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ABSTRACT
One of the most crucial emerging challenges in Lithography is
achieving rapid and accurate alignment under a wide variety of
conditions brought about by different processing steps. Current
alignment algorithms assume symmetric alignment signals. In
this paper, we propose a new algorithm based on subspace
decomposition of alignment signals. We assume that the
process-induced asymmetries are small enough so that only
linear effects need to be considered. We first find the subspace
of alignment signals using a set of signals with pre-known
positions. The position of a new signal is calculated considering
that, if shifted correctly, it will lie in the same subspace of
previous signals. Since this method exploits the structure of the
signals, it results in more accurate measurement of the position.
Simulation results show that the alignment error is about an
order of magnitude smaller than that achieved with conventional
Maximum Likelihood or phase-fitting approaches.

1. INTRODUCTION

Although the trend towards smaller features has been made
possible by the use of higher resolution exposure tools,
alignment between different process layers limits the practicality
of achieving such small features. The stepper machines have to
expose several layers within the required accuracy.

One common alignment method is the scanning/imaging scheme.
The marks on the wafer are scanned and the scattered light is
detected. The position of the mark is determined from  its
corresponding alignment signal. In the ideal case, the mark is
symmetric, and so is the optical system used for scanning and
detecting it. Therefore, the alignment signal will be symmetrical
as well, and its center position can be determined easily[1]. In
reality, the alignment signals are never symmetrical[2]. The
factors causing the asymmetry are:

• Aberration and asymmetry in the optical system, which
result in an asymmetric alignment signal even for a
symmetric mark. This factor usually causes a constant
displacement in the perceived position, and therefore can
be corrected through calibration.

• Asymmetry in the mark topography due to asymmetric
processing steps, such as resist coating or Chemical
Mechanical Polishing(CMP). In particular, CMP is
problematic because it also reduces the contrast, resulting
in lower signal to noise ratio. A cross-section of an

alignment mark asymmetrically covered by another layer, is
shown in Fig. 1. Fig. 2 shows a typical alignment signal.

Figure 1. Alignment mark covered with an asymmetric
layer. Asymmetric processing steps, such as CMP, cause
asymmetric overlying layers.

Figure 2. Detected signal, a(x), from scanning the
alignment mark. Since the mark is covered with other
layers asymmetrically, the resulting signal is also
asymmetric.

In this paper, we propose a new algorithm for determining the
center position of alignment signals. We assume that the process-
induced asymmetries are small so that we need to consider only
linear effects. In section 2 we discuss our linear model for the
asymmetry effect. In section 3 we discuss the algorithm for
constructing the model. In section 4 we then describe our
method for measuring the position of alignment signals based on
the linear model. In section 5 we present some simulation results



and compare our performance with that of current algorithms.
Finally we summarize our major findings and outline some
future work.

2.  MODELING
The optical system in the scanning and/or imaging based
alignment schemes behaves as a low-pass filter with bandwidth
proportional to NA / λ [3],  where λ is the wavelength of the
light, and NA is the numerical aperture. Therefore, there is an
appropriate sampling rate above which the sampled discrete
signal will have no aliasing. In practice, the signals are always
oversampled.

The alignment signal is a function of the topography of the mark
and all the overlying layers, and therefore is a function of the
physical parameters, such as temperature and pressure, of the
processing steps. Since the processes are well-controlled, we can
ignore all the high order effects of the physical parameter
variations. Hence we will have
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where x is the variable along the scanning direction, n(x) is the
additive noise, which also includes all the higher order terms,
and { }µ i  are the physical parameters, which only have small

variations around their set-points, { }µ i
0 . Also, we denote
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introducing α0  as a variable, we can also take into account the

varying gain of the optical system in comparing different
alignment signals.

The a xi ( ) , i= 0,…,p, only depend on the set-points of the

physical parameters, i.e. µ µ1
0 0, ..., p , and the mark shape, which

are  fixed in a well-controlled process. Therefore, any alignment
signal can  be written as
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where δ is the relative position of the signal. We have also
assumed that the additive noise, n(x),  is white. The problem can
now be stated as:

For a given signal a(x), find  minimum p, a x i pi ( ), , ..., = 0 ,

α i i p, , ... , = 0 , and δ, to fit the model in (1).

We divide the problem into two parts. First, we find p and
a x i pi ( ), , ..., = 0  since they depend on the process and not on a

specific alignment signal. Next, for a given alignment signal, we
find α i i p, , ... , = 0  and δ, the latter is the position of the signal.

3. PART I: EXPLOITING THE
STRUCTURE IN THE MODEL

Suppose that we have m alignment signals along with their
corresponding center positions. The latter data usually come
from metrology measurements. Without loss of generality, we
can also assume that all the signals are centered at the origin.
This could be done by appropriately shifting the data. Therefore,
we might represent these m signals as
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Equation (2) implies that a x j mj( ) ( ), , ... ,= 1  are m noisy

signals of the subspace  spanned by a x i pi ( ), ,... ,= 0

To be more specific, we shall assume that the measurement
signals are also sampled, at above the Nyquist rate. Hence,

n xj( ) ( ) , a x j mj( ) ( ), , ... ,= 1 , a xi ( ) , i= 0,…,p will be replaced

by the vectors n( )j , a( )j , and ai  respectively and (2) can be

written as
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In the following two sections, we first review the Singular Value
Decomposition(SVD) and then apply it to our problem.

3.1 Singular Value Decomposition

Let F ∈ ×RM m , M>m. Then there exist unitary matrices

U ∈ ×RM M  and V ∈ ×Rm m such that

U FVT
m

M mR= ≡ ∈ ×diag{ 1σ σ, ... , } Σ      (4)

σ k , k=1,…,m, arranged in descending order, are known as the

singular values of F. The corresponding decomposition of the
matrix F is known as the Singular Value Decomposition(SVD)
of F[4]. It has also been shown that  U is the matrix of eigen

vectors of FFT , V is the matrix of eigen vectors of F FT , and
σ k , k=1,…,m are the non-negative square roots of the

eigenvalues of F FT . If we writeV = { }vrs , r,s=1,…,m, and
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Note that all the columns of F lie in the subspace spanned  by
u i , i=1,…,m.

The interesting case for us is when rank(F)=l <m, i.e. F is not full
rank. Then, only the first l singular values are non-zero and the
columns of F lie only in the subspace of  u i , i=1,…,l. Note that

the SVD of F finds both the dimension and a basis for the



subspace spanned by its columns. In the next section, we use this
result to find p and a i i p, , ... , = 0 in (3).

3.2         Decomposition Algorithm

Recall from (3) that we have m measurements, a( )j , j=1,…,m,

where a( )j MR∈ , j=1,…,m. If F a a≡ [ , ... , ]( ) ( )1 m  and
assuming that the additive noise terms in (3) are zero, we can
write (3) as
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By comparing (6) and (5) we conclude that

If F a a≡ [ , ... , ]( ) ( )1 m  and F U V= ΣΣ T  is its Singular Value

Decomposition, then  (p+1)=rank(F) and is the number of non-
zero singular values of F, and a ui i= +( )1 , i=0,…,p.

In the presence of the additive noise term, we will not
necessarily have (p+1)=rank(F). In other words, we do not
expect to get only (p+1) non-zero Singular Values. To go

further, suppose that N ∈ ×RM m is a random matrix with
Gaussian distribution, zero mean with standard deviation σ, and
all its elements are uncorrelated to each other. Then G=F+N will
represent (6) in the presence of noise and we will have
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Therefore if σ k , k=1,…,m are the singular values of  F, and

ηk , k=1,…,m are the eigenvalues of E G G( )T , we

haveη σ σk k= +2 2 , k=1,…,m. Also, since

E GG FF I( )T T= + σ 2 , ai , i=0,…,p, are the first (p+1) eigen

vectors of E GG( )T . We can now summarize the algorithm as
follows:

1. Perform l measurements of m equivalent marks on the
wafer, therefore we have m alignment signals per each
measurement. We also acquire their corresponding center
positions by metrology. Therefore without loss of
generality, we assume that we have shifted all the signal

such that they are centered at the origin. Let Gq
M mR∈ ×

to be the qth measurement set. By choosing l large enough,
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2. Find the eigenvalues of E G G( )T , ηk , k=1,…,m, arranged

in descending order. σ η= m , and σ η σk k= − 2 ,

k=1,…,m; (p+1) is the number of  σ k , k=1,…,m, that are

non-zero.

3. a j , j=0,…,p are the first (p+1) eigen vectors of E GG( )T

when their corresponding eigenvalues arranged in
descending order.

In the next section, we use these basis vectors to find the
position of any new alignment signal coming from the same
process.

4. PART II: POSITIONING THE
SIGNAL

Recall the general model given in (1). This equation can also be
rewritten as
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Therefore assuming n(x) to be white Gaussian noise, we can
define the error as
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where A(f) and A fi ( )  are the Fourier transforms of a(x) and

a xi ( ) , respectively. When the signal is sampled, with sampling

interval ∆, the error will be
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where M is the length of the sampled signals. Defining A i ,

i=0,…,p, and A as the FFT of ai , i=0,…,p, and a, respectively,

B ≡
− − −

diag{e e
j f j f M2 20 1π δ π δ

∆ ∆, ..., } , S A A≡ [ , ... , ]0 p , and

α ≡ [ , ... , ]α α0 p
T , we will have

E(δ, α) = BA S− αα 2
  (11)

and by minimizing E with respect to α, we will get
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2
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Assume that δ is such that δ ∆ << 1 . This is a valid assumption

since the position of the signal is first found by a coarse



algorithm. In this case, we can linearize B using
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 and therefore E(δ) will be a 2nd degree

polynomial in δ given by
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where B1 is the linear approximation of B as mentioned before.

The position of the signal, δopt , is measured by minimizing

E(δ). We can now summarize the algorithm as follows:

1. Calculate A and A i , i=0,…,p, the Fourier transforms of a

and ai , i= 0,…,p, where the latter are calculated from part

I of the algorithm. Also, create S.

2. Initialize δ total =0.

3. Find δ by minimizing E(δ) given in (13)

4. A=BA , where δ in step 3 is used for constructing B.

5. δ δ δtotal total= + , go to step 3.

The iteration stops when there is no significant change in δ total .

Also, the iterative part relaxes the constraint δ
∆ << 1 , so the

algorithm can be applied even for δ
∆  up to unity.

5. IMPLEMENTATION

The algorithm was implemented in MATLAB. p=2, l= 20,
m=10, M=128, ∆=250nm, σ=15nm  were used in the simulation.
Also, lowpass-filtered Gaussian functions were used as basis
vectors in generating the simulated measurement signals. 200
measurement signals were then used in the part I of the algorithm
to find the number of singular values, p+1, and the basis vectors.
The results of part I of the algorithm were applied to find the
positions of 100 new alignment signals. Since the signals are
band-limited, only the frequency terms in the bandwidth of the
signal were considered in finding the position of signal. This
reduces the high frequency noise effects and also the processing
time. In all the simulation examples, less than six iteration steps
were needed to find the position.

Table 1 shows the mean and standard deviation of the
positioning error and compares them to those for two widely
used methods, Maximum Likelihood and the phase method. The
latter uses the slope of the phase of the Fourier transform of the
signal to find its center of symmetry.

The time required to compute the position of an alignment signal
directly depends on the order of computation required by the
algorithm. There are two sets of computation in our proposed
algorithm:
1. Part I of the algorithm, which calculates the order of

subspace and the basis vectors in the model. This is done
once for a process and does not need to be repeated as long

as the set-points of the physical parameters do not change.

The computation complexity of this part is O M m( )2 2 .

2. Part II of the algorithm, which finds the position of a signal
using the model from part I. The computation complexity of
this part is O M M( log( )) .

Proposed
Algorithm

Phase
Detection

Maximum
Likelihood

Mean(nm) 0.67 35.64 21.16

STD(nm) 5.27 38.71 29.82

Table 1. Comparison between our proposed positioning
algorithm and two other common algorithms. One
hundred measurement signals were used in calculating
the mean and standard deviation of the error. Results
show an order of magnitude improvement in the standard
deviation of the error.

6. SUMMARY

In this paper, we presented a new algorithm for positioning of
non-symmetric signals. We assumed only small changes in the
physical parameters contributing to the signals, and exploited
this structure in our linear model. We proposed an algorithm to
construct the model from a set of signals with pre-known center
positions, i.e. training set. We then described an iterative
algorithm to find the center position of a new signal from the
model. Our simulation results indicated that the performance of
this algorithm is about an order of magnitude better than current
algorithms, under the same conditions.

The existence of a well-controlled environment so that (1) holds
is essential for our approach. We would like to confirm these
preliminary simulation results through actual experiments.
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