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Imaging traits provide a powerful and biologically relevant substrate to examine the influence of genetics on
the brain. Interest in genome-wide, brain-wide search for influential genetic variants is growing, but has
mainly focused on univariate, SNP-based association tests. Moving to gene-based multivariate statistics, we
can test the combined effect of multiple genetic variants in a single test statistic. Multivariate models can
reduce the number of statistical tests in gene-wide or genome-wide scans and may discover gene effects
undetectable with SNP-based methods. Here we present a gene-based method for associating the joint effect
of single nucleotide polymorphisms (SNPs) in 18,044 genes across 31,662 voxels of the whole brain in 731
elderly subjects (mean age: 75.56±6.82SD years; 430 males) from the Alzheimer's Disease Neuroimaging
Initiative (ADNI). Structural MRI scans were analyzed using tensor-basedmorphometry (TBM) to compute 3D
maps of regional brain volume differences compared to an average template image based on healthy elderly
subjects. Using the voxel-level volume difference values as the phenotype, we selected the most significantly
associated gene (out of 18,044) at each voxel across the brain. No genes identified were significant after
correction for multiple comparisons, but several known candidates were re-identified, as were other genes
highly relevant to brain function. GAB2, which has been previously associated with late-onset AD, was
identified as the top gene in this study, suggesting the validity of the approach. This multivariate, gene-based
voxelwise association study offers a novel framework to detect genetic influences on the brain.
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Introduction

Recent efforts in imaging genetics have advanced the field rapidly
from identifying heritable features of the brain to genome-wide
searches for specific genetic variants that might account for functional
and structural variations in large populations (Potkin et al., 2009a,
2009b; Shen et al., 2010; Stein et al., 2010b; Thompson et al., 2010).
Variation in the human genome may account for variations in brain
integrity, and multi-national consortia have been set up to discover
and verify genetic effects on brain images (e.g., the ENIGMA project;
http://enigma.loni.ucla.edu). In imaging genomics, the vast amount of
information in the images (N100,000 voxels) and across the genome
(N12 million known variants) requires powerful methods to relate
genetic variants to the structure and function of the brain. Power
issues arise due to the small effect sizes, and the huge numbers of
statistical comparisons. Most techniques use some type of data
reduction, limiting the number of genetic variants studied or the
number of imaging features studied, or both. The ultimate goal of
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these gene-hunting studies is to create a method that addresses the
gene discovery problem in a statistically powerful and biologically
meaningful way.

The current mainstay of gene-hunting efforts in imaging genetics
is the genome-wide association study (GWAS). Most genetic associ-
ation tests relate individual SNPs to phenotypes, but since there are on
average between 20 and 100 SNPS per gene (in our dataset), and
alleles at these SNPs are often highly correlated, amethod that tests all
the SNPs in a gene at once (or most of the variance contributed by
SNPS in a gene) would reduce the number of tests required and be
more powerful. We will hereafter refer to SNP-based approaches and
gene-based approaches. These assess associations between common
SNPs and features in an image. In typical GWAS studies, each genetic
variant (usually a SNP) is independently tested for its association to
the phenotype—a mass univariate method, where no data reduction is
used across the genome. For example, Stein et al. (2010b) performed
a genome-wide search of around 500,000 SNPs, and found a novel
variant in the GRIN2B gene that is associated with temporal lobe
volume. The gene GRIN2B encodes a glutamate receptor that is already
the target of drugs (memantine) used to treat Alzheimer's disease
(Parsons et al., 2007). Findings such as these are promising as they
have biological relevance without relying on a prior hypothesis about
any specific SNP. However, performing mass SNP-based tests on
imaging summary measures (such as temporal lobe volume, hippo-
campal volume, etc.) or ad hoc regions of interest (ROI), collapses the
brain measures into a single number. Studies using an ROI to define
the imaging phenotype may miss fine-grained differences throughout
the brain, across subjects. In addition, a predefined ROI can lead to
false-negative results if a true association signal lies outside or only
partially within a chosen ROI.

Several studies now perform genome-wide searches at each voxel
across the brain (Hibar et al., 2010). This approach avoids pre-
selecting an ad hoc region of interest in the brain and does not require
prior hypotheses about which genetic variants, or which regions of
interest, matter. Stein et al. (2010a) performed a genome-wide, brain-
wide search, termed a voxelwise genome-wide association study
(vGWAS), in 740 subjects from the ADNI. The experiment was
extremely computationally intensive (27 h on 500 nodes), performing
around 16 trillion tests of association. However, the correction for
multiple comparisons was commensurate with the number of tests
performed. None of the variants identified was significant after
multiple comparison correction, but several variants were promising
candidates for further analysis. In an alternative approach, Vounou
et al. (2010) proposed a method that leverages the sparseness of
signals to simultaneously select SNP variants and regions of asso-
ciation, reducing the number of SNPs and phenotypes tested. Future
GWAS studies in imaging will likely reduce the number of tests and
multiple comparisons using Bayesian priors. This can prioritize certain
regions of the image or the genome, for later meta-analysis across
multiple datasets.

Gene-based association methods complement single-marker
GWAS for implicating underlying genetic variants in complex traits
and diseases (Neale and Sham, 2004). Given recent advances in high-
throughput genotyping, densely packed sets of SNPs, or genetic
markers, can capture increasing amounts of variation throughout the
genome. Methods that consider combinations of SNPs from the same
gene should better describe genetic associations than methods that
rely on data from SNPs independently (Neale and Sham, 2004; Schaid,
2004). Whole-gene testing is a biologically plausible approach to the
problem, as the ultimate unit of biological activity is the gene (or its
protein product; Potkin et al., 2009c). By associating the joint effect
of multiple SNPs within a gene, in this study we aimed to show
that gene-based approaches can be more powerful than traditional
SNP-based approaches (with the relative power depending on how
the genetic variants affect the phenotype). For example, if a gene
contains multiple causal variants with small individual effects, SNP-
based methods will miss these associations if a very stringent
significance threshold is used (as in GWAS). In addition, if multiple
loci within a gene combine to jointly affect a phenotype, this may also
be missed by traditional GWAS. These two scenarios are highly
likely, especially if we accept the “common disease, common variant”
hypothesis (Reich and Lander, 2001), but they are not accounted
for in methods that test each SNP, one at a time.

A multi-SNP, gene-based test can consider the combined effect of
each variant within the gene, while accounting for linkage disequi-
librium (LD) or correlation between markers. As such, at least in
theory it may detect associations missed by traditional SNP-based
GWAS. Related to this approach is “multi-locus fitting”—a developing
field in quantitative genetics, for the analysis of complex traits. Some
multi-locus analyses use statistical methods specialized for handling
high-dimensional data, including regularized regression methods
such as ridge regression (Malo et al., 2008; Sun et al., 2009), the
Bayesian lasso (Zou, 2006; Wu et al., 2009), and neural network
models (Lucek et al., 1998; Ott, 2001). Another related approach is
set-based association testing, implemented in the software Plink
(Purcell et al., 2007), which allows for the combination of univariate
test statistics into a single univariate test statistic using permutations.
Gene-based tests also reduce the effective number of statistical tests
by aggregating multiple SNP effects into a single test statistic.
However, for gene-based tests to be feasible, the multivariate test
statistics need to be computationally efficient to implement. Here we
assessed whether it would be feasible to extend to a neuroimaging
database, a gene-based association method using principal compo-
nents regression (PCReg) as proposed byWang and Abbott (2008) for
single-valued traits. We applied PCReg across all genes, to a large
database of voxelwise imaging data. We call our method a voxelwise
“gene-wide” association study (vGeneWAS). By performing associa-
tion tests on whole genes, we greatly reduce the number of tests
(from 437,607 SNPs down to 18,044 genes) while avoiding the
problems associatedwith focusing on ROIs or summarymeasures. Our
framework shows how to conduct vGeneWAS studies, and identify
gene variants that warrant further study.

We hypothesized that vGeneWAS would, in some situations,
have greater power to detect associations than existing SNP-based
methods. One such situationmight be when a gene containsmany loci
withweak individual effects. In addition, we expected that vGeneWAS
would have greater overall power than mass SNP-based methods,
like vGWAS, because of the drastic reduction in the effective number
of statistical tests performed.

Materials and methods

Study design and subjects assessed

ADNI is a large 5-year study initiated in 2003 as a public–private
partnership between the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharmaceutical
companies, and non-profit organizations. The ADNI study aims to
identify and investigate biological markers of Alzheimer's disease
through a combination of neuroimaging, genetics, neuropsychological
tests and other measures in order to develop new treatments, track
disease progression, and lessen the time required for clinical trials.
The study was conducted according to the Good Clinical Practice
guidelines, the Declaration of Helsinki, and U.S. 21 CFR Part 50—
Protection of Human Subjects, and Part 56—Institutional Review
Boards. Written informed consent was obtained from all participants
before protocol-specific procedures were performed.

The study recruited 202 Alzheimer's disease subjects (AD), 413
with mild cognitive impairment (MCI), and 237 normal elderly
controls (NC) who were assessed every 6 or 12 months for 3 years.
Subjects went through extensive clinical and cognitive tests at the
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time of each scan to determine and track diagnosis. Further infor-
mation on inclusion criteria and the study protocol may be found
online (http://www.adni-info.org/). Baseline structural MRI scans and
genetic data for 818 subjects were obtained on or before May 5, 2010,
from the public ADNI database (http://www.loni.ucla.edu/ADNI/).
Scans for 852 subjects were available, but we excluded 121 subjects
based onquality controlmeasures (poor registration and image quality)
and to avoid a well documented problem in statistical genetics
known as population stratification (McCarthy et al., 2008). When per-
forming association tests on latent subpopulations of different ethnic-
ities or relatedness, spurious associationsmay arise due to differences in
allele frequencies between groups, instead of true association with the
phenotype (Lander and Schork, 1994). Subjects were removed based
on self-reported ethnicity, later verified by multi-dimensional scaling
(MDS) analysis (see previous study: Stein et al., 2010b), leaving 172
AD patients (78 women/94 men; mean age±standard deviation=
75.54±7.62 years), 356 MCI subjects (130 women/226 men; mean
age: 75.23±7.22), and 203 healthy elderly controls (93 women/110
men;meanage: 76.15±4.99).Wedidnot split the subjects bydiagnosis
for this analysis in order to exploit the broadest phenotypic continuum
(Petersen, 2000) and maximize statistical power to detect genetic
associations (Cannon and Keller, 2006).

Imaging methods

Baseline MRI scans for each subject were analyzed using tensor-
based morphometry (TBM) as described previously (Hua et al., 2008).
Briefly, high-resolution T1-weighted structural brain MRI scans
were acquired at 58 ADNI sites on 1.5 T scanners with a protocol
developed for multiple site consistency (Jack et al., 2008; ADNI also
collected somedata at 3 T, whichwe did not analyze here; see Ho et al.,
2010). Additional image corrections were applied to all images in a
processing pipeline including: GradWarp correction of geometric
distortion (Jovicich et al., 2006), B1-correction to adjust image
intensity non-uniformity (Jack et al., 2008), N3 bias correction to
adjust intensity inhomogeneity across a scan (Sled et al., 1998), and
geometric scaling determined by a phantom scan acquired at each
subject's scanning session to adjust for scanner and session-specific
calibration errors (Jack et al., 2008). Imageswere linearly alignedusing
a 9 parameter algorithm to the International Consortium for Brain
Imaging template (ICBM-53; Mazziotta et al., 2001) to align brain
positions to a common standard space, adjusting for global scaling.

The TBM analysis was performed following the protocol of our
prior study, which showed clinical and cognitive test scores correlated
with temporal lobe volumes, in a subset of the ADNI population (Hua
et al., 2008). A minimum deformation template (MDT) was created
based on a random subset of the healthy elderly controls at baseline.
The MDT provides an unbiased representation of MRI scans expected
from a group of average healthy elderly persons. We generated maps
of localized volume difference for each subject compared to the MDT
using an inverse-consistent, symmetric, intensity-based nonlinear
warping algorithm (Leow et al., 2005). Maps of localized volume
differences (called Jacobian maps) are estimated using the Jacobian
determinant of the deformation matrix, which itself is a voxel-level
estimate of volume excess or deficit compared to the MDT. Jacobian
maps for each individual were then down-sampled using trilinear
interpolation to a 4×4×4 mm3 voxel size to reduce computational
burden. The value at each voxel in the Jacobian map represents a
percentage volume difference compared to the MDT; we used this
voxel-based measure of volume difference as the phenotype for
genetic association tests.

SNP filtering and gene grouping

Genome-wide genotype data were collected at 620,901 markers
on the Human610-Quad BeadChip (Illumina, Inc., San Diego, CA). For
details on how genetic data were processed, please see Saykin et al.
(2010) and Stein et al. (2010a). Different types of markers were
genotyped (including copy number probes), but only SNPs were used
in this analysis. Several SNPs were excluded from the analysis based
on standard filtering criteria, measures used in many other GWAS
studies (Wellcome Trust Case Control Consortium, 2007): call rate
b95% (42,670 SNPs removed), significant deviation from Hardy–
Weinberg equilibrium Pb5.7×10−7 (871 markers removed), auto-
somal chromosomes only (10,686 SNPs removed), and an Illumina
GenCall quality control score of b0.15 to eliminate “no call” genotypes
(variable number of missing genotypes across subjects). We chose to
remove SNPs with a minor allele frequency b0.10 (161,354 SNPs
removed) based on our sample size. With our sample of 731 images,
we are underpowered to detect associations with SNPs where the
minor allele frequency is less than 10%, unless effect sizes are large
(Wang et al., 2005; Flint et al., 2010). In addition, excluding SNPs with
low minor allele frequencies avoids the risk of finding significant
associations where only a small subset of subjects have the rare allele
type and do not represent an accurate sampling of the phenotype
of interest. If a very low minor allele frequency cutoff is used (e.g.,
MAFb0.01) in samples of fewer than a thousand subjects, this may
result in cases where an association is driven by a single subject.
Clearly, such a result may be unreliable and is unlikely to replicate, so
the higher MAF cut-off guards against this.

Due to the filtering based on Illumina GenCall quality control
measures, individual subjects have some residual missing genotypes
at random SNPs throughout the dataset. Because PCReg requires data
without missing genotypes and to maximize the number of subjects
included in the analysis, we performed imputation using the software,
Mach (version 1.0), to infer the haplotype phase and automatically
impute the missing genotype data (Li et al., 2009). After all rounds
of quality control and preparation, 437,607 SNPs remained.

Using the retrieval interface of the software package PLINK
(version 1.05; http://pngu.mgh.harvard.edu/~purcell/plink/), SNP
annotations were made by continuously soliciting the TAMAL
database (Hemminger et al., 2006) based chiefly on UCSC genome
browser files (Hinrichs et al., 2006), HapMap (Altshuler et al., 2005),
and dbSNP (Wheeler et al., 2008). The newly annotated SNPs were
grouped by gene, where “gene” is defined by the gene transcript
region including both introns and exons. We chose not to include
SNPs upstream/downstream from the gene region. This may miss
SNPs in promoter or regulatory regions for a gene, but avoids choosing
an arbitrary window that may select regulatory SNPs for some genes,
but not for other genes whose regulatory regions lie beyond the
window length. SNPs that were not located in a gene were excluded
(224,057 SNPs removed). All splice variants were considered as
belonging to the same gene. After applying SNP filtering criteria,
SNP annotation, and gene grouping, 18,044 genes were left for
analysis out of the estimated 20,000–25,000 protein coding genes
in the human genome (International Human Genome Sequencing
Consortium, 2004).

Gene-based association statistics

Independent tests of statistical association with imaging measures
were performed for each gene at 31,622 voxels within a whole-brain
mask of theMDT across 731 subjects. To test the joint effect of all SNPs
in a gene on the volume difference at each voxel, we employed a
multiple partial-F test. A multiple partial-F test works by first
estimating the fit of a “reduced model” of any number of nuisance
variables on a given dependent variable and then estimating the fit of
a second “full model” with the nuisance variables and any number of
independent variables on the same dependent variable. Each
association test results in an F statistic, which represents the joint
effect of the independent variables on the dependent variable,
controlling for the effects of nuisance variables already in the
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model. The multiple partial-F statistic was calculated for each gene
at each voxel using Eq. (1) below. k is df(full)−df(reduced) and RSS
is the residual sum of squares:

Fk;df fullð Þ =
RSS reducedð Þ−RSS fullð Þ
df reducedð Þ−df fullð Þ =

RSS fullð Þ
df fullð Þ ð1Þ

Multiple partial-F tests are well suited for testing the effects of
multiple predictors on a given phenotype, but genetic data sometimes
complicate testing because SNPs in the same gene are often correlated
due to high LD.When the SNP values in a cohort of subjects are treated
as a vector (whose components are the SNP value in each subject
coded in an additive manner: 0, 1, or 2), then the adjacent SNPs can
make different subjects' vectors collinear. The dependence among
these almost collinear SNP vectors in the multiple partial-F test model
can lead to improper signs of beta coefficient estimates, wildly
inaccurate magnitudes of beta coefficients, large standard error
estimates (Kleinbaum, 2007), and false inferences. The reason this
occurs is that standard regressionmodels require the inversion of a set
of “normal” equations, and when predictors (here SNP vectors) are
highly correlated, the equations are not of full rank. This leads to
unstable or unreliable solutions. One way out of this predicament is to
use a type of regularized or penalized regression, such as ridge
regression (also known as sparse regression or Tikhonov regulariza-
tion), which can be used when there are high correlations among the
predictors. Alternatively, dimension reduction may be performed
(which we do here), to create a set of predictors that explain the
variance in the data but that are no longer correlated.

To avoid the complications of collinearity in the statistical model,
we first performed principal component analysis (PCA) on the SNPs
within each gene, storing all of the orthonormal basis vectors of the
SNP matrix that explained the first 95% of the variance in the set of
SNPs. Basis vectors with the highest eigenvalues (higher proportions
of explained variance) were included until 95% of the SNP variance
was explained, and the rest were discarded. These new “eigenSNPs”
approximate the information in the observed SNPs, but lack the
collinearity that disrupts the multiple partial-F test models. By first
performing PCA followed by a multiple partial-F test, our methodmay
be considered a variant of PCReg and produces F statistics equivalent
to those proposed in Wang and Abbott (2008). In this study, the
independent variables built into the multiple partial-F test full
model were the column vector output from PCA performed on each
gene with age and sex as covariates. In this way, we tested the joint
predictive effect of variation throughout a gene on brain volume
variations on a voxel-by-voxel level.

The total number of tests of association for vGeneWAS is very high
(18,044 genes×31,662 voxels). Because of the massive processing
requirement, we coded the PCA and multiple partial-F test steps of
PCReg using the R statistical package (version 2.9.2; http://www.cran.
r-project.org/) using the doMC “multi-core” package (version 1.2.1;
http://www.revolutionanalytics.com/) to split processing over multi-
ple cores in a single CPU. Processing was parallelized over a cluster
of 10 high performance 8-core CPU nodes using the Laboratory of
Neuro Imaging (LONI) Pipeline (http://pipeline.loni.ucla.edu/). For
further data reduction, we only saved data on the gene with the
lowest P-value at each voxel. This is comparable to our prior work
using voxelwise testing of all 500,000 genotyped SNPs, where only
the SNP with the lowest P-value was retained at each voxel (Stein
et al., 2010a). The total time required to complete an analysis was
approximately 13 days.

Comparison of SNP-based and gene-based methods

To examine the situations where PCReg exhibits better (or worse)
performance than traditional simple linear regression, we compared
the twomethods directly on real genetic data. Performing tests on real
genetic data as opposed to simulated data is important because the
power of each method depends upon the underlying LD structure.
Generating simulated data that mimics a chosen LD structure can
be just as biased as selecting actual genes, though a significant treat-
ment of the issue of power in PCReg is discussed in Wang and Abbott
(2008). We used temporal lobe volume (TLV) summary measures
obtained by Stein et al. (2010b), as the phenotype for testing asso-
ciations for both methods. We performed a genome-wide scan of
every SNP from our filtered and annotated genotype data (only
including SNPs located within genes) using simple linear regression
with SNPs coded following an additive model. We took the top SNP
from the analysis, and the rest of the SNPs from the same gene,
and performed PCReg on all of the SNPs in that gene. In addition, we
performed a gene-wide scan of all of the genes in our dataset using
PCReg with SNPs coded following the additive model. We selected
the top gene from the analysis and then ran individual tests of asso-
ciation using simple linear regression at each SNP within the top
gene. In this way, we were able to compare the performance of
each method in cases where the underlying genetic structure might
favor one method over the other.

Statistical thresholds and correction for multiple comparisons

As we noted in Stein et al. (2010a), the minimum P-value at each
voxel, in the null case with n independent tests, approximately
follows a probability density function (PDF) such that (Ewens and
Grant, 2001):

f min xð Þ = n 1−xð Þn−1 ð2Þ

The PDF derived from Eq. (2) is a Beta distributionwith parameters
α=1 and β=n. At each voxel, selecting the minimum P-value for
the top gene then follows a Beta(1, n) distribution, where n is the
independent number of genes tested.

However, it is well known that the adjacent SNP values within
genes are not statistically independent (Frazer et al., 2007). Genetic
loci are inherited in contiguous segments, and some genes co-
segregate in blocks. The allele frequencies and structure of genes that
co-segregate are more similar than would be expected by chance if
they were assumed to be independent. Because of this, the effective
number of independent tests (Meff) is less than the total number of
tests performed (M). By determining Meff, we obtain a more accurate
estimate of the total number of independent tests performed with
vGeneWAS, given the LD structure of our genotype data.

In our sample, we estimated Meff by performing permutation tests
at three randomly selected, uncorrelated voxels in the brain. We
regressed each of the 18,044 genes on the permuted residuals of
the reduced model after including the age and sex covariates at each
run, and stored the minimum P-value. Note that, in this case, the
phenotype data is null. However, because it is computed from the real
data after adjusting for age and sex, the phenotype data (image
values) have the same range and statistical distribution as the data
tested for genetic associations. By using the genes, one at a time, as
regressors on this null data, one can develop a distribution of the
resulting P-values, under null conditions, that can be used to calibrate
the significance values that are ascribed to the observed data. As only
the minimum P-value is retained (for the best fitting gene), one can
build up a reference distribution for the minimum P-values, to help
gauge the level of surprise in seeing associations in true data.
We repeated this process 5000 times at each of the three randomly
chosen voxels and merged the data. The distributions of null
minimum P-values from each voxel were nearly identical (Fig. 1).
Storing the minimum P-values of the permutation tests yields the
expected null Beta distribution given our data. We used a maximum-
likelihood function (betafit; Matlab, The Math Works, Inc.) that
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Fig. 1. A histogram shows the minimum null P-values obtained from permutation tests.
Data from 3 different voxels are shown on the same graph (blue, red, and black lines);
they are obtained from 3 randomly chosen, uncorrelated voxels in the brain (5000
permutations each). The distributions are nearly identical, and agree with each other, as
well as accurately reflecting the effective number of independent tests (Meff).
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estimates the best fit for the null Beta distribution by varying the
β parameter of Beta(1, β). The value of β approximates the effective
number of independent tests (Meff) performed on our data. We then
apply an inverse Beta transform using the approximated β parameter
so that the distribution of P-values is now a uniform distribution that
deviates from the null when there is a signal.

After correcting for the effective number of independent gene-
based tests performed at each voxel, we still need to correct for the
multiple comparisons across voxels. We used the original false
discovery rate method (FDR; Benjamini and Hochberg, 1995), which
identifies whether there is any statistical thresholding of the
uncorrected P-value maps that keeps the rate of false positive results
within a predefined threshold (we chose 5%, which is conventionally
used). This means that, if the results pass the FDR test, approximately
95% of the voxels declared as significant associations will be true
positives (averaged over many experiments). In addition, we tested
a less conservative variant of FDR, the positive FDR (pFDR), which
operates under the condition that at least one true positive finding
exists in the data (i.e., one of the null hypotheses is rejected) and
yields q-value correction thresholds similar to the original FDR
method (Storey, 2003). The pFDR test is implemented in the R
statistical package called “qvalue” (Version 1.22.0).
Estimation of expected values in simulated maps

A certain amount of spatial smoothness is expected among voxels
in an image. This is most likely explained by the non-independence
of volume difference measures at adjacent voxels. Relative volume
maps were generated using tensor-based morphometry (TBM),
which relies on non-linear registration of each subject's imaging
data to a common template. The degree of spatial smoothness in
the Jacobian maps derived from the gradient of a deformation
field depends on the choice of the regularizer used by the warping
algorithm (Laplacian, elastic, fluid, sKL, etc.) and on the resolution
of numerical grid chosen to solve the differential equations
whose solution is the deformation field. Volume difference maps
based on the deformation field vectors are spatially smooth, as are
any resulting statistical maps. In addition to image smoothness,
certain noncontiguous voxels in distant regions of the brain can have
surprising covariance patterns despite their spatial separation
(Fillard et al., 2007).

We examined whether the size of voxel clusters associated with
the same gene from our vGeneWAS analysis differed from the cluster
sizes expected under the null hypothesis of no association at all,
given the non-independence of signals at adjacent voxels in our
images. In addition, we wanted to determine whether the number
of unique, top genes from across the brain significantly differed
from the number of top genes expected by chance. We generated
simulated cluster maps by first creating a correlation matrix of r
values representing the Pearson's correlation between any given
voxel and all other voxels in the brain. Next, we randomly selected
(without replacement) a voxel, Vs, and all corresponding voxels with
an r2 value (proportion of variance explained) greater than 0.8 from
the correlation matrix. We chose to only select voxels from the
correlation matrix with an r2 greater than 0.8 because this provided
the largest cluster size estimates in the simulated output maps. The
r2 value of each voxel-to-voxel relationship was then used to divide
the interval [0,1] of a uniform distribution such that the correlation
between a voxel and Vs was directly related to the area under the
curve occupied by that voxel's area under the curve or “bucket.” The
size of each voxel's bucket was recalculated each time we chose a
new Vs. We selected a random number on the interval [0,1], and,
depending on its value (which “bucket” it fell in), assigned the same
categorical variable link (e.g., a, b, and c) to Vs and the voxel whose
bucket was selected from the uniform distribution. This linked the
two voxels. The probability of a given voxel being chosen from the
uniform distribution was directly related to how correlated it was
to Vs. We continued the process by randomly choosing a new Vs

from the correlation matrix. If a randomly selected voxel Vs did not
contain a linking variable, but selected a voxel from the uniform
distribution that already contained a link, then Vs was assigned the
linking variable of the voxel selected from the uniform distribution. If
Vs already contained a linking variable and the voxel chosen from the
uniform distribution had not previously been assigned a variable, the
two voxels were linked using the existing linking variable of Vs. If
both Vs and the voxel selected from the uniform distribution already
contained a linking variable, we kept each variable as-is and then
continued with the process. Finally, voxels that were not correlated
to any other voxels in the image, with an r2 value greater than 0.8,
were assigned a non-linking random variable. After iterating through
every voxel in the image, each voxel had a categorical variable that
either linked it to other voxels or only to itself. We ran this entire
simulation process 100 times, generating a new simulated cluster
map each time. By considering the correlation of a given voxel to
all other voxels in the image, as opposed to using a single summary
measure of smoothness throughout an image, we were able to
model the expected clustering among adjacent voxels and non-
independent, spatially separated clusters.

Based on the 3D pattern of voxels and the variables linking
voxels together, we used a nearest neighbor algorithm to measure
cluster sizes of adjacent voxels with the same linking variable value.
Using the cluster size estimates from each simulated map, we were
able to determine the expected distribution of cluster sizes based
directly on our study dataset. In addition, we used the total number
of unique linking variables in each simulation as an estimate of
the number of independent voxels in our dataset. Because non-
independent, correlated voxels may tend to be associated with the
same gene, we can use the total number of independent voxels to
estimate the number of top associated genes we would expect to
find in null cluster maps made from our actual test data. We used
the estimated number of independent voxels, Vi, to randomly select
(with replacement) a gene from the set of 18,044 genes and
repeated the selection Vi times. We found the number of unique
genes represented for each simulated output map and then took the
average.
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Results

Comparison of methods

To examine the differences between gene-based and SNP-based
association methods (which are more standard), we compared the
results of PCReg to linear regression using temporal lobe volume
(TLV) data from a previous study (Stein et al., 2010b) as the
phenotype. We chose to focus on the top gene or SNP identified by
each method in order to examine performance when the variant
chosen is deliberately selected to favor one of the two methods.
GRIN2B was identified as the gene with the SNP variant that was
most significantly associated with TLV (P=4.03×10−7). We
identified each of the 129 SNPs within the GRIN2B gene, and then
performed linear regression at each SNP and PCReg as a single gene
test with TLV as the phenotype. The −log10(P-value) of each SNP-
based test is shown in Fig. 2a with single gene test results overlaid
(black dotted line). It is clear that the main effect detected with
linear regression is much greater in this case. It is important to note
that we tested each of the 129 SNPs within the GRIN2B gene, which
would require any significant P-values identified to be corrected for
multiple comparisons before further study. In this example,
however, there are several SNPs that beat the Bonferroni-corrected
significance threshold (α=3.9 ×10−4). In comparison, the gene-
based test of GRIN2B using PCReg was a single test not requiring
Fig. 2. Genetic association plots for univariate linear regression versus multi-locus
PCReg. The −log10(P-value) of each SNP in GRIN2B (a) and BEST3 (b) is plotted against
its position in the gene. Each of the points is color coded by level of LD (compared to the
top SNP, the purple diamond dot) as measured by r2. The −log10(P-value) of the gene-
based PCReg test for each gene is overlaid on the plot for comparison (dotted black line).
Plots were generated using the LocusZoom software (http://csg.sph.umich.edu/
locuszoom/).
correction for multiple comparisons and maintained a nominal
significance value (P=0.012). Also, we compared BEST3 – the gene
identified to be most significantly associated with TLV via PCReg –

with the linear regression output of each SNP within the gene
(Fig. 2b). The significance of the main effect of the gene-based test is
much stronger (P=2.9×10−4) than the best linear regression result
(P=0.063). This demonstrates a case where variance components
from individual markers that are not significant via linear regression
may be combined into a single significant test statistic.

Relation of gene significance to number of SNPs

Wang and Abbott examined whether the power to detect
associations in genetic data is influenced by the number of eigenSNPs
included in a PCReg model. They found that models with greater
numbers of eigenSNPs do not have increased power to detect
associations (Wang and Abbott, 2008). However, each additional
eigenSNP included in the model uses a degree of freedom. It is
therefore possible that PCReg and similar regression methods are
biased toward selecting effects of smaller versus larger genes
(Chapman and Whittaker, 2008). We examined our results for
gene-size bias and verified that the number of eigenSNPs in the
PCRegmodel within the top genes from our run of vGeneWASwas not
correlated with the observed P-value, using a Pearson's product-
moment correlation test (r=0.0045; P=0.42). In addition, we
verified that the number of eigenSNPs in each of the 18,044 genes
at a single voxel was not correlated with its significance level
(r=0.0066; P=0.29). We also compared the number of eigenSNPs in
each gene (mean and median: 14.3 and 9) with the number of
eigenSNPs in the top genes from our analysis (mean andmedian: 13.6
and 5). It remains possible that we missed effects of very large genes,
but this is inevitable in small samples as the number of eigenSNPs
needed to adequately encode the majority of variation in large genes
tends to approach the sample sizes, reducing the available numbers of
degrees of freedom for the whole-gene tests.

Voxelwise GeneWAS

We generated maps of significance where each color-coded
voxel in the brain shows the P-value of the most highly associated
gene at that voxel (Fig. 3). There are several spatially contiguous
regions throughout the brain with raw minimum P-values lower
than 10−7. In addition, some of the top genes identified show
symmetric clustering across hemispheres. Brain structures are
highly symmetric between hemispheres, at least for most brain
regions, so symmetric genetic associations may be biologically
plausible because the volumes of symmetric structures co-vary
across subjects, so they may share similar genetic determinants.
However, evidence of symmetric patterns of association in the brain
does not necessarily imply biological plausibility (Fillard et al.,
2007).

We used a simulation-based test to build the expected null
distribution of cluster sizes given our image data. We compared the
distribution of the cluster size values in simulated maps to the
cluster sizes obtained from vGeneWAS. The proportion of the null
(simulated) maps that contained small clusters is much greater than
in vGeneWAS, while the proportion of the vGeneWAS map that
contained large clusters was greater than in the null maps (Fig. 4). The
minimum and maximum cluster sizes for the simulated maps were 1
and 14 voxels (64 and 896 mm3), respectively. The minimum and
maximum cluster sizes for vGeneWAS were 1 and 429 voxels (64 and
27,456 mm3). This demonstrates that a large proportion of clusters
of voxels associated with the same top gene are larger than would
be expected based on completely null data, even taking into account
the non-independence of voxels in our dataset.
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Fig. 3. A color-coded significance map of the top gene at each voxel. Sections are shown at 8 mm intervals throughout the brain. The top of each panel represents the anterior of the
brain and bottom the posterior of the brain. The images are in radiological convention (the left side of the image is the patient's right hemisphere). Color coding is based on
the −log10(P-value); warmer colors represent more significant associations.
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Based on our simulated cluster maps, we used the number of
unique clusters as an estimate of the number of independent voxels.
The estimate of the number of independent voxels based on 100 runs
of the simulation tests was 11,900.8±50.6 (mean±standard devia-
tion) out of the 31,662 total voxels. We performed tests to estimate
the number of genes we should expect to find in our analysis based on
the non-independence of voxels in our data. We used the number of
independent voxels estimated from the simulation to randomly select
(with replacement) from our list of 18,044 genes. We tallied the
number of unique genes represented for each simulated cluster map
and found the average was 8721.4±44.9 (mean±standard devia-
tion). We measured the total number of unique genes to be 5333
from our run of voxelwise GeneWAS. The number of observed genes
is significantly lower than the number of genes expected based
on the null cluster maps (Pb0.01). Combined with our cluster size
comparisons, this suggests that the top genes identified in our analysis
tend to have a much more broadly distributed effect than expected
based on null data, even taking into account the intrinsic spatial non-
independence of our data. The top 20 genes most significantly
associated with any voxel are listed in Table 1.

The GRB-associated binding protein 2 gene, GAB2, is the most
significantly associated gene in our analysis and has previously been
linked to late-onset Alzheimer's disease (LOAD) (Reiman et al., 2007).
Reiman et al. (2007) identified 10 SNPs from the GAB2 gene that were
significantly associated with LOAD and APOE allele status in 1411
cases and controls from 20 NIA-sponsored Alzheimer's Disease
Centers. Replication attempts in independent samples have yielded
mixed results (Ramirez-Lorca et al., 2009; Lin et al., 2010; Chapuis
et al., 2008), but large meta-analyses of several databases shows that
GAB2may indeed have amoderate effect on the development of LOAD
(Ikram et al., 2009; Schjeide et al., 2009). Specifically, the meta-
analysis of the marker rs2373115 in nine studies has an odds ratio of
0.85 and a 95% confidence interval for the odds ratio of [0.76, 0.94]. In
addition, the AlzGene website lists GAB2 as being in the top 20 genes
likely related to Alzheimer's disease (September 3, 2010; http://www.
alzgene.org/). In vivo testing shows that GAB2 is over-expressed in
certain brain regions such as the hippocampus and posterior cingulate
cortex in patients with LOAD (Reiman et al., 2007). Experiments
with small-interfering RNA (siRNA) and GAB2 reveal that the normal
function of GAB2 proteins prevents the formation of serine-262
phosphorylated tau tangles (Reiman et al., 2007). No studies, to our
knowledge, have considered morphometric effects of GAB2 variants.
The GAB2 associations show a symmetric signal in the white matter
superior to the lateral ventricles (Fig. 5).

The second most highly associated gene, leucine-rich repeat and
death domain containing protein (LRDD), is expressed in the brain

http://www.alzgene.org/
http://www.alzgene.org/
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Fig. 4. Cluster sizes in vGeneWAS (red line) are compared with an average of simulated
null maps (black line). We took the log10 of the number of voxels in a cluster (not
in mm3) across the brain in both maps for scaling purposes and for ease of comparison.
The log10 cluster sizes are then plotted using a density function such that the total
area under each line is equal to 1. The average simulated null map contains a larger
proportion of small cluster sizes than vGeneWAS (higher peaks in the black line at
values close to the origin on the x-axis). The vGeneWAS map contains a larger
proportion of large cluster sizes than the average simulated null map (the red line is
higher at larger values and is more extended). A single slice view of the vGeneWAS and
average simulated null cluster maps are pictured for comparison (inset). Every unique
cluster is assigned its own color. There are more unique clusters than distinct colors
making visual inspection difficult, but in general the clusters in the vGeneWASmaps are
larger.
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and may mediate cell apoptosis and DNA repair (Telliez et al., 2000).
In addition, LRDD has been implicated in the p53 tumor-suppression
pathway likely by signaling cell apoptosis in response to DNA damage
(Brown et al., 2009). LRDD was the most significantly associated
gene in a cluster of voxels in a white matter tract of the occipital
lobe, possibly the optic radiations (Fig. 5).
Table 1
The top 20 genes most significantly associated at any voxel, organized by minimum observe
(Note: the number of SNPs in a gene will vary depending on the genotyping and quality cont
The mean observed P-value is also listed; it is the average of the P-values at all voxels where
and the percentage of the total volume of voxels in the brain where the gene was the most sig
well as the total number of spatially independent clusters.

Chr Gene # of SNPs in gene # of eigenSNPs Minimum P-value Mean P-valu

11 GAB2 20 10 2.36×10−9 1.50×10−5

11 LRDD 2 2 2.60×10−9 1.32×10−5

12 PTPRB 17 13 2.84×10−9 1.81×10−5

9 ZNF462 9 6 3.29×10−9 1.84×10−5

21 IGSF5 27 14 5.32×10−9 1.62×10−5

2 SLC25A12 10 5 9.48×10−9 2.66×10−5

11 MRE11A 9 6 9.86×10−9 8.80×10−6

19 SLC8A2 11 7 1.06×10−8 3.18×10−5

15 CHRM5 3 3 1.71×10−8 1.77×10−5

18 SPIRE1 19 14 2.94×10−8 2.88×10−5

3 C3orf64 9 8 3.71×10−8 2.43×10−5

21 S100B 1 1 4.75×10−8 2.81×10−5

1 CRCT1 1 1 5.54×10−8 2.90×10−5

19 ZNF626 6 5 5.85×10−8 2.12×10−5

1 ELK4 1 1 6.05×10−8 3.27×10−5

11 RSF1 8 6 9.30×10−8 1.31×10−5

20 WFDC11 2 2 1.06×10−7 2.49×10−5

6 SCML4 27 18 1.07×10−7 1.67×10−5

12 ERP27 8 14 1.08×10−7 2.61×10−5
Associations with protein tyrosine phosphatase receptor type
beta, PTPRB, are detected in the cerebellum (Fig. 5). PTPRB interacts
with neural receptors and cell-adhesion molecules and is involved
in neurite development and neuronal differentiation (Ishiguro et al.,
2008). PTPRB has also previously been associated with alcohol
and drug abuse via genome-wide search (Ishiguro et al., 2008). In
addition, an expression study found that PTPRB encoded proteins are
present in the gastric mucus and other tissues of gastric cancer
patients (Wu et al., 2006).

The fourth and fifth most significantly associated genes are zinc
finger protein 462 (ZNF462) and immunoglobin superfamily member
5 (IGSF5), respectively. ZNF462 is the most significantly associated
gene in a cluster of voxels in the upper-left gray matter of the parietal
lobe (Fig. 5). Interestingly, IGSF5 shows symmetrical clusters of
association in the temporal lobe and the surrounding cerebrospinal
fluid (CSF) at the base of the brain (Fig. 5). Neither gene is well
studied, but IGSF5 may be involved with junction cell adhesion
(Hirabayashi et al., 2003).

Other genes of interest identified in our analysis include ARALAR,
which encodes a calcium-binding mitochondrial protein that is highly
expressed in the brain (del Arco and Satrustegui, 1998). ARALAR
has previously been associated with autism (Ramoz et al., 2004), but
the claims are controversial (Rabionet et al., 2004). CHRM5, is a
muscarinic acetylcholine receptor M5 coding gene and has previously
been associated with schizophrenia (De Luca et al., 2004). S100B,
encodes a zinc-binding protein over-expressed in patients with
Alzheimer's disease and interacts with Tau proteins (Yu and Fraser,
2001).

Correction for multiple comparisons

After permutation testing to determine the effective number of
independent gene tests, we need to model the function parameters so
that we can transform the data for correction for multiple compar-
isons. The effective number of independent tests was estimated to
be 15,636, which is a moderate reduction from the 18,044 genes
measured directly in this experiment. We therefore chose to model
the null distribution as Beta(1, 15,636). The probability density
function (PDF) of Beta(1, 15,636) on the normalized histogram
of observed P-values fits the data well with only small deviations
from the original Beta(1, 18,044) (Fig. 6a). We note, however, that our
d P-value. The common gene name is listed, with the number of SNPs within that gene
rol methods used). We also list the number of eigenSNPs included in the PCReg models.
that gene was most significantly associated. Also listed is the volume of voxels (in mm3)
nificantly associated gene. The maximum cluster size observed for each gene is listed as

e Volume (mm3) Proportion of brain volume Clustermax (mm3) # of clusters

6336 0.0049 2688 9
8128 0.0063 7872 4
3200 0.0024 3008 5
2688 0.0021 2688 1

16,384 0.013 9344 3
1856 0.0014 1792 2
9344 0.0072 9216 3
5632 0.0043 5376 3
1280 0.00099 1216 2
6016 0.0046 3072 12
4352 0.0034 2112 4
9344 0.0072 6656 7
4096 0.0032 3456 4
2560 0.0020 2112 3
4032 0.0031 2688 4
768 0.00059 768 1

1280 0.00099 512 5
3328 0.0026 3328 1
2624 0.0020 2176 2
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Fig. 5. Regions in the brain associated with the top 5 genes from our vGeneWAS analysis (where the uncorrected P-value at a given voxel is overlaid on the minimum deformation
template). The slices chosen best represent the regions where each gene was the most significantly associated gene in the brain. Images read from inferior to superior (left to right of
the page) following radiological convention and with the top and bottom of each panel representing the anterior and posterior of the brain, respectively.
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estimate is determined both by SNP density and degree of coverage in
the SNP marking scheme of our study. Experiments that use different
SNP-chips, include sex chromosomes, or use different annotation
methods may encounter different estimates. To determine how well
the expected null distribution compares to the observed PDF, we
compare each distribution directly in a Q–Q plot (Fig. 6b). The
expected null distribution also fits the observed data well.

P-values suitable for multiple comparison correction via FDR
methods should have a probability distribution on the interval [0,1]
that is uniform in the null case, i.e., its cumulative distribution is
diagonal in the null case (Benjamini and Hochberg, 1995; this is
the basis for the false discovery rate method). Our Beta-distributed
experimental P-values need to be corrected so that they meet the
assumptions of the FDR model. Using the analytic β parameter
from the null Beta distribution, we fit a cumulative distribution
function (CDF) to our observed data yielding a new distribution
of corrected P-values that deviate from the uniform distribution
onlywhen the data are not null. A histogram of the observed corrected
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Fig. 6. (a) The normalized histogram of observed P-values. The dashed line represents the cumulative distribution function (CDF) of Beta(1, 18,044) where Meff is based on the
number of genes tested. The solid line represents the CDF of Beta(1, 15,636) whereMeff is an estimate of the number of independent tests from permutation testing. (b) The Q–Q plot
shows the observed P-values versus those expected from a Beta(1, 15,636) distribution (black dots). The solid gray line represents a purely null distribution of P-values. (c) The
histogram of corrected P-values (Pc) approximately follows a uniform distribution. (d) The Q–Q plot of the observed Pc versus those expected from a null distribution.
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P-values (Fig. 6c) shows that the cumulative distribution is approx-
imately equivalent to a uniform distribution. A Q–Q plot of the
expected null distribution corrected P-values against the observed
corrected P-values shows that the two distributions differ (Fig. 6d). A
Q–Q plot of two identical distributions will lie on the null 45-degree
diagonal line (y=x). There are two things that can cause a Q–Q plot to
deviate from the null: incorrectly modeling a distribution or
significant data. The line representing the observed compared to the
expected results in the Q–Q plot in Fig. 6d is steeper than and deviates
from the null line at lower P-values. This suggests that the distribution
of Pc values is left skewed and more dispersed than the theoretical
uniform distribution (Thode, 2002). It is possible to apply a further
correction to our observed Pc distribution by using a Q–Q plot of an
analytic null distribution versus the theoretical uniform distribution
as a hash table. However, we are only selecting the genes with the
lowest P-value at each voxel somonotonic P-value correctionswill not
change the distribution of Pc-values.

We used two methods to control the FDR of the corrected P-values
(Pc). We used the original FDR method (Benjamini and Hochberg,
1995), which appropriately controls for multiple comparisons when
the covariance of test statistics shows a positive regression depen-
dency (Benjamini and Yekutieli, 2001). We found that the false
discovery rate for the second most highly associated gene in our
results (LRDD) could only be controlled at a threshold of q=0.30 (i.e.,
allowing a 30% false discovery rate) after applying a statistical
threshold of Pc=5.36×10−4. In addition, the pFDR q-value threshold
(Storey, 2003) was q=0.23 for the most significantly associated gene
at any voxel (GAB2). In other words, the vGeneWAS results could
not be controlled at the conventional false discovery rate, but show
promise.

Post hoc analysis

Voxelwise GeneWAS results in a map that shows only the top gene
at each voxel. The top gene at each voxel may be the most significant
gene in a certain region, but it may also have a more distributed effect
throughout the brain, with effects in additional regions where it is
not the top gene. In addition, genes that do not have a large main
effect might never be selected in this type of analysis, but still could
have a large distributed effect on the brain.
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We tested the effect of the top gene in our analysis, GAB2, at
every voxel across the brain using PCReg. We stored each P-value in a
map and applied the original FDR method. Voxels surviving the
FDR threshold are shown in Fig. 7. These are post hoc tests, so are
exploratory, and require replication in independent samples, but it is
quite clear that GAB2 has a much greater distributed effect on the
brain than could be determined from the vGeneWAS results. Future
implementations of vGeneWAS might consider the effects of multiple
genes at a voxel to account for the case where a gene is significant in
its effect of explaining variations in the image, but is not necessarily
the top gene. In addition, vGeneWAS could be further improved by
considering the distributed effects of genes. If a gene has an effect
over a large region, but is not the top voxel, it will be completely
overlooked in the current implementation of vGeneWAS. Adaptation
of cluster-level inference to these maps would be of interest, as well
as tests that combine cluster extent and height (Hayasaka and
Nichols, 2004). Existing adaptations of the original FDR method, such
as “searchlight” FDR, could be useful here as it produces region
correction thresholds that are sensitive to small clusters of positive
signals in imaging data, but appropriately conservative in its
correction of false positives (Langers et al., 2007).

To understand the contributions of each individual SNP in the GAB2
gene, we performed post hoc association tests for each SNP with the
phenotype value from the top voxel in the brain. It should be noted,
however, that choosing the GAB2 gene to compare the results of SNP-
based linear regression with gene-based PCReg provides P-values that
are biased by the previous gene-wide brain-wide search because GAB2
was identified using PCReg. There were 20 SNPs from the GAB2 gene in
our genotypeddata.Of these, only three passed thenominal significance
level in SNP-based association tests (P=0.05). Themost significant SNP
identified, rs7927923, has P=9.1×10−3. The other two significant
SNPs, rs1981405 and rs1893447, showed effects with P=0.027 and
P=0.049, respectively. A total of 16 SNPs out of 20 are in high LD with
the most significantly associated SNP (r2N0.6). Only one of the SNPs
from our analysis overlapped with SNPs used in previous GAB2
association studies, most likely because we are using different
genotyping platforms. Clearly, the gene-based test was more powerful
at detecting an association in this case than each SNP tested individually
(compare the dotted line with the colored dots in Fig. 8).
Fig. 7. Map of P-values for GAB2 at every voxel in the brain after correction for multiple com
testing one gene) using the original FDR method. P-values significant after FDR correction (a
distributed effect on the brain than is evident in the vGeneWAS results.
Power comparisons

To assess the differences in power afforded by vGeneWAS relative
to existing SNP-based methods, we compared the Pc-values from
vGWAS obtained in our previous study by Stein et al. (2010a),
with the Pc-values resulting from vGeneWAS (Fig. 9). The proportion
of Pc-values greater than a given FDR threshold for each method is
directly related to differences in effect sizes. The FDR of the results
from vGWAS could only be controlled at a threshold value of q=0.50,
whereas the FDR threshold for vGeneWAS is somewhat lower,
although not passing the conventional FDR level (q=0.30; Fig. 9).
This suggests that the vGeneWAS method may have more power,
in principle, to detect genetic associations, although neither test
controlled the false discovery rate at the conventional level.

Discussion

Methodological overview

Here we present a method to conduct a voxelwise gene-wide
association study (vGeneWAS), testing the aggregate effect of
multiple SNPs within each gene. In summary, (1) we implemented
a gene-based association test using principal components regression
(PCReg); (2) we performed association tests at every voxel within a
full brain mask where the value at each voxel was the local volume
difference relative to the mean template while controlling for age and
sex; (3) we generated a Beta distribution of P-values by selecting only
the most significant gene at each voxel; (4) with permutation tests,
we estimated the effective number of tests performed; and (5) we
corrected for multiple comparisons in a two step procedure—we
estimated β using the CDF of the analytic Beta distribution and
then corrected the new uniform distribution using two different FDR
methods.

None of the genes identified passed the standard FDR threshold
(q=0.05). However, many of the genes identified have previously
been associated with brain differences or disorders. The top gene
identified is a known Alzheimer's risk gene, GAB2, lending plausibility
to the method. Many of the genes identified are highly expressed in
the brain or differentially expressed, depending on disease status. The
parisons across voxels (but not corrected for search across the genome, as we are only
t q=3.4×10−4) are color-coded. Warmer colors are more significant. GAB2 has a more
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Fig. 8. Genetic association plot, for different SNPs in the GAB2 gene, at the top voxel from our analysis. The −log10(P-value) of each SNP in GAB2 is plotted against its position in the
gene. Each of the points is color coded by level of LD (compared to the top SNP, the purple diamond dot) as measured by r2. The−log10(P-value) of the gene-based PCReg test for GAB2
at this voxel is overlaid on the plot for comparison (dotted black line). In this case, the gene-based test shows a greater effect size than univariate tests on any of the component SNPs
treated independently. This shows that the gene-based test can be more powerful than performing separate tests on component SNPs.
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findings in this study warrant further examination and replication
attempts.
Assessment of the model

Our method selects the top gene at each voxel, to reduce the
amount of data. Choosing only the top gene at each voxel, however,
can hinder the extensibility of our results. This may miss many genes
with distributed effects, if the main effect of the gene is never the
largest at any voxel. Future implementations of vGeneWAS could
consider the relationship among voxels when performing association
tests. Liu et al. (2009) used parallel ICA to relate brain network
data from fMRI to SNP data. They selected only a small set of 367
predefined SNPs based on a set of candidate genes for schizophrenia;
this does not leverage all of the available data in the genome. Similar
approaches have been attempted on voxel-based morphometry
Fig. 9. vGeneWAS may control the false discovery rate better than vGWAS. The
cumulative distribution function (CDF) of Pc-values from vGeneWAS (solid green line) is
compared to the CDF of Pc-values from vGWAS (Stein et al., 2010a; solid black line).
Three lines represent different correction thresholds of q=0.05 (red dashed line),
q=0.30 (black dashed line), and q=0.50 (blue dotted line).
(VBM) data from structural MRI (Jagannathan et al., 2010). However,
this approach used the same subset of SNPs used by Liu et al. (2009).
Vounou et al. (2010) proposed a method called sparse reduced-rank
regression (sRRR) which uses the sparseness of signals to simulta-
neously select phenotypes and genotypes. Power estimates suggest
that sRRR is more powerful than using individual tests at each voxel;
this may prove to be very useful in the future.

Principal components regression (PCReg) is an efficient method to
test the joint association of all SNPs within a gene simultaneously.
PCReg detected associations with genes missed by SNP-based
regression (Fig. 2b). By leveraging the LD in a gene, PCReg encodes
variance throughout a gene to test for associations. We identified
situations where SNP-based regression models may have more power
(Fig. 2a). If a single SNP has a large main effect, then testing the joint
effect of all SNPs within that gene may dilute the association; the
cumulative P-value from gene-based tests may be lower. However,
when one considers the drastic reduction in the number of inde-
pendent tests when comparing SNP-based linear regression with
PCReg, gene-based testing offers advantages.

Another concern with PCReg and related regression models is that
each predictor added to the regression model consumes a degree
of freedom. There may then be some detection bias in the regres-
sion model, where smaller genes are found to be more significantly
associated with the phenotype than larger genes, because the
regression models of small genes have more degrees of freedom
(Chapman andWhittaker, 2008).While we did not observe this effect,
it is an important factor to consider when interpreting results.
Additionally, SNPs combined into a single test statistic in PCReg could
have different directions of effects, disrupting the power to detect an
association. However, the situation where a gene contains SNPs with
negative correlations with respect to the phenotype may be relatively
rare as it requires two nearby loci to be in LD with different causal
variants (Chapman and Whittaker, 2008).

Other multivariate regression methods may offer greater power to
detect genetic associations than PCReg, which is used here as an
example. Wang and Elston (2007) compress genome-wide genotyp-
ing data across subjects using a Fourier transform, and assign weights
to the low-frequency components in a regression model. This method
is similar to PCReg, as it collapses the number of genetic tests
performed while capturing much of the variance across markers.
Kernel-based methods have been implemented as non-parametric

image of Fig.�9
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gene-based tests to increase power over SNP-based methods;
however, thesemethods have only been implemented in case–control
studies (Mukhopadhyay et al., 2010). Ridge regression (Malo et al.,
2008; Sun et al., 2009) and lasso-based penalized regression (Zou,
2006; Wu et al., 2009) can both powerfully detect associations in
genetic data. In fact, direct comparisons between ridge regression,
lasso-based penalized regression, and PCReg show that the first two
methods may be more powerful than PCReg depending on the
underlying genetic architecture (Bovelstad et al., 2007; Benner et al.,
2010). However, ridge regression and especially lasso-based penal-
ized regression are extremely computationally intensive compared
to PCReg. There is a huge computational requirement to complete
a vGeneWAS analysis, which searches the whole image in addition
to the whole genome. Due to this, we decided to strike a balance
between power and computational complexity to complete the
analysis in a feasible time frame. Future implementations of
vGeneWAS could be improved by using additional multivariate
regressionmethods, although theymay need to bemodified for speed.

A current limitation of our method, as described here, is that in its
current form family-based designs (such as pedigree structures)
cannot be used. The patterns in allele frequencies in a family cohort
depend on kinship, and mixed-effects models would be required to
control for kinship structure. Several such methods exist for SNP-
based linear regression, such as Efficient Mixed-Model Association
(EMMA; Kang et al., 2008). However, to the best of our knowledge,
multivariate mixed-model regression has not been attempted in a
genetic context. One multivariate gene-based method called versatile
gene-based association (VEGAS) avoids multivariate mixed-model
regression by converting SNP-based P-values into amultivariate gene-
based test statistic (Liu et al., 2010). As there are already many
methods for SNP-based mixed-model regression, VEGAS is aptly
suited to perform gene-based association tests in family-based
populations. As the VEGAS test statistic is determined by SNP-based
P-values, it will not be able to detect associations where the
cumulative P-values are not significant. In this way, if a series of
SNPs contribute a small amount of variance in a gene, VEGASwill miss
them, because the SNP-based method will as well.

While this is one of the largest imaging genetics studies to date,
our sample size still may be underpowered to detect moderate effects
of genetic variants on the brain. Future studies in imaging genetics are
likely to benefit from meta-analysis, which aggregates GWAS results
frommultiple cohorts to determine reproducible genetic associations.
This aggregation of large datasets can be used to boost power to
detect SNPs with smaller effects. One such effort now underway is the
ENIGMA project (ENIGMA Consortium, 2011). In cases where there is
not enough data available to perform a true meta-analysis, discovery
and replication datasets may be useful. In early tests using brain
images, some genetic associations seen in a discovery cohort have
been replicated in independent samples (e.g., Rajagopalan et al.,
2011). However, our main purpose in this study is to demonstrate
a method to conduct voxelwise, gene-based analyses, which will
becomemore powerful as imaging databases continue to grow rapidly
worldwide in size and content. In assessing whether our results may
generalize to new datasets, we note that we examined only a tight age
range in our study (elderly subjects), and this may affect the genes
found to have morphometric effects on the brain. If the genes have a
varying expression pattern over time some of the top genes detected
in our analysis may not be dominant during other parts of the lifespan.
Although we controlled for age effects on brain structure in our
analysis, it is still unknown whether the identified genetic associa-
tions with brain morphology are under some age-related influence; it
is also not known if these genes are expressed in a typical/atypical
age-related fashion. Datasets drawn from different parts of the
lifespan would offer maximal power to detect genetic variants
relevant for brain structure (as discussed in Braskie et al., in press;
see Rajagopalan et al., 2011, for an example).
One limitation of GWAS analyses is that they overlook rare
variants, which are also emerging as key players in the genetic
underpinnings of mental disorders (Bansal et al., 2010). Our method
does not consider these rare variants, but they may play an important
role in explaining variance in complex traits that is not accounted for
by common variants. Examination of rare variants is still relatively
costly (as it requires deep sequencing of large numbers of subjects).
Some types of rare variant can be genotyped on SNP-chip platforms
(such as copy number variants) they require separate analytical
techniques from those considered in this paper (Bansal et al., 2010).
Each of these limitations will be more feasible to address when the
cost of deep sequencing drops and sample sizes are large enough to
reliably implicate many genes simultaneously.

Our gene-based test may be more powerful than univariate
methods in certain cases, but not always. The five top genes identified
in the present study do have some biological plausibility; some are
known to be expressed in the brain and implicated in brain disorders.
However, there are other genesmissing in the short list of genes in the
present findings that are frequently found using univariate ap-
proaches and strongly implicated in complex behavioral pathologies
across mammalian species, such as the BDNF val66met substitution.

To explain this, we note that the analysis of currently available
imaging genetics data is very underpowered. In addition, sample sizes
needed to reliably detect a genetic association are even greater when
multiple genes are assessed or when genome-wide search is
conducted. By contrast, the BDNF val66met substitution is often
treated as a candidate gene, and if that is done, it is conventionally
agreed that its effects must only satisfy a nominal significance level of
Pb0.05, if no other genes or SNPs within it are tested. In our ownwork
on a different cohort scanned with DTI (Chiang et al., 2010), we were
able to detect robust associations between the BDNF val66met
polymorphism and fiber integrity (fractional anisotropy) assessed
with DTI.Wewere also able to replicate these associations in two non-
overlapping (independent) samples of subjects. Even so, the signif-
icance level used (Pb0.05) was far more lenient than the very strict
thresholds required to control for false positives when the whole
genome is searched. As such, false negative results in a GWAS study
(e.g., not finding a significant association of the BDNF val66met
substitution when it is in fact a true association) does not mean that a
gene does not affect a phenotype, just that an association was not
detected at the very stringent statistical cut-off applied to account for
multiple comparisons across the genome.

A review of the literature also suggests that BDNF val66met, while
a popular target of study, has a mixed history. The BDNFval66met
substitution has been inconsistently implicated in mood disorders,
Alzheimer's disease, and quantitative measures of memory (Bagnoli
et al., 2004; Combarros et al., 2004; Nacmias et al., 2004; Nishimura
et al., 2004; Tsai et al., 2004; Desai et al., 2005; Matsushita et al., 2005;
Vepsalainen et al., 2005). In a secondary, post hoc, analysis, we tested
the effect of the BDNFval66met allele in this current sample using
standard univariate regression (with a dominant model, controlling
for age and sex) and it did not survive correction for multiple spatial
comparisons. An association test of the BDNF val66met allele with the
hippocampal volume of the 731 subjects in this dataset did not
survive the nominal significance level of P=0.05. As such, we were
not able to use BDNF as a “gold standard” gene; arguably, there are not
yet any such genes with universally replicable associations on brain
structure that can be used to gauge the face validity of novel methods.

Another limitation is that any approach that stops after selecting
only one gene per voxel is not biologically plausible as a model
of phenotypes with complex genetic determination. As such, the
development of gene-based tests should be considered as a way
station towards a more sophisticated treatment of complex genetic
effects, in pathway or gene–gene interaction models (Inkster et al.,
2010). However, testing gene–gene interactions in the vGeneWAS
framework is computationally intractable as the number of tests
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quickly approaches nCk=n!/((n−k)!k!) at each voxel in the whole
brain to test for interactions among all sets of k different genes drawn
from an overall pool of N genes. Additionally, interaction effect sizes
are generally much smaller than the main effects we are searching for
in this paper, so our sample size would need to be much larger to
accommodate the necessary correction for multiple comparisons and
smaller effect sizes (Cordell, 2009). As genome-wide interaction
analysis (GWIA; Marchini et al., 2005) is computationally intensive
and underpowered with current imaging datasets, we recently
developed an alternative method (Chiang et al., 2011a,b) to detect
likely gene–gene interactions among SNPs, without having to
compute all N(N−1)/2 pairwise or all n!/((n−k)!k!) kth-order
interactions on the genome. Two advantages of this genetic network
analysis, relative to genome-wide interaction analysis (GWIA) are
apparent: (1) genetic correlation can tap into the natural latent
structure of gene action in a brain image; and (2) voxel clustering by
genetic affinity leads to high power to find SNPs with correlated
effects in genome-wide scans.

Biological significance of the findings

Gene-based tests of association across the genome and brain
have not been attempted before, to our knowledge. Recently, imaging
genetics studies have focused on single-locus associations with
summary brain volume measures or 3D statistical parametric maps.
vGeneWAS advances the burgeoning field of imaging genetics by
providing the framework to perform multivariate, gene-based
association tests. It does not restrict analyses by requiring prior
hypotheses about a specific causal variant or ad hoc region of interest.
vGeneWAS is the first attempt to apply gene-based tests to mor-
phometric imaging data and opens up more possibilities to discover
putative genetic variants that contribute to differences in brain
structure. Thismay helpwhen themain effect of each variant in a gene
is too small to detect with traditional SNP-based methods.

Although vGeneWAS is a multivariate, gene-based method, we
identified genes previously associated with brain disease using SNP-
based tests. Many variants in the GAB2 gene are implicated in the
development of late-onset Alzheimer's disease (LOAD) and are
thought to interact with the APOE epsilon 4 allele. In the pattern of
effects for GAB2 on the brain (Fig. 7), the highlighted areas are
generally periventricular, and ventricular enlargement is a prominent
characteristic of AD (de Leon et al., 1989; Chou et al., 2009). As we
noted in our prior papers on TBM in Alzheimer's disease (Hua et al.,
2008), there is occasionally a ring of voxels around the lateral
ventricles that show partial volume effects that mostly like reflect
ventricular expansion. Clearly, the ventricular expansion itself
indirectly results from the diffuse loss of brain parenchyma, so the
changes detected there may also reflect, to some extent, atrophic
processes more remote than the voxels singled out in the voxel-based
maps. LRDD is highly expressed in the brain and is involved with DNA
repair including signaling apoptosis in tumor cells. PTPRB is associated
with addiction to drugs and alcohol and may be involved with
tumor regulation (Telliez et al., 2000; Wu et al., 2006; Ishiguro et al.,
2008; Brown et al., 2009). Based on gene expression and links to brain
diseases, many of the genes identified in our analysis may have
differential morphometric effects across the brain. In addition to some
of the more well-studied genes, we identified many genes such as
IGSF5 and ZNF462 that have little research available to infer their
plausibility. However, almost all of the genes identified in our analysis
are highly expressed in the brain, which at least suggests that the
genesmay have a role in brain function. Further analysis is required to
examine to what extent each gene variant identified in our analysis
mediates brain differences.

Many of the associations identified here seem to have a plausible
story, but we need to consider that some of the patterns of association,
especially clusters of association, may be due to short-range spatial
correlations in the images. Adjacent voxels in brain scans tend to
covary, as do Jacobian maps used to represent a localized measure of
volume difference. These methods rely on non-linear algorithms that
generate spatially smooth deformations. In addition to the simulated
(null) cluster size maps in this study, Stein et al. (2010a) found that a
small amount of spatial clustering is seen even if the genetic data is
null. Also, voxels were down-sampled which may introduce partial
volume effects. However, performing a vGeneWAS scan on non-
down-sampled, original sized images is estimated to take 4372 days
(or approximately 12 years) to complete. To this end, the extent to
which a gene affects regions of the brain should be interpreted
cautiously; however, certain patterns of gene effects that appear in
non-adjacent structures or in large clusters may signal gene effects
not attributable purely to spatial smoothing or partial volume effects.

To better understand the contribution of genes to global versus
local brain structure differences, we conducted association analysis on
both (1) the globally normalized brain images and (2) estimates of
total intracranial volume (eTIV) that contain information on overall
differences in brain scale. We searched for specific gene effects on
global brain volume differences using our gene-based method. We
computed brain volume measures (eTIV) from our dataset using the
automated FreeSurfer package (Fischl et al., 2002). Using the eTIV
measure as the phenotype we tested each of the 18,044 genes for
association. Looking at the top genes that we found in our analysis of
the normalized images, none of the top 20 most highly associated
genes was associated with eTIV phenotype. This provides further
evidence that the genetic effects we are detecting exert influences on
regional brain volumes rather than simply reflecting non-specific
effects on the overall volume of the brain.

Additionally, results should be interpreted cautiously when global
anatomical normalization is used. By removing, as far as possible, the
effects of individual brain size variation from the data, it is possible to
discover genes thatmay have a specific effect on a particular structure,
above and beyond any overall genetic effects on brain size (as brain
size itself is heritable). Global normalization is commonly performed
in all brain mapping studies, as many extraneous factors affect an
individual's head size, body size or height that may not be relevant for
cognition or for understanding brain function. Global anatomical
normalization adjusts for this source of variance in the data, to a large
extent, making more localized effects easier to identify. Even so, by
applying global anatomical normalization, some genes may be missed
that influence the total size of the brain. In fact, if a gene were
responsible for influencing brain size, but had a uniform effect on all
brain regions, it would be missed in the current analysis, as global
effects are discounted. As such, in addition to mapping gene effects, it
makes sense to also perform genetic analyses of whole brain size, as
has been performed in two recent studies (Paus et al., 2011; ENIGMA
Consortium, 2011).

In conclusion, our method may be used to perform gene-based
tests on any 3D brain maps, such as data from voxel-based
morphometry, diffusion tensor imaging, and cortical surface data. In
addition, we found a set of candidate genes that may substantially
affect brain morphometry and warrant further study.

Acknowledgments

Data collection and sharing for this project was funded by the
Alzheimer'sDiseaseNeuroimaging Initiative (ADNI) (National Institutes
of Health Grant U01 AG024904, 3U01AG024904-03S5). ADNI is funded
by the National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, and through generous contributions from
the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG,
Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corpora-
tion,Genentech,GEHealthcare,GlaxoSmithKline, Innogenetics, Johnson
and Johnson, Eli Lilly and Co.,Medpace, Inc.,Merck andCo., Inc., Novartis
AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as



1889D.P. Hibar et al. / NeuroImage 56 (2011) 1875–1891
well as non-profit partners the Alzheimer's Association and Alzheimer's
Drug Discovery Foundation, with participation from the U.S. Food and
DrugAdministration. Private sector contributions to ADNI are facilitated
by the Foundation for the National Institutes of Health (http://www.
fnih.org). The grantee organization is the Northern California Institute
for Research and Education, and the study is coordinated by the
Alzheimer's Disease Cooperative Study at the University of California,
San Diego. ADNI data are disseminated by the Laboratory for Neuro
Imaging at the University of California, Los Angeles. This research was
also supported by NIH grants P30 AG010129, K01 AG030514, and the
Dana Foundation. We also thank the many contributors to ADNI-1
genotyping sample curation at NCRAD (Kelley Faber), performing
BeadChip assays at TGen (David Craig), and bioinformatics problem
solving (Indiana U: Kwangsik Nho; UC Irvine: Anita Lakatos, Guia
Guffanti; Pfizer: Bryan DeChairo). Additional support for algorithm
development was provided by R01 EB008281, R01 HD050735, RC2
AG036535, and R01 AG020098.

References

Altshuler, D., Brooks, L.D., Chakravarti, A., Collins, F.S., Daly, M.J., Donnelly, P., Gibbs, R.A.,
Belmont, J.W., Boudreau, A., Leal, S.M., Hardenbol, P., Pasternak, S., Wheeler, D.A.,
Willis, T.D., Yu, F.L., Yang,H.M., Zeng, C.Q., Gao,Y., Hu,H.R.,Hu,W.T., Li, C.H., Lin,W., Liu,
S.Q., Pan, H., Tang, X.L., Wang, J., Wang, W., Yu, J., Zhang, B., Zhang, Q.R., Zhao, H.B.,
Zhao, H., Zhou, J., Gabriel, S.B., Barry, R., Blumenstiel, B., Camargo, A., Defelice, M.,
Faggart,M., Goyette,M., Gupta, S.,Moore, J., Nguyen,H., Onofrio, R.C., Parkin,M., Roy, J.,
Stahl, E.,Winchester, E., Ziaugra, L., Shen, Y., Yao, Z.J., Huang,W., Chu, X., He, Y.G., Jin, L.,
Liu, Y.F., Shen, Y.Y., Sun,W.W.,Wang,H.F.,Wang, Y.,Wang, Y.,Wang, Y., Xiong,X.Y., Xu,
L., Waye,M.M.Y., Tsui, S.K.W., Xue, H., Wong, J.T.F., Galver, I.L.M., Fan, J.B., Murray, S.S.,
Oliphant, A.R., Chee, M.S., Montpetit, A., Chagnon, F., Ferretti, V., Leboeuf, M., Olivier, J.F.,
Phillips,M.S., Roumy, S., Sallee, C., Verner, A., Hudson, T.J., Frazer, K.A., Ballinger, D.G., Cox,
D.R., Hinds, D.A., Stuve, L.L., Kwok, P.Y., Cai, D.M., Koboldt, D.C., Miller, R.D., Pawlikowska,
L., Taillon-Miller, P., Xiao, M., Tsui, L.C., Mak, W., Sham, P.C., Song, Y.Q., Tam, P.K.H.,
Nakamura,Y.,Kawaguchi, T., Kitamoto, T.,Morizono, T.,Nagashima,A.,Ohnishi, Y., Sekine,
A., Tanaka, T., Tsunoda, T., Deloukas, P., Bird, C.P., Delgado,M., Dermitzakis, E.T., Gwilliam,
R., Hunt, S.,Morrison, J., Powell, D., Stranger, B.E.,Whittaker, P., Bentley, D.R., Daly,M.J., de
Bakker, P.I.W., Barrett, J., Fry, B., Maller, J., McCarroll, S., Patterson, N., Pe'er, I., Purcell, S.,
Richter, D.J., Sabeti, P., Saxena, R., Schaffner, S.F., Varilly, P., Stein, L.D., Krishnan, L., Smith,
A.V., Thorisson, G.A., Chen, P.E., Cutler, D.J., Kashuk, C.S., Lin, S., Abecasis, G.R., Guan,W.H.,
Munro, H.M., Qin, Z.H.S., Thomas, D.J., McVean, G., Bottolo, L., Eyheramendy, S., Freeman,
C., Marchini, J., Myers, S., Spencer, C., Stephens, M., Cardon, L.R., Clarke, G., Evans, D.M.,
Morris, A.P., Weir, B.S., Tsunoda, T., Mullikin, J.C., Sherry, S.T., Feolo, M., Zhang, H.C., Zeng,
C.Q., Zhao, H., Matsuda, I., Fukushima, Y., Macer, D.R., Suda, E., Rotimi, C.N.,
Adebamowo, C.A., Ajayi, I., Aniagwu, T., Marshall, P.A., Nkwodimmah, C., Royal, C.D.M.,
Leppert, M.F., Dixon, M., Peiffer, A., Qiu, R.Z., Kent, A., Kato, K., Niikawa, N., Adewole, I.F.,
Knoppers, B.M., Foster, M.W., Clayton, E.W., Muzny, D., Nazareth, L., Sodergren, E.,
Weinstock,G.M.,Wheeler,D.A., Yakub, I., Gabriel, S.B., Richter,D.J., Ziaugra, L., Birren,B.W.,
Wilson, R.K., Fulton, L.L., Rogers, J., Burton, J., Carter, N.P., Clee, C.M., Griffiths,M., Jones,
M.C., McLay, K., Plumb, R.W., Ross, M.T., Sims, S.K., Willey, D.L., Chen, Z., Han, H., Kang,
L., Godbout, M.,Wallenburg, J.C., Archeveque, P.L., Bellemare, G., Saeki, K., Wang, H.G.,
An, D.C., Fu, H.B., Li, Q., Wang, Z., Wang, R.W., Holden, A.L., Brooks, L.D., McEwen, J.E.,
Bird, C.R., Guyer, M.S., Nailer, P.J., Wang, V.O., Peterson, J.L., Shi, M., Spiegel, J., Sung, L.M.,
Witonsky, J., Zacharia, L.F., Kennedy, K., Jamieson, R., Stewart, J., Consortium, I.H., 2005.
A haplotype map of the human genome. Nature 437, 1299–1320.

Bagnoli, S., Nacmias, B., Tedde, A., Guarnieri, B.M., Cellini, E., Petruzzi, C., Bartoli, A.,
Ortenzi, L., Sorbi, S., 2004. Brain-derived neurotrophic factor genetic variants are
not susceptibility factors to Alzheimer's disease in Italy. Ann. Neurol. 55, 447–448.

Bansal, V., Libiger, O., Torkamani, A., Schork, N.J., 2010. Statistical analysis strategies for
association studies involving rare variants. Nat. Rev. Genet. 11, 773–785.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate — a practical and
powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300.

Benjamini, Y., Yekutieli, D., 2001. The control of the false discovery rate in multiple
testing under dependency. Ann. Stat. 29, 1165–1188.

Benner, A., Zucknick, M., Hielscher, T., Ittrich, C., Mansmann, U., 2010. High-dimensional
Cox models: the choice of penalty as part of the model building process. Biom. J. 52,
50–69.

Bovelstad, H.M., Nygard, S., Storvold, H.L., Aldrin, M., Borgan, O., Frigessi, A., Lingjaerde,
O.C., 2007. Predicting survival from microarray data — a comparative study.
Bioinformatics 23, 2080–2087.

Braskie, M.N., Ringman, J.M., Thompson, P.M., in press. Neuroimaging measures as
endophenotypes in Alzheimer’s disease. Int. J. Alzheimers D. Article ID 490140.
doi:10.4061/2011/490140.

Brown, C.J., Lain, S., Verma, C.S., Fersht, A.R., Lane, D.P., 2009. Awakening guardian
angels: drugging the p53 pathway. Nat. Rev. Cancer 9, 862–873.

Cannon, T.D., Keller, M.C., 2006. Endophenotypes in the genetic analyses of mental
disorders. Annu. Rev. Clin. Psychol. 2, 267–290.

Chapman, J., Whittaker, J., 2008. Analysis of multiple SNPs in a candidate gene or region.
Genet. Epidemiol. 32, 560–566.

Chapuis, J., Hannequin, D., Pasquier, F., Bentham, P., Brice, A., Leber, I., Frebourg, T.,
Deleuze, J.F., Cousin, E., Thaker, U., Amouyel, P., Mann, D., Lendon, C., Campion, D.,
Lambert, J.C., 2008. Association study of the GAB2 gene with the risk of developing
Alzheimer's disease. Neurobiol. Dis. 30, 103–106.

Chiang, M.C., Barysheva, M., Toga, A.W., Medland, S.E., Hansell, N.K., James, M.R.,
McMahon, K.L., de Zubicaray, G.I., Martin, N.G., Wright, M.J., Thompson, P.M., 2010.
BDNF gene effects on brain circuitry replicated in 455 twins. Neuroimage 55 (2),
448–454.

Chiang, M.C., Barysheva, M., McMahon, K.L., de Zubicaray, G.I., Johnson, K., Martin, N.G.,
Toga, A.W., Wright, M.J., Thompson, P.M., 2011a. Understanding the network
topology of gene action on brain microstructure: an N=531 twin study.
Organization for Human Brain Mapping Conference [June 2011].

Chiang, M.C., McMahon, K.L., de Zubicaray, G.I., Martin, N.G., Toga, A.W., Wright, M.J.,
Thompson, P.M., 2011b. Hierarchical clustering of the genetic connectivity matrix
reveals the network topology of gene action on brain microstructure. Int. Symp.
Biomed. Imaging. Chicago, Il.

Chou, Y.Y., Lepore, N., Chiang, M.C., Avedissian, C., Barysheva, M., McMahon, K.L., de
Zubicaray, G.I., Meredith, M., Wright, M.J., Toga, A.W., Thompson, P.M., 2009.
Mapping genetic influences on ventricular structure in twins. Neuroimage 44,
1312–1323.

Combarros, O., Infante, J., Llorca, J., Berciano, J., 2004. Polymorphism at codon 66 of the
brain-derived neurotrophic factor gene is not associated with sporadic Alzheimer's
disease. Dement. Geriatr. Cogn. Disord. 18, 55–58.

Cordell, H.J., 2009. Detecting gene–gene interactions that underlie human diseases. Nat.
Rev. Genet. 10, 392–404.

de Leon, M.J., George, A.E., Reisberg, B., Ferris, S.H., Kluger, A., Stylopoulos, L.A., Miller,
J.D., La Regina, M.E., Chen, C., Cohen, J., 1989. Alzheimer's disease: longitudinal CT
studies of ventricular change. AJR Am. J. Roentgenol. 152, 1257–1262.

De Luca, V., Wang, H., Squassina, A., Wong, G.W.H., Yeomans, J., Kennedy, J.L., 2004.
Linkage of M5 muscarinic and alpha 7-nicotinic receptor genes on 15q13 to
schizophrenia. Neuropsychobiology 50, 124–127.

del Arco, A., Satrustegui, J., 1998. Molecular cloning of Aralar, a new member of the
mitochondrial carrier superfamily that binds calcium and is present in human
muscle and brain. J. Biol. Chem. 273, 23327–23334.

Desai, P., Nebes, R., DeKosky, S.T., Kamboh, M.I., 2005. Investigation of the effect of
brain-derived neurotrophic factor (BDNF) polymorphisms on the risk of late-onset
Alzheimer's disease (AD) and quantitative measures of AD progression. Neurosci.
Lett. 379, 229–234.

ENIGMA Consortium, 2011. Genome-wide association meta-analysis of hippocampal
volume: results from the ENIGMA consortium. Organization for Human Brain
Mapping Conference. [June 2011].

Ewens, W.J., Grant, G., 2001. Statistical Methods in Bioinformatics: An Introduction.
Springer, New York.

Fillard, P., Arsigny, V., Pennec, X., Hayashi, K.M., Thompson, P.M., Ayache, N., 2007.
Measuring brain variability by extrapolating sparse tensor fields measured on
sulcal lines. Neuroimage 34, 639–650.

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A.,
Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M.,
2002. Whole brain segmentation: automated labeling of neuroanatomical
structures in the human brain. Neuron 33, 341–355.

Flint, J., Greenspan, R.J., Kendler, K.S., 2010. How Genes Influence Behavior. Oxford
University Press, Oxford; New York.

Frazer, K.A., Ballinger, D.G., Cox, D.R., Hinds, D.A., Stuve, L.L., Gibbs, R.A., Belmont, J.W.,
Boudreau, A., Hardenbol, P., Leal, S.M., Pasternak, S., Wheeler, D.A., Willis, T.D., Yu, F.,
Yang, H., Zeng, C., Gao, Y., Hu, H., Hu,W., Li, C., Lin,W., Liu, S., Pan, H., Tang, X.,Wang, J.,
Wang, W., Yu, J., Zhang, B., Zhang, Q., Zhao, H., Zhou, J., Gabriel, S.B., Barry, R.,
Blumenstiel, B., Camargo, A., Defelice, M., Faggart, M., Goyette, M., Gupta, S., Moore, J.,
Nguyen, H., Onofrio, R.C., Parkin, M., Roy, J., Stahl, E., Winchester, E., Ziaugra, L.,
Altshuler, D., Shen, Y., Yao, Z., Huang,W., Chu,X., He, Y., Jin, L., Liu, Y., Sun,W.,Wang,H.,
Wang, Y., Xiong, X., Xu, L.,Waye,M.M., Tsui, S.K., Xue, H.,Wong, J.T., Galver, L.M., Fan, J.B.,
Gunderson, K., Murray, S.S., Oliphant, A.R., Chee, M.S., Montpetit, A., Chagnon, F., Ferretti,
V., Leboeuf, M., Olivier, J.F., Phillips, M.S., Roumy, S., Sallee, C., Verner, A., Hudson, T.J.,
Kwok, P.Y., Cai, D., Koboldt, D.C., Miller, R.D., Pawlikowska, L., Taillon-Miller, P., Xiao, M.,
Tsui, L.C., Mak, W., Song, Y.Q., Tam, P.K., Nakamura, Y., Kawaguchi, T., Kitamoto, T.,
Morizono, T., Nagashima, A., Ohnishi, Y., Sekine, A., Tanaka, T., Tsunoda, T., Deloukas, P.,
Bird, C.P., Delgado, M., Dermitzakis, E.T., Gwilliam, R., Hunt, S., Morrison, J., Powell, D.,
Stranger, B.E.,Whittaker, P., Bentley, D.R., Daly,M.J., de Bakker, P.I., Barrett, J., Chretien,
Y.R., Maller, J., McCarroll, S., Patterson, N., Pe'er, I., Price, A., Purcell, S., Richter, D.J.,
Sabeti, P., Saxena, R., Schaffner, S.F., Sham, P.C., Varilly, P., Stein, L.D., Krishnan, L.,
Smith, A.V., Tello-Ruiz,M.K., Thorisson, G.A., Chakravarti, A., Chen, P.E., Cutler, D.J.,
Kashuk, C.S., Lin, S., Abecasis, G.R., Guan, W., Li, Y., Munro, H.M., Qin, Z.S., Thomas,
D.J., McVean, G., Auton, A., Bottolo, L., Cardin, N., Eyheramendy, S., Freeman, C.,
Marchini, J., Myers, S., Spencer, C., Stephens, M., Donnelly, P., Cardon, L.R., Clarke,
G., Evans, D.M., Morris, A.P., Weir, B.S., Mullikin, J.C., Sherry, S.T., Feolo, M., Skol, A.,
Zhang, H., Matsuda, I., Fukushima, Y., Macer, D.R., Suda, E., Rotimi, C.N.,
Adebamowo, C.A., Ajayi, I., Aniagwu, T., Marshall, P.A., Nkwodimmah, C., Royal,
C.D., Leppert, M.F., Dixon, M., Peiffer, A., Qiu, R., Kent, A., Kato, K., Niikawa, N.,
Adewole, I.F., Knoppers, B.M., Foster, M.W., Clayton, E.W., Watkin, J., Muzny, D.,
Nazareth, L., Sodergren, E., Weinstock, G.M., Yakub, I., Birren, B.W., Wilson, R.K.,
Fulton, L.L., Rogers, J., Burton, J., Carter, N.P., Clee, C.M., Griffiths, M., Jones, M.C.,
McLay, K., Plumb, R.W., Ross, M.T., Sims, S.K., Willey, D.L., Chen, Z., Han, H., Kang,
L., Godbout, M., Wallenburg, J.C., L'Archeveque, P., Bellemare, G., Saeki, K., An, D.,
Fu, H., Li, Q., Wang, Z., Wang, R., Holden, A.L., Brooks, L.D., McEwen, J.E., Guyer, M.S.,
Wang, V.O., Peterson, J.L., Shi, M., Spiegel, J., Sung, L.M., Zacharia, L.F., Collins, F.S.,
Kennedy, K., Jamieson, R., Stewart, J., 2007. A second generation human haplotype
map of over 3.1 million SNPs. Nature 449, 851–861.

Hayasaka, S., Nichols, T.E., 2004. Combining voxel intensity and cluster extent with
permutation test framework. Neuroimage 23, 54–63.

http://www.fnih.org
http://www.fnih.org


1890 D.P. Hibar et al. / NeuroImage 56 (2011) 1875–1891
Hemminger, B.M., Saelim, B., Sullivan, P.F., 2006. TAMAL: an integrated approach to
choosing SNPs for genetic studies of human complex traits. Bioinformatics 22,
626–627.

Hibar, D., Stein, J.L., Jahanshad, N., Baresheva, M., Feng, A., Kogachi, S., McMahon, K., De
Zubicaray, G., Hansell, N., Martin, N.G., Wright, M.J., Toga, A., Thompson, P., 2010.
Voxelwise Genome-Wide Association of Diffusion Tensor Images Identifies
Putative Novel Variants Influencing White Matter Integrity in 467 Related Young
Adults. Society for Neuroscience, San Diego, CA.

Hinrichs, A.S., Karolchik, D., Baertsch, R., Barber, G.P., Bejerano, G., Clawson, H., Diekhans,
M., Furey, T.S., Harte, R.A., Hsu, F., Hillman-Jackson, J., Kuhn, R.M., Pedersen, J.S., Pohl,
A., Raney, B.J., Rosenbloom, K.R., Siepel, A., Smith, K.E., Sugnet, C.W., Sultan-Qurraie, A.,
Thomas, D.J., Trumbower, H., Weber, R.J., Weirauch, M., Zweig, A.S., Haussler, D., Kent,
W.J., 2006. The UCSC genome browser database: update 2006. Nucleic Acids Res. 34,
D590–D598.

Hirabayashi, S., Tajima, M., Yao, I., Nishimura, W., Mori, H., Hata, Y., 2003. JAM4, a
junctional cell adhesionmolecule interacting with a tight junction protein, MAGI-1.
Mol. Cell. Biol. 23, 4267–4282.

Ho, A.J., Hua, X., Lee, S., Leow, A.D., Yanovsky, I., Gutman, B., Dinov, I.D., Lepore, N., Stein,
J.L., Toga, A.W., Jack, C.R., Bernstein, M.A., Reiman, E.M., Harvey, D.J., Kornak, J.,
Schuff, N., Alexander, G.E., Weiner, M.W., Thompson, P.M., and the Alzheimer's
Disease Neuroimaging Initiative, 2010. Comparing 3 T and 1.5 T MRI for tracking
Alzheimer's disease progression with tensor-based morphometry. Hum. Brain
Mapp. 31, 499–514.

Hua, X., Leow, A.D., Parikshak, N., Lee, S., Chiang, M.C., Toga, A.W., Jack, C.R., Weiner, M.W.,
Thompson, P.M., and the Alzheimer’s Disease Neuroimaging Initiative, 2008. Tensor-
based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI
study of 676 AD, MCI, and normal subjects. Neuroimage 43, 458–469.

Ikram, M.A., Liu, F., Oostra, B.A., Hofman, A., van Duijn, C.M., Breteler, M.M.B., 2009. The
GAB2 gene and the risk of Alzheimer's disease: replication and meta-analysis. Biol.
Psychiatry 65, 995–999.

Inkster, B., Nichols, T.E., Saemann, P.G., Auer, D.P., Holsboer, F., Muglia, P., Matthews, P.M.,
2010. Pathway-based approaches to imaging genetics association studies: Wnt
signaling, GSK3beta substrates and major depression. Neuroimage 53, 908–917.

International Human Genome Sequencing Consortium, 2004. Finishing the euchro-
matic sequence of the human genome. Nature 431, 931–945.

Ishiguro, H., Gong, J.P., Hall, F.S., Arinami, T., Uhl, G.R., 2008. Association of PTPRB gene
polymorphism with drug addiction. Am. J. Med. Genet. B Neuropsychiatr. Genet.
147B, 1167–1172.

Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski,
B., Britson, P.J., Whitwell, J.L., Ward, C., Dale, A.M., Felmlee, J.P., Gunter, J.L., Hill, D.L.
G., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., DeCarli, C.S., Krueger,
G., Ward, H.A., Metzger, G.J., Scott, K.T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J.P.,
Fleisher, A.S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., Weiner, M.W.,
and the Alzheimer's Disease Neuroimaging Initiative, 2008. The Alzheimer's
Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging
27, 685–691.

Jagannathan, K., Calhoun, V.D., Gelernter, J., Stevens,M.C., Liu, J., Bolognani, F.,Windemuth,
A., Ruaño, G., Assaf, M., Pearlson, G.D., 2010. Genetic associations of brain structural
networks in schizophrenia: a preliminary study. Biol. Psychiatry 68, 657–666.

Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., Kennedy, D.,
Schmitt, F., Brown, G., MacFall, J., Fischl, B., Dale, A., 2006. Reliability in multi-site
structural MRI studies: effects of gradient non-linearity correction on phantom and
human data. Neuroimage 30, 436–443.

Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A., Heckerman, D., Daly, M.J., Eskin, E., 2008.
Efficient control of population structure in model organism association mapping.
Genetics 178, 1709–1723.

Kleinbaum, D.G., 2007. Applied Regression Analysis and Other Multivariable Methods,
4th ed. Brooks/Cole, Australia; Belmont, CA.

Lander, E.S., Schork, N.J., 1994. Genetic dissection of complex traits. Science 265,
2037–2048.

Langers, D.R., Jansen, J.F., Backes, W.H., 2007. Enhanced signal detection in
neuroimaging by means of regional control of the global false discovery rate.
Neuroimage 38, 43–56.

Leow, A., Huang, S.C., Geng, A., Becker, J., Davis, S., Toga, A., Thompson, P., 2005. Inverse
consistent mapping in 3D deformable image registration: its construction and
statistical properties. Inf. Process. Med. Imaging 19, 493–503.

Li, Y., Willer, C., Sanna, S., Abecasis, G., 2009. Genotype imputation. Annu. Rev.
Genomics Hum. Genet. 10, 387–406.

Lin, K., Tang, M., Han, H., Guo, Y., Lin, Y., Ma, C., 2010. GAB2 is not associated with late-
onset Alzheimer's disease in Chinese Han. Neurol. Sci. 31, 277–281.

Liu, J., Pearlson, G., Windemuth, A., Ruano, G., Perrone-Bizzozero, N.I., Calhoun, V., 2009.
Combining fMRI and SNP data to investigate connections between brain function
and genetics using parallel ICA. Hum. Brain Mapp. 30, 241–255.

Liu, J.Z., McRae, A.F., Nyholt, D.R., Medland, S.E., Wray, N.R., Brown, K.M., Hayward, N.K.,
Montgomery, G.W., Visscher, P.M., Martin, N.G., Macgregor, S., 2010. A versatile
gene-based test for genome-wide association studies. Am. J. Hum. Genet. 87,
139–145.

Lucek, P., Hanke, J., Reich, J., Solla, S.A., Ott, J., 1998. Multi-locus nonparametric linkage
analysis of complex trait loci with neural networks. Hum. Hered. 48, 275–284.

Malo, N., Libiger, O., Schork, N.J., 2008. Accommodating linkage disequilibrium in
genetic-association analyses via ridge regression. Am. J. Hum. Genet. 82, 375–385.

Marchini, J., Donnelly, P., Cardon, L.R., 2005. Genome-wide strategies for detecting
multiple loci that influence complex diseases. Nat. Genet. 37, 413–417.

Matsushita, S., Arai, H., Matsui, T., Yuzuriha, T., Urakami, K., Masaki, T., Higuchi, S., 2005.
Brain-derived neurotrophic factor gene polymorphisms and Alzheimer's disease.
J. Neural Transm. 112, 703–711.
Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T.,
Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni,
M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., Parsons, L., Narr,
K., Kabani, N., Le Goualher, G., Boomsma, D., Cannon, T., Kawashima, R., Mazoyer, B.,
2001. A probabilistic atlas and reference system for the human brain: International
Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. B Biol. Sci. 356,
1293–1322.

McCarthy, M.I., Abecasis, G.R., Cardon, L.R., Goldstein, D.B., Little, J., Ioannidis, J.P.,
Hirschhorn, J.N., 2008. Genome-wide association studies for complex traits:
consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369.

Mukhopadhyay, I., Feingold, E., Weeks, D.E., Thalamuthu, A., 2010. Association tests
using kernel-based measures of multi-locus genotype similarity between in-
dividuals. Genet. Epidemiol. 34, 213–221.

Nacmias, B., Piccini, C., Bagnoli, S., Tedde, A., Cellini, E., Bracco, L., Sorbi, S., 2004. Brain-
derived neurotrophic factor, apolipoprotein E genetic variants and cognitive
performance in Alzheimer's disease. Neurosci. Lett. 367, 379–383.

Neale, B.M., Sham, P.C., 2004. The future of association studies: gene-based analysis and
replication. Am. J. Hum. Genet. 75, 353–362.

Nishimura, A.L., Oliveira, J.R., Mitne-Neto, M., Guindalini, C., Nitrini, R., Bahia, V.S., de
Brito-Marques, P.R., Otto, P.A., Zatz, M., 2004. Lack of association between
the brain-derived neurotrophin factor (C-270T) polymorphism and late-onset
Alzheimer's disease (LOAD) in Brazilian patients. J. Mol. Neurosci. 22, 257–260.

Ott, J., 2001. Neural networks and disease association studies. Am. J. Med. Genet. 105,
60–61.

Parsons, C.G., Stoffler, A., Danysz, W., 2007. Memantine: a NMDA receptor antagonist
that improves memory by restoration of homeostasis in the glutamatergic system—
too little activation is bad, too much is even worse. Neuropharmacology 53,
699–723.

Paus, T., Bernard, M., Chakravarty, M., Lourdusamy, A., Leonard, G., Perron, M., Pike, B.,
Richer, L., Schumann, G., Veillette, S., Pausova, Z., 2011. Association between KCTD8
and brain volume as revealed in a genome-wide study. Organization for Human
Brain Mapping Conference. [June 2011].

Petersen, R.C., 2000. Aging, mild cognitive impairment, and Alzheimer's disease. Neurol.
Clin. 18, 789–806.

Potkin, S.G., Guffanti, G., Lakatos, A., Turner, J.A., Kruggel, F., Fallon, J.H., Saykin, A.J., Orro,
A., Lupoli, S., Salvi, E., Weiner, M., Macciardi, F., 2009a. Hippocampal atrophy as a
quantitative trait in a genome-wide association study identifying novel suscepti-
bility genes for Alzheimer's disease. PLoS One 4, e6501.

Potkin, S.G., Turner, J.A., Guffanti, G., Lakatos, A., Fallon, J.H., Nguyen, D.D., Mathalon, D.,
Ford, J., Lauriello, J., Macciardi, F., 2009b. A genome-wide association study of
schizophrenia using brain activation as a quantitative phenotype. Schizophr. Bull.
35, 96–108.

Potkin, S.G., Turner, J.A., Guffanti, G., Lakatos, A., Torri, F., Keator, D.B., Macciardi, F.,
2009c. Genome-wide strategies for discovering genetic influences on cognition
and cognitive disorders: methodological considerations. Cogn. Neuropsychiatry 14,
391–418.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J.,
Sklar, P., de Bakker, P.I., Daly, M.J., Sham, P.C., 2007. PLINK: a tool set for whole-
genome association and population-based linkage analyses. Am. J. Hum. Genet. 81,
559–575.

Rabionet, R., Jaworski, J.M., Ashley-Koch, A.E., Martin, E.R., Sutcliffe, J.S., Haines, J.L.,
Delong, G.R., Abramson, R.K., Wright, H.H., Cuccaro, M.L., Gilbert, J.R., Pericak-
Vance, M.A., 2004. Analysis of the autism chromosome 2 linkage region: GAD1 and
other candidate genes. Neurosci. Lett. 372, 209–214.

Rajagopalan, P., Jahanshad, N., Chiang, M.C., Stein, J.L., Hibar, D.P., Ryles, A., McMahon, K.L.,
de Zubicaray, G.I., Martin, N.M., Wright, M.J., Saykin, A.J., Jack Jr., C.R., Weiner, M.W.,
Toga, A.W., Thompson, P.M., and the Alzheimer's Disease Neuroimaging Initiative,
2011. Folate gene variant is associated with brain volume differences: replication in
ADNI (N=740) and Queensland Twins (N=577). Organization for Human Brain
Mapping Conference. [June 2011].

Ramirez-Lorca, R., Boada, M., Saez, M.E., Hernandez, I., Mauleon, A., Rosende-Roca, M.,
Martinez-Lage, P., Gutierrez, M., Real, L.M., Lopez-Arrieta, J., Gayan, J., Antunez, C.,
Gonzalez-Perez, A., Tarraga, L., Ruiz, A., 2009. GAB2 gene does not modify the risk of
Alzheimer's disease in Spanish APOE 4 carriers. J. Nutr. Health Aging 13, 214–219.

Ramoz, N., Reichert, J.G., Smith, C.J., Silverman, J.M., Bespalova, I.N., Davis, K.L.,
Buxbaum, J.D., 2004. Linkage and association of the mitochondrial aspartate/
glutamate carrier SLC25A12 gene with autism. Am. J. Psychiatry 161, 662–669.

Reich, D.E., Lander, E.S., 2001. On the allelic spectrum of human disease. Trends Genet.
17, 502–510.

Reiman, E.M.,Webster, J.A.,Myers, A.J., Hardy, J., Dunckley, T., Zismann,V.L., Joshipura, K.D.,
Pearson, J.V., Hu-Lince, D., Huentelman, M.J., Craig, D.W., Coon, K.D., Liang, W.S.,
Herbert, R.H., Beach, T., Rohrer, K.C., Zhao, A.S., Leung, D., Bryden, L., Marlowe, L.,
Kaleem, M., Mastroeni, D., Grover, A., Heward, C.B., Ravid, R., Rogers, J., Hutton, M.L.,
Melquist, S., Petersen, R.C., Alexander, G.E., Caselli, R.J., Kukull, W., Papassotiropoulos,
A., Stephan,D.A., 2007. GAB2 allelesmodify Alzheimer's risk inAPOEepsilon4 carriers.
Neuron 54, 713–720.

Saykin, A.J., Shen, L., Foroud, T.M., Potkin, S.G., Swaminathan, S., Kim, S., Risacher, S.L.,
Nho, K., Huentelman, M.J., Craig, D.W., Thompson, P.M., Stein, J.L., Moore, J.H.,
Farrer, L.A., Green, R.C., Bertram, L., Jack Jr., C.R., Weiner, M.W., 2010. Alzheimer's
Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: genetics
core aims, progress, and plans. Alzheimers Dement. 6, 265–273.

Schaid, D.J., 2004. Evaluating associations of haplotypes with traits. Genet. Epidemiol.
27, 348–364.

Schjeide, B.M., Hooli, B., Parkinson, M., Hogan, M.F., DiVito, J., Mullin, K., Blacker, D.,
Tanzi, R.E., Bertram, L., 2009. GAB2 as an Alzheimer disease susceptibility gene:
follow-up of genomewide association results. Arch. Neurol. 66, 250–254.



1891D.P. Hibar et al. / NeuroImage 56 (2011) 1875–1891
Shen, L., Kim, S., Risacher, S.L., Nho, K., Swaminathan, S., West, J.D., Foroud, T., Pankratz,
N., Moore, J.H., Sloan, C.D., Huentelman,M.J., Craig, D.W., Dechairo, B.M., Potkin, S.G.,
Jack Jr., C.R., Weiner, M.W., Saykin, A.J., 2010. Whole genome association study of
brain-wide imaging phenotypes for identifying quantitative trait loci inMCI andAD:
a study of the ADNI cohort. Neuroimage 53, 1051–1063.

Sled, J.G., Zijdenbos, A.P., Evans, A.C., 1998. A nonparametric method for automatic
correctionof intensity nonuniformity inMRI data. IEEE Trans.Med. Imaging 17, 87–97.

Stein, J.L., Hua, X., Lee, S., Ho, A.J., Leow, A.D., Toga, A.W., Saykin, A.J., Shen, L., Foroud, T.,
Pankratz, N., Huentelman, M.J., Craig, D.W., Gerber, J.D., Allen, A.N., Corneveaux, J.J.,
Dechairo, B.M., Potkin, S.G., Weiner, M.W., Thompson, P., and the Alzheimer’s
Disease Neuroimaging Initiative, 2010a. Voxelwise genome-wide association study
(vGWAS). Neuroimage 53, 1160–1174.

Stein, J.L., Hua, X., Morra, J.H., Lee, S., Hibar, D.P., Ho, A.J., Leow, A.D., Toga, A.W., Sul, J.H.,
Kang, H.M., Eskin, E., Saykin, A.J., Shen, L., Foroud, T., Pankratz, N., Huentelman, M.J.,
Craig, D.W., Gerber, J.D., Allen, A.N., Corneveaux, J.J., Stephan, D.A., Webster, J.,
DeChairo, B.M., Potkin, S.G., Jack Jr., C.R., Weiner, M.W., Thompson, P.M., and the
Alzheimer’s Disease Neuroimaging Initiative, 2010b. Genome-wide analysis reveals
novel genes influencing temporal lobe structurewith relevance to neurodegeneration
in Alzheimer's disease. Neuroimage 51, 542–554.

Storey, J.D., 2003. The positive false discovery rate: a Bayesian interpretation and the
q-value. Ann. Stat. 31, 2013–2035.

Sun, Y.V., Shedden, K.A., Zhu, J., Choi, N.H., Kardia, S.L., 2009. Identification of correlated
genetic variants jointly associated with rheumatoid arthritis using ridge regression.
BMC Proc. 3 (Suppl 7), S67.

Telliez, J.B., Bean, K.M., Lin, L.L., 2000. LRDD, a novel leucine rich repeat and death
domain containing protein. Biochim. Biophys. Acta 1478, 280–288.

Thode, H.C., 2002. Testing for Normality. Marcel Dekker, New York.
Thompson, P.M.,Martin,N.G.,Wright,M.J., 2010. Imaging genomics. Curr. Opin. Neurol. 23,

368–373.
Tsai, S.J., Hong, C.J., Liu, H.C., Liu, T.Y., Hsu, L.E., Lin, C.H., 2004. Association analysis

of brain-derived neurotrophic factor Val66Met polymorphisms with Alzheimer's
disease and age of onset. Neuropsychobiology 49, 10–12.
Vepsalainen, S., Castren, E., Helisalmi, S., Iivonen, S., Mannermaa, A., Lehtovirta, M.,
Hanninen, T., Soininen, H., Hiltunen, M., 2005. Genetic analysis of BDNF and TrkB
gene polymorphisms in Alzheimer's disease. J. Neurol. 252, 423–428.

Vounou, M., Nichols, T.E., Montana, G., 2010. Discovering genetic associations with
high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression
approach. Neuroimage 53, 1147–1159.

Wang, K., Abbott, D., 2008. A principal components regression approach to multilocus
genetic association studies. Genet. Epidemiol. 32, 108–118.

Wang, T., Elston, R.C., 2007. Improved power by use of a weighted score test for linkage
disequilibrium mapping. Am. J. Hum. Genet. 80, 353–360.

Wang, W.Y., Barratt, B.J., Clayton, D.G., Todd, J.A., 2005. Genome-wide association
studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118.

Wellcome Trust Case Control Consortium, 2007. Genome-wide association study of
14,000 cases of seven common diseases and 3,000 shared controls. Nature 447,
661–678.

Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M.,
DiCuccio, M., Edgar, R., Federhen, S., Feolo, M., Geer, L.Y., Helmberg, W., Kapustin, Y.,
Khovayko, O., Landsman, D., Lipman, D.J., Madden, T.L., Maglott, D.R., Miller, V., Ostell,
J., Pruitt, K.D., Schuler, G.D., Shumway, M., Sequeira, E., Sherry, S.T., Sirotkin, K.,
Souvorov, A., Starchenko, G., Tatusov, R.L., Tatusova, T.A., Wagner, L., Yaschenko, E.,
2008.Database resourcesof thenational center for biotechnology information.Nucleic
Acids Res. 36, D13–D21.

Wu, C.W., Kao, H.L., Li, A.F.Y., Chi, C.W., Lin, W.C., 2006. Protein tyrosine-
phosphatase expression profiling in gastric cancer tissues. Cancer Lett. 242,
95–103.

Wu, T.T., Chen, Y.F., Hastie, T., Sobel, E., Lange, K., 2009. Genome-wide association
analysis by lasso penalized logistic regression. Bioinformatics 25, 714–721.

Yu, W.H., Fraser, P.E., 2001. S100 beta interaction with tau is promoted by zinc and
inhibited by hyperphosphorylation in Alzheimer's disease. J. Neurosci. 21,
2240–2246.

Zou, H., 2006. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101,
1418–1429.


	Voxelwise gene-wide association study (vGeneWAS): Multivariate gene-based association testing in 731 elderly subjects
	Introduction
	Materials and methods
	Study design and subjects assessed
	Imaging methods
	SNP filtering and gene grouping
	Gene-based association statistics
	Comparison of SNP-based and gene-based methods
	Statistical thresholds and correction for multiple comparisons
	Estimation of expected values in simulated maps

	Results
	Comparison of methods
	Relation of gene significance to number of SNPs
	Voxelwise GeneWAS
	Correction for multiple comparisons
	Post hoc analysis
	Power comparisons

	Discussion
	Methodological overview
	Assessment of the model
	Biological significance of the findings

	Acknowledgments
	References


