
1

A New Weakness in the RC4 Keystream

Generator and an Approach to Improve the

Security of the Cipher?

Souradyuti Paul and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC,
Kasteelpark Arenberg 10,

B–3001 Leuven-Heverlee, Belgium
{Souradyuti.Paul,Bart.Preneel}@esat.kuleuven.ac.be

Abstract. The paper presents a new statistical bias in the distribu-
tion of the first two output bytes of the RC4 keystream generator. The
number of outputs required to reliably distinguish RC4 outputs from
random strings using this bias is only 225 bytes. Most importantly, the
bias does not disappear even if the initial 256 bytes are dropped. This
paper also proposes a new pseudorandom bit generator, named RC4A,
which is based on RC4’s exchange shuffle model. It is shown that the new
cipher offers increased resistance against most attacks that apply to RC4.
RC4A uses fewer operations per output byte and offers the prospect of
implementations that can exploit its inherent parallelism to improve its
performance further.

1 Introduction

RC4 is the most widely used software based stream cipher. The cipher
has been integrated into TLS/SSL andWEP implementations. The cipher
was designed by Ron Rivest in 1987 and kept as a trade secret until it
was leaked out in 1994. RC4 is extremely fast and its design is simple.

The RC4 stream cipher is based on a secret internal state of N = 256
bytes and two index-pointers of size n = 8 bits. In this paper we present a
bias in the distribution of the first two output bytes. We observe that the
first two output words are equal with probability that is significantly less
than expected. Based on this bias we construct a distinguisher with non-
negligible advantage that distinguishes RC4 outputs from random strings
with only 224 pairs of output bytes when N = 256. More significantly, the
bias remains detectable even after discarding the initial N output bytes.
This fact helps us to create another practical distinguisher with only 232

? This work was partially supported by the Concerted Research Action GOA-
MEFISTO-666 of the Flemish government.

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

2

pairs of output bytes that works 256 rounds away from the beginning
when N = 256.

A second contribution of the paper is a modified RC4 keystream gen-
erator, within the scope of the existing model of an exchange shuffle, in
order to achieve better security. The new cipher is given the name RC4A.
We compare its security to the original RC4. Most of the known attacks on
RC4 are less effective on RC4A. The new cipher needs fewer instructions
per byte and it is possible to exploit the inherent parallelism inherent to
improve its performance.

1.1 Description of RC4

RC4 runs in two phases (description in Fig. 1). The first part is the key
scheduling algorithm KSA which takes an array S or S-box to derive a
permutation of {0, 1, 2, . . . , N−1} using a variable size keyK. The second
part is the output generation part PRGA which produces pseudo-random
bytes using the permutation derived from KSA. Each iteration or loop or
‘round’ produces one output value. Plaintext bytes are bit-wise XORed
with the output bytes to produce ciphertext. In most of the applications
RC4 is used with word length n = 8 bits and N = 256. The symbol l
denotes the byte-length of the secret key.

KSA (K, S)

for i = 0 to N − 1
S[i] = i

j = 0

for i = 0 to N − 1
j = (j + S[i] + K[i mod l]) mod N

Swap(S[i], S[j])

PRGA(S)

i = 0
j = 0
Output Generation loop
i = (i + 1) mod N

j = (j + S[i]) mod N

Swap(S[i], S[j])
Output=S[(S[i] + S[j]) mod N]

Fig. 1. The Key Scheduling Algorithm (KSA) and the Pseudo-Random Generation
Algorithm (PRGA).

1.2 Previous Attacks on RC4

RC4 came under intensive scrutiny after it was made public in 1994.
Finney [1] showed a class of internal states that RC4 never enters. The
class contains all the states for which j = i+1 and S[j] = 1. A fraction of
N−2 of all possible states fall under Finney’s forbidden states. It is simple

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

3

to show that these states are connected by a cycle of length N(N − 1).
We know that RC4 states are also connected in a cycle (because the next
state function of RC4 is a bijective mapping on a finite set) and the initial
state, where i = 0 and j = 0, is not one of Finney’s forbidden states.

Jenkins [6] detected a probabilistic correlation between the secret in-
formation (S, j) and the public information (i, output). Golić [4] showed
a positive correlation between the second binary derivative of the least
significant bit output sequence and 1. Using this correlation RC4 outputs
can be distinguished from a perfectly random stream of bits by observ-
ing only 244.7 output bytes. Fluhrer and McGrew [3] observed stronger
correlations between consecutive bytes. Their distinguisher works using
230.6 output bytes. Properties of the state transition graph of RC4 were
analyzed by Mister and Tavares [11]. Grosul and Wallach demonstrated a
related key attack that works better on very long keys [5]. Andrew Roos
also discovered classes of weak keys [15].

Knudsen et al. have attacked versions of RC4 with n < 8 by their
backtracking algorithm in which the adversary guesses the internal state
and checks if an anomaly occurs in later stage [7]. In the case of contradic-
tion the algorithm backtracks through the internal states and re-guesses.
So far this remains the only efficient algorithm which attempts to discover
the secret internal state of this cipher.

The most serious weakness in RC4 was observed by Mantin and
Shamir [9] who noted that the probability of a zero output byte at the
second round is twice as large as expected. In broadcast applications a
practical ciphertext only attack can exploit this weakness.

Fluhrer et al. [2] have recently shown that if some portion of the secret
key is known then RC4 can be broken completely. This is of practical
importance because in the Wired Equivalence Privacy Protocol (WEP
in short) a fixed secret key is concatenated with IV modifiers to encrypt
different messages. In [16] it is shown that the attack is feasible.

Pudovkina [14] has attempted to detect a bias, only analytically, in
the distribution of the first, second output values of RC4 and digraphs
under certain uniformity assumptions.

Mironov modeled RC4 as a Markov chain and recommended to dump
the initial 12 · N bytes of the output stream (at least 3 · N) in order to
obtain uniform distribution of the initial permutation of elements [10].

More recently Paul and Preneel [12] have formally proved that only a
known elements of the S-box along with two index-pointers cannot predict
more than a output bytes in the next N rounds. They have also designed

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

4

an efficient algorithm to deduce certain special RC4-states known as Non-
fortuitous Predictive States.

1.3 Organization

The remainder of this paper is organized as follows. Section 2 introduces
the new statistical bias in RC4. Section 3 reflects on the design principles
of RC4. Our new variant RC4A is introduced in Sect. 4 and its security
is analyzed in Sect. 5. Section 6 presents our concluding remarks.

2 The New Weakness

Our major observation is that the distribution of the first two output
bytes of RC4 is not uniform. We noted that the probability that the
first two output bytes are equal is 1

N
(1 − 1

N
). This fact is, in a sense,

counter-intuitive from the results obtained by Fluhrer and McGrew [3]
who showed that the first two outputs take the value (0, 0) with probabil-
ity significantly larger than 1/N 2. Pudovkina [14] analytically obtained,
under certain assumptions, that the first two output bytes are equal with
probability larger than 1/N . However, experiments revealed that this re-
sult is incorrect. Our main objective is to find a reasonable explanation
for this particular bias.

Throughout the paper Sr[l] and Or denote the lth element of the
S-box after the swapping at round r and the output byte generated at
that round respectively. Similarly, ir and jr should be understood. All
arithmetic operations are computed modulo N .

2.1 Motivational Observation

Theorem 1. If S0[1] = 2 then the first two output bytes of RC4 are
always different.

Proof. Fig. 2 shows the execution of the first two rounds of the output
generation. We note that, O1 = S1[X + 2] and O2 = S2[Z + 2]. Clearly
X + 2 and Z + 2 point to two different cells of the array. Therefore,
the first two outputs are the same if (X = 0 and Z = 2) or if (X = 2
and Z = 0). But this is impossible because X 6= Z 6= 2 as they are
permutation elements. ut

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

5
0 1 2 3 4

2 X Z

i j
(a)

X 2 Z - S1[X + 2]

i j
(b)

X Z 2 - S2[Z + 2]

i j
(c)

Fig. 2. (a) Just before the beginning of the output generation. (b) First output S1[X+2]
is produced. (c) Second output S2[Z + 2] is produced. S1[X + 2] 6= S2[Z + 2].

2.2 Quantifying the Bias in the First Two Outputs

Theorem 1 immediately implies a bias in the first two outputs of the
cipher that are captured in the following corollaries.

Corollary 1. If the first two output bytes are equal then S0[1] 6= 2.

Proof. This is an obvious and important deduction from Theorem 1. This
fact can be used to speed up exhaustive search by a factor of N

N−1 . ut

Corollary 2. The probability that the first two output bytes are equal is
(1 − 1/N)/N (assuming that S0[1] = 2 occurs with probability 1/N and
that for the rest of the permutations for which S0[1] 6= 2 the first two
output bytes are equal with probability 1/N).1

Proof. If S0[1] = 2 occurs with probability 1/N then the first two output
bytes are different for a fraction of 1/N of the total keys (see Theorem 1).
The output bytes are equal with probability 1/N for each of the other
keys, i.e., a fraction of (1− 1/N) of the total keys. Combining these two,

P [O1 = O2] = P [O1 = O2|S0[1] = 2] · P [S0[1] = 2] +

P [O1 = O2|S0[1] 6= 2] · [S0[1] 6= 2]

= 0 ·
1

N
+

1

N
· (1−

1

N
)

=
1

N
· (1−

1

N
) . ut

1 Note that this condition is more relaxed than assuming that the initial permutation
is distributed uniformly.

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

6

2.3 Distinguisher Based on the Weakness

A distinguisher is an efficient algorithm which distinguishes a stream of
bits from a perfectly random stream of bits, that is, a stream of bits that
has been chosen according to the uniform distribution. There are two ways
an adversary can attempt to distinguish between strings, one generated
by a pseudorandom generator and the other by a perfectly random source.
In the first case the adversary selects only one key randomly and produces
keystream, seeded by the chosen key, long enough to detect a bias. In this
scenario the adversary is “weak” as she has a keystream produced by a
single key and therefore the distinguisher is called a weak distinguisher. In
the other case the adversary may use any number of randomly chosen keys
and the respective keystreams generated by those keys. In this case the
adversary is “strong” because she may collect outputs to her advantage
from many keystreams to detect a bias. Therefore, the distinguisher so
constructed is termed a strong distinguisher. A bias present in the output
at time t in a single stream may hardly be detected by a weak distinguisher
but a strong distinguisher can easily discover the anomaly with fewer
bytes. This fact was wonderfully used by Mantin and Shamir [9] to identify
a strong bias toward zero in the second output byte of RC4. We also
construct a strong distinguisher for RC4 based on the non-uniformity of
the first two output bytes. We use the following result (see [9] for a proof).

Theorem 2. If an event e occurs in a distribution X with probability p
and in Y with probability p(1+q) then, for small p and q, O(1

pq2) samples
are required to distinguish X from Y with non-negligible probability of
success.

In our case, X, Y and e are the distribution of the first two output bytes
collected from a perfectly random source, the distribution of these vari-
ables from RC4 and the occurrence of equal successive bytes respectively.
Therefore, the number of required samples equals O(N 3) (by Corollary 2,
p = 1/N and q = −1/N).

Experimental observations agree well with the theoretical results. For
N = 256, with 224 pairs of the first two output bytes, generated from
as many randomly chosen keys, our distinguisher separates RC4 outputs
from random strings with an advantage of 40% when the threshold is
set at 65408. Empirical results show that the expected number of pairs,
for which the bytes are equal, trails the expected number from a ran-
dom source by 1.21 standard deviations of the binomial distribution with
parameters (224, 1/256).

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

7

2.4 Bias after Dropping the First N Output Bytes

A similar but a smaller bias is also expected in the output bytes Ot+1

and Ot+2, where t = 0 mod N and t > 0, if we assume that P [St[1] =
2 ∩ jt = 0] = 1/N2 and the expected probability that Ot+1 = Ot+2 for
rest of the internal states is 1/N . Almost in a similar manner, we can
compute P [Ot+1 = Ot+2], where t = 0 mod N and t > 0.

P [Ot+1 = Ot+2] = P [Ot+1 = Ot+2|St[1] = 2 ∩ jt = 0] · P [St[1] = 2 ∩ jt = 0]

+ P [Ot+1 = Ot+2|St[1] 6= 2 ∪ jt 6= 0] · P [St[1] 6= 2 ∪ jt 6= 0]

= 0 ·
1

N2
+

1

N
· (1−

1

N2
)

=
1

N
· (1−

1

N2
) . ut

Therefore, the required number of samples needed to establish the
distinguisher is O(N5) according to Theorem 2 (note that in this case
p = 1/N and q = −1/N 2).

However, our experiments for N = 256 show that the bias can be
detected much sooner: 232 pairs of the output bytes (each pair is chosen
from rounds t = 257 and t = 258) are sufficient for a distinguisher,
where the theory predicts that this should be 240. In our experiments,
the expected number of pairs, for which the bytes are equal, trails the
expected number from a random source by 1.13 standard deviations of
the binomial distribution with parameters (232, 1/256). A large number
of experiments showed that the frequency of simultaneous occurrence of
j = 0 and S[1] = 2 at the 256th round is much higher than expected. This
phenomenon accounts for the optimistic behavior of our distinguisher.
However, it is still unknown how to quantify the bias in P [j256 = 0 ∩
S256[1] = 2] theoretically. It is worth noting at this point that Mironov,
based on an idealized model of RC4, has suggested to drop the initial 3·N
bytes (more conservatively the initial 12 · N bytes) in order to obtain a
uniform distribution of the initial permutation thereby ruling out any
possibility of a strong attack [10].

2.5 Possibility of a Weak Distinguisher

The basic fact examined in the Theorem 1 can be used to characterize
a general internal state which would produce unequal consecutive bytes.
One can see that for an RC4 internal state, if it = jt and St[it + 1] = 2
then Ot+1 6= Ot+2. If we assume uniformity of RC4 internal states when
the value of i is fixed, then the above observation allows for a weak distin-
guisher for RC4 (i.e., distinguishing RC4 using a single stream generated

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

8

by a randomly chosen key). However, extensive experiments show that,
in case of a single stream, the bias in the output bytes due to these spe-
cial states is much weaker. With a sample size of 232 pairs of bytes, the
expected number of pairs for which the output bytes are equal trails the
expected number from a random source by 0.21 standard deviations of
the binomial distribution with parameters (232, 1/256) (compared to 1.13
standard deviations for the strong distinguisher with the same sample
size). The experimentally obtained standard deviation of the distribution
of the number of pairs with equal members in a sample of 232 pairs equals
0.9894 · σ where σ is the standard deviation of the binomial distribution
with parameters (232, 1/256). The closeness of these two distributions
shows that such a weak distinguisher is less effective than the strong dis-
tinguisher with respect to the required number of outputs. Further exper-
imental work is required to determine the effectiveness of distinguishers
which require outputs for fewer keys (say 220 rather than 232) but longer
output streams than just a pair of consecutive bytes for each key.

It is still unclear how this correlation between the internal and ex-
ternal states can be used to mount a full attack on RC4. However, the
observation reveals a weakness in the working principle of the cipher, even
if N output bytes are dropped.

3 Analyzing RC4 Design Principles

The pseudorandom bit generation in RC4 is divided into two stages (see
Sect. 1.1). The key scheduling algorithm KSA intends to turn an identity
permutation S into a pseudorandom permutation of elements and the
pseudorandom byte generation algorithm PRGA issues one output byte
from a pseudorandom location of S in every round. At every round the
secret internal state S is changed by the swapping of elements, one in a
known location and another pointed to by a ‘random’ index. The whole
idea is inspired by the principle of an exchange shuffle to obtain a ‘random’
distribution of a deck of cards [8]. Therefore, the security of RC4 in this
model of exchange shuffle depends mainly on the following three factors.

– Uniform distribution of the initial permutation of elements (that is,
S).

– Uniform distribution of the value of the index-pointer of the element
to be swapped with the element contained in a known index (that is,
the index-pointer j).

– Uniform distribution of the value of the index-pointer from which the
output is issued in a round (i.e., S[i] + S[j]).

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

9

Note that the above three conditions are necessary conditions of the
security of the cipher but by no means they can be sufficient. This fact
is wonderfully demonstrated by Golić in [4] using the Linear Sequential
Circuit Approximation (LSCA for short) methods capturing the basic flaw
in the model that the arrangement of the S-box elements in two successive
rounds can be approximated to be identical because of ‘negligible’ changes
of S in two successive rounds.

In this paper we take the key scheduling algorithm of RC4 for granted
and assume that the distribution of the initial permutation of elements is
uniform; we focus solely on the pseudorandom output generation process.
As a consequence, the adversary concentrates on deriving the secret in-
ternal state S (not the secret key K) from the known outputs exploiting
correlations between the internal state and the output bytes.

Most of the known attacks on RC4 to derive part of the secret internal
state are based on fixing a few elements of the S-box along with the two
index pointers i and j that give information about the outputs at certain
rounds with probability 1 or very close to it. This at once results in
distinguishing attacks on the cipher and helps to derive the secret internal
state with probability that is significantly larger than expected. Paul and
Preneel have proved that under reasonable assumptions the maximum
probability with which a part of the internal state (i.e., certain S-box
elements and the value of j) can be predicted by observing known outputs
is 1/N which is too high [12]. Note that these correlations between the
internal state and the external state immediately violate the ‘randomness’
criteria of an ideal cipher.

The only algorithm attempting to derive the entire internal state of
RC4 from the sequence of outputs is by Knudsen et al. which is based
on a “guess on demand” strategy [7]. The expected complexity of the
algorithm is much smaller than a trivial exhaustive search because it
implicitly uses the weakness of RC4 that a part of internal state can be
guessed with non-trivial probability by observing certain outputs.

In the following discussion we modify RC4 in an attempt to achieve
tighter security than the original cipher within the scope of the existing
model of exchange shuffle without degrading its speed.

4 RC4A: An Attempt to Improve RC4

4.1 RC4A Design Principles

As most of the existing known plaintext attacks on RC4 harness the
stronger correlations between the internal and external states (in generic

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

10

term b-predictive a-state attack [9, 12]), in principle, making the output
generation dependent on more random variables weakens the correlation
between them, i.e., the probability to guess the internal state by observing
output sequence can be reduced. The larger the number of the variables
the weaker will be the correlation between them. On the other hand,
intuitively, the large number of variables increases the time complexity as
it involves more arithmetic operations.

4.2 RC4A Description

We take one randomly chosen key k1. Another key k2 is also generated
from a pseudorandom bit generator (e.g. RC4) using k1 as the seed. Ap-
plying the Key Scheduling Algorithm, as described in Fig. 1, we con-
struct two S-boxes S1 and S2 using the keys k1 and k2 respectively. As
mentioned before we assume that S1 and S2 are two random permu-
tations of {0, 1, 2, . . . , N − 1}. In this new scheme the Key Scheduling
Algorithm is assumed to produce a uniform distribution of permutation
of {0, 1, 2, . . . , N − 1}. Therefore, our effort focuses on the security of the
Pseudo-Random Generation Algorithm. In Fig. 3, we show the pseudo-
code of the pseudorandom byte generation algorithm of RC4A. All the
arithmetic operations are computed modulo N . The transition of the in-
ternal states of the two S-boxes are based on an exchange shuffle as before.
Here we introduce two variables j1 and j2 corresponding to S1 and S2 in-
stead of one. The only modification is that the index-pointer S1[i] +S1[j]
evaluated on S1 produces output from S2 and vice-versa (see steps 5, 6
and 9, 10 of Fig. 3). The next round starts after each output generation.

RC4A uses fewer instructions per output byte than RC4. To produce two
successive output bytes the i pointer is incremented once in case of RC4A
where it is incremented twice to produce as many output words in RC4.

Parallelism in RC4A. The performance of RC4A can be further improved
by extracting the parallelism latent in the algorithm. The parallel steps
of the algorithm can be easily found by drawing a dependency graph of
the steps shown in Fig. 3. In the following list the parallel steps of RC4A
are shown within brackets.

1. (3, 7).
2. (4, 5, 9).
3. (6, 10).
4. (8, 2).

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

11

1. Set i = 0, j1 = j2 = 0

2. i++

3. j1 = j1 + S1[i]

4. Swap(S1[i], S1[j1])

5. I2 = S1[i] + S1[j1]

6. Output=S2[I2]

7. j2 = j2 + S2[i]

8. Swap(S2[i], S2[j2])

9. I1 = S2[i] + S2[j2]

10. Output=S1[I1]

11. Repeat from step 2.

Fig. 3. Pseudo-random Generation Algorithm of RC4A.

The existence of many parallel steps in RC4A is certainly an important
aspect of this new cipher and it offers the possibility of a faster stream
cipher if RC4A is implemented efficiently.

5 Security Analysis of RC4A

The RC4A pseudorandom bit generator has passed all the statistical tests
listed in [13]. RC4A achieves two major gains over RC4. By making every
byte depend on at least two random values (e.g. O1 depends on S1[1],
S1[j1] and S2[S1[1] + S1[j1]]) of S1 and S2 the secret internal state of
RC4A becomes N !2×N3. So, for N = 256, the number of secret internal
states for RC4A is approximately 23392 when the number is only 21700 for
RC4.

Let the events EA and EB denote the occurrences of an internal state
(i.e., a known elements in the S-boxes, i, j1 and j2) and the corresponding
b outputs when the i value of an internal state is known. We assume
uniformity of the internal state and the corresponding external state for
any fixed i value of the internal state. Assuming that a is much smaller
than N and disregarding the small bias induced in EB due to EA, we
apply Bayes’ Rule to get

P [EA|EB] =
P [EA]

P [EB]
P [EB|EA] ≈

N−(a+2)

N−b
· 1 = N b−a−2 . (1)

Paul and Preneel [12] have proved that a ≥ b for RC4 for small values of
a. We omit the proof as it is quite rigorous and beyond the scope of this
paper. Exactly the same technique can be applied here to prove that a

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

12

known elements of the S-boxes along with i, j1 and j2 cannot predict more
than a elements for small values of a. Therefore, the maximum probability
with which any internal state of RC4A can be predicted from a known
output sequence equals 1/N 2 compared to 1/N for RC4. In the following
sections we describe how RC4A resists the two major attacks on it: one
attempts to derive the entire internal state deterministically and another
to derive a part of the internal state probabilistically.

5.1 Precluding the Backtracking Algorithm by Knudsen et al.

As mentioned earlier that the “guess on demand” backtracking algorithm
by Knudsen et al. is so far the best algorithm to deduce the internal
state of RC4 from the known plaintext [7]. Now we briefly discuss the
functionality of the variant of the algorithm to be applied for RC4A.

The algorithm simulates RC4A by observing only the output bytes
in recursive function calls. The values of S[i] and S[j] in one S-box are
guessed from the permutation elements to agree with the output and its
possible location in the other S-box. If they match then the algorithm
calls the round function for the next round. If an anomaly occurs then
it backtracks through the previous rounds and re-guesses. The number
of outputs m, needed to uniquely determine the entire internal state, is
bounded below by the inequality, 2nm > (2n!)2. Therefore,m ≥ 2N (note,
N = 2n).

Theorem 3 (RC4 vs RC4A). If the expected computational complexity
to derive the secret internal state of RC4A from known 2N initial output
bytes with the algorithm by Knudsen et al. is Crc4a and if the correspond-
ing complexity for RC4 using N known initial output bytes is Crc4 then
Crc4a is much higher than Crc4 and Crc4a can be approximated to C2

rc4

under certain assumptions.2

Proof. According to the algorithm by Knudsen et al., the internal state
of RC4 is derived using only the first N output bytes, that is, simulating
RC4 for the first N rounds. The variant of this algorithm which works on
RC4A uses the initial 2N bytes, thereby runs for the first 2N rounds.

Let the algorithms A1 and A2 derive the secret internal states for RC4
and RC4A respectively. At every round the S-boxes are assigned either
0, 1, 2, or 3 elements and move to the next round.

Let, at the tth round, A2 go to the next round after assigning k ele-
ments an expected number of mk,t times. So the number of value assign-

2 The complexity is measured in terms of the number of value assignments.

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

13

ments in the tth round is
3∑

k=0

k ·mk,t. Note, each of the
3∑

k=0

mk,t iterations

gives rise to an S-box arrangement in the next round. It is possible that
we reach some S-box arrangements from which no further transition to
the next rounds is possible because of contradictions. In such case, we
assume assignment of zero elements in the S-box till the Nth round is
reached. Let the number of S-box arrangements at the tth round from

which these
3∑

k=0

mk,t arrangements are generated is Lt. Consequently,

3∑

k=0

mk,t = Lt+1 . (2)

Now we set,

3∑

k=0

k ·mk,t = k̃t ·
3∑

k=0

mk,t = k̃t · Lt+1 . (3)

In Eqn. (3), k̃t is the expected number elements which are assigned to
the S-boxes in each iteration in that particular round. If each of Lt is
assumed to produce an expected L̃t+1 number of S-box arrangements in
the next round then Eqn. (3) becomes,

3∑

k=0

k ·mk,t = k̃t · (L̃t+1 · Lt) . (4)

Denoting the total number of value assignments in the tth round by C(t),
it is easy to note from Eqn. (4),

C(t) = k̃t · (L̃t+1 · Lt) . (5)

Proceeding this way it can be shown that,

C(t+ s) = k̃t+s · Lt ·
t+s∏

i=t

L̃i+1 . (6)

If t = 1 then Lt = 1. Setting t+ s = n in Eqn. (6), we get,

C(n) = k̃n ·
n∏

i=1

L̃i+1 . (7)

From Eqn. (2) and Eqn. (3), C(n) can be evaluated ∀n ∈ {1, 2, . . . 2N}
when mk,t is known ∀(k, t) ∈ {0, 1, 2, 3}{1, 2, . . . 2N}.

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

14

It is important to note that on a random output sequence k̃2f−1 ≈ k̃2f

and L̃2f ≈ L̃2f+1 ∀f ∈ {1, 2, . . . N}. The reason behind the approximation
is that, with the algorithm by Knudsen et al., the difference between the
expected number of assignments in the S-boxes in the (2f − 1)th and
the 2fth rounds is very small. Therefore, the overall complexity Crc4a

becomes,

Crc4a =
2N∑

n=1

C(n)

=
2N∑

n=1

(k̃n ·
n∏

i=1

L̃i+1)

= k̃1 · L̃2 +
N∑

i=1

(k̃2i ·
i∏

j=1

L̃2
2j+1) +

N∑

i=2

(k̃2i−1 · L̃2i ·
i−1∏

j=1

L̃2
2j)

= k̃1 · L̃2 +
N∑

i=1

(k̃2i−1 ·
i∏

j=1

L̃2
2j) +

N∑

i=2

(k̃2i−1 · L̃2i ·
i−1∏

j=1

L̃2
2j) .

Replacing k̃q and L̃q by x q+1

2

and g q

2
we get,

Crc4a =
N∑

i=1

(xi ·
i∏

j=1

g2
j) + x1 · g1 +

N∑

i=2

(xi · gi ·
i−1∏

j=1

g2
j) . (8)

Applying a similar technique as above it is easy to see that,

Crc4 =
N∑

i=1

(xi ·
i∏

j=1

gj) . (9)

Again we note that the difference between the expected number of ele-
ments that are already assigned in S1 for RC4A at round (2t − 1) and
the expected number of elements in S for RC4 at round t is negligible.
Therefore, the corresponding k̃t and L̃t+1 for RC4 can be approximated
to k̃2t−1 and L̃2t for RC4A.

As the gi’s are real numbers greater than 1 and the xi’s are non-
negative real numbers, from Eqn. (8) and Eqn. (9) it is easy to see that
Crc4a À Crc4.

We observe from the algorithm that xi ∈ {y : 0 ≤ y ≤ 3, y ∈ R}. It
is clear from the algorithm that xi decreases as i increases. Intuitively, xi

is less than one in the last rounds. Therefore, assuming Crc4a ≈
∏N

i=1 g
2
i

and Crc4 ≈
∏N

i=1 gi, we get Crc4a ≈ C2
rc4. ut

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

15

By Theorem 3, the expected complexity to deduce the secret internal
state of RC4A (N = 256) with the algorithm by Knudsen et al. is 21558

when the corresponding complexity is 2779 for RC4.

5.2 Resisting the Fortuitous States Attack

Fluhrer and McGrew discovered certain RC4 states in which only m
known consecutive S-box elements participate in producing the next m
successive outputs. Those states are defined to be Fortuitous States (see
[3, 12] for a detailed analysis). Fortuitous States increase the probabil-
ity to guess a part of internal state in a known plaintext attack (see
Eqn. (1)). The larger the probability of the occurrence of a fortuitous
state, the smaller will be the number of required rounds to obtain one of
them.

RC4A also weakens the fortuitous state attack by a large degree. A
moment’s reflection shows that RC4A does not have any fortuitous state
of length 1. Now we will compare the probability of the occurrence of a
fortuitous state of length 2a in RC4A to that of length a in RC4. It is easy
to note that a fortuitous state of length 2a of RC4A implies and is implied
by two fortuitous states of length a of RC4 appearing simultaneously in
S1 and S2. If C denotes the number of fortuitous states of length a of
RC4 then the expected number of fortuitous states of length 2a in RC4A
is C2/N . Let Pa denote the probability of the occurrence of a fortuitous
state of length a in RC4 and P2a denote the probability of the occurrence
of a fortuitous state of length 2a in RC4A. Then, for small values of a,
Pa = C

Na+2 and P2a = C2

N2a+4 which immediately implies P2a < Pa.

5.3 Resisting Other Attacks

One can see that the strong positive bias of the second output byte of RC4
toward zero [9], and the bias described in the first part of this paper are
also diminished in this new cipher as more random variables are required
to be fixed for the biased state to occur.

5.4 Open Problems and Directions for Future Work

Although RC4A has an improved security over the original cipher against
most of the known plaintext attacks, it is still as vulnerable as RC4 against
the attack by Golić which uses the positive correlation between the sec-
ond binary derivative of the least significant bit output sequence and 1.
The weakness originates from the slow change of the S-box in successive

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

16

rounds that seems to be inherent in any model based on exchange shuffle.
Therefore, this still remains an open problem whether it is possible to
remove this weakness from the output words of the stream cipher based
on an exchange shuffle while retaining all of its speed and security.

Our work leaves room for more research. It is worthwhile to note that
one output byte generation in this existing model of exchange shuffle
involves two random pointers; j and S[i]+S[j]. In RC4 both the pointers
fetch values from a single S-box. We obtained better results by making
S[i]+S[j] fetch value from a different S-box. What if we obtain S[j] from
another S-box and generate output using three S-boxes?

6 Conclusions

In this paper we have described a new statistical weakness in the first
two output bytes of the RC4 keystream generator. The weakness does
not disappear even after dropping the initial N bytes. Based on this
observation, we recommend to drop at least the initial 2N bytes of RC4 in
all future applications of it. In the second part of the paper we attempted
to improve the security of RC4 by introducing more random variables in
the output generation process thereby reducing the correlation between
the internal and the external states.

As a final comment we would like to mention that the security of
RC4A could be further improved. For example, one could introduce key-
dependent values of i and j at the beginning of the first round, and
one could address the weaknesses of the Key Scheduling Algorithm. In
this paper, we have assumed that the original Key Scheduling Algorithm
produces a uniform distribution of the initial permutation of elements,
which is certainly not correct.

Acknowledgments. We are grateful to Adi Shamir for helpful com-
ments. The authors also thank Kenneth G. Paterson for pointing out the
possibility of a weak distinguisher using our observation. We would like to
thank Joseph Lano for providing us with experimental results. Thanks are
due to Alex Biryukov, Christophe De Cannière, Jorge Nakahara Jr. and
Dai Watanabe for many useful discussions. The authors also acknowledge
the constructive comments of the anonymous reviewers.

References

1. H. Finney, “An RC4 cycle that can’t happen,” Post in sci.crypt, September 1994.

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

17

2. S. Fluhrer, I. Mantin, A. Shamir, “Weaknesses in the Key Scheduling Algorithm
of RC4,” SAC 2001 (S. Vaudenay, A. Youssef, eds.), vol. 2259 of LNCS, pp. 1-24,
Springer-Verlag, 2001.

3. S. Fluhrer, D. McGrew, “Statistical Analysis of the Alleged RC4 Keystream Gen-
erator,” Fast Software Encryption 2000 (B. Schneier, ed.), vol. 1978 of LNCS,
pp. 19-30, Springer-Verlag, 2000.

4. J. Golić, “Linear Statistical Weakness of Alleged RC4 Keystream Generator,” Eu-

rocrypt ’97 (W. Fumy, ed.), vol. 1233 of LNCS, pp. 226-238, Springer-Verlag, 1997.
5. A. Grosul, D. Wallach, “A related key cryptanalysis of RC4,” Department of Com-

puter Science, Rice University, Technical Report TR-00-358, June 2000.
6. R. Jenkins, “Isaac and RC4,” Published on the Internet at

http://burtleburtle.net/bob/rand/isaac.html.
7. L. Knudsen, W. Meier, B. Preneel, V. Rijmen, S. Verdoolaege, “Analysis Methods

for (Alleged) RC4,” Asiacrypt ’98 (K. Ohta, D. Pei, eds.), vol. 1514 of LNCS,
pp. 327-341, Springer-Verlag, 1998.

8. D.E. Knuth, “The Art of Computer Programming,” vol. 2, Seminumerical Algo-

rithms, Addison-Wesley Publishing Company, 1981.
9. I. Mantin, A. Shamir, “A Practical Attack on Broadcast RC4,” Fast Software En-

cryption 2001 (M. Matsui, ed.), vol. 2355 of LNCS, pp. 152-164, Springer-Verlag,
2001.

10. I. Mironov, “Not (So) Random Shuffle of RC4,” Crypto 2002 (M. Yung, ed.),
vol. 2442 of LNCS, pp. 304-319, Springer-Verlag, 2002.

11. S. Mister, S. Tavares, “Cryptanalysis of RC4-like Ciphers,” SAC ’98 (S. Tavares,
H. Meijer, eds.), vol. 1556 of LNCS, pp. 131-143, Springer-Verlag, 1999.

12. S. Paul, B. Preneel, “Analysis of Non-fortuitous Predictive States of the RC4
Keystream Generator,” Indocrypt 2003 (T. Johansson, S. Maitra, eds.), vol. 2904
of LNCS, pp. 52-67, Springer-Verlag, 2003.

13. B. Preneel et al., “NESSIE Security Report,” Version 2.0, IST-1999-12324, Febru-
ary 19, 2003, http://www.cryptonessie.org.

14. M. Pudovkina, “Statistical Weaknesses in the Alleged RC4 keystream generator,”
Cryptology ePrint Archive 2002–171, IACR, 2002.

15. A. Roos, “Class of weak keys in the RC4 stream cipher,” Post in sci.crypt,
September 1995.

16. A. Stubblefield, J. Ioannidis, A. Rubin, “Using the Fluhrer, Mantin and Shamir
attack to break WEP,” Proceedings of the 2002 Network and Distributed Systems

Security Symposium, pp. 17–22, 2002.

Appeared in Fast Software Encryption, FSE 2004, Lecture Notes in Computer
Science, Springer-Verlag, pp. 245–259, 2004.

c©2004 Springer-Verlag

