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Abstract

We propose an environmental framework for simulation and visualization of woody plant forests. A
complex application software system develops and animates a spontaneous afforestation process within
this environment. The system considers several environmental properties and combines computer anima-
tion with artificial life. The main goal of the presented software system is to use it in computer animation
for synthesis of natural environments and visual analysis of their natural look credibility. The afforestation
process is modeled as an ecosystem simulation, where trees struggle for survival based on several growth
factors. A detailed description of the procedures for simulating tree growth and the factors that might
influence tree growth is provided. All the tree growth simulation procedures and factors are biologically
inspired. They have been defined mathematically in the paper by designing a bottom-up agent model
which emerges the artificial tree distribution by mediating to the simulation.

A flexible and adaptable procedural 3D model is used to visualize trees. Also, growth of individual
trees is animated, from development of branch complexity to per-leaf precision, which allows a very
realistic perception of the emerging ecosystem. The visualization of trees is sped up so that the models of
trees have progressively lower-details proportional to the distance from a certain point of view. Locations
and maturity of visualized trees are obtained from the ecosystem simulation results, and the afforestation
process is animated over several centuries. The natural look of the artificial tree distribution is confirmed
visually and statistically. Visually, it is confirmed from rendered sequences, and statistically, from graphs
of tree species populations. Several patterns emerge permanentely, such as the number of trees in the
ecosystem simulation increasing exponentially and trees growing in communities.

Keywords: Artificial life, natural phenomena, computational biomodelling, ecosystem simulation,
woody plant, forest ecosystem, computer animation, tree modelling.

1. Introduction

In this paper, we present an environmental framework for the simulation and visualization of woody
plant forest ecosystems. To be able to visualize forests of woody plants, we must first be able to render
individual trees using tree models. After we have visual models of trees, we can place them in an environ-
ment according to some distribution and other environmental factors. In this paper, these are obtained by
computer simulation for artificial life of woody plants. In the following of this introduction, related work
on modelling of trees, ecosystem modelling, artificial life, and landscape visualization is discussed briefly.

The tree modelling has a twenty year tradition in computer graphics, from game engines to cinematic
scenery. At the beginning, the focus was on modelling the geometrical structures of individual trees.
Manual modelling of tree structure and its leaves is a tedious task, because each branch and leaf position,
rotation, size, and texture must be appointed. Therefore, procedural tree models are used instead and
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several following techniques for procedural models are available today. Let us briefly refer to some of
the strongest representatives and their key distinguishing features. First, these procedural models differ
in types of branching structure construction [36]. Also, they differ in the level of detail [2, 4, 39], the
flexibility, and pretentiousness of modelling [19, 52], space [32, 47], and time complexity [32] in addition
to the animation ability and representation of the built 3D model. The majority of these models try to
determine some visible properties of the final 3D model, such as rotation of branches around their central
axes. These properties are usually biologically inspired by phyllotaxis, i.e. the main influence on the tree’s
architecture [40].

Ecosystem simulation has been addressed in many fields, from biology to artificial intelligence [16,
21]. Ecosystem simulation is also used by computer graphics to render a 3D ecosystem scene into an
image [9, 63]. To, generally, be able to simulate life, artificial life models exist, such as [38, 22,27, 17]. In
simulating life of trees within a forest ecosystem, the spontaneous development [46, 23] is one of the main
processes of forest development which must be modelled. Following increases in computer power and
computer graphics research, research interest from individual tree models rendering has grown to several
trees rendering together in an image. Considering the limitations, the aim in modelling single trees is to
obtain natural look when rendering. This aim in rendering several trees still persists, and can be represented
by determining several environmental factors, such as locations of trees, their sizes, and interaction of
trees with their environment. Manually defining these factors, even perhaps by using some help by general
purpose 3D modellers (e.g. Maya, Lightwave), requires specialized knowledge and art, creativity, and
labour time by the user. An automated tool can try to partly relieve the user in these requirements. Such
tool tries to define tree locations and other considerable factors to get a naturally looking image. Type of
trees to render at tree locations could be recognized from photographic imagery [41], or rather obtained
by simulating an artificial ecological system and life within it.

The first to treat landscape visualization with forests and shrubs were Weber and Penn [52]. Their
trees were represented by a procedural geometrical model and rendered with ray-tracing. As this model
featured level of detail adaptation, they were able to visualize few thousand trees on a landscape. Trees on
this landscape were manually placed and did not reflect any biological laws of spontaneous afforestation,
this being one of considerable drawbacks of their approach.

Chiba et al. [6] represented trees using volumetric textures. An image was compiled by ray marching
through voxels (3D image elements) and integrating their density and colour. Trees were placed on land-
scapes using Poisson disc sampling [7], so that a new tree was successfully added only if its randomly
selected location was not too close to the location of some other tree. The simulation was simple and fast,
but their rendering process took several hours and the trees were of low detail. Using such an approach
they created images with up to twenty thousand trees on a landscape. Their simulation was more of a
trial-and-error calculation and still, life was not simulated to obtain tree distribution.

Specialized for rendering ecosystems of woody plants, Deussen et al. [10] built the first ecosystem
simulator used in computer graphics to follow some natural laws of spontaneous afforestation. Their
highly detailed tree models were created using L-systems [35, 56, 51] and rendered using ray casting or ray
tracing. Non-textured scene overview was possible with Gouraud shading by using OpenGL, but realistic
image rendering took several hours and it was not intended for real-time animation. With so many ray-
traced objects on scene, they came up with the conclusion that a compact procedural model for geometry
generation and the instancing of created geometrical tree models must be used for objects to fit in the main
memory. Another conclusion they drew is, that for rendered images not to look artificial, the perception of
tree distribution in a scene should be authentic. Visually credible distribution of trees was achieved using
two different approaches, one is from global to local, the other is from local to global. The first approach
was semi-automatic requiring a standard paint program [10], the second was automatic calculation of
the distribution, a pure simulation. This second approach, the simulation, included some natural laws of
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spontaneous afforestation, the interaction among the trees themselves and the environment. By passing a
limited number of parameters to the model, many emerging trees have grown over the landscape according
to the modelled natural laws of spontaneous afforestation.

Let us elaborate on laws of interaction Deussen et al. included in their second approach, which actually
were bottom-up software agents [15, 1, 44] to thrive the simulation by mediating to the environment. The
first such agent was a tendency for the same species of trees to grow in clusters, emerging the effects
of clustering [3], clumping [25], and under-dispersion [20]. The second agent Lane and Prusinkiewicz
considered in [25] was competition among individual trees in an area of ecologic neighbourhood [8], where
one tree can influence the growth of others. By intersection of two ecological neighbourhood areas, the
involved trees interact. One of the trees becomes dominated and when a tree is being dominated, its growth
is slower or it may even die. Such competition principally results in a phenomena of tree distribution
known as self-thinning, meaning that in the beginning of simulaiton, trees grow without interference, but
as density increases, the dominated trees start dying off. Deussen et al. [10] defined the domination of
a tree by comparing its competitive ability to the competitive ability of competing trees within its range.
If a tree has inferior competitive ability than a neighbour, it becomes dominated. The competitive ability
depends on the age of the tree, domination tolerance, water concentration at its location, and its preference
for wet or dry areas. Considering the living conditions, this is a rather simplified growth model, since
it only considers the moisture. Lane and Prusinkiewicz [25] introduced a clustering mechanism to this
simulation, which enabled trees to grow in communities.

Motivation and objectives of our work are as follows. We want to combine models that are efficient for
visualization and allow tuning of the simulation in real-time during animation. We want, that our simula-
tion allows a great number of individual trees to be simulated within a forest, and that after the simulation,
the trees get to be placed according to emerging patterns, into a naturally-looking distribution. We want to
use programmable agents to thrive the emerging patterns, by mediating to the developing ecosystem. We
want the agents to encompass the ecosystem rules, such as environmental resources distribution, compe-
tition of trees for these resources, and tree growth. We also want the number of trees in the ecosystem to
increase exponentially if there is enough resources, we want trees to grow in communities, and we want
tree distribution to be biologically inspired and natural looking. Compared to the existing solutions, we
want to propose a compact efficient integration of a procedural tree-model into the forestry landscape visu-
alizer based on ecosystem simulation; build new parameterized procedural tree models within ecosystems;
consider several tree living conditions for distribution of trees; have the ability to interactively influence
the tree distribution simulation; and have the living conditions computed based on adjustable digital terrain
data.

In computer graphics, the existing simplified living condition models only consider the soil mois-
ture [10, 8, 25]. It is true that this is usually a significant environmental impact, but additional, sometimes
even more important ones than only the soil moisture, can be found, e.g. in the Ellenberg taxonomy [13].
This is why we decided to build a new ecological model to consider more parameters (indicators). We
defined! new models for tree growth, their distribution across landscapes, and the calculation of additional
living conditions. For simulation, we use real terrain elevation data to compute living conditions and espe-
cially their relationships. The relationships between the Ellenberg indicator values are explored primarily
in ecological literature, see e.g. [13, 18, 26]. We leave the habitat selection and model parameterization to
users of our software tool and only provide them with computational models implementation behind it.

The paper is divided in six sections. The following three sections, from the second to the fourth, pro-

"We have implemented all the defined models in C++ programming language; our application is available as EcoMod project
on SourceForge at http://sourceforge.net/projects/ecomod/. See Appendix B for some pseudocodes.
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pose our environmental framework to visualize emergent artificial forest ecosystems. The second section
proposes the simulation of an ecological system. The third section proposes our models for calculation of
living conditions within an ecosystem, where elevation data is used to calculate living conditions such as
slope, soil moisture, and intensities of wind and sun. The fourth section explains our modelling of trees
and proposes visualization of our simulated ecosystem. Discussion takes place in the fifth section. The
paper concludes with a summary, and guidelines for future work. Also, there are appendices for symbols
denotation and algorithm pseudocodes.

2. Simulation of an Ecological System

Our ecosystem simulation simulates life of trees within an ecosystem, i.e. the spontaneous afforestation
process. With its help, for each tree species, we determine the distribution and sizes of individual trees
across a terrain, based on the living conditions within this terrain. These living conditions are height
above sea level, slope, moisture, and the intensities of sun and wind. We begin the simulation with an
empty terrain on which, in each simulation step, a certain number of trees for each species is added. In
each simulation step, we execute three sub-steps (see Appendix B, Algorithm 1): i.e. the creation of new
trees, their growth, and the elimination of dead trees. These three sub-steps are implemented as software
agents, that act stochastically?. Our simulation step time difference is one year (At = 1 year), so that we
can simulate the lives of several hundred thousand trees over several hundred years.

Let us first present the first sub-step of every simulation step in our simulation, the creation of new
trees. The sub-step is done for each tree species using different parameters, because each tree species
has a specific method of replication. First, AN,  trees for each species to be added is computed in each
year. The amount varies according to the number of seeds from this species cumulated over the previous
year, and its particular seed germination factor. When we add new trees, we consider the under-dispersion
principle by increasing the probability of chosen locations close to existing trees of the same species.

Now, let us describe the second simulation sub-step, simulating the growth of trees. This sub-step
depends upon the competitive ability® of the trees. Using as, (as, € [0,1]), we define the competitive
ability of p-th tree from the tree species s:

Qs p = hs,pppersist;svs,m (1)

where hg, € [0,1] denotes the height of the tree, pyersisi.s € [0, 1] the persistent clinging to life*, and
vsp € [0,1] the suitability of living conditions for a tree with indices s and p. The persistent clinging to
life of a species, ppersist:s, 18 used to distinguish between pioneering species such as shrubs and birches
and others such as beeches, spruces, and maples. It is a characteristic for the former to retreat if the latter
have suitable living conditions in the same area.

The height of a tree depends upon its age and other factors. The first factor to consider is growth
obstruction, caused through domination by more powerful trees within the neighbourhood. The second
factor is non-uniform growth intensity throughout a tree’s life (young trees grow faster than old ones). For
the latter factor, we defined a polyline to approximate an ideal continuous growth curve for the height of
a tree depending on its age. Fig. 1 shows the height of a tree over years without growth obstruction using
the ideal continuous curve and its approximated polyline. For each tree species, the polyline control points
are defined using average maturity year of species (i,,.s), average year when species is fully grown (t,.s),
average height of a matured species (hy,.s), and maximum potential age of species (ty.s).

2The random number generator we use is SUPER-DUPER with notation LC'G (232, 69069, 0, 1) [29].
3The term was introduced by Deussen et. al. [10].
4As noted in Appendix A, descriptive indices for main symbol are separated from variable indices with a colon in this paper.
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Figure 1: Height of a species through lifetime without growth obstruction.

The suitability of living conditions for a specimen is calculated as follows:

Vs p = ks pMes pWs pls pSs ps (2)

where ky. ,, € [0, 1] denotes the suitability of height above sea level, m,, € [0, 1] soil moisture, [, ,, € [0, 1]
sun, ws, € [0, 1] wind, and s, € [0, 1] slope at growth location. We define the latter by considering slope
harmfulness (f.s) for each species:

Ss,p = 1— (fs;ssi,k)27 (3)

where indices ¢ and £ select the patch at growth location, to determine the slope. The suitability of the
remaining four living condition factors depends on any deviation from the optimal living conditions of a
species, defined as v, Mo;s, lo;s, and w,,s in the following equations:

. — 17 |yz,k - yo;s| S Ago;s (4)
b 1 — max {1, [; x — Yol f7:s } » otherwise ’

m _ 1a |mi,k - mo;s| S ATno;s (5)
P 11— max {1, [m;x — M| fins |, otherwise ’
l _ 1a |lz,k’ - lo;s| S Alo;s (6)
P 11— max {1, |lix — los|fi.s} , otherwise ’
_ 17 |wi,k’ — Wo;s S Au}o;s
Wsp = {1 — max {1, |w; ; — Wo.s| fu:s } , otherwise - @

Here, tolerated deviations Ay, ., Am.s, Alos, and Aw,,, are auxiliary parameters for defining the classes
of suitable living conditions for a species. If a certain living condition exceeds the tolerated deviation,
its harmfulness is considered by diminishing a living condition with it, and a harmfulness factor. Latter
factors are denoted as fy.s, fim.s, fuw:s>» and fi.s for each living condition.

From Eqs. 4-7 we can observe the following. If an environmental factor drops below a certain thresh-
old, it will negatively impact a tree’s fitness. Its negative impact is linearly scaled in accordance with a
weight that reflects the possible harmfulness of the environmental factor.

Listings of tree species living conditions can be obtained from literature. One such listing was prepared
by Ellenberg [13] for Central Europe and extended to other areas of the world [18, 26]. Ellenberg divided
living conditions within ten classes on a linear scale and classified suitable living conditions for individual
species in these classes. Listings of statistical data can be read from a digital library [49] and used in our
simulation.
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The final, third simulation sub-step copes with the elimination of dead trees. We distinguish between
three causes of death: natural, intolerableness of living conditions, and suffocation. We model natural
cause of death as following. The year, when a tree is going to die naturally, is predetermined at its creation
as a uniformly distributed random number between the ¢,.s and t;.;.

We model the intolerance of living conditions, together with the growth of a tree. A seed only germi-
nates under favorable environmental conditions.

Suffocation is caused if a tree is dominated by neighbouring trees. Generally, certain tree can be
dominated by any other tree on terrain. For each tree A, we would eventually have to execute a test
to determine a boolean flag of neighbourhood intersection Fy 5 € {0, 1} where B runs through for all
other trees in current population. This would result in an undesirable O(n?) algorithm. As if this is not
enough, the test to be considered is not a simple integer comparison by subtraction, but a more complex
3D geometrical distance test. To evaluate /4 g, we compare the radii of both trees:

true, d(A,B)<rs+rp
false, otherwise

: ®)

Fap=
where 74 and r denote the ecological radii of the two trees. If the distance between the trees is smaller
than the sum of radii 74 and 7, the ecological neighbourhoods intersect. The distance d(A, B) between
the trees A and B at locations p 4 and p is defined by:

d(A,B) = [|ps — pgll- )

Therefore, for some tree A, the domination test in Eq. 8 would have to be done for each other tree than
the tree A in the current population®. The optimization approach we took to improve the neighborhood
search algorithm is localization of the algorithm to lower the order of the improved algorithm. To find trees
nearby, we conduct a reference list on each patch to search for nearby trees much faster. The list contains
pointers to trees, which grow in this part of terrain, and is constructed using uniform plane partitioning.
For each search, all trees in few nearby patches are tested to determine any dominance of a certain tree.
We conducted an experiment to present improvement in a real case. It was shown that with 600,000 trees
in the 299th simulation year, on average only 540 instead of 600,000 tests were made per a tree. For a case
with ideally uniformly distributed locations of trees, the complexity order of this algorithm is O(n logn).

3. Models for the Computation of Living Conditions in a Terrain

The mesh for the terrain is read from a digital terrain model (DEM) [28] and defined using vertices:

T .
Pix = [‘/L‘Z Yik Zk} ) Zak € [0799]7 (10)

)

being sampled for every e.g. 25 m along x and z. y;, denotes elevation of the (7, k)-th sample. From
vertices, quad-like patches are formed, implying 10,000 patches for a sample terrain. From the data of
these patches, living conditions are estimated for every patch using speed-efficient calculations. Height
above sea level y is normalized for later use with other models:

— Y = Ymin

y=———", (1)

Ymaz — Ymin

STime complexity order of this algorithm is 20 - O(n?) operations, where n is number of trees and operation considered
is addition. Specifically, each test consists of three subtractions, three raisings to second power, three additions (to calculate
distance between trees), another addition with raising to second power (to calculate minimal distance for interaction between
both species), and a final subtraction for the comparison. In total this is approximately eight additions and four raisings to power
of two or approximately a non-parallel execution timing of twenty additions disregarding pipeline speedup.
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where y,,:, 1s the minimum height above sea level of the terrain, and ¥, is its maximum. The surface
normal of a quad (patch) is denoted by n; ; and calculated as:

n;, = (pi+1,k - pi,k) X (pi,k+1 - pi,k) = [nxzk Nyii k nz;i,k]T7 (12)

where the first vector spans along neighbouring vertices in the first axis and the second one in the next
axis. With 1; ;, the normalized normal is denoted. Slope is calculated by using y component of 1, j:

Sik = 1- ﬁy;i,k- (13)

A flat (horizontal) terrain has a slope of zero and a steep (vertical) terrain has a slope of 1. Using algo-
rithms for simulating natural phenomena impact, we determine relative levels for terrain soil moisture, and
average wind and sun distribution for the summer’s half-year. We created these algorithms ourselves, but
they have been compared with existing referential literature. Fig. 2 displays a distributions of these living
conditions across terrain, obtained using our models.

Figure 2: Intensities of soil moisture, wind, and sun for real terrain data obtained using our models on real terrain data.

3.1. Soil Moisture

Our soil moisture intensity calculation is based on factors of rain flow and stagnation. Rain flow is
the main affecting factor of soil moisture, depending on slope, soil absorption rate, and terrain topology.
The another factor is stagnant water body accumulation, such as rivers and lakes. The latter is included by
initializing the respective areas to high moisture levels. We assume that rain fall is uniformly distributed
across the whole terrain and, therefore, each patch receives the same quantity of water. Rain water that
cannot be absorbed flows to nearby areas. All this results in nonuniform soil moisture distribution.

As explained, rain-water flows to or from neighbouring patches with a magnitude depending on their
slope, height variation with neighbouring patches, and the soil absorption rate. Locally this means, the
moisture received for certain patches equals the immediately absorbed rain and the absorbed part of the
water flowing to this patch from higher patches. Soil absorption rate depends on soil structure and rain
type (light rain, rain shower). In our calculation, the rain absorption rate is approximated as a portion of
absorbed rain compared to all the rainfall, but a soil absorption rate map can be loaded too.

Patches forming the terrain have different surface areas when viewed in 3D space, but all have same
areas in xz plane projections. To explain this assumption, let us remember that rain source is equally
distributed across the terrain. If we assume in our model, that rain falls perpendicularly to the zz plane,
we can assume that every patch (independent of its size) receives the same quantity of rain M mate-

The algorithm for moisture calculation (see Appendix B) begins by initializing all patches with the
rain quantity meimate (€.€. Meimate = 1). For each of these patches, moisture propagation (infiltration),
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My, 1S added for all areas of stagnant water body accumulations (e.g. m,, = 10):

mik+mw7 yzkggw
L= ’ ’ v 14
ik { M e, otherwise 14

Patches containing water accumulations are defined as those for which 7, , component is less or equal than
normalized height of water level, 7,, € [0, 1], the latter being an adjustable parameter of the soil moisture
calculation.

For liquid flow calculation, patches are sorted upon their height and iterated through, to imitate the
water flow behaviour. Let us assume that currently processed patch is s; ;. For this patch, number of flow
away sides, Npeighix € [0, 4], is determined first, by counting lower neighbouring patches. To test whether
a patch is lower, its central point is used. Soil absorption rate, k,,, is a controllable parameter, so that a
complete water flow off for the patch is defined as:

0 Nneighyik = 0

Amyp, = Si kkm (15)

y  Nneighyik = ]-) 27 37 4-
Npeighsik

This results in stronger water flow off for patches with steeper slope and weaker for those with a more
gradual slope. The ran off water portion is added to lower neighbouring patches:

Mit1 k1 1= Mit1 kt1 + DMy k. (16)
All poured off portions are subtracted for original patch:
Mg = M4k — nneigh;i,kAmi,k- (17)

The obtained moisture distribution is further processed by convolving it with a low-pass digital filter
(an efficient moving average FIR filter is used). The filter is executed N, = 10 times to soften and
widen the moisture accumulation peaks.

3.2. Wind

Our wind intensity calculation is based on wind-shelter position determination. To calculate wind
shelter areas, our algorithm considers two main principles: wind flow is, in many ways, similar to liquid
flow, moving horizontally but because of minor differences in temperature it changes its mass and is,
therefore, subject to vertical movement too [50]. Both principles result in wind shelter areas being created
behind hills, because wind flows forward horizontally, but does not move down quickly enough. Using
wind drop speed and forward motion speed, a total angle of wind occlusion can be defined. We constrain
the wind occlusion angle search to traversal of V,, = 10 [50] patches, each sample being K meters apart.

To calculate the final windiness w; ;, on the patch s; 5, several computation steps are followed once
again. Because we want to determine an average windiness of patches on a yearly basis, wind over terrain
is defined as an average wind vector: it has its strength and constant direction. We shall denote this average
wind vector as w, lying in the zz plane.

For each patch, our algorithm (see Appendix B) therefore travels in the opposite direction of wind
vector w; i, and determines a maximum wind occlusion angle until the distance when the wind would
surely drop enough. If a traversed patch is lower than the patch being processed for windiness calculation,
it does not occlude wind impact, but if it is higher, it is possible that it does. Wind occlusion angle
is defined as ¢; k. = £ (€ pw: Cik, c;,w), where vertex ¢; ;. ,, is center of the traversed patch, c;; =
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T , ..
[Cx;i,k Cysi k cz;i,k} center of processed patch, and ¢, .., PrOjection of vertex c; , ,, to the y = ¢, ,, plane
(Fig. 3). Calculation of wind occlusion angle is defined as:

Cysik,w — Cysisk
Qi kw = arctan % (18)
||ci,k,w Ci k|
P —
y "
Y D

full power

shelter

!’
¢ Lkw

\4

Figure 3: Angle of wind occlusion ¢; . ., between patch centers ¢; 5 and ¢; ., for patches s; ; and s; i ,,. Patch s;
corresponds to w-th sample with central point ¢; . ,, from Fig. 4.

Wind occlusion rate is retrieved from minimum wind occlusion angle (¢; ;, = min,, {¢; z.}). Patch
traversal for wind source vector is shown on Fig. 4.
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\'\pi,k;l
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Figure 4: Patch traversal for wind source vector from vertex c; j, for IV,, = 4 samples. Traversal direction is defined as —w and
single step length is same as the dimension of a patch, K. By sampling (dashes), appropriate patches and their central vertices
¢; k,w are obtained for wind occlusion angle calculation.

To finalize wind impact calculation w; j, obtained wind occlusion angle ¢; ;. is used and compared
against threshold angle © € [0, 7] (e.g. 7). We defined the latter as an angle, where wind impact is fully
occluded. Angle © is schematically defined on Fig. 3. As can be reasoned from the figure, greater ¢; j,
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angle results in smaller w; ;, until it reaches © threshold, when w; ;, = 1 equals to full wind impact:

Wiy = 4 Pikr Pk <0y

: _{ 1, otherwise (19

3.3. Sun

Our sun intensity distribution calculation is based on astronomical models for the Earth’s rotation
around the Sun. As the Earth rotates around the Sun and by itself, different areas of the terrain on the
Earth receive different amounts of the Sun’s radiation on surface [31, 5, 43]. What we do is sample the key
Sun positions and accumulate the average Sun radiation, similar, but not quite the same, as in [59]. The
latter is mainly dependant on the incidence angles of Sun’s rays. Another important factor is hill shadows,
preventing the Sun’s rays breaking through, as in e.g. some valleys.

To deploy our algorithm (see Appendix B) for sunniness distribution calculation, we first need to
parameterize it. Cardinal point vectors North p,, South pg, East p;, and West py;, are prerequisite pa-
rameters. Because our model is adjusted for northern hemisphere, Sun is never directly in it’s zenith at
noon, but rather some degrees lower to the South. This incidence angle distortion is caused by declination
angle. For the Sun position on the sky sampling, we defined normalized vectors p,, p M-t and py, _, for

starting, central, and end locations. To calculate all p,,,n € [0, V] positions, some are interpolated from
East to West, as seen on Fig. 5 and 6.

1

pN -1 ? po

v, | P

O
QQQQ

Figure 5: Samples of Sun positions on the sky, used for sunniness calculation of single patch s; j, in two dimensions.

Figure 6: Samples of Sun positions on the sky, used for sunniness calculation of single patch s; j, in three dimensions.
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For our model, vectors p, and py,_; can be defined as:

Po = P + 0.37py, (20)
lefl — pW + O37pN7 (21)

where 0.37p, vector denotes Sun position on the East and West, moved to the North because of appropriate
declination angle (derivated in the following subsection, 3.4).
The mentioned declination angle is incorporated into central sample p~,—: too. Let us define it for

46th parallel of latitude (this is where declination angle equals 46°). Here, the incidence angle at noon
a,, n-1 = 90° — 46° = 44° results in px, 1 = (0, sin44°, cos 44°), because the Sun is exactly between
] 2
East and West at this time. Now we can define the samples for location of the Sun on the sky:
Py + %(p¥ —Po),n=0,1,.., 1

pn = 2 nfl _
pﬂ+%ﬁ%@M4—pg;%n=&fﬁﬁwwM—J

(22)
We then normalize the calculated location vector p,, to determine contribution of this sample according
to its incidence angle. The latter is defined as «; j , as seen from Fig. 6. As it is known, the radiation
contribution is proportional according to cosine law, therefore only cosine of the «; ;, , must be obtained.
Cosine of the incidence angle is therefore calculated using normal n; , and current Sun location vector p,,:

— p
COS QW fpp = M fp - ———. (23)
P, |l
Sunniness contribution of a single sample ly,ic.i k,», When Sun is at sample location p,,, is defined as:
lb ik — COS ai,k},’rﬂ 0 S O-/i,k,n S % (24)
assnn Lambient otherwise

Contribution amount lps;c.i 1 1S Weighted, because samples near noon contribute more power, because
atmosphere is warmer and clearer so Sun rays penetrate easier. Radiation contribution from single sample
is therefore:

2n —1
lbasic;i,k,n 1+ N,—1 70 <n< )

(25)

i,kn —

2 N;—1
lbasz'c;i,k:,n 3— Til ,ZT <n S Nl -1

As mentioned, because of the emergence of shadows, some rays can not penetrate into some areas. To
determine, if a certain patch is in shadow, a similar algorithm was used as in the determination of wind
shelter positions. In this case, traversal is done from a current patch towards the Sun’s location. The height
of the patches is used during traversal of patches towards p,,. If the central point c; ;., of some n-th patch
forms a smaller incidence angle with the central point c; ;, of the starting patch, this patch is preventing the
Sun’s rays from radiating onto the starting patch. As soon as some occluding patch is found, the search
is finished for the current sample. The mentioned incidence angle is defined in the same as for wind
calculation, using Eq. 18. If a certain patch is in shadow for some Sun’s sampled position, that sample’s
radiation is diminished according to the ambient light coefficient parameter controllable by the user of the
model, lympient € (0,1) (€. lumpient = 0.2 for non-cloudy days).

Sunniness of s; ;, patch is accumulated from all sampled positions of the Sun:

N—1

lz’ n
Lk =Y Ni (26)

n=0 !
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3.4. Derivation of Average Sunniness Angle During Summer Time Equinoxes

In the model of sunniness, average angles for sunrise and sunset are taken through the springtime and
summertime (from spring equinox 21 March to autumn equinox 23 September) to calculate the p, vector.
We obtained a calculated angle of approximately v = 21.98° from North and therefore add to the Sun
position vector p, a vector of 0.37p,;. Details for the obtained result follow.

Zl

Figure 7: Vertices and rings of the celestial sphere.

It is known that on 21 March and 23 September the sunrise is at exactly at East and the sunset is exactly
at West. At that time the Sun at equator is perpendicular to the Earth’s surface, resulting in an equinox with
equal duration of day and night. From one to another equinox in summer half-year time on the northern
hemisphere the Sun rises somewhat more to the North and also goes down somewhat more to the North.
This means that the Sun’s position viewed from the surface of the Earth traverses more than an angle of
180°. To obtain an average angle of how much the Earth rises towards to the North we must first determine
its extreme value o, which sets time on 21 July, ie. at the summer solstice.

The part of Central Europe (Slovenia), for which our sample calculation is parameterized lies on latitute
of 46 degrees (p = 46°). In the time of summer solstice the inclination of 6y = 23.5° the angle of Sun on
the sky is 90° — 46° + 23.5° = 67.5°, seen as the angle £ Ay, 605 on Figure 7. On the latter Figure, O
denotes the center of celestial sphere. Z denotes zenith, Z' nadir, P North celestial pole, P’ Souh celestial
pole, £/, W, S, and N the East, West, South, and North. The line through ZO is called perpendicular axe
and the line through PP’ is celestial axe. The spline £ AW defines the celestial equator, and the £.SW
denotes the horizon. The spline N PZ defines the celestial meridian. ¢ denotes the geographical latitude
of the viewer. dy denotes the offset in degrees from equinox and is in the time of the summer solstice equal
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to 23.5°. Symbols EY, ; and W3, 4 denote vertices of sunrise and sunset at the day of summer solstice on
a point with latitude ¢ — . The spline through these points and the A’ ; lies in a plane perpendicular
to EAW. Red colored triangle gives the studied angle «v),;. From this angle, later the average angle « is
calculated. The angle av,; is between the vector of Earth’s radious R, in the direction to sunrise at the day
of summer solstice and vector to the North with length of r.

From the angle £ A5 6.0216.5 = 44° we can calculate using the sine law the ratio between lengths
r and R. The ratio between the Earth’s radious R and the part of radious which intersects the horizon
(ESW: East-West-South-West) is:

T R

= 27
sin £021.6. 42160  sin L0026 A’ 7
r R
. = = ; (28)
sin (180° — (90° — ¢) — (180° — (90° — ¢ + dp)))  sin (90° — o)
r R
= 2
sin23.5°  sin44°’ 29
r sin 23.5°
R~ sindde 30)
The angle «v); in the lower right-angled triangle between side r and hypotenuse R is:
. r
sin oy = T (31)
4T . _q8In23.5° .1
= — = — =~ 574 =~ 35.031. 2
Qs = sin 7 sin ERVE sin” " 0.57 35.03 32)

Although the Earth rotates around the Sun in a elliptical trajectory, we will approximate this rotation
with a circle. After this approximation the angle «,; is changed during time with a sine law if we take
t = 0 as a spring equinox.

To calculate average angle o during summer time half year, we must calculate half of the whole-year
sinusoidal period lasting approximately ¢, = 365.25 days in total. The angle o amounts in the spring
equinox (¢ = 0) to o = 0, in the summer solstice (t = %0) to o = ayy, and in the time of autumn equinox
(t = %) to a = 0. Because the time sinusoid for Sun traversal is symmetric we must calculate only the
average of the first quarter. First we calculate the integral to calculate the average of the angle looked for:

W= 2—7T, (33)
to
to to

Qsum = / ’ ay sin(wt)dt = 2ay / ' sin(wt)dt = 2ap(— cos(wt)| s — (— cos(wt)|o)), (34)
0 0 *

Qsum = 2007 (0+ 1) = 70°. (35)

To get average, the result of the integral is divided by time during which the values are accumulated,
ie. the summer half of year during equinoxes (At = %0):

Nsum 70° o
o= = o A 0.383 & 21.980°, (36)
2 2

To calculate Sun position p, we must add the vector pointing towards North which is of length of the
sine of the angle

Po = P +sin(a)py = pg + 0.374py. (37)
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4. Ecosystem Landscape Visualization

In our application, we can analyse simulation results quantitatively using 2D graphs, e.g. population
size of each species, average age of species, or the clustering of species during simulation. In this section
we will first present a simulation example to show population dynamics behaviour in our simulation. Then,
we will focus on efficiently visualizing simulation results and round up with architectural configuration.

Fig. 8 shows graphs for a case, where simulation lasted for several hundred simulation years. Abscissa
increases years by one for each simulated step, while the ordinate counts the population size of each
species. Initially, there are enough resources for all species, so their population sizes grow exponentially.
Shrubs are a pioneering species so they propagate at a fastest pace. After 200 years, the terrain has long
been saturated and only the number of willows changes slightly. Species population sizes are now fairly
stabilized, with a total population size of over 600,000 trees in the ecosystem, including all ages of trees,

from newly germinated seeds to older trees.

To test simulation stability, we enforce an ecological catastrophe in the year 300 by killing all trees
and not changing any simulation random generators. This is an arbitrary catastrophe (it could be e.g. fire).
We have set that on average out of 100,000 trees only 100 survive. This is to test and analyze stability of
patterns concerning species distribution over time. Also, this tests how the simulation proceeds if we do
not begin with an empty terrain but rather already germinated seeds — in this case the shrubs do not reach
such great number and are suffocated quicker by stronger trees progressing faster now. The ecosystem
recovers with similar population sizes for each species as before the catastrophe. In year 600, we trigger
another catastrophe by killing only 99.9% of trees and eliminating all shrubs and willows during this
progress. But the ecosystem recovers once again. As can be seen, shrubs get eliminated again, but the
willows also. They become extinct because other competitive species populate former growth areas of the

willows and they do not have enough seeds to recover.
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Figure 8: Exponential propagation of trees, stabilization and recovery after catastrophes in years 300 and 600.

The simulation results influenced by integrated agents are visualized using computer graphics by syn-

thesizing rendered images of simulated ecosystem [19, 30, 6, 9, 12, 48, 33, 42]. It is that animation is
guided by simulation and the simulation is visualized by animation. We visualize each simulated year
by drawing a terrain surface and adding individually different geometrical models of trees at their growth

locations.
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Several free visualizers for fast terrain rendering using OpenGL can be found on the Web [34, 11].
Several of them use OpenGL extensions [45, 54, 55] for faster real-time rendering of e.g. 100 x 100 vertex
mesh at hundred frames per second. OpenGL shader quality is usually lower than ray-tracing shader
quality, but its speed is much better. Memory utilization is also lower with OpenGL because of its depth
buffer algorithm. Every geometrical object (e.g. geometry of a tree) is namely disposed right after it is
sent to OpenGL server, because it is not needed for rendering any more. OpenGL server also disposes the
received geometry right after it has rendered it into image and updated the depth buffer.

To visualize the distribution of trees across terrain, a schematic or a photo-realistic image is rendered.
The schematic image is composed of circles being drawn at locations of trees with extent of their ecological
neighbourhood area radii. As all circles for same species are also in same colour, this is appropriate for
schematic analysis. A photo-realistic image is rendered in order to visualize the distribution of trees across
a terrain.

For the image, at each tree location our procedural models are used to instantiate the adapted and indi-
vidualized geometrical models, for more realistic visualization. The per-species linked visual models are
adapted according to the age of a tree. Parameterized procedural models are obtained using our interactive
modeller part in order to instantiate these geometrical models. Using the modeller, related data for param-
eterizable procedural model is acquired by the design of graphs and the use of interactive dialogues, which
immediately affect the displayed image of a tree. This certainly eases modelling and allows rapid model
creation. As the user parameterizes the procedural model with a limited set of intuitive parameters, the
underlying procedural model calculates and instantiates a geometrical model for a tree. The 3D position,
size, orientation, and texture are calculated in order to create a geometrical model, for each of up to over
thousand branch segments and several ten thousand leaves. Our procedural model can also be designed
within an ecosystem with other trees, for easier perception [62]. The ergonomics of the modeller enables
us to obtain a new procedural model within twenty minutes or less. In addition, the procedural model
enables a fairly controllable, but flexible, animation. Each leaf and each branch segment can be animated
in real time by changing some adjustable procedural model parameters, e.g. age of a tree. Those animation
effects already included in our modeller are the growth of a tree and the sway of the tree in the wind. Fig. 9
displays some trees, which were visualized using our procedural models. As seen, coniferous and foliage
trees can be obtained, which have very different branching structures and leaf distribution.

For the visualization of complete ecosystems, we upgraded our tree modeller with three major im-
provements and integrated it into the ecosystem simulator, where the tree-visualization part was used to
visualize a full range of different trees in the terrain. The first improvement is the use of culling [14] for
the removal of objects from the scene, so that the geometry is never computed for culled trees. The second
improvement is the level of detail reduction for distant trees. Dependent on reduction degree, less smaller
branches are drawn. Our reduction degree is defined by:

liop = { Hp”_5—p“>’MJ : (38)

where p,, denotes point of view and p;, bounding sphere center of p-th tree from s-th species (distances
appear in meters).

The appearance of simplified trees differs little, but visualization process speedup is by up to several
hundred times. Using these two improvements, we can already afford real-time animation of several
thousand trees. The third improvement pushes visualization performance even further. According to the
above reduction degree, differently-complexed geometrical objects are chosen for branch segment and leaf
representation. Fully detailed branch segment and leaf representations are drawn with a cone and a quad.
A simplified branch segment and leaf are drawn using a line and a vertex.
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Figure 9: Trees obtained using our modeller [62].

4.1. Synthesized Images

We present some rendered images, which are synthesized from one of the simulation runs. Four tree
species are included: beech, maple, pine, and shrubs. Simulation begins with an empty terrain with
no trees. The trees populate the landscape, as a natural consequence if people stop mowing grassland
(Fig. 10a). The first few years mostly include these, because shrubs can grow and replicate quickly
(Fig. 10b). As they are weak in their fight for space against new dominating species, they retreat and
the terrain is populated by larger foliage plants (Fig. 11a). Later, spruces start to spread from the right side
(Fig. 11b). After approximately 180 simulated years the terrain is saturated with all species used in simu-
lation. Each of them acquires a suitable area for living conditions, where it can dominate other species.
Obtained clustering of species is seen, but some trees from another species are still contained within the
environed areas making the image more authentic.

4.2. Architectural Configuration

Architectural configuration of the built application is shown in Fig. 12. EcoMod application is com-
posed of both tree modelling component and ecosystem modelling component. Each component is finely
granulated and they interact with each other at top level by the latter using constructed procedural models
of the first to create geometrical models for growing trees. As seen from the figure, user parameter input
is saved in the databases of procedural model and ecological model parameters. The links of ecological
models with their visual representations using procedural geometrical models, are saved in the former
database.

5. Discussion

We are presenting an approach for the modelling of ecosystems, which combines computer graphics
and artificial life in a new way. Aim of this work is an attempt to combine a scientific forest growth
model with visualization, potentially useful in computer games, cinematic sequence rendering, scientific
data visualization, or other application domains. A cheaper computer animation of natural phenomena is

115



a b

Figure 10: a) Beginning of simulation, b) People stop mowing grassland, shrubs begin to appear.

a b
Figure 11: a) Simulation after 60 years: terrain is saturated, bigger tree species begin to prosper and replace shrubs, b) Results
after 80 years: pines start to penetrate massively, whereas beech and maple are already distributed finitely across the terrain
according to living conditions, and their interaction.
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Figure 12: Architectural configuration of our environmental framework application components and implemented algorithms.

achieved by combining both scientific topics. As seen again, computer animation is still and once again
the leading economical driver of research into artificial life.

The distribution of trees just emerges within the simulation, as this emergence is a principal phenomena
of artificial life. Simulation is driven by programmable agents which mediate within the development.
They are the keepers of rules within the ecosystem, such as the growth of individual trees, competition
between neighbouring trees, the dying of trees, the manner of reproduction, and the disposal of living
conditions. The emerged forest patterns can be observed on the rendered images presented in Figures 8,

10, and 11.
Let us stress, what are main contributions of our algorithms in relation to existing solutions:

e first, considering efficiency, we integrate a procedural tree-model modeller tool (subject of human-
computer interaction), ecosystem simulator (subject of artificial life), and forestry landscape visual-
ization (subject of computer animation) in a single application, with

ability to shape a new compact procedural tree model on a real landscape at a selected DEM
location, and efficient reduction degree visualization of the built model within it,

immediate forest visualization of a simulated ecosystem during simulation, and

efficient generalization of ecological neighbourhood area collision detection for domination
determination, from 2D into 3D space;

open source implementation of a new OpenGL engine with high applicability for reconfig-
urable vegetation rendering in computer games,

e second, in visualization of an ecosystem, we consider several living conditions besides soil moisture,
such as height above sea level, wind, and sun,
— we construct and define by pseudocodes the algorithms for calculation of living conditions,

— we generate rendered ecosystems, which have estimated ecological factors calculations based
on real DEM terrain data, and

— we use living condition factors from Ellenberg taxonomy, in forest development simulation for
visualization of ecosystems.

The main limitations of our work are:
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e since expressed as computationally efficient simulation model, our model can not express the full
complexity of a real life ecosystem, only its coarse approximation,

e the simulation model does not take into account animal interaction, human pollution, and human
harvesting of forests,

e our simulation model does not take in consideration a temperature indicator separate from light, and
only encompasses both in a sunniness indicator; also, our windiness and sunniness calculation does
not take in account shadows of independent trees to nearby trees, and

e the simulation model runs have not been verified against some existing real ecosystem data; also,
since there is no existing database of indicator values for all Earth’s habitats, our forest simulation
model has not been parameterized for the whole planet Earth.

6. Conclusion

In the paper, we provided a detailed description of the model for simulating spontaneous forest growth
process and the environmental factors that might influence this process. All the tree growth factors and
procedure have been defined mathematically, and the simulation could be based on a bottom-up agent
model. The software simulation system has been designed for tree distribution during landscape sponta-
neous afforestation. It considers several environmental properties and combines computer graphics with
artificial life. The application is used in computer animation for the synthesis and analysis of natural
environments. A flexible and adaptable procedural 3D model is used to visualize trees. Behaviour of
the presented tree distribution model was also confirmed visually. The number of trees in the ecosystem
increases exponentially, trees grow in communities, and permanently emerging pattens are biologically
inspired and natural looking.

There are plenty of guidelines for future work. Simulation could be additionally optimized and run par-
allel to several computers. The created model for forest growth can be parameterized using Ellenberg tax-
onomy [13], a well established classification method for living conditions impact on distribution of trees.
Our created models of natural laws and their interaction should be fitted to real-world experiments by using
large scale global optimization techniques [57, 60, 24, 53] and multi-objective optimization [61, 37] using
niching techniques on the objectives [58]. Then, in-depth analysis of complex patterns as emerged from
local behaviors and the impact of the underlying tree growth mechanism on the global tree distribution
could be analyzed for real-world scenarios. Also, impact of pollution to forest growth could be shown by
entering polutant source locations and strengths. Last, but not least, our work could be used in simulator
engines of virtual life for computer games and other virtual realities.
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Appendix A. Symbolical Denotation

Here we list the mathematical symbols defined for the terms used. The indices p and s, e.g. (p, s), denote a woody plant,
i.e. tree, and a species index, respectively. The ¢ and k indices denote terrain patch indices. The indices are separaded by
comma. We sometimes also use main symbol descriptors in subscript — these are separated by semicolons from indices.

Ecological System Model Soil Moisture
Qrip maximum competitive ability of p-th tree km soil absorption rate
aa competitive ability of some tree A Melimate climate average rain quantity per patch
Qs,p competitive ability of p-th tree of s-th species m; patch s; ;, moisture (rain quantity, filtered)
d(A, B) distance between points p, and pp Mo s-th species optimal moisture
W: neighbourhood intersection boolean flag Amyg,s species s tolerated moisture deviation
fg:s» [s;s» harmfulness factors intolerances for height Mg p tree (p, s) soil moisture suitability
frmiso above sea level, slope, moisture, windiness, Moy stagnant water body accumulations area size
fuwsss fiss and sunninness, respectively Ymin minimal terrain height above sea level
hsp height in meters, for a tree (p, s) Ymaz maximal terrain height above sea level
Romgs species s trees height reached when mature Amg g, patch s; ,, complete water flow off
Nopt maximum distance in number of patches, for Nobiur moisture accumulation peaks filtering count

two possibly neighbouring trees Nneigh;i,k  patch s; i number of rain flow away sides
ANy s species s new trees count for each generation T normalized height of water level
P4 - location of a tree A on terrain, in 3-D space
Dpersist;s persistent clinging to life factor of species s Wind
rA ecological neighbourhood radious of a tree A Cikw traversed patch center for w-th wind sample
tsp age of a tree (p, s) Ny wind traversal patch count
tes maximum potential age of species s w average wind vector, defined in zz plane
timss average maturity year of species s Wi k patch s; ;, windiness
ta;s average year when species s is fully grown Woss s-th species optimal windiness
Vs p vigour of a plant (p, s) Awe, s species s tolerated windiness deviation

Wg p tree (p, s) patch windiness

Terrain Elevation and Slope ik minimum wind occlusion angle for patch s; .
Cik central point of patch s; ;. Dikw patch s; ;. wind occlusion angle, w-th sample
cg’ kew w-th wind point sample projection, patch s; j O wind occlusion threshold angle
(i, k) patch indices for = and z axis, respectively
kg p tree (p, s) suitability of height above sea level Sun

dimension in meters of a patch, in plane zz lambient shadowed patches ambient light coefficient
n; j normal vector at point p; , of patch s; j, lvasici,k,n ~ potential n-th sunniness contribution for s; j
Ng.; i, Ny;; k., components of terrain patches normal vectors Lik patch s; ;, sunniness
and n; 1, likon patch s; ; sunniness for n-th Sun position
n; i unit normal vector at point p; x lo:s s-th species optimal sunniness
Sik terrain patch slope Alys s-th species tolerated sunniness deviation
Si.k (i, k)-th terrain patch (quadrilateral) lsp tree (p, s) patch sunniness
Ss,p tree (p, s) location slope n Sun position sample number
Y height above sea level N number of Sun position samplings
Y normalized height above sea level PnsPgs cardinal point vectors pointing North, South,
Uik patch s; ;, normalized height above sea level Ps Pw East, and West
Yoss optimal height above sea level for s-th species P, n-th Sun location vector from patch s;
AY,.s tolerated height above sea level deviation Po Sun starting position at East
T simulation step number (time) PN, 1 Sun ending position at East

Qi kon Sun sample incidence angle

Visualization
lrop geometry level of detail
Pv viewpoint

Appendix B. Algorithms

Here we list pseudocodes of the developed algorithms for our ecosystem simulation, domination and for tree elimination,
new tree creation and moisture, wind, and sun intensities calculations.
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Algorithm 1 Ecosystem simulation routine.
Require: v — list of all tree species for simulation; 7 - population of plants in current generation; f — list of all matrices for
environmental factors
Ensure: runs step simulation of ecosystem spontaneous afforestation
loop
create new trees for all species(v, r);
grow all trees(r, f);
eliminate dead trees(r);
end loop

Algorithm 2 Creation of new trees on terrain.

Require: N;, AN, ; —see Appendix A for denotation; p, - for each species, probability of nearby growth for new trees
Ensure: new trees P; ,, added to list of trees for all species, and to terrain
for s=0to Ng — 1do
Ay :=0;
forn=0to AN, , —1do
if ps < random(0, 1) and list length(P; ,,)-1> 0 then
I, , := random index(0, list length(P; ,)-1); {seeding: create list of seeds from nearby parent trees}
else
As := A + 1; {trees to seed further away}
end if
end for
sort list I ,, by values of stored indices;
for n = 0 to list length(I; ,,) —1 do
Ss,n = get random neighbouring patch(I; ,,);
Pspn = random vertex on patch(s; ,,);
if the vertex p, ,, is not in water then
P, = create new tree(p; ,,); {the seed falls on appropriate ground}
end if
end for
forn=0to A; — 1do
Ss,n := get random patch(); {we add trees, which can grow far away from parents}
Psn :=random vertex on patch(s; j,);
if the vertex p, ,, is not in water then
P, := create new tree(p, ,);
end if
end for
end for

Algorithm 3 Ecological neighbourhood intersection domination determination for tree elimination.

Require: p4, a4, 74 —see Appendix A for denotation; (7 4, k4 ) — patch indices of where tree A is located; N, —neighbouring
patches search extent; p; ., — list of locations of n trees, which are close to patch s; j; a; 1, — list of competitive abilities
of n trees, which are close to patch s; i; 7; 1., — list of radii of n trees, which are close to patch s; j,

Ensure: D, p —domination flags of all trees
D4 p := false;
for 2 = k — Nyp to k + Nype do

for £ =i — Nyp: to i + Nope do
for n = 0 to list length(p; 1 )-1 do
if|py — pi,k,n| <ra+rignandas < a;p, then
D4 B := true; return;
end if
end for
end for
end for
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Algorithm 4 Moisture intensity calculation on a terrain.

Require: 7,0z, Emazs Ci k> N, Metimates Maws Si ks km — see Appendix A for denotation
Ensure: m; j — matrix of elements, moisture intensity for each patch on terrain
fori =010 7,4, — 1do
for k =0to k4. — 1 do
My k = Mclimates
ify, , <7y, then
My g = M, i + My; {add moisture to patches of stagnant water accumulations }
end if
end for
end for
sort patches descending by height (c; x, IV); {we get a list, e.g. (34, 13, 17, ...)}
forj=0to N —1do
(i, k) == get indices (i, k) from sorted index j; {we get0 — 34,1 — 13,2 — 17, ...}
Nneigh;i,k := determine number of flow away sides of patch s; 1;
si.kkm
= Mk Meighiik
M1 k1 °= Myx1 g+1 + Am, ;5 {add this part to neighbouring patches}
My ke = Mk — Nneighsi, kTG k3 {subtract moisture for current patch}
end for
for j = 0to Nypiur — 1 do
My + M1k + My g1+ M1,k + My et
5

Amy g ; {we calculate part of flow away for one patch}

m; g = ; {soften and widen moisture accumulation peaks}

end for

Algorithm 5 Wind intensity calculation on a terrain.

Require: i,,,., Kmaz, Ci k. Nw — see Appendix A for denotation
Ensure: w; ; —matrix of elements, wind intensity for each patch on terrain
for i =0t0 7,4, — 1do
for k =0to k4 — 1 do
wik = 0;
forw =0to N, — 1do
Cysik,w — Cyjik .
15 k0 — Ciell”
ik = min(e; kv, 9ik); {smaller the wind shelter angle, the more wind is blowing}
end for
if Yik S So then
Wi,k = Pi k>
else
w; g = 1;
end if
end for
end for

Vi kw = arctan
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Algorithm 6 Sun intensity calculation on a terrain.

Require: 7,42, Kmaz. Ni. Py Ps> Pe»> Py lambient — see Appendix A for denotation
Ensure: [; ;, — matrix of elements, sun intensity for each patch on terrain

Py := Py + 0,37p; {determine Sun start and end visible locations }

PN, — 1= Pw +0,37py;

PN, —1 = (0, sin44°, cos44°);

A2
fori =01t0 7,4, — 1do
fork =0to k,,q — 1 do
l; , := 0; {initialization of patch Sun light intensity }
forn=0to N; — 1do
if n < N; — 1 then
P, =Py + %(p N -1~ Po); {pre-noon Sun location samples}
2

else L
2(n—3)
P, =Py + ﬁ(pm,l PN, —1 ); {afternoon Sun location samples}
2
end if
COS Qj jyp, = My f; - Py, ; {sample incidence angle}

. P, |l
if cos aj ., > 0 then
lbasicsikn = COS v, n; {direct light radiation to a sample}

if0 <1< Y1 then

Lien = lbasicyikon (1 + J\%Cll ); {light radiation over middle part of day}
else

L kon = lbasicsikn (3 — ]\%7}1 ); {light radiation at morning and evening part of day}
end if

if not in shadow(p,,) then

Lig=lig+ ZZJGZ” ; {accumulation of all Sun intensity for a patch}

else
Lig:=lig+ llk"lj‘{fw, {add ambient light intensity in shadowed areas}
end if
end if
end for
end for

end for
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