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Abstract. In most existing software agents methodologies, system analysis is 
dependent on an agent-oriented, object-oriented or knowledge-based design 
paradigm. This simplifies the complex transformation of the conceptual model 
produced during analysis into the physical model output at design time. We, 
like other authors, believe that the conceptual model has to be conceived as 
independent of the design paradigm and that the physical model should be 
driven by the solution, both models leading to very different conceptions of the 
problem. In this paper we present the SONIA agents development methodology 
that includes a transitional synthesis stage between analysis and architectural 
design that mends the break between the construction of the two models. 

1. Introduction 

The software agent development process, and generally any software development 
process, can be viewed as the application of three transformations [1] (Fig. 1): 
requirements in the application domain are transformed into a conceptual model of 
the problem (T1- Analysis). The conceptual model is transformed into a physical 
model that represents the software product properties (T2-Design). And the physical 
model is transformed into a computable model, the program (T3-Implementation).   
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Fig. 1. The essential software process 

The conceptual and physical models are two very different ways of looking at the 
problem, and its implementation involves a drastic change in the use of processes, 
methods and tools.  

Additionally, there is no perfect method for either model [2]. The current trend is, 
therefore, to integrate different methods, tools and techniques, using whichever is the 
best in each individual situation. This raises the analysis dilemma: developers have to 



choose the best suited techniques for each problem. To make this decision, developers 
have to analyse the problem and choose a method of analysis before they are really 
familiar with the problem. If the chosen technique uses design terminology, then the 
problem-solving paradigm has been preconditioned, and this paradigm could turn out 
not to be the best suited when the problem has been analysed in detail. In conclusion, 
a good methodology should not force a given architecture upon developers from the 
very beginning. It is the outcome of the system specifications analysis that should 
point developers towards the best suited architecture for solving the problem [3]. 

By contrast with this idea, most agent methodologies propose design paradigm-
dependent analysis to elude these problems and bridge the gap between the 
implementation of the two models (for example, Tropos [4], Gaia[5], Prometheus [6], 
MAS-CommonKADS [7]). 

In this paper, we briefly describe a methodological approach that defines an 
architecture-independent generic analysis model, including, as the first design phase 
stage, a synthesis stage (which is the paper’s core), that smoothes the step from the 
conceptual to the formal model. In Section 2, we describe the structure of the 
proposed SONIA methodology. Section 3 details the synthesis stage, and Section 4 
states the conclusions on the advantage of this approach. 

2. SONIA Methodology 

Based on research and development efforts in the field of AOSE (Agent Oriented 
Software Engineering), we think that an agent-oriented development methodology 
should have the following features [8]: (i) it should not condition the use of the agent 
paradigm right from analysis; (ii) it should naturally lead to the conclusion of whether 
or not it is feasible to develop the system as a MAS; (iii) it should systematically 
identify the components of a MAS, if the problem specifications call for an agent 
society; (iv) it should naturally lead to this organizational model; (v) it should produce 
reusable agents; and, (vi) it should be easy to apply and not require too much 
knowledge of agent technology.  

The SONIA (Set of mOdels for a Natural Identification of Agents) methodology 
[8] basically embraces the previous approaches: the generation of a multi-agent 
architecture to solve a problem (whose conceptualization is not conditioned by the 
agent paradigm) and the systemization and automation of the activities of identifying 
MAS components. Likewise, the methodology defines an agent society model that 
flexibly and dynamically facilitates problem solving and can be used to integrate 
indispensable legacy systems.  

The phases and stages of which the SONIA methodology is composed are listed 
below, along with the models generated in each stage (Fig. 2): 

− Conceptualization: The problem is analyzed using the Set Theory Based 
Conceptual Model (SETCM) [9,10], an analysis method that was defined to 
combine a formal foundation with a pragmatic approach. This analysis method is 
design-independent. 
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The result is an Initial Structural Model, which describes the overall structure of 
the domain (concepts, associations, attributes, classifications, etc.) and an Initial 
Task Model, which describes the problems to be solved (tasks) and the task 
decomposition and control of the resolution of the subtasks (task methods). 

− Extended Analysis: Having conceptualized the problem, the models built are 
refined and expanded to capture the system environment and external entities.  

The Extended Analysis Stage produces the following models: an Environment 
Model, which defines the external system entities and system interactions with 
these entities; a Structural Model, which can extend the system knowledge with 
knowledge that the external entities supply to the system; and a Task Model, which 
can extend the tasks performed by the system with any tasks required to interact 
with external entities.  

− Synthesis: This stage provides the building blocks for the component-driven 
bottom-up identification of agents that is performed during the design. In this 
process, basic elements are identified first (bottom level) and are used to identify 
and define agents (top level).  

It produces the following models: a Knowledge Model, which identifies the 
knowledge blocks inherent to the problem by grouping concepts and associations 
from the Structural Model; a Behavior Model, produced by grouping tasks, 
subtasks and methods from the Task Model; a Responsibility Model, output by 
establishing the relationships between knowledge blocks and behaviors, and a Goal 
Model, which represents the main objectives of the system. This stage bridges 
domain-dependent analysis and (software) solution-dependent design and is 
described in detail under point 3. 

− Architectural Design: The purpose of the second stage of Multiagent Architecture 
Design is to define the architectural elements by means of the following models: an 
Agent Model, which identifies and defines, from the Knowledge, Behavior, 
Responsibility and Goal Models, what elements should be designed as autonomous 
agents; an Object Model, which identifies and defines, from the Knowledge and 
Responsibility Models, what passive elements there are in the environment; and an 
Interaction Model, which identifies and defines the relationships between the 
agents and between agents and objects.  

Not until the Agent Model is built is a decision made as to whether the 
architecture can be implemented by means of agents or a different paradigm needs 
to be used. This choice is chiefly based on whether or not agents can be identified. 
For an entity to be able to considered as an autonomous agent, it should have a 
behavior and the right knowledge blocks to perform the tasks of this behavior, have 
at least one defined goal and one utility, and perceive and act in the environment. 

If no agents can be identified, another design paradigm will have to be chosen. 
One possibility would be an object-oriented design, reusing Object and Interaction 
Models. Another possibility would be to design the system as a knowledge-based 
system, reusing the Knowledge, Behavior and Responsibility Model. 

− Society Design: The Multiagent Architecture Design can result in an agent society, 
in which the system is designed as a set of agents embedded in a social structure. 
Several models are generated in this stage: a Social Agent, a Role, a Relationship, 
and a Social Commitment Policy [11].  

 3



Extended
Analysis

Extended
Analysis

Architectural
Design

Architectural
Design

SynthesisSynthesisKnowledge
Model

Responsibility
Model

Behavior
Model

Object Model
Interaction

ModelAgent Model

ConceptualizationConceptualizationInitial
Structural Model

Initial
Task Model

Structural Model

Environment
Model

Task Model

ANALYSIS

DESIGN

Society
Design
Society
DesignSocial Com.

Policies Model
Social Agent

Model

Goal Model

Relationship 
Model

Role Model

 

Fig. 2. Phases of the SONIA methodology 

3.   Synthesis Stage  

As mentioned earlier, we consider a design paradigm-independent analysis to be best. 
In this case, the step from analysis models to architectural design models is usually a 
traumatic process because they are too far apart. Thus, the transition to design has to 
be undertaken with special care (Fig. 3). 
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Fig. 3. Transition from analysis models to design models 

This approach is based on synthesizing information of the analysis models as 
higher-level structures related to the reference paradigm, that is, restructuring the 
analysis information to adapt it to the design tools. Synthesis is the first design phase, 
whereby the viewpoint switches from the domain (analysis) to the solution (design). 
Consequently, it should ease the identification and formalization of computable 
structures that are coherent with agent orientation from the analysis models.  

The Synthesis stage produces the models that are used later for the component-
driven identification of agents. For this purpose, it re-groups elements of the 
Structural and Task Models to produce four other models: a Knowledge Model, a 
Behavior Model, a Responsibility Model, and a Goal Model. 
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The process of outputting these models and their application to a real case study, 
ALBOR (Barrier-Free Computer Access)1, is described in the following sections [10]. 
ALBOR was conceived as an Internet-based intelligent system designed to provide 
guidance on the evaluation of disabled people’s computer access skills and on the 
choice of the best suited assistive technologies. 

3.1 Knowledge Model 
The Knowledge Model can identify the knowledge blocks by grouping Structural 
Model concepts and associations. The knowledge blocks will be used internally or 
shared by the agents.  

These clusters are identified on the basis of the concepts and associations of which 
they are composed, which meet the following conditions: 

− They are strongly related to each other. The clusters are internally highly cohesive. 
− They have little relationship to the other concepts and associations (low-coupled 

grouping). 
− They are used to perform the same tasks. 

The activities to be performed to output the first version of the Knowledge Model are: 

1. Identify clusters of concepts and/or associations 
2. Identify relations between knowledge blocks 
3. Describe knowledge blocks 

A new technique modifying Kelly’s Trait Analysis [12] was used to identify concepts 
and associations. This technique identifies clusters of concepts and associations that 
have the first two properties of a knowledge block: high cohesion and low coupling.  

To systematize the application of this technique, the conceptual diagram of the 
Structural Model is first transformed into a directed graph, as follows: 

− For each concept and association create a graph node. 
− For each association, create an arc from each association source concept node to 

the association node and an arc from the association node to the association target 
concept node. 

− For each classification, create an arc from each subconcepts node to the 
superconcept node. 

Then a 2D table is built that stores the connectivity (number of arcs or connections) 
between each pair of nodes in the graph. Finally, the Trait Analysis-based technique is 
applied using the connectivity between two graph clusters as a measure of 
comparison. The technique will involve iteratively applying the clustering algorithm 
until no more concepts and/or associations can be clustered. 

Fig. 4 shows the conversion of the ALBOR conceptual diagram output during 
analysis into a directed graph and groupings of concepts/associations (knowledge 
blocks). In this step, we obtain three knowledge blocks KB1, KB2 and KB3. 

                                                           
1 ALBOR is a project funded by the UPM (Technical University of Madrid) and IMSERSO 

(Spanish Institute of Migrations and Social Services). 
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Fig. 4. Clusters of concepts/associations (knowledge blocks) 

This technique makes no distinction between concepts and associations when 
transforming the conceptual diagram into a graph. Therefore, we will have to apply 
the rules listed in Table 1 to check whether or not the clusters are valid. 

Table 1. Rules for dealing with invalid relations (r) between knowledge blocks (k) / concepts 
(c) / associations (a), siendo s un concepto o una asociación perteneciente al origen de a 

Components Rules for dealing with invalid relations 
r (k, c) R1: IsAssociation(r) ∧ IsSource(c, r) → Add c to k 
 R2: IsAssociation(r) ∧ IsTarget(c, r) → Do not add c to k  

      {r will be dealt with at later stages} 
 R3: IsClassification(r) ∧ IsSubconcept(c, r) → Add c to k  

      {c belongs to knowledge block containing the classification's superconcept} 
 R4: IsClassification(r) ∧ IsSuperconcept(c, r) → Do not add c to k 

       {r will be dealt with at later stages} 
r (k, a) R5: ¬HasAttributes(a) ∧ Source(a) = {s} ∧  

       (Cardinality(s, a) = 0..1 ∨ Cardinality(s, a) = 1..1) ∧ s∈k → Add a to k 
 R6: ¬HasAttributes(a) ∧ ∀s∈ Source(a) (Cardinality(s, a) = 0..* ∨ Cardinality(s,a) = 1..*) ∧  

      ∀s∈Source(a) s∈k → Add a to k 
 R7: HasAttributes(a) ∨ (∃ s∈Source(a) (Cardinality(s, a) = 0..* ∨ Cardinality(s, a) = 1..*)) ∨  

      (∃k1,k2 ∃s1,s2∈Source(a) k1≠k2 ∧ s1∈k1 ∧ s2∈k2) → Do not add a to k 
      {r will be dealt with at later stages} 

The knowledge blocks identified in Fig. 4 are modified as a result of applying 
these rules. Associations A5 and A6 are added to the knowledge block KB1 applying 
rule R5. C12 is added to KB3 applying R3 and A9 is added to KB2 applying R5. 

The resulting clusters of the first version of the model can only satisfy the 
conditions of being highly cohesive and fairly unrelated to other clusters. The final 
version of the model, which is output when the Responsibility Model is completed, 
will meet all the conditions. 

3.2 Behavior Model 
The Behavior Model is the result of grouping tasks and methods of the Task Model. 
The behaviors will be part of the agents.  
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These clusters are characterized because the tasks and subtasks of the grouping: 

− Depend on others through task methods. 
− Use the same knowledge blocks for problem solving. 

The activities to be performed to output the first version of the Behavior Model are: 

1. Identify clusters of tasks and/or subtasks 
2. Identify time dependences between behaviors 
3. Describe behaviors 

In this first version of the Behavior Model, one cluster is generated for each first-level 
task in the task/method diagram of the Task Model, adding its subtasks to the cluster. 
Fig. 5 shows the cluster of ALBOR tasks/methods (B1, B2, B3 and B4 ). The time 
dependences between behaviors are then calculated from the preconditions and 
postconditions of these clusters. A behavior B2 depends on a behavior B1, if there is a 
knowledge block (and concepts and/or associations) in the postcondition of B1 that is 
also in the precondition of B2. 

TM 2 TM 3 TM 4

TM 3.1 TM 3.2 TM 4.1TM 2.1 TM 2.2

TM 1

TM 3.1.1 TM 3.1.2 TM 3.1.3 TM 3.1.4 TM 3.2.1 TM 4.1.1 TM 4.1.2

B 1 B 2 B 3 B 4

TM 3.1.3: ResponseTM 1: InitSession
TM 3.1.4: GetNextQuestionTM 2: IndentifyUser
TM 3.2: EvaluateAptitudeTM 2.1: TakePersonalData
TM 3.2.1: FireRuleTM 2.2: PrepareSession
TM 4: ShowReportTM 3: AnalyzeUser
TM 4.1: ShowRecom.TM 3.1: TakeSurvey
TM 4.1.1: ShowMediumTM 3.1.1: ShowQuestion
TM 4.1.2: ShowLinkTM 3.1.2: ShowMedium

TASK MODEL

 

Fig. 5. Clusters of tasks/methods (behaviors) 

The resulting clusters for the first version of the model can only satisfy the 
condition of interdependency through task methods. The final version, which is output 
when the Responsibility Model is completed, will meet all the conditions. 

3.3 Responsibility Model 
The Responsibility Model is output by relating knowledge blocks to behaviors. This 
model is essential for identifying agents and environment objects. A basic activity is 
to refine the Knowledge and Behavior Models to meet all their conditions.  

The activities to be performed to output the Responsibility Model and the final 
versions of the Knowledge and Behavior Models are: 

1. Identify the use relations of concepts/associations/knowledge blocks in behaviors 
2. Modify the Knowledge Model 
3. Modify the Behavior Model 
4. Identify responsibilities between knowledge blocks and behaviors 
5. Describe responsibilities 

The Knowledge and Behavior Models are refined first by identifying the use relations 
between concepts/associations/knowledge blocks in behaviors and incorporating in a 
2D table. A mark will be placed at the intersection between a behavior with a 
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concept/association/knowledge block if they are used to perform a task/subtask 
belonged to that behavior (that is, if it appears in the precondition or postcondition of 
the task/subtask) (see Table 2).  

Table 2. Relations of use between concepts/associations/knowledge blocks and behaviors 
  Behaviors  
  B1 B2 B3 B4

C1 X X X X 
A1   X  
A7   X  
C9   X X 

Concepts / 
Aassociations 

 

A10   X  
KB1   X  
KB2    X 

KnowledgeBlocks

KB3   X  

To output the final Knowledge Model, all the concepts/associations will have to be 
included in one knowledge block. The rules in Table 3 can be used to determine when 
to add a concept/association to an existing knowledge block or when to cluster a 
number of concepts/associations as a new knowledge block. These rules of inclusion 
will be based on the use relations of concepts/associations in output tasks/subtasks. 

Table 3. Rules of inclusion of concepts (c) / associations (a) of the unclustered Structural 
Model (usm) in knowledge blocks based on relations X:Y (where X are tasks/subtasks and Y are 
concepts/associations) 

Inclusion Rules  
(r = 1:1 ∨ r = 1:N) ∧  (c/a are not related to other elements of usm) ∨ (c/a are related to other elements of usm 
∧ the constraints in Table 1 hold) → Cluster c/a in an existing knowledge block   
(r = N:M) ∧ (c/a are not related to other elements of usm ∨ (c/a are related to other elements of usm ∧ the 
constraints in Table 1 hold) → Cluster c/a∈r to form a new knowledge block  

The following actions are taken taking into account the relations of use (Table 2) 
and inclusion rules (Table 3). Concepts C1 and C9 have a N:M relation with more 
than one behavior, which means that two knowledge blocks (KB4 that contains the 
concept C1 and KB5 the concept C9) are created. On the other hand, concepts A1, A7 
and A10 have a 1:N relations with behavior B3 and can be added to the knowledge to 
which they are related (A1, A7 and A10 are included in KB4).   

To output the final Behavior Model, the behaviors will have to meet the second of 
the conditions set out in its definition. This condition demands that the same 
knowledge block should be used to perform the tasks of a single behavior. The rules 
in Table 4 can be used to evaluate whether more than one behavior should be 
clustered as one or divided into more than one behavior on the basis of the use 
relations of concepts/associations in the output tasks/subtasks. 

Table 4. Rules of behavior clustering/division based on relations (r) X:Y (where X are 
behaviors and Y is knowledge block) 

Clustering/division rules 
r = 1:N  → divide behaviors into more than one behavior.  
{Algorithm: each behavior will contain a subtask of the next level of decomposition of the main task of the 
divided behavior. Analyze the relations between the new behaviors and the new knowledge block to check 
that they are 1:1. If so, stop; otherwise, divide the behaviors again} 
r = N:1 → cluster the behaviors into one 
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As a result of applying these rules, behavior B3 is divided into two behaviors in 
ALBOR. On the other hand, there were no behavior clusters.  

3.4 Goal Model 
The Goal Model is composed of the system objectives. The aim of this model is to be 
able to identify agent goals. The agent will execute behaviors to achieve its goals. 

The activities to be performed to output the Goal Model are: 

1. Identify goals 
2. Describe goals 

These goals are logical conditions imposed on the state of knowledge and are 
identified from Behavior Model task postconditions. The goals are a subset of the 
union of the postconditions of the behaviors that define the system goals. The 
designer’s task is to decide which subset of postconditions defines the system goals. 

In ALBOR, a single goal “new Users.recommendations” has been identified for the 
EvaluateAptitude behavior (B4), whose meaning is to get new recommendations for a 
user.  

3.5 Transition to Architectural Design phase 
The agents and objects were identified during architectural design from the 
Responsibility Model. The knowledge shared by several behaviors was chosen as 
objects. Following this criterion, we identified the “Users” and “Media” objects 
(white box in Fig. 6).  

Object

Candidate Agent

KB 5
Media

KB 1
Questionnaires

KB 2
Recommendations

KB 3
RulesKB 4

Users
B 2

IdentifyUser

B 4
ShowReport

B 3.1
TakeSurvey

B 3.2
EvaluateAptitude

B 1
InitSession

 

Fig. 6. Identification of objects and candidate agents 

A candidate agent will be output for each knowledge block that is the 
responsibility of a sole behavior (relation 1:1). In the case of ALBOR, three candidate 
agents were identified: ‘Survey-Taker’ agent (B3.1 and KB1), ‘Decision-Maker’ agent 
(B3.2 and KB3) and ‘Advisor’ agent (B4 and KB2) (grey box in Fig. 6). The B1 and 
B2 were not assigned, because they do not have any proper knowledge. 

Not all candidate agents will be converted to agents. This will be confined to 
agents that meet all the requirements for becoming an autonomous agent, i.e. agents 
that have at least one defined goal and utility, and sense and act in the environment. In 
ALBOR, the three candidate agents identified earlier meet these two conditions and 
qualify as autonomous agents.  
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4.   Conclusions 

This paper aims to contribute to the methodological issue of agent-based 
development by defining a new methodology, SONIA, that includes a synthesis stage 
to smooth the transition between the design paradigm-independent analysis and 
paradigm-dependent multiagent architectural design. For this purpose, we described 
the models underlying this synthesis stage (knowledge, behavior, responsibiliy and 
goal model) and the mechanisms for building them. 
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