantically secure, homomorphic encryption that is
homomorphic in the addition group (modulo some m). We denote such en-
cryption with the public key of Alice as EA(·) and decryption as DA(·). The
homomorphic property then states that there is an operation ×, such that
EA(x)×EA(y) = EA(x+y), and an operation ⋆, such that EA(x)⋆y = EA(x·y).
We used Paillier’s encryption scheme [22] for implementation where × is (modu-
lar) multiplication and ⋆ is (modular) exponentiation. We assume that the public



key of each participant in the homomorphic encryption scheme is known to all
participants.

The comparison gate protocol interlocks the variables from several gates and
we use this notation to differentiate variables from previous gates to newly in-
troduced ones. We use subscript [CA] to denote variables from the comparison
gate between Charlie (C) and Alice (A), e.g. r[CA] is the variable r from that
gate. We do not write the subscript [AB] for variables introduced for the current
comparison between Alice and Bob. Furthermore each participant has one input
value, i.e. Alice has a, Bob has b, Charlie has c and so on. The comparison at
each gate is between those input values, e.g. in the comparison gate between
Charlie and Alice compares c and a.

3.2 Protocol

Let, Alice (A) and Bob (B) be the two participants of the comparison gate
protocol. Then Alice has value a, and Bob has value b. The goal of the comparison
gate is to compute a < b and eventually exchange them.

The privacy requirement is that neither Alice nor Bob may learn their value,
since they flow through the sorting network. Therefore each input value a, b is
split between the two participants using addition, such that no party can infer a
value by its local view of its share. This means, that Alice has the shares aA and
bA and Bob has the shares aB and bB and that a = aA + aB and b = bA + bB.

Alice and Bob can still compare the values.

a < b⇔ aA − bA < bB − aB

The communication consequence of this splitting is that the predecessors
need to transmit shares to the participants. Consider, the scenario in figure 1.
Alice and Bob are engaging in the comparison gate protocol and have done so
previously with Charlie (C) and Donna (D) (Alice with Charlie and Bob with
Donna). From the previous comparison gate protocols Charlie and Donna, have
shares of Alice’s and Bob’s values left. So, Charlie must send his share aC[CA] of
Alice’s input value to Bob and Donna her share bD[BD] of Bob’s value to Alice.
They become aB and bA, respectively. We will present in the next section how
Alice and Bob can do the comparison using a Yao’s millionaires’ protocol. After
the comparison Alice and Bob need to eventually exchange the values depending
on the result. They can do so by exchanging their local share, i.e. no interaction
is necessary. The entire protocol is summarized in figure 2.

3.3 Yao’s Millionaires’ Protocol

The basic idea of our approach is to hide the difference by a hiding factor.
To efficiently hide a number of size O(m) by multiplication the random hiding
factor has to be of size at least O(m2). We want to preserve the greater-than
relation, so we have to prevent “wrap-around” modulo n. Negative values are



Participants Message / Operation
C −→ B aB = aC[CA]

D −→ A bA = bD[BD]

A ←→ B ρ = Yao(aA − bA, bB − aB)
A if ¬ρ then swap(aA,bA)
B if ¬ρ then swap(aB,bB)

Fig. 2. The protocol for one comparison gate

not represented in modular arithmetic, we therefore define the upper half of the
range [0, n− 1] to be negative numbers:

[⌈
n

2
⌉, n− 1] ≡ [−⌊

n

2
⌋,−1]

The multiplicative hiding has a draw-back, if the difference of a and b is 0, i.e.
they are equal. Then the result of the hiding will be 0 regardless of the chosen
hiding factor. This can be avoided by subtracting another (positive) random
number that does not change the result, i.e. that is strictly smaller than the
multiplicative hiding factor. The entire protocol is listed in figure 3.

1. Alice sends EA(a) to Bob.
2. Bob chooses random numbers r and r′ with 0 ≤ r′ < r.
3. Bob computes EA(c) = EA(a)r

·EA(−r · b + r′) = EA(r · a− r · b + r′).
4. Bob sends EA(c) to Alice.
5. Alice decrypts c = DA(EA(c)) and decides a < b if and only if c ≥ n

2
. The

following derivation shows this equivalence:

c mod n ≥
n

2

c < 0

r · (a− b) + r
′

< 0

a− b ≤ −1 < −
r′

r
< 0

6. Alice sends the bit a < b to Bob.

Fig. 3. Yao’s millionaires’ protocol

If the numbers a and b to be compared are drawn from the domain Da =
[la, ha], then the difference is in the domain D− = [la−ha, ha− la]. We can then
choose the random numbers r from the domain Dr = [lr, hr] = [1, (ha − la)2]
and the random numbers r′ from the domain Dr′ = [0, r]. One can randomly



Fig. 4. Performance results

choose one of many possible distributions for choosing the numbers to increase
the Alice’s difficulty of guessing b. To run the protocol correctly the modulus n

of Paillier’s encryption scheme needs to be larger than 2 · ((ha− la)3 +(ha− la)2)
to prevent “wrap-around”.

There is a small leak in the protocol that occurs with very minor probability.
If c is lower than lr, the lower bound of domain Dr (, i.e. c = 0), Alice knows
that a = b. If r and r′ are chosen uniformly from Dr and Dr′ , respectively, then
probability p of accidentally revealing a = b (if a is indeed equal to b) is:

p =

hr
∑

i=1

1

hr

·
1

i
≈

lnhr

hr

For large numbers hr this probability is negligible. E.g. when comparing 160-
bit numbers, p < 2−314.

Performance We have implemented the best-known Yao’s millionaires protocol
by Fischlin [11] to compare the performance to ours. The implementation was
done in Java [17] and evaluated on a computer with a 1.6 GHz Pentium Mobile
processor and 1 GB of RAM running Windows XP using version 1.4.2 of Sun’s
Java SDK [27].

The implementation of Fischlin’s scheme is based on his optimized version
which already provided a significant speed-up compared to an earlier version
using more re-randomization steps. The algorithm for computing the Jacobi
symbol for decrypting is from [4]. No sanity checks were performed, e.g., on the
messages allowing the decryption algorithm to be supplied with a message with
Jacobi symbol J(m|n) = −1. Instead the performance of each implementation



was optimized, as long as the security of the protocol was not violated. This
reduced the decryption of the Goldwasser-Micali (GM) encryptions [16] to one
Jacobi computation modulo an RSA prime factor per cipher-text.

We used a 512-bit RSA modulus for the GM encryption. For our scheme
we used the following formula to compute the key length of Paillier’s encryp-
tion scheme from the bit length bitsm of the numbers to be compared: bitsn =
max(512, (⌊ bitsm

32 ⌋+2)·32) which satisfies our requirement for the modulus above.
The choice of a minimum key-length of 512-bit seems to be acceptable only for
low security requirements, since RSA keys with more than 640 bits have been
successfully factored [5], but we expect similar advantages for larger key sizes.
The term ”low security requirement” refers to the time it takes to break the en-
cryption and not the amount of information revealed in an information-theoretic
sense.

We optimized the implementation of our scheme in two ways. First, we used
the pre-computation of the dividend for decryption as suggestion in [22]. Second,
we saved one more modular exponentiation by not randomizing the encryption
of b. Instead, we just multiply with gb and rely on the randomization done by
the multiplication with r. This leaves the 5 modular exponentiations: two for
encryption of a, one for multiplying with r, one for subtracting b and finally one
for decrypting c. All modular exponentiations done modulo n2.

Our performance results for the comparison of the two protocols are depicted
in figure 4. We have run Fischlin’s scheme with three different parameters for
the error of probability: 2−24, 2−40 and 2−56. They are denoted as Fischlin 24,
Fischlin 40 and Fischlin 56 in the figure. Our scheme is denoted as Millionaire.

4 Bootstrapping the Protocol

In the protocol above Alice and Bob learn the result of the comparison, i.e. they
can track a value’s partial flow through the sorting network. In the worst case
Alice or Bob learns the rank of her or his value. Note, that if neither Alice nor Bob
know where their input values come from, they cannot deduce anything about
the input vector x. We can achieve this with an initial permutation of all input
values that is known to no participating party. Such permutations have been
used in other SMC protocols [25, 26], but we need our own method to prepare
the values for the comparison gate protocol. Also our randomized construction
achieves such a permutation in O(log n) expected steps compared to their O(n)
protocol and thereby keeps the O(log2 n) complexity of the overall protocol. The
overall communication complexity of this protocol is O(n).

4.1 Setup

We use a mix network [9] as a sub-protocol. The construction presented in this
paper fits our purposes very well. It has the following properties:

1. Bob does not know that a message came from Alice.



2. Bob has an anonymous reply channel c[BA] where he can send Alice an
answer.

We denote sending a message from Alice to Bob over the mix network as
A→mix B and sending the anonymous reply as A←mix B. Additionally to the
mix network and the point-to-point secret channels we assume the existence of
a synchronous, authenticated broadcast channel cbroadcast.

Without loss of generality we assume that in the first layer of the network
the comparisons are between the participants p2i−1 and p2i for i = 1, . . . , n

2 .
We denote the sets of odd and even numbered participants as Podd and Peven,
respectively.

4.2 Permutation Protocol

We will first show how to achieve a random permutation of the participants where
part of the permutation is still known to the participants. Then we will modify
the protocol slightly, such that it computes a derangement with the same prop-
erties. A derangement is a permutation with no fixed points, i.e. no participant
remains at its position. Then we will use that protocol to achieve a permuta-
tion of the input variables, such that no participant knows anything about the
permutation and no input variable is traceable, i.e. they are re-randomized.

First we will show how to compute a random permutation Π , such that each
participant pi only knows Π(pi), i.e. he knows his position in the permuted
vector. The protocol Ppermutation proceeds as follows:

1. Each participant pi who has no incoming partner announces itself as pi over
the broadcast channel cbroadcast. Let sfree be the set of those participants.
Initially this set contains all participants. If it is empty the protocol halts.

pi → cbroadcast : pi if ∄xΠ(x) = i

2. Each participant pin who has no outgoing partner chooses randomly a par-
ticipant pout from sfree. He sends to pout a message m over the mix network.

pin →mix pout : m if ∄Π(in)

3. Let si be the set of incoming message over the mix network at participant pi.
Each participant pi then chooses randomly one participant pj from si (if si

is not empty). pi sends over the anonymous reply channel to pj the message
accept and to all other members pk of si the message reject (if there are
any).

pj ←mix pi : accept pj ∈ si

pk ←mix pi : reject ∀pk ∈ si ∧ k 6= j

4. On the receipt of the message accept participant pin adds Π(in) = out to
the permutation.

accept⇒ Π(in) = out



5. The protocol continues at step 1.

This protocol can take O(n) rounds in the worst case, if every participant
chooses the same partner pout every time. But, since this is a randomized algo-
rithm, its expected running time is much more interesting.

Assume that each participant chooses its outgoing partner pout in succession,
i.e. first p1, then p2, and so on until pn. If each participant chooses a different
partner the protocol finishes in this round. Let Ei be the expected number of
participants that have an ingoing partner when it has been participant pi’s turn.
We can compute En as follows:

Ei = Ei−1 +
n− Ei−1

n
= 1 +

n− 1

n
Ei−1 =

i−1
∑

j=0

(n− 1

n

)j

En = lim
i→∞

Ei ≈ 0.6321 · n

This means a constant fraction of the participants are expected to find their
partners in each round. From the resulting recurrence T (n) = 1 + T (n − En)
we can conclude that the expected number of rounds is O(log n) and the overall
communication complexity O(n).

4.3 Derangement Protocol

The protocol Pderangement modifies Ppermutation slightly, such that it computes
a derangement. Recall, that a derangement is a permutation where no element
remains at its place. The only modification is to step 2 of the protocol:

2. Each participant pin who has no outgoing partner chooses randomly a par-
ticipant pout from sfree that is not himself. If he finds such a partner, he
sends to pout a message m over the mix network. If there is only him who
has no ingoing partner, he announces fail over the broadcast channel and
the protocol will restart with an empty permutation Π .

pin →mix pout : m if ∄Π(in) ∧ out 6= in

pin → cbroadcast : fail if sfree = {in}

Protocol Pderangement can theoretically never terminate, since it is not guar-
anteed that a derangement is found. The probability p that a random permuta-
tion is a derangement is p = 1

e
[29]. We are not choosing a random permutation

in Pderangement, but are already tilting the odds towards a derangement by not
picking oneself as a partner in step 2. Nevertheless we are upper bounded by the
random permutation and the expected number of restarts is O(1) and we can
find a derangement in O(log n) expected rounds.



4.4 Final Protocol

We will now put the pieces together and construct a protocol Pfinal that can
be run as the initiation protocol for the sorting network. First the participants
choose a random derangement. The values are sent along that derangement
twice. In the first step the source of the value is already hidden and the second
step hides the target from the source. This results in a permutation (and not a
derangement any longer) that is unknown to all participants, since it is based
on a derangement and no party is source and target of a single message.

We need to take some steps in order to prepare for the comparison gate
protocol. The input values (e.g. a and b) need to be split between Alice and Bob.
Recall, that the initial comparisons are between p2i−1 and p2i for i = 1, . . . , n

2 .
We apply the random permutation only between those fixed pairs, i.e. each “odd”
participant sends his value to his “even” partner. He does so in a split fashion
and encrypts the shares with the public key from another random party in Podd,
such that no intermediate (even) party may learn the entire share.

Since in the resulting permutation a party may receive its own value, we must
prevent it from learning that fact by viewing its local shares. This is done by re-
randomizing the shares with two random variables ra and rb at the intermediate
party, which makes the resulting shares independent again. This party also has
to re-encrypt the value, since the choice of encryption key may reveal the value
as well. He does so by forwarding the encrypted value to the key owner (an
“odd” participant) who responds with the re-encrypted value. The key owner
only learns the split values, neither source nor target, (as any participant in the
comparison gate protocol could), and therefore cannot infer anything about an
input value.

The entire protocol Pfinal is as follows:

1. Each “odd” participant p2i−1 chooses randomly a public-key from another
participant pj in Podd. He sends:

p2i−1 −→ p2i : j, r2i−1, Epj
(x2i−1 − r2i−1) j 6= 2i− 1

2. Each “even” participant p2i engages in the Pderangement protocol. They ob-
tain the derangement Π of the even participants.

3. Each “even” participant p2i sends over the mix network to his partner
pintermediate = pΠ(2i):

p2i →mix pintermediate : j, r2i−1, Epj
(x2i−1 − r2i−1), r2i, Epj

(x2i − r2i)

intermediate = Π(2i)

4. Each intermediate participant pintermediate (which is every “even” partici-
pant) sends to pj:

pintermediate −→ pj : Epj
(x2i−1 − r2i−1), Epj

(x2i − r2i)



5. Each contacted pj chooses randomly a public-key from participant pk in Podd

(including himself) for each message. He returns to pintermediate:

pj −→ pintermediate : k, Epk
(x2i−1 − r2i−1), Epk

(x2i − r2i)

6. Each intermediate participant pintermediate chooses the random values ra,
rb. He computes:

Epk
(aA) = Epk

(x2i−1 − r2i−1)× ra = Epk
(x2i−1 − r2i−1 + ra)

aB = r2i−1 − ra

Epk
(bA) = Epk

(x2i − r2i)× rb = Epk
(x2i − r2i + rb)

bB = r2i − rb

7. Each intermediate participant pintermediate sends over the mix network to
his partner plast = pΠ(Pintermediate):

pintermediate →mix plast : k, aB, Epk
(aA), bB, Epk

(bA)

last = Π(intermediate)

8. Each last participant plast (which is again every “even” participant) sends
to his partner in the sorting network plast−1:

plast −→ plast−1 : k, Epk
(aA), Epk

(bA)

9. Each participant plast−1 chooses random values r′a and r′b to blind his shares
and sends the result to participant pk (if necessary):

plast−1 −→ pk : Epk
(aA)× Epk

(r′a), Epk
(bA)× Epk

(r′b)

10. Each contacted participant pk replies with the decrypted content to each
message and plast−1 de-blinds:

pk −→ plast−1 : aA + r′a, bA + r′b

We have now achieved a random permutation between all (pairs of) partici-
pants and the sharing of input values is such that the processing of the sorting
network can start. The content of each message is untraceable due to the inter-
mediate node switching the keys, such that the encryption key does not give a
hint, about the origin and re-randomizing the contents itself. Nodes contacted
for decrypting the contents cannot make any deductions based on the contents,
since they are blinded to the contents by random variables, and even if they
interact with the contacting party in the next layer, they cannot infer possible
values in x.



5 Conclusion

We have shown how to sort the input variables of n nodes using a protocol based
on a sorting network. First, the values are permuted, such that no participant
knows where its input value came from. Then each comparison gate is processed,
such that no information is leaked due to the interlocking mechanism used by
the protocol, although no protocol for Yao’s millionaire’s problem is being used.

After processing the sorting network, we can run any benchmarking algorithm
and easily restrict to the k best values by excluding the shares of the n−k highest
or lowest ranked participants. Just the input variables of the nodes containing
the k maximum (or minimum depending of the definition of “best”) need not
be included in the computation. No participants gains additional information
about the input vector or the sorting.

We can compute the average of the k best input variables in the following
way (see [24]): First, run the sort protocol defined above. Then, the first partic-
ipant chooses a random variable r and sends sum = r + aA + bA to the second
participant. Each participant then adds his shares sum = sum+aB +bB, if they
are still in the range of the k best values, and forwards it to the next participant.
The last participant forwards the result sum to the first participant who broad-
casts sum− r to all participants. The average is sum

k
. To compute the variance

each participant subtracts the average from his input value and squares it. They
run the protocol outlined above on the result to obtain the variance.

References

1. G. Aggarwal, N. Mishra, and B. Pinkas. Secure Computation of the kth-Ranked
Element. Proceedings of EUROCRYPT, 2004.

2. M. Atallah, H. Elmongui, V. Deshpande, and L. Schwarz. Secure supply-chain pro-
tocols. Proceedings of the 5th IEEE International Conference on Electronic Com-
merce, 2003.

3. M. Atallah, F. Kerschbaum, and W. Du. Secure and Private Sequence Compar-
isons. Proceedings of the 2nd annual Workshop on Privacy in the Electronic Society,
2003.

4. E. Bach, and J. Shallit. Algorithmic Number Theory. MIT Press, 1996.
5. F. Bahr, M. Boehm, J. Franke, and T. Kleinjung. RSA200. Available at

http://www.crypto-world.com/announcements/rsa200.txt, 2005.
6. M. Ben-Or, and A. Wigderson. Completeness theorems for non-cryptographic fault-

tolerant distributed computation. Proceedings of the 20th annual ACM symposium
on Theory of computing, 1988.

7. M. Bykova, M. Atallah, J. Li, K. Frikken, and M. Topkara. Private Collabora-
tive Forecasting and Benchmarking. Proceedings of the 3rd annual Workshop on
Privacy in the Electronic Society, 2004.

8. C. Cachin. Efficient private bidding and auctions with an oblivious third party.
Proceedings of the 6th ACM Conference on Computer and Communications Secu-
rity, 1999.

9. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, Vol. 24(2), 1981.



10. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms, 2nd
Edition. MIT Press, 2001.

11. Marc Fischlin. A Cost-Effective Pay-Per-Multiplication Comparison Method for
Millionaires. RSA Security Cryptographer’s Track, 2001.

12. K. Frikken, and M. Atallah. Privacy Preserving Electronic Surveillance. Proceedings
of the 2nd annual Workshop on Privacy in the Electronic Society, 2003.

13. O. Goldreich. Secure Multi-party Computation. Available at
http://www.wisdom.weizmann.ac.il/˜oded/pp.html, 2002.

14. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. Pro-
ceedings of the 19th annual ACM conference on Theory of computing, 1987.

15. S. Goldwasser. Multi party computations: past and present. Proceedings of the 16th
annual ACM symposium on Principles of distributed computing, 1997.

16. S. Goldwasser, and S. Micali. Probabilistic Encryption. Journal of Computer and
Systems Science 28(2), 1984.

17. J. Gosling, B. Joy, G. Steele, and Gilad Bracha. Java Language Specification, 2nd
Edition. Addison-Wesley, 2000.

18. J. Groth. A Verifiable Secret Shuffle of Homomorphic Encryptions. Proceedings of
Practice and Theory in Public Key Cryptography, 2003

19. M. Jakobsson, and A. Juels. Mix and Match: Secure Function Evaluation via Ci-
phertexts. Proceedings of ASIACRYPT, 2000.

20. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - A Secure Two-party
Computation System Proceedings of the 13th USENIX Security Symposium, 2004.

21. D. Naccache, and J. Stern. A New Public-Key Cryptosystem Based on Higher
Residues . Proceedings of the 5th ACM Conference on Computer and Communica-
tions Security, 1998.

22. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. Proceedings of EUROCRYPT, 1999.

23. O. Rabin. How to exchange secrets by oblivious transfer. Technical Memo TR–81,
Aiken Computation Laboratory, 1981.

24. B. Schneier. Applied Cryptography, 2nd Edition. John Wiley & Sons, 1996.
25. M. Silaghi. Solving a distributed CSP with cryptographic multi-party computa-

tions, without revealing constraints and without involving trusted servers. Pro-
ceedings of the 4th International Workshop on Distributed Constraint Reasoning,
2003.

26. M. Silaghi. Meeting scheduling system guaranteeing n/2-privacy and resis-
tant to statistical analysis (applicable to any DisCSP). Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence, 2004.

27. Sun Microsystems. J2SE 1.4.2 SDK. Available at http://java.sun.com/j2se/1.4.2/,
2005.

28. R. Dingledine, N. Mathewson, P. Syverson. Tor: The Second Generation Onion
Router. Proceedings of USENIX Security Symposium, 2004.

29. N. Sloane. The On-Line Encyclopedia of Integer Sequences. Available at
http://www.research.att.com/˜njas/sequences/, 2005.

30. A. Yao. Protocols for Secure Computations. Proceedings of the annual IEEE Sym-
posium on Foundations of Computer Science 23, 1982.


