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Abstract
This paper presents a formalized framework for defining corecursive
functions safely in a total setting, based on corecursion up-to and
relational parametricity. The end product is a general corecursor
that allows corecursive (and even recursive) calls under “friendly”
operations, including constructors. Friendly corecursive functions
can be registered as such, thereby increasing the corecursor’s
expressiveness. The metatheory is formalized in the Isabelle proof
assistant and forms the core of a prototype tool. The corecursor
is derived from first principles, without requiring new axioms or
extensions of the logic.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Mechanical theo-
rem proving, Model theory

General Terms Theory, Verification

Keywords (Co)recursion, parametricity, proof assistants,
higher-order logic, Isabelle

1. Introduction
Total functional programming is a discipline that ensures computa-
tions always terminate. It is invaluable in a proof assistant, where
nonterminating definitions such as f x = f x+1 can be interpreted
in such a way as to yield contradictions. Hence, most assistants
will accept recursive functions only if they can be shown to termi-
nate. Similar concerns arise in specification languages and verifying
compilers.

However, some processes need to run forever, without their
being inconsistent. An important class of total programs has been
identified under the heading of productive coprogramming [1, 8,
62]: These are functions that progressively reveal parts of their
(potentially infinite) output. For example, given a type of infinite
streams constructed by SCons, the definition

natsFrom n = SCons n (natsFrom (n+1))

falls within this fragment, since each call to natsFrom produces one
constructor before entering the nested call.

The above definition is legitimate only if objects are allowed to be
infinite. This may be self-evident in a nonstrict functional language
such as Haskell, but in a total setting we must carefully distinguish
between the well-founded inductive (or algebraic) datatypes and
the non-well-founded coinductive (or coalgebraic) datatypes—often
simply called datatypes and codatatypes, respectively. Recursive
functions consume datatype values, peeling off constructors as
they proceed; corecursive functions produce codatatype values,
consisting of finitely or infinitely many constructors. And in the
same way that induction is available as a proof principle to reason
about datatypes and terminating recursive functions, coinduction
supports reasoning about codatatypes and productive corecursive
functions.

Despite their reputation for esotericism, codatatypes have an
important role to play in both the theory and the metatheory of
programming. On the theory side, they allow a direct embedding
of a large class of nonstrict functional programs in a total logic.
In conjunction with interactive proofs and code generators, this
enables certified functional programming [11]. On the metatheory
side, codatatypes conveniently capture infinite, possibly branching
processes. Major proof developments rely on them, including those
associated with a C compiler [41], a Java compiler [42], and the
Java memory model [43].

Codatatypes are supported by an increasing number of proof
assistants, including Agda [18], Coq [13], Isabelle/HOL [48], Isa-
belle/ZF [49, 50], Matita [7], and PVS [21]. They are also present
in the CoALP dialect of logic programming [27] and in the Dafny
specification language [40]. But the ability to introduce codatatypes
is not worth much without adequate support for defining meaningful
functions that operate on them. For most systems, this support can
be characterized as work in progress. The key question they all must
answer is: What right-hand sides can be safely allowed in function
definitions?

Generally, there are two main ways to support recursive and
corecursive functions in a proof assistant or similar system:

The intrinsic approach: A syntactic criterion is built into the logic:
termination for recursive specifications, productivity (or guard-
edness) for corecursive specifications. The termination or pro-
ductivity checker is part of the system’s trusted code base.

The foundational approach: The (co)recursive specifications are
reduced to a fixpoint construction inside the given logic, which
permits a simple definition of the form f = . . . , where f does
not occur in the right-hand side. The original equations are then
derived as theorems from this internal definition by dedicated
proof tactics.
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Systems favoring the intrinsic approach include the proof assistants
Agda and Coq, as well as tools such as CoALP and Dafny. The
main hurdle for their users is that syntactic criteria are inflexible;
the specification must be massaged so that it falls within a given
syntactic fragment, even though the desired property (termination or
productivity) is semantic. But perhaps more troubling for systems
that process theorems, soundness is not obvious at all and very
tedious to ensure; as a result, there is a history of critical bugs in
termination and productivity checkers, as we will see when we
review related work (Section 7). Indeed, Abel [4] observed that

Maybe the time is ripe to switch to a more semantical
notion of termination and guardedness. The syntactic guard
condition gets you somewhere, but then needs a lot of
extensions and patching to work satisfactor[il]y in practice.
Formal verification of it becomes too difficult, and only
intuitive justification is prone to errors.

In contrast to Agda and Coq, proof assistants based on higher-
order logic (HOL), such as HOL4, HOL Light, and Isabelle/HOL,
generally adhere to the foundational approach. Their logic is ex-
pressive enough to accommodate the (co)algebraic constructions
underlying (co)datatypes and (co)recursive functions in terms of
functors on the category of sets [60]. The main drawback of this
approach is that it requires a lot of work, both conceptual and im-
plementational. Moreover, it is not available for all systems, since it
requires an expressive enough logic.

Because every step must be justified, foundational definitional
principles tend to be more restrictive than their intrinsic counterparts.
As a telling example, codatatypes were introduced in Isabelle/HOL
only recently, almost two decades after their inception in Coq,
and they are still missing in other HOL systems. Before the work
reported in this paper, corecursion was limited to the primitive case,
in which self-calls occur under exactly one constructor.

That primitive corecursion (or the slightly extended version
supported by Coq) is too restrictive is an observation that has been
made repeatedly by researchers who use corecursion in Coq and now
also Isabelle. Lochbihler and Hölzl dedicated a paper [44] to ad hoc
techniques for defining operations on corecursive lists in Isabelle.
Only after introducing a lot of machinery do they manage to define
their central example—lfilter, a filter function on lazy (coinductive)
lists—and derive suitable reasoning principles.

We contend that it is possible to combine advanced features
as found in Agda and Coq with the fundamentalism of Isabelle.
The lack of built-in support for corecursion, an apparent weakness,
reveals itself as a strength as we proceed to introduce rich notions of
corecursion, without extending the type system or adding axioms.

In this paper, we formalize a highly expressive corecursion frame-
work that extends primitive corecursion in the following ways: It al-
lows corecursive calls under several constructors; it allows “friendly”
operations in the context around or between the constructors and
around the corecursive calls; importantly, it supports blending termi-
nating recursive calls with guarded corecursive calls. This general
corecursor is accompanied by a corresponding, equally general coin-
duction principle that makes reasoning about it convenient. The
corecursor and the coinduction principle grow in expressiveness
during the interaction with the user, by learning new friendly con-
texts. In process algebra terminology [58], both corecursion and
coinduction take place “up to” friendly contexts. The constructions
draw heavily from category theory.

Before presenting the technical details, we first show through
examples how a primitive corecursor can be incrementally enriched
to accept ever richer notions of corecursive call context (Section 2).
This is made possible by the modular bookkeeping of additional
structure for the involved type constructors, including a relator
structure. This structure can be exploited to prove parametricity

theorems, which allow to mix operations freely in the corecursive
call contexts, in the style of coinduction up-to. Each new corecursive
definition is a potential future participant (Section 3).

This extensible corecursor gracefully handles codatatypes with
nesting through arbitrary type constructors (e.g., for infinite-depth
Rose trees nested through finite or infinite lists). Thanks to the frame-
work’s modularity, function specifications can combine corecursion
with recursion, yielding quite expressive mixed fixpoint definitions
(Section 4). This is inspired by the Dafny tool, but our approach is
semantically founded and hence provably consistent.

Our framework is implemented in Isabelle/HOL, as a combi-
nation of a generic proof development parameterized by arbitrary
type constructors and a tool for instantiating the metatheory to user-
specified instances (Sections 5 and 6). It is available online along
with the examples from this paper [16].

Techniques such as corecursion and coinduction up-to have been
known for years in the process algebra community, before they were
embraced and perfected by category theorists (Section 7). This work
is part of a wider program aiming at bringing insight from category
theory into proof assistants [14, 15, 17, 60]. The main contributions
of this paper are the following:

• We represent in higher-order logic a framework for corecursion
that evolves by user interaction.

• We identify a sound fragment of mixed recursive–corecursive
specifications, integrate it in our framework, and present several
examples that motivate this feature.

• We implement the above in Isabelle/HOL within an interactive
loop that maintains the recursive–corecursive infrastructure.

• We use this infrastructure to automatically derive many examples
that are problematic in other proof assistants.

A distinguishing feature of our framework is that it does not
require the user to provide type annotations. On the design space, it
lies between the restrictive primitive corecursion and the expressive
but more bureaucratic approaches such as clock variables [8, 20]
and sized types [2], combining expressiveness and ease of use. The
identification of this “sweet spot” can also be seen as a contribution.

2. Motivating Examples
We demonstrate the expressiveness of our corecursor framework
by examples, adopting the user’s perspective. The case studies by
Rutten [57] and Hinze [28] on stream calculi serve as our starting
point. Streams of natural numbers can be defined as

codatatype Stream = SCons (head: Nat) (tail: Stream)

where SCons : Nat → Stream → Stream is a constructor and
head : Stream→ Nat, tail : Stream→ Stream are selectors. The
examples were chosen to show the main difficulties that arise in
practice.

2.1 Corecursion Up-to
As our first example of a corecursive function definition, we consider
the pointwise sum of two streams:

xs⊕ ys = SCons (head xs+head ys) (tail xs⊕ tail ys)

The specification is productive, since the corecursive call occurs
directly under the stream constructor, which acts as a guard (shown
underlined). Moreover, it is primitively corecursive, because the
topmost symbol on the right-hand side is a constructor and the
corecursive call appears directly as an argument to it.

These syntactic restrictions can be relaxed to allow conditional
statements and let expressions [14], but despite such tricks primi-
tive corecursion remains hopelessly primitive. The syntactic restric-
tion for admissible corecursive definitions in Coq is more permissive
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in that it allows for an arbitrary number of constructors to guard the
corecursive calls, as in the following definition:

oneTwos = SCons 1 (SCons 2 oneTwos)

Our framework achieves the same result by registering SCons as
a friendly operation. Intuitively, an operation is friendly if it needs to
destruct at most one constructor of input to produce one constructor
of output. For streams, such an operation may inspect the head and
the tail (but not the tail’s tail) of its arguments before producing an
SCons. Because the operation preserves productivity, it can safely
surround the guarding constructor.

The rigorous definition of friendliness will capture this intuition
in a parametricity property that needs to be discharged, either by
the user or automatically. In exchange, the framework yields a
strengthened corecursor incorporating the new operation.

The constructor SCons is friendly, since it does not even need
to inspect its arguments to produce a constructor. By contrast,
the selector tail is not friendly—it must destruct two layers of
constructors to produce one:

tail xs = SCons (head (tail xs)) (tail (tail xs))

The presence of unfriendly operations in the corecursive call context
is enough to break productivity, as in the example

stallA = SCons 1 (tail stallA)

which stalls immediately after producing one constructor, leaving
tail stallA unspecified.

Another instructive example is the function that keeps every
other element in a stream:

everyOther xs=SCons (head xs) (everyOther (tail (tail xs)))

The function is not friendly, despite being primitively corecursive.
It also breaks productivity: The function

stallB = SCons 1 (everyOther stallB)

stalls after producing two constructors.
Going back to our first example, we observe that the operation ⊕

is friendly. Hence, it is allowed to participate in corecursive call
contexts when defining new functions. In this respect, the framework
is more permissive than Coq’s built-in syntactic check. For example,
we can define the stream of Fibonacci numbers in either of the
following two ways:

fibA = SCons 0 (SCons 1 fibA ⊕ fibA)

fibB = SCons 0 (SCons 1 fibB) ⊕ SCons 0 fibB

Friendly operations are allowed to appear both under the constructor
guard (as in fibA) and around it (as in fibB). Two guards are
necessary in the second example—one for each branch of ⊕.
Without rephrasing the specification, fibB cannot be expressed
in Rutten’s format of behavioral differential equations [57] or in
Hinze’s syntactic restriction [28], nor via Agda copatterns [5, 6].

Many useful operations are friendly and can therefore participate
in further definitions. Following Rutten, the shuffle product ⊗ of
two streams is defined in terms of ⊕. Shuffle product being itself
friendly, we can employ it to define stream exponentiation, which
also turns out to be friendly:

xs⊗ ys = SCons (head xs×head ys)
((xs⊗ tail ys)⊕ (tail xs⊗ ys))

exp xs = SCons (2 ˆ head xs) (tail xs⊗ exp xs)

Next, we use the defined and registered operations to specify two
streams of factorials of natural numbers facA (starting at 1) and
facB (starting at 0):

facA = SCons 1 facA⊗ SCons 1 facA

facB = exp (SCons 0 facB)

Computing the first few terms of facA manually should convince
the reader that productivity and efficiency are not synonymous.

The arguments of friendly operations are not restricted to the
Stream type. Let fimage give the image of a finite set under a
function and

⊔
X be the maximum of a finite set of naturals or 0 if

X is empty. We can define the (friendly) supremum of a finite set of
streams by primitive corecursion:

sup X = SCons (
⊔
(fimage head X)) (sup (fimage tail X))

2.2 Nested Corecursion Up-to
Although we use streams as our main example, the framework gen-
erally supports arbitrary codatatypes with multiple curried construc-
tors and nesting through other type constructors. To demonstrate
this last feature, we introduce the type of finitely branching Rose
trees of potentially infinite depth with numeric labels:

codatatype Tree = Node (val: Nat) (sub: List Tree)

The type Tree has a single constructor Node : Nat→ List Tree→
Tree and two selectors val : Tree→Nat and sub : Tree→ List Tree.
The recursive occurrence of Tree is nested in the familiar polymor-
phic datatype of finite lists.

We first define the pointwise sum of two trees analogously to ⊕:

t � u = Node (val t+val u)
(map (λ(t′, u′). t′ � u′) (zip (sub t) (sub u)))

Here, map is the standard map function on lists, and zip converts two
parallel lists into a list of pairs, truncating the longer list if necessary.
The operation � is defined by primitive corecursion. Notice that the
corecursive call is nested through map. This is a reflection of the
target type, Tree, having its fixpoint definition nested through List.
Moreover, by virtue of being friendly, � can be used to define the
shuffle product of trees:

t � u = Node (val xs×val ys)
(map (λ(t′, u′). (t � u′)� (t′ � u)) (zip (sub t) (sub u)))

The corecursive call takes place inside map, but also in the context
of �. The specification of � is corecursive up-to (more precisely,
up to �) and friendly.

2.3 Mixed Recursion–Corecursion
It is often convenient to let a corecursive function perform some
finite computation before producing a constructor. With mixed
recursion–corecursion, a finite number of unguarded recursive calls
perform this calculation before reaching a guarded corecursive call.

The intuitive criterion for accepting such definitions is that the
unguarded recursive call can be unfolded to arbitrary finite depth,
ultimately yielding a purely corecursive definition. An example is
the primes function taken from Di Gianantonio and Miculan [23]:

primes m n = if (m = 0 ∧ n > 1) ∨ gcd m n = 1
then SCons n (primes (m×n) (n+1))
else primes m (n+1)

When called with m = 1 and n = 2, this function computes the
stream of prime numbers. The unguarded call in the else branch
increments its second argument n until it is coprime to the first
argument m (i.e., the greatest common divisor of m and n is 1).
For any positive integers m and n, the numbers m and m× n+ 1
are coprime, yielding an upper bound on the number of times n is
increased. Hence, the function will take the else branch at most
finitely often before taking the then branch and producing one
constructor. There is a slight complication when m = 0 and n > 1:
Without the first disjunct in the if condition, the function could stall.
(This corner case was overlooked in the original example [23].)
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Mixed recursion–corecursion makes the following (somewhat
contrived) definition of factorials possible,

facC n a i = if i = 0 then SCons a (facC (n+1) 1 (n+1))
else facC n (a× i) (i−1)

The recursion in the else branch computes the next factorial by
means of an accumulator a and a decreasing counter i. When the
counter reaches 0, facC corecursively produces a constructor with
the accumulated value and resets the accumulator and the counter.

Unguarded calls may even occur under friendly operations:

cat n = if n > 0 then cat (n−1)⊕ SCons 0 (cat (n+1))
else SCons 1 (cat 1)

The call cat 1 computes the stream C1,C2, . . . of Catalan numbers,
where Cn =

1
n+1
(2n

n
)
. This fact is far from obvious. Productivity is

not entirely obvious either, but it is guaranteed by the framework.
When mixing recursion and corecursion, it is easy to get things

wrong in the absence of solid foundations. Consider this specifi-
cation, in which the corecursive call is guarded by SCons and the
unguarded call’s argument strictly decreases toward 0:

nasty n = if n < 2 then SCons n (nasty (n+1))
else inc (tail (nasty (n−1)))

Here, inc = smap (λx. x+ 1) and smap is the map function on
streams. A simple calculation reveals that this specification is
inconsistent because the tail selector before the unguarded call
destructs the freshly produced constructor from the other branch:

nasty 2 = inc (tail (nasty 1)) = inc (tail (SCons 1 (nasty 2)))
= inc (nasty 2)

This is a close relative of the f x = f x + 1 example from the
introduction. Our framework rejects this specification because the
tail selector in the recursive call context is not friendly.

We conclude this subsection with a practical example from the
literature. Given the polymorphic type

codatatype LList A = LNil | LCons (head: A) (tail: LList A)

of lazy lists, the task is to define the function lfilter : (A→ Bool)→
LList A→ LList A that filters out all elements failing to satisfy
the given predicate. Thanks to the support for mixed recursion–
corecursion, the framework turns what was for Lochbihler and Hölzl
[44] a research problem into a routine exercise:

lfilter P xs = if ∀x ∈ xs. ¬ P x
then LNil
else if P (head xs)

then LCons (head xs) (lfilter P (tail xs))
else lfilter P (tail xs)

The first self-call is corecursive and guarded by LCons, whereas
the second self-call is terminating, because the number of “false”
elements until reaching the next “true” element (whose existence is
guaranteed by the first if condition) decreases by one. In fact, in
Isabelle the function can be introduced without proving termination
of the second call by exploiting its tail-recursive nature [16, 36].

2.4 Coinduction Up-to
Once a corecursive specification has been accepted as productive,
we normally want to reason about it. In proof assistants, codatatypes
are accompanied by a notion of structural coinduction that matches
primitively corecursive functions. For nonprimitive specifications,
our framework provides the more advanced proof principle of
coinduction up to congruence—or simply coinduction up-to.

The structural coinduction principle for streams is as follows:

R l r ∀s t. R s t −→ head s = head t ∧ R (tail s) (tail t)

l = r

Coinduction allows us to prove an equality l = r on streams by
providing a relation R that relates l and r (first premise) and that
constitutes a bisimulation (second premise). Streams that are related
by a bisimulation cannot be distinguished by taking observations
(via the selectors head and tail); hence they must be equal.

Creativity is generally required to instantiate R with a bisimula-
tion. However, given a goal l = r, the following canonical candidate
often works: λs t. ∃xs. s = l ∧ t = r, where xs are the variables oc-
curring free in l or r. As a rehearsal, let us prove that the primitively
corecursive operation ⊕ is commutative.

Proposition 1. xs⊕ ys = ys⊕ xs.

Proof. We first show that R= λst. ∃xsys. s= xs⊕ ys∧ t = ys⊕ xs is
a bisimulation. We fix two streams s and t for which we assume R s t
(i.e., there exist two streams xs and ys such that s = xs⊕ ys and t =
ys⊕ xs). Next, we show that head s = head t and R (tail s) (tail t).
The first property is easy. For the second one:

R (tail s) (tail t)
←→ R (tail (xs⊕ ys)) (tail (ys⊕ xs))
←→ R (tail xs⊕ tail ys)) (tail ys⊕ tail xs)
←→∃xs′ ys′. tail xs⊕ tail ys = xs′ ⊕ ys′ ∧

tail ys⊕ tail xs = ys′ ⊕ xs′

The last formula can be shown to hold by selecting xs′ = tail xs and
ys′ = tail ys. Moreover, R (xs⊕ ys) (ys⊕ xs) holds. Therefore, the
thesis follows by structural coinduction.

If we attempt to prove the commutativity of ⊗ analogously, we
eventually encounter a formula of the form R (· · · ⊕ · · ·) (· · · ⊕ · · ·),
because ⊗ is defined in terms of ⊕. Since R mentions only ⊗ but
not ⊕, we are stuck. An ad hoc solution would be to replace the
canonical R with a bisimulation that allows for descending under ⊕.
However, this would be needed for almost every property about ⊗.

A more reusable solution is to strengthen the coinduction princi-
ple upon registration of a new friendly operation. The strengthening
mirrors the acquired possibility of the new operation to appear
in the corecursive call context. It is technically represented by a
congruence closure cl : (Stream→ Stream→ Bool)→ Stream→
Stream→Bool. The coinduction up-to principle is almost identical
to structural coinduction, except that the corecursive application of
R is replaced by cl R:

R l r ∀s t. R s t −→ head s = head t ∧ cl R (tail s) (tail t)

l = r

The principle evolves with every newly registered friendly opera-
tion in the sense that our framework refines the definition of the
congruence closure cl. (Strictly speaking, a fresh symbol cl′ is intro-
duced each time.) For example, after registering SCons and ⊕, cl R
is the least reflexive, symmetric, transitive relation containing R and
satisfying the rules

x = y cl R xs ys

cl R (SCons x xs) (SCons y ys)

cl R xs ys cl R xs′ ys′

cl R (xs⊕ xs′) (ys⊕ ys′)

After defining and registering ⊗, the relation cl R is extended to also
satisfy

cl R xs ys cl R xs′ ys′

cl R (xs⊗ xs′) (ys⊗ ys′)
Let us apply the strengthened coinduction principle to prove the

distributivity of stream exponentiation over pointwise addition:

Proposition 2. exp (xs⊕ ys) = exp xs⊗ exp ys.

Proof. We first show that R = λs t. ∃xs ys. s = exp (xs⊕ ys) ∧ t =
exp xs ⊗ exp ys is a bisimulation. We fix two streams s and t for
which we assume R s t (i.e., there exist two streams xs and ys such
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that s = exp (xs⊕ ys) and t = exp xs⊗ exp ys). Next, we show that
head s = head t and cl R (tail s) (tail t):

head s = head (exp (xs⊕ ys)) = 2 ˆ head (xs⊕ ys)
= 2 ˆ (head xs+head ys) = 2 ˆ head xs×2 ˆ head ys
= head (exp xs)×head (exp ys)
= head (exp xs⊗ exp ys) = head t

cl R (tail s) (tail t)
←→ cl R (tail (exp (xs⊕ ys))) (tail (exp xs⊗ exp ys))
←→ cl R ((tail xs⊕ tail ys)⊗ exp (xs⊕ ys))

(exp xs⊗ (tail ys⊗ exp ys)⊕ (tail xs⊗ exp xs)⊗ exp ys)
∗←→ cl R ((tail xs⊗ exp (xs⊕ ys)⊕ tail ys⊗ exp (xs⊕ ys))
(tail xs⊗ (exp xs⊗ exp ys)⊕ tail ys⊗ (exp xs⊗ exp ys)⊕

←− cl R (tail xs⊗ exp (xs⊕ ys)) (tail xs⊗ (exp xs⊗ exp ys)) ∧
cl R (tail ys⊗ exp (xs⊕ ys)) (tail ys⊗ (exp xs⊗ exp ys))⊗

←− cl R (tail xs) (tail xs) ∧ cl R (tail ys) (tail ys) ∧
cl R (exp (xs⊕ ys)) (exp xs⊗ exp ys)

←− R (exp (xs⊕ ys)) (exp xs⊗ exp ys)

The step marked with ∗ appeals to associativity and commutativity
of ⊕ and ⊗ as well as distributivity of ⊗ over ⊕. These properties
are likewise proved by coinduction up-to. The implications marked
with ⊕ and ⊗ are justified by the respective congruence rules. The
last implication uses reflexivity and expands R to its closure cl R.

Finally, it is easy to see that R (exp (xs⊕ ys)) (exp xs⊗ exp ys)
holds. Therefore, the thesis follows by coinduction up-to.

The formalization accompanying this paper [16] also contains
proofs of facA = facC 1 1 1 = smap fac (natsFrom 1), facB =
SCons 1 facA, and fibA = fibB, where fac is the factorial on Nat.

Nested corecursion up-to is also reflected with a suitable strength-
ened coinduction rule. For Tree, this strengthening takes place under
the rel operator on list, similarly to the corecursive calls occurring
nested in the map function:

R l r ∀s t. R s t −→ val s = val t ∧ rel (cl R) (sub s) (sub t)

l = r

The rel R operator lifts the binary predicate R : A→ B→ Bool to
a predicate List A→ List B→ Bool. More precisely, rel R xs ys
holds if and only if xs and ys have the same length and parallel
elements of xs and ys are related by R. This nested coinduction rule
is convenient provided there is some infrastructure to descend under
rel (as is the case in Isabelle/HOL). The formalization establishes
several arithmetic properties of � and �.

3. Extensible Corecursors
We now describe the definitional and proof mechanisms that sub-
stantiate flexible corecursive definitions in the style of Section 2.
They are based on the modular maintenance of infrastructure for
the corecursor associated with a codatatype, with the possibility of
open-ended incremental improvement. We present the approach for
an arbitrary codatatype given as the greatest fixpoint of a (bounded)
functor. The approach is quite general and does not rely on any
particular grammar for specifying codatatypes.

Extensibility is an integral feature of the framework. In principle,
an implementation could redo the constructions from scratch each
time a friendly operation is registered, but it would give rise to a
quadratic number of definitions, slowing down the proof assistant.
The incremental approach is also more flexible and future-proof,
allowing mixed fixpoints and composition with other (co)recursors.

3.1 Functors and Relators
Functional programming languages and proof assistants necessarily
maintain a database of the user-defined types or, more generally,
type constructors, which can be thought as functions F : Setn→ Set

on the class of sets (or perhaps of ordered sets). It is often useful to
maintain more structure along with these type constructors:

• a functorial action Fmap : ∏A,B∈Setn ∏
n
i=1(Ai→ Bi)→ F A→

F B, i.e., a polymorphic function of the indicated type that
commutes with identity idA : A→ A and composition;

• a relator Frel : ∏A,B∈Setn ∏
n
i=1(Ai→ Bi→ Bool) → F A →

F B→ Bool, i.e., a polymorphic function of the indicated type
that commutes with binary-relation identity and composition.

Following standard notation from category theory, we write F
instead of Fmap. Given binary relations Ri : Ai → Bi → Bool for
1 ≤ i ≤ n, we think of Frel R : F A→ F B→ Bool as the natural
lifting of R along F; for example, if F is List (and n = 1), Frel lifts a
relation on elements to the componentwise relation on lists, defined
conjunctively, and also requiring equal lengths. It is well known
that the positive type constructors defined by standard means (basic
types, composition, least and greatest fixpoints) have canonical
functorial and relator structure. This is crucial for the foundational
construction of user-specified (co)datatypes in Isabelle/HOL [60].

But even nonpositive type constructors G : Setn→ Set exhibit a
relator-like structure

Grel : ∏A,B∈Setn (A→ B→ Bool)→ (G A→ G B→ Bool)

(which need not commute with relation composition, though).
Above, A→ B→Bool consists of tuples (Ri : Ai→ Bi→Bool)i∈1,n
of relations, where A = (Ai)i∈1,n and B = (Bi)i∈1,n. For example,
if G : Set2 → Set is the function space constructor G (A1, A2) =
A1→ A2 and f ∈G (A1, A2), g∈G (B1, B2), R1 : A1→ B1→Bool,
and R2 : A2 → B2 → Bool, then Grel R1 R2 f g is defined as
∀a1 ∈ A1. ∀b1 ∈ B1. R1 a1 b1 −→ R2 ( f a1) (g b1).

A polymorphic function c : ∏A∈Setn G A is called parametric
[52, 63] if

∀A B ∈ Setn. ∀R : A→ B→ Bool. Grel R cA cB

The maintenance of relator-like structures is helpful for automating
theorem transfer along isomorphisms and quotients [31]. Here
we explore an additional benefit of maintaining functorial and
relator structure for type constructors: the possibility to extend the
corecursor in reaction to user input.

We assume that all the considered type constructors are both
functors and relators, that they include basic functors such as identity,
constant, sum, and product, and that they are closed under least and
greatest fixpoints (initial algebras and final coalgebras). Examples
of such classes of type constructors are the datafunctors [26], the
containers [1], and the bounded natural functors [60].

We focus on the case of a unary codatatype-generating functor
F : Set→ Set. The codatatype of interest will be its greatest fixpoint
(or final coalgebra) J = gfp F. This generic situation already covers
the vast majority of interesting codatatypes, since F can represent
arbitrarily complex nesting. For example, if F = λA. Nat×List A,
then J corresponds to the Tree codatatype introduced in Section 2.2.
The extension to mutually defined codatatypes is straightforward
but tedious. Our examples will take J to be the Stream type from
Section 2, with F = λA. Nat×A.

Given a set A, it will be useful to think of the elements x ∈ F A
as consisting of a shape together with content that fills the shape
with elements of A, as suggested by Figure 1. If F A = Nat×A, the
shape of x = (n, a) is (n, _) and the content is a; if F A = List A,
the shape of x = [x1, . . . , xn] is the n-slot container [_, . . . , _] and
the content consists of the xi’s. According to this view, for each
f : A→ B, F’s functorial action sends any x to an element F f x of
the same shape as x but with each content item a replaced by f a.
Technically, this view can be supported by custom notions such as
containers [1] or, more simply, via a parametric function of type
∏A∈Set F A→ Set A that collects the content elements [60].
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. a2. a1 . a3

Figure 1: An element x of F A with content items a1, a2, a3

3.2 Primitive Corecursion
The codatatype command that defines J introduces the constructor
and destructor bijections ctor : F J→ J and dtor : J→ F J and the
primitive corecursor corecPrim : ∏A∈Set(A→ F A)→ A→ J sat-
isfying corecPrim s a = ctor (F (corecPrim s) (s a)). In elements
x ∈ F A, the occurrences of content items a ∈ A in the shape of x
captures the positioning of the corecursive calls.

Example 3. Modulo currying, the pointwise sum of streams ⊕ is
definable as corecPrim s, by taking s : Stream2→ Nat×Stream2

to be λ(xs, ys). (head xs+head ys, (tail xs, tail ys)).

In Example 3 and elsewhere, we lighten notation by identifying
curried and uncurried functions, counting on implicit coercions.

3.3 The Corecursion State
Given a functor Σ : Set→ Set, we define Σ∗, the free-monad functor
over λB. J+Σ B, by

Σ∗A = lfp (λB. A+J+Σ B)

We write vleaf : A→ Σ∗A, cleaf : J→ Σ∗A, and op : Σ (Σ∗A)→
Σ∗A for the first, second, and third injections into Σ∗A. These
functions are in fact polymorphic; for example, vleaf has type
∏A∈Set A → Σ∗A. We omit the set parameters of polymorphic
functions since they can be inferred from the arguments.

At any given moment, we maintain the following data associated
with J, which we call a corecursion state:

• a finite number of functors K1, . . . , Kn : Set→ Set and, for each
Ki, a function fi : Ki J→ J;

• a polymorphic function Λ : ∏A∈Set Σ (A×F A)→ F (Σ∗A).

We call the fi’s the friendly operations and define their collective
signature functor Σ by

Σ A = K1 A+ · · ·+Kn A

where ιi : Ki→Σ is the standard embedding of Ki into Σ. We call
Λ the corecursor seed.

The corecursion state is subject to the following conditions:

Parametricity: Λ is parametric.

Friendliness: Each fi satisfies the characteristic equation

fi x = ctor (F eval (Λ (Σ 〈id, dtor〉 (ιi x))))

The convolution operator 〈_, _〉 builds a function 〈 f , g〉 : B→C×D
from two functions f : B→ C and g : B→ D, and eval : Σ∗J→ J
is the canonical evaluation function defined recursively (using the
primitive recursor associated with Σ∗):

eval (vleaf j) = j
eval (cleaf j) = j
eval (op z) = case z of ιi t⇒ fi (Ki eval t)

Notice that eval is applied recursively to t by lifting it through the
functor Ki. Functions having the type of Λ and assumed parametric
(or, equivalently, assumed to be natural transformations) are known
in category theory as abstract GSOS rules. They were introduced by

Ki J
fi //

Λ◦Σ 〈id,dtor〉◦ιi

��

J

F (Σ∗J)
F eval // F J

ctor

OO

Figure 2: The friendliness condition

Turi and Plotkin [61] and further studied by Bartels [9], Jacobs [33],
Hinze and James [29], Milius et al. [46], and others.

Thus, a corecursion state is a triple (K, f , Λ). As we will see
in Section 3.6, the state evolves as users define and register new
functions. The fi’s are the operations that have been registered as
potential participants in corecursive call contexts. Since fi has type
Ki J→ J, we think of Ki as encoding the arity of fi. Then Σ, the
sum of the Ki’s, represents the signature consisting of all the fi’s.
Thus, for each A, Σ∗A represents the set of formal expressions
over Σ and A + J, i.e., the trees built starting from two kinds
of leaves—“variables” in A and “constants” in J—by applying
operation symbols corresponding to the fi’s. Finally, eval evaluates
in J the formal expressions of Σ∗J by recursively applying the
functions fi.

If the functors Ki are restricted to be finite monomials λA. Aki ,
the functor Σ can be seen as a standard algebraic signature and
(Σ∗A, op) as the standard term algebra for this signature, over the
variables A and the constants J. However, we allow Ki to be more
exotic; for example, Ki A can be ANat (representing an infinitary
operation) or one of List A and FinSet A (representing an operation
taking a varying finite number of ordered or unordered arguments).

But what guarantees that the fi’s are indeed safe as contexts for
corecursive calls? In particular, how can the framework exclude tail
while allowing SCons, ⊕, and ⊗? This is where the parametricity
and friendliness conditions on the state enter the picture.

We start with friendliness. Assume x ∈ Ki J, which is unambigu-
ously represented in Σ J as ιi x. Let j1, . . . , jm ∈ J be the content
items of ιi x (placed in various slots in the shape of x). To evaluate
fi on x, we first corecursively unfold the jl’s while also keeping the
originals, thus replacing each jl with ( jl, dtor jl). Then we apply
the transformation Λ to obtain an element of F (Σ∗J), which has
an F-shape at the top (the first produced observable data) and for
each slot in this shape an element of Σ∗J, i.e., a formal-expression
tree having leaves in J and built using operation symbols from the
signature (the corecursive continuation):

Ki J
ιi−→Σ J

Σ 〈id,dtor〉−−−−−−→Σ (J×F J)
Λ−→ F (Σ∗J)

Next, we evaluate the formal expressions (from Σ∗J) located in the
slots. This is achieved by applying eval, which corecursively calls
the fi’s under the functor F. Finally, the result (an element of F J) is
guarded with ctor. In summary, Λ is a schematic representation of
the mutually corecursive behavior of the friendly operations up to the
production of the first observable data. This intuition is captured by
the friendliness condition, which states that the diagram in Figure 2
commutes for each fi. (If we preferred the destructor view, we could
replace the right upward ctor arrow with a downward dtor arrow
without changing the diagram’s meaning.)

It suffices to peel off one layer of the arguments ji (by applying
dtor) for a friendly operation fi to produce, via Λ, one layer of
the result and to delegate the rest of the computation to a context
consisting of a combination of friendly operations (an element of
Σ∗J). But how can we formally express that exploring one layer
is enough, i.e., that applying Λ : J×F J→ F (Σ∗J) to ( ji, dtor ji)
does not leed to a deeper exploration? An elegant way of capturing
this is to require that Λ, a polymorphic function, operates without
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A corecPrim s //

s

��

J

F A
F (corecPrim s)// F J

ctor

OO

(a) Primitive corecursion

A
corecTop s //

s
��

J

F (Σ∗A)

F (Σ∗ (corecTop s)) %%

F J

ctor

OO

F (Σ∗J)

F eval

;;

(b) Top-guarded corecursion up-to

A corecFlex s //

s
��

J

Σ∗ (F (Σ∗A))

Σ∗(F (Σ∗ (corecFlex s))) ((

Σ∗J

eval

OO

Σ∗ (F (Σ∗J))
Σ∗ (F eval)// Σ∗ (F J)

Σ∗ ctor

OO

(c) Flexibly guarded corecursion up-to

Figure 3: The corecursors

analyzing J, i.e., that it operates in the same way on A×F A→
F (Σ∗A) for any set A. This requirement is precisely parametricity.

Strictly speaking, the friendly operations f are a redundant piece
of data in the state (K, f , Λ), since, assuming Λ parametric, we can
prove that there exists a unique tuple f that satisfies the friendliness
condition. Hence, in principle, the operations f could be derived
on a per-need basis. However, in the context of proof assistants,
these operations must be available as part of the state, since a user
will directly formulate their corecursive definitions in terms of these
operations.

Example 4. Let J = Stream and assume that SCons : Nat×
Stream→ Stream and⊕ : Stream2→ Stream are the only friendly
operations registered so far. Then K1 = λB. Nat×B, f1 = SCons,
K2 = λB. B2, and f2 =⊕. Moreover, Σ∗A = lfp (λB. A+Stream+
(Nat× B+ B2)) consists of formal-expression trees with leaves
in A and Stream and built using arity-correct applications of
operation symbols corresponding to SCons and ⊕, written SCons
and ⊕ . Given n ∈ Nat and a, b ∈ A, an example of such a tree
is vleaf a ⊕ SCons (n, vleaf a ⊕ vleaf b). If additionally A =
Stream, then eval applied to this tree is a⊕ SCons n (a⊕ b).

But what is Λ? As we show below, we need not worry about the
global definition of Λ, since both Σ and Λ will be updated incre-
mentally when registering new operations as friendly. Nonetheless,
a global definition of Λ for SCons and ⊕ follows:

Λ z = case z of
ι1 (n, (a, (m, a′))) ⇒ (n, SCons (m, vleaf a′))
ι2 ((a, (m, a′)), (b, (n, b′)))⇒ (m+n, vleaf a′ ⊕ vleaf b′)

Informally, SCons and ⊕ exhibit the following behaviors:

• to evaluate SCons on a number n and an item a with (head a,
tail a) = (m, a′), produce n and evaluate SCons on m and a′, i.e.,
output SCons n (SCons m a′) = SCons n a;

• to evaluate ⊕ on a, b with (head a, tail a) = (m, a′) and
(head b, tail b) = (n, b′), produce m + n and evaluate ⊕ on
a′ and b′, i.e., output SCons (m+n) (a′ ⊕ b′).

A natural question at this point is why we need “constant” leaves
cleaf j in Σ∗A, given that the eval function is defined on Σ∗J and
operates on cleaf j in the same way as it does on vleaf j. The answer
is that constant leaves allow Λ to produce results that concretely
refer to J, which offers greater flexibility. To illustrate this, let us
change our operation ⊕ by replacing, in the right-hand side of its
corecursive call, the argument tail ys with a fixed stream, oneTwos:

xs⊕ ys = SCons (head xs+head ys) (tail xs⊕ oneTwos)

To capture this as friendly, we need to change the ι2 case of Λ to
(m+ n, vleaf a′ ⊕ cleaf oneTwos). One could achieve the above
by registering the constant operation oneTwos as friendly. However,
we want all elements of J to be a priori registered as friendly. This
is precisely what cleaf offers.

F (A×F A) Λ //

F snd

��

F (F∗A)

F (F A)
F (F vleaf)// F (F (F∗A))

F op

OO

Figure 4: Definition of Λ for the initial state

3.4 Corecursion Up-to
A corecursion state (K, f , Λ) for an F-defined codatatype J consists
of a collection of operations fi : Ki J→ J that satisfy the friendliness
properties expressed in terms of a parametric function Λ. We are
now ready to harvest the crop of this setting: a corecursion principle
for defining functions having J as codomain.

The principle will be represented by two corecursors, corecTop
and corecFlex. Although subsumed by the latter, the former is inter-
esting in its own right and will give us the opportunity to illustrate
some fine points. Below we list the types of these corecursors along
with that of the primitive corecursor for comparison:

Primitive corecursor:
corecPrim : ∏A∈Set(A→ F A)→ A→ J

Top-guarded corecursor up-to:
corecTop : ∏A∈Set(A→ F (Σ∗A))→ A→ J

Flexibly guarded corecursor up-to:
corecFlex : ∏A∈Set(A→Σ∗ (F (Σ∗A)))→ A→ J

Figure 3 presents the diagrams whose commutativity properties give
the characteristic equations of these corecursors.

Each corecursor implements a contract of the following form: If,
for each a ∈ A, one provides the intended corecursive behavior of
g a represented as s a, where s is a function from A, one obtains the
function g : A→ J (as the corresponding corecursor applied to s)
satisfying a suitable fixpoint equation matching this behavior.

The codomain of s is the key to understanding the expressiveness
of each corecursor. The intended corecursive calls are represented by
A, and the call context is represented by the surrounding combination
of functors (involving F, Σ∗, or both):

• for corecPrim, the allowed call contexts consist of a single
constructor guard (represented by F);

• for corecTop, they consist of a constructor guard (represented
by F) followed by any combination of friendly operations fi
(represented by Σ∗);

• for corecFlex, they consist of any combination of friendly
operations satisfying the condition that on every path leading
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to a corecursive call there exists at least one constructor guard
(represented by Σ∗ (F (Σ∗_))).

We can see the computation of g a by following the diagrams
in Figure 3 counterclockwise from their left-top corners. The
application s a first builds the call context syntactically. Then g
is applied corecursively on the leaves. Finally, the call context
is evaluated: For corecPrim, it consist only of the guard (ctor);
for corecTop, it involves the evaluation of the friendly operations
(which may also include several occurrences of the guard) and ends
with the evaluation of the top guard; for corecFlex, the evaluation of
the guard is interspersed with that of the other friendly operations.

Example 5. For each example from Section 2.1, we give the
corecursors that can handle it (assuming the necessary friendly
operations were registered):

⊕, everyOther: corecFlex, corecTop, corecPrim
oneTwos, fibA,⊗, exp, sup: corecFlex, corecTop
fibB, facA, facB: corecFlex

(Note that everyOther is definable in our framework, but is not
friendly, meaning that it cannot participate in call contexts of other
corecursive definitions.) With the usual identification of Unit→ J
and J, we can define fibA and facA as

corecTop (λu : Unit. (0, SCons (1, vleaf u) ⊕ vleaf u))
corecFlex (λu : Unit. vleaf (1, vleaf u) ⊗ vleaf (1, vleaf u))

Let us compare fibA’s specification fibA = SCons 0 (SCons 1 fibA
⊕ fibA) with its definition in terms of corecTop. The outer SCons
guard (with 0 as first argument) corresponds to the outer pair (0, _).
The inner SCons and ⊕ are interpreted as friendly operations and
represented by the symbols SCons and ⊕ (cf. Example 4). Finally,
the corecursive calls of fibA are captured by vleaf u.

The desired specification can be obtained from the corecTop
form by the characteristic equation of corecTop (for A = Unit) and
the properties of eval as follows, where we simply write s, fibA, and
vleaf for their applications to the unique element () of Unit, namely
s (), fibA (), and vleaf ():

fibA

= {by the commutativity of Figure 3b, with fibA = corecTop s}
ctor (F (eval ◦Σ∗ fibA) s)

= {by the definitions of F and s}
SCons 0 ((eval ◦Σ∗ fibA) (SCons (1, vleaf) ⊕ (vleaf)))

= {by the definition of Σ∗}
SCons 0 (eval (SCons (1, vleaf fibA) ⊕ (vleaf fibA))

= {by the definition of eval}
SCons 0 (SCons 1 fibA ⊕ fibA)

The elimination of the corecTop infrastructure relies on simplifica-
tion rules for the involved operators and can be fully automatized.

Parametricity and friendliness are crucial for proving that the
corecursors actually exist:

Theorem 6. There exist the polymorphic functions corecTop and
corecFlex making the diagrams in Figures 3b and 3c commute.
Moreover, for each s of appropriate type, corecTop s or corecFlex s
is the unique function making its diagram commute.

Theorem 6 is a known result from the category theory literature:
The corecTop s version follows from the results in Bartels’s thesis
[10], whereas the corecFlex s version was recently (and indepen-
dently) proved by Milius et al. [46, Theorem 2.16].

3.5 Initializing the Corecursion State
The simplest relaxation of primitive corecursion is the allowance of
multiple constructors in the call context, in the style of Coq, as in the

definition of oneTwos (Section 2.1). Since this idea is independent
of the choice of codatatype J, we realize it when bootstrapping
the corecursion state. Upon defining a codatatype J, we take the
following initial corecursion state initState = (K, f , Λ):

• K is a singleton consisting of (a copy of) F;
• f is a singleton consisting of ctor;
• Λ : ∏A∈Set F (A × F A) → F (F∗ A) is defined as F (op ◦

F vleaf ◦ snd), where snd is the second product projection.

Recall that the seed Λ is designed to schematically represent the
corecursive behavior of the registered operations by describing how
they produce one layer of observable data. The definition in Figure 4
depicts this for ctor and instantiates to the schematic behavior of
SCons presented at the end of Example 4.

Theorem 7. initState is a well-formed corecursion state—i.e., it
satisfies parametricity and friendliness.

3.6 Advancing the Corecursion State
The role of a corecursion state (K, f , Λ) for J is to provide infras-
tructure for flexible corecursive definitions of functions g between
arbitrary sets A and J. If nothing else is known about A, this is the
end of the story. However, assume that J is a component of A, in
that A is constructed from J (possibly along with other components).
For example, A could be List J, or J× (Nat→ List J). We capture
this abstractly by assuming A = K J for some functor K.

In this case, we have a fruitful situation of which we can
profit for improving the corecursion state, and hence improving the
flexibility of future corecursive definitions. Under some uniformity
assumptions, g itself can be registered as friendly.

More precisely, assume that g : K J → J is defined by g =
corecTop s and that s can be proved uniform in the following sense:
There exists a parametric function

ρ : ∏A∈Set K (A×F A)→ F (Σ∗ (K A))

such that s = ρ ◦ K〈id, dtor〉 (Figure 5a). Then we can integrate g
as a friendly operation as follows.

We define nextStateg (K, f , Λ), the “next” corecursion state
triggered by g, as (K′, f ′, Λ′), where

• K′ = (K1, . . . , Kn, K) (similarly to Σ versus K, we write Σ′

for the signature functor of K′; note that we essentially have
Σ′ = Σ+K);

• f ′ = ( f1, . . . , fn, g);
• Λ′ : ∏A∈Set Σ′ (A×F A)→ F (Σ′∗A) is defined as [F embL ◦Λ,

F embR ◦ ρ], where [_, _] is the case operator on sums, which
builds a function [u, v] : B +C → D from two functions u :
B→ D and v : C → D, and embL : Σ∗A→ Σ′∗A and embR :
Σ∗ (K A)→Σ′∗A are the natural embeddings into Σ′∗A.

Theorem 8. If (K, f , Λ) is a well-formed corecursion state, then so
is nextStateg (K, f , Λ).

In summary, we have the following scenario triggering the state’s
advancement:

1. One defines a new operation g = corecTop s.

2. One shows that s factors through a parametric function ρ and
K 〈id, dtor〉 (as in Figure 5a); in other words, one shows that
g’s corecursive behavior s can be decomposed into a one-step
destruction of the arguments and a parametric transformation
(which is independent of J).

3. The corecursion state is updated by nextStateg.
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K J

s

��

g = corecTop s //

K 〈id,dtor〉 ''

J

K (J×F J)

ρ

ww

F J

ctor

OO

F (Σ∗ (K J))
F (Σ∗g) // F (Σ∗J)

F eval

::

(a) Version defined with the general-purpose corecursor

K J

s

��

g //

K 〈id,dtor〉 ))

J

K (J×F J)

ρ

vv

F J

ctor

OO

F ((Σ+K)∗ J)
F ((Σ+K)∗g)// F ((Σ+K)∗J)

F evalg

88

(b) Freely mixing version

Figure 5: A new friendly operation g

Example 9. Assume that SCons and ⊕ are registered as friendly
at the time of defining ⊗ (cf. Example 4). Then K = λA. A2 and
⊗= corecTop s, where

s = λ(xs, ys). (head xs×head ys,
vleaf (xs, tail ys) ⊕ vleaf (tail xs, ys))

The function s can be recast into ρ ◦ K 〈id, 〈head, tail〉〉, where

ρ : ∏A∈Set (A× (Nat×A))2→ Nat×Σ∗ A2

is defined by

ρ ((a, (m, a′)), (b, (n, b′))) = (m×n, vleaf (a, b′) ⊕ vleaf (a′, b))

which is clearly parametric. Determining ρ from s and K 〈id, 〈head,
tail〉〉 can be done in a syntax-directed fashion.

Above, the new operation g : K J → J was defined using
corecTop, and the domain of g was treated as any arbitrary do-
main. It turns out there is more opportunity for taking advantage of
the form K J of the domain: We can allow the corecursive calls of g
to mix freely with occurrences of the other friendly operations, i.e.,
treat g as friendly already when defining it. To this end, we slightly
change the codomain of ρ, replacing Σ∗ (K A) with (Σ+K)∗A, i.e.,
Σ′∗A. We now assume ρ : ∏A∈Set K (A×F A)→ F ((Σ+K)∗A)
and have the following improved version of Theorem 8.

Theorem 10. Assume (K, f , Λ) is a well-formed corecursion state,
s = ρ ◦ K〈id, dtor〉 (as in Figure 5b), and ρ is parametric. Then
there exists a unique function g : K J→ J that makes the (outer) dia-
gram in Figure 5b commute and such that nextStateg (K, f , Λ) =

(K′, f ′, Λ′) is again a well-formed corecursion state, where

• K′ = (K1, . . . , Kn, K) (hence Σ′ = Σ+K);
• f ′ = ( f1, . . . , fn, g);
• Λ′ : ∏A∈Set Σ′ (A×F A)→ F (Σ′∗A) is defined as [F embL ◦Λ,
ρ].

In Figure 5b, the function evalg : (Σ + K)∗J → J is the natural
extension of both eval : Σ∗J→ J and g.

The above theorem allows us to define and integrate as friendly
functions such as

xs♥ ys = SCons (head xs×head ys)
((((xs♥ tail ys)⊕ (tail xs⊗ ys))♥ ys)⊗ zs)

whose corecursive calls mix freely with ⊕ and ⊗.
In Theorem 8, the definition of the new operation is decoupled

from the parametric decomposition of its corecursion law, which
ensures friendliness. We may define g as corecTop s regardless of
whether s decomposes as ρ ◦ K〈id, dtor〉 for a parametric ρ; but we
can register g as friendly only if such a decomposition is possible.
On the other hand, in Theorem 10, the very existence of g depends
on s being parametrically decomposable: The behavior of g needs

to be a priori known as friendly, because g itself can participate in
the call contexts for g. Thus, the following definition is valid, and
yields a friendly operation, according to Theorem 10:

g xs = SCons (head xs) (g (g (tail xs)))

By contrast, the next definition is not valid due to the nonexistence
of a suitable ρ:

g xs = SCons (head xs) (g (g (tail (tail xs))))

In fact, it is not productive, let alone friendly.

3.7 Coinduction Up-to
In a proof assistant, specification mechanisms are not very useful
unless they are complemented by suitable reasoning infrastructure.
The natural counterpart of corecursion up-to is coinduction up-to. In
our incremental framework, the expressiveness of coinduction up-to
grows together with that of corecursion up-to.

We start with structural coinduction [56], allowing to prove two
elements of J equal by exhibiting an F-bisimulation, i.e., a binary
relation R on J such that whenever two elements j1 and j2 are
related, their dtor-unfoldings are componentwise related by R:

R j1 j2 ∀ j1 j2 ∈ J. R j1 j2 −→ Frel R (dtor j1) (dtor j2)

j1 = j2
Recall that our type constructors are not only functors but also
relators. The notion of “componentwise relationship” refers to F’s
relator structure Frel.

Upon integrating a new operation g (Section 3.6), the coinduction
rule is made more flexible by allowing the dtor-unfoldings to be
componentwise related not only by R but more generally by a closure
of R that takes g into account.

For a corecursion state (K, f , Λ) and a relation R : J→ J→Bool,
we define cl f R, the f -congruence closure of R, as the smallest
equivalence relation that includes R and is compatible with each
fi : Ki J→ J: ∀z1 z2 ∈ Ki J. Kreli R z1 z2 −→ cl f R ( fi z1) ( fi z2),
where Kreli is the relator associated with Ki.

The next theorem supplies the reasoning counterpart of the
definition principle stated in Theorem 6. It can be inferred from
recent, more abstract results [54].

Theorem 11. The following coinduction rule up to f holds in the
corecursion state (K, f , Λ):

R j1 j2 ∀ j1 j2 ∈ J. R j1 j2 −→ Frel (cl f R) (dtor j1) (dtor j2)

j1 = j2

Coinduction up to f is the ideal abstraction for proving equalities
involving functions defined by corecursion up to f : For example, a
proof of commutativity for ⊗ naturally relies on contexts involving
⊕, because ⊗’s corecursive behavior (i.e., ⊗’s dtor-unfolding)
depends on ⊕.
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A
g //

s

��

Σ∗ (F (Σ∗A))

Σ∗ (F (Σ∗A)+Σ∗A)
Σ∗ (id+Σ∗g) // Σ∗ (F (Σ∗A)+Σ∗ (Σ∗ (F (Σ∗A)))))

reduce

OO

(a) Assumption

A
f = corecFlex g //

s

��

J

Σ∗ (F (Σ∗A)+Σ∗A)
Σ∗ (F (Σ∗ f )+Σ∗ f )// Σ∗ (F (Σ∗J)+Σ∗J)

eval_(F _+_)

OO

(b) Conclusion (via corecFlex)

Figure 6: Mixed fixpoint

4. Mixed Fixpoints
When we write fixpoint equations to define a function f , we often
want to distinguish corecursive calls from calls that are sound
for other reasons—for example, if they terminate. We model this
situation abstractly by a function s : A→Σ∗ (F (Σ∗A)+Σ∗A). As
usual, for each a, the shape of s a represents the calling context for
f a, with the occurrences of the content items a′ in s a representing
calls to f a′. The new twist is that we now distinguish guarded calls
(captured by the left-hand side of +) from possibly unguarded ones
(the right-hand side of +).

We want to define a function f with the behavior indicated by s,
i.e., making the diagram in Figure 6b commute. In the diagram, +
denotes the map function u+ v : B+C → D+ E built from two
functions u : B→ D and v : C → E. In the absence of pervasive
guards, we cannot employ the corecursors directly to define f .
However, if we can show that the noncorecursive calls eventually
lead to a corecursive call, we will be able to employ corecFlex.
This precondition can be expressed in terms of a fixpoint equation.
According to Figure 6a, the call to g (shown on the base arrow)
happens only on the right-hand side of +, meaning that the intended
corecursive calls are ignored when “computing” the fixpoint g. Our
goal is to show that the remaining calls behave properly.

The functions reduce and eval that complete the diagrams of
Figure 6 are the expected ones:

• The elements of Σ∗ (F (Σ∗A)) are formal-expression trees
guarded on every path to the leaves, and so are the elements
Σ∗ (F (Σ∗A)+Σ∗ (Σ∗ (F (Σ∗A)))), but with a more restricted
shape; reduce embeds the latter in the former:

reduce = flat ◦Σ∗[vleaf, flat]

where flat : ∏A∈Set Σ∗ (Σ∗A)→ A is the standard join operation
of the Σ∗-monad.

• eval_(F _+_) evaluates all the formal operations of Σ∗:

eval_(F _+_) = eval ◦Σ∗ [ctor ◦ F eval, eval]

Theorem 12. If there exists (a unique) g : A→Σ∗ (F (Σ∗A)) such
that the diagram in Figure 6a commutes, there exists (a unique)
f : A→ J such that the diagram in Figure 6b commutes, namely,
corecFlex g.

The theorem certifies the following procedure for making sense
of a mixed fixpoint definition of a function f :

1. Separate the guarded and the unguarded calls (as shown in the
codomain Σ∗ (F (Σ∗A)+Σ∗A) of s).

2. Prove that the unguarded calls eventually terminate or lead to
guarded calls (as witnessed by g).

3. Pass the unfolded guarded calls to the corecursor—i.e., take
f = corecFlex g.

Example 13. The above procedure can be applied to define facC,
primes : Nat→ Nat→ Stream, and cat : Nat→ Stream, while

avoiding the unsound nasty (Section 2.3). A simple analysis reveals
that the first self-call to primes is guarded while the second is not.
We define g : Nat×Nat→Σ∗ (Nat×Σ∗ (Nat×Nat)) by

g (m, n) = if (m = 0 ∧ n > 1) ∨ gcd m n = 1
then vleaf (n, vleaf (m×n, n+1))
else g (m, n+1)

In essence, g behaves like the function f we want to define (here,
primes), except that the guarded calls are left symbolic, whereas the
unguarded calls are interpreted as actual calls to g. We can show
that g is well defined by a standard termination argument. This
characteristic equation of g is the commutativity of the diagram
determined by s as in Figure 6a, where s : Nat×Nat→Σ∗ (Nat×
Σ∗ (Nat×Nat) + Σ∗ (Nat×Nat)) is defined as follows:

s (m, n) = if (m = 0 ∧ n > 1) ∨ gcd m n = 1
then vleaf (Inl (n, vleaf (m×n, n+1)))
else vleaf (Inr (vleaf (m, n+1)))

where Inl and Inr are the left and right sum embeddings. Setting
primes = corecFlex g yields the desired characteristic equation for
primes after simplification (as illustrated in Example 4).

The primes example has all unguarded calls in tail form, which
makes the associated function g tail-recursive. This need not be
the case, as shown by the cat example, whose unguarded calls
occur under the friendly operation ⊕. However, we do require
that the unguarded calls occur in contexts formed by friendly
operations alone. This requirement guarantees that after unfolding
all the unguarded calls, the resulting context that is to be handled
corecursively is friendly. This precludes unsound definitions such as
nasty.

5. Formalization
We formalized the metatheory of Sections 3 and 4 in Isabelle/HOL.
The results have been proved in higher-order logic with Infinity,
Choice, and a mechanism for defining types by exhibiting non-
empty subsets of existing types. The logic is comparable to Zermelo
set theory with Choice (ZC) but weaker than ZFC. The development
would work for any class of functors that are relators (or closed under
weak pullbacks), contain basic functors (identity, (co)products, etc.)
and are closed under intersection and composition, and have initial
algebras and final coalgebra that can be represented in higher-order
logic. However, our Isabelle development focuses on a specific class:
the bounded natural functors [60].

The formalization consists of two parts: The base derives a
corecursor up-to from a primitive corecursor; the step starts with a
corecursor up-to and integrates an additional friendly operation.

The base part starts by axiomatizing a functor F and defines
a codatatype with nesting through F: codatatype J = ctor (F J).
In general, J could depend on type variables, but this is an orthogonal
concern. Then the formalization defines the free algebra over F and
the basic corecursor seed Λ for initializing the state with ctor as
friendly (Section 3.5). It also needs to lift Λ to the free algebra, a
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technicality that was omitted in the presentation. Then it defines eval
and other necessary structure (Section 3.3). Finally, it introduces
corecTop and corecFlex (Section 3.4) and derives the corresponding
coinduction principle (Section 3.7).

From a high-level point of view, the step part has a somewhat
similar structure to the base. It axiomatizes a domain functor K and
a parametric function ρ associated with the new friendly operation
g to integrate. Then it extends the signature to include K, defines
the extended corecursor seed Λ′, and lifts Λ′ to the free algebra.
Next, it defines the parameterized evalg and other infrastructure
(Section 3.6). Finally, it introduces corecTop and corecFlex for the
new state and derives the coinduction principle.

6. Prototype Implementation
The process of instantiating the metatheory to particular user-
specified codatatypes is automated by a prototype tool. The user
points to a particular codatatype [14]. The tool takes over and in-
stantiates the generic corecursor to the indicated type, providing the
concrete corecursion and mixed recursion–corecursion theorems.
The stream and tree examples presented in Section 2 have all been
obtained with this tool. As a larger case study, we formalized all the
examples from the extended version of Hinze and James’s study [29].
The parametricity proof obligations were discharged by Isabelle’s
parametricity prover [31]. The mixed recursion–corecursion defi-
nitions were done using Isabelle’s facility for defining terminating
recursive functions [36].

Our tool currently lacks syntactic sugar. It still requires some
boilerplate from the user, namely the explic invocation of the
corecursor and the parametricity prover. These are just a few extra
lines of script per definition, and therefore the tool is also usable
in the current form. Following the design of its primitive ancestor
[14], the envisioned user-friendly corec command will automate
the following steps (cf. Example 5):

1. Parse the user’s corecursive specification of f and synthesize
arguments to the current, most powerful corecursor.

2. Define f in terms of the corecursor.

3. Derive the original specification from the corecursor theorems.

Passing the friendly option to corec will additionally invoke
the following procedure (cf. Example 9):

4. Extract a polymorphic function ρ from the specification of f.

5. Automatically prove ρ parametric or pass the proof obligation to
the user.

6. Derive the strengthened corecursor and its coinduction rule.

The corec command will be complemented by an additional
command, tentatively called corec_friendly, for registering arbi-
trary operations f (not necessarily defined using corec) as friendly.
The command will ask the user to provide a corecursive specifica-
tion of f as a lemma of the form f x = ctor . . . and then perform
steps 4 to 6. The corec command will become increasingly stronger
as more operations are registered.

The following Isabelle-like theory fragment gives a flavor of the
envisioned functionality from the user’s point of view:

codatatype Stream A = SCons (head: A) (tail: Stream A)

corec (friendly) ⊕ : Stream→ Stream→ Stream
xs⊕ ys = SCons (head xs+head ys) (tail xs⊕ tail ys)

corec (friendly) ⊗ : Stream→ Stream→ Stream
xs⊗ ys = SCons (head xs×head ys)

((xs⊗ tail ys)⊕ (tail xs⊗ ys))

lemma ⊕_commute: xs⊕ ys = ys⊕ xs

by (coinduction arbitrary: xs ys rule: stream.coinduct) auto

lemma ⊗_commute: xs⊗ ys = ys⊗ xs
proof (coinduction arbitrary: xs ys rule: stream.coinduct_upto)

case Eq_stream thus ?case unfolding tail_⊗
by (subst ⊕_commute) (auto intro: stream.cl_⊕)

qed

7. Related Work
There is a lot of relevant work, concerning both the metatheory and
applications in proof assistants and similar systems. We referenced
some of the most closely related work in the earlier sections. Here
is an attempt at a more systematic overview.

Category Theory. The notions of corecursion and coinduction up-
to started with process algebra [55, 58] before they were recast in the
abstract language of category theory [9, 29, 33, 35, 46, 54, 61]. Our
approach owes a lot to this theoretical work, and indeed formalizes
some state-of-the-art category theoretical results on corecursion
and coinduction up-to [46, 54]. Besides adapting existing results to
higher-order logic within an incremental corecursor cycle, we have
extended the state of the art with a sound mechanism for mixing
recursion with corecursion up-to.

Category theory provides an impressive body of abstract results
that can be applied to solve concrete problems elegantly. Proof
assistants have a lot to benefit from category theory, as we hope
to have demonstrated with this paper. There has been prior work
on integrating coinduction up-to techniques from category theory
into these tools. Hensel and Jacobs [26] illustrated the categorical
approach to (co)datatypes in PVS via axiomatic declarations of
various flavors of trees with (co)recursors and proof principles.
Popescu and Gunter proposed incremental coinduction for a deeply
embedded proof system in Isabelle/HOL [51]. Hur et al. [32]
extended Winskel’s [64] and Moss’s [47] parameterized coinduction
and studied applications to Agda, Coq, and Isabelle/HOL. Endrullis
et al. [25] developed a method to perform up-to coinduction in Coq
inspired by behavioral logic [53]. To our knowledge, no prior work
has realized corecursion up-to in a proof assistant.

Ordered Structures and Convergence. A number of approaches
to define functions on infinite types are based on domain theory, or
more generally on ordered structures and notions of convergence,
including Matthews [45], Di Gianantonio and Miculan [23], Huff-
man [30], and Lochbihler and Hölzl [44]. These do not capture total
programming or productivity; instead, the user must switch to a
richer universe of domains and continuous computations.

Strictly speaking, our approach does not guarantee productivity
either. This is an inherent limitation of the semantic (shallow
embedded) approach in HOL systems, which do not specify a
computational model (unlike Agda and Coq). Productivity can
be argued informally by inspecting the characteristic corecursion
equations.

Syntactic Criteria. Proof assistants based on type theory include
checkers for termination of recursion functions and productivity
of corecursive functions. These checkers are part of the system’s
trusted code base; bugs can lead to inconsistencies, as we saw for
Agda [59] and Coq [22].1 For users, built-in syntactic criteria are
inflexible, due to their inability to evolve by incorporating semantic
information; for example, Coq allows more than one constructor to
appear as guards but is otherwise limited to primitive corecursion.

1 In all fairness, we should mention that critical bugs were also found in the
primitive definitional mechanism of our proof assistant of choice [38, 39].
Our point is not that brand B is superior to brand A, but rather that it is
generally desirable to minimize the amount of trusted code.
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To the best of our knowledge, the only deployed system that
explicitly supports mixed recursive–corecursive definitions is Dafny.
Leino and Moskal’s paper [40] triggered our interest in the topic.
However, a naive reading of the paper suggests that the inconsistent
nasty example from Section 2.3 is allowed, as was the case with
earlier versions of Dafny. Newer versions reject not only nasty but
also the legitimate cat function from the same subsection.

Type Systems. A more flexible alternative to syntactic criteria
is to have users annotate the functions’ types with information
that controls termination and productivity. Approaches in these
category include fair reactive programming [19, 24, 37], clock
variables [8, 20], and sized types [2]. Sized types are implemented
in MiniAgda [3] and in newer versions of Agda, in conjunction with
a destructor-oriented (copattern) syntax for corecursion [5]. These
approaches, often featuring a blend of type systems and notions of
convergence, achieve a higher modularity and trustworthiness, by
moving away from purely syntactic criteria and toward semantic
properties. By carefully tracking sizes and timers, they allow for
more general corecursive call contexts than friendliness; for example,
given suitable annotations, everyOther can participate in certain
corecursive call contexts.

Our criterion captures a “1–1” contract: A friendly function
can destroy one constructor to produce at least one construc-
tor. The function double mapping the stream a1, a2, . . . to a1, a1,
a2, a2, . . . is friendly, but it would be more precisely described
by a 1–2 contract. The function everyOther mapping a1, a2, a3,
a4, . . . to a1, a3, . . . is not friendly; it would require a 2–1 con-
tract. And although everyOther ◦ double satisfies a 1–1 contract
(2–1 ◦ 1–2 = 1–1), our corec command must reject the defini-
tion zeros = SCons 0 (everyOther (double zeros)) because the
unfriendly function everyOther appears in the call context.

In exchange for their flexibility, clock variables and sized types
require extending the type system and burden the types. The general
contracts must be specified by the user and complicate the up-to
corecursion principle; the contract arithmetic would have to be
captured in the principle, giving rise to new proof obligations. By
contrast, friendly functions can be freely combined. This is the main
reason why we claim it is a “sweet spot.”

There is a prospect of embedding our lighter approach into
such heavier but more precise frameworks. Our friendly operations
possibly form the maximal class of context functions requiring no
annotations (in general), amounting to a lightweight subsystem of
Krishnaswami and Benton’s type system [37].

8. Conclusion
We presented a formalized framework for deriving rich corecursors
that can be used to define total functions producing codatatypes.
The corecursors gain in expressiveness with each new corecursive
function definition that satisfies a semantic criterion. They constitute
a significant improvement over the state of the art in the world
of proof assistants based on higher-order logic, including HOL4,
HOL Light, Isabelle/HOL, and PVS. Trustworthiness is attained at
the cost of elaborate constructions. Coinduction being somewhat
counterintuitive, we argue that these safeguards are well worth the
effort. As future work, we want to transform our prototype tool into
a solid implementation inside Isabelle/HOL.

Although we advocate the foundational approach, many ideas
equally apply to systems with built-in codatatypes and corecursion.
One could imagine extending the productivity check of Coq to allow
corecursion under friendly operations, linking a syntactic criterion
to a semantic property, as a lightweight alternative to clock variables
and sized types. The emerging infrastructure for parametricity in
Coq [12, 34] would likely be a useful building block.
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[38] O. Kunčar. Correctness of Isabelle’s cyclicity
checker—Implementability of overloading in proof assistants. In
X. Leroy and A. Tiu, eds., CPP 2015, pp. 85–94. ACM, 2015.
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