
1

Thermal Management for 3D Processors via
Task Scheduling

Xiuyi Zhou† Jun Yang† Yi Xu† Yu Du‡ Youtao Zhang‡

†Electrical and Computer Engineering
University of Pittsburgh, Pittsburgh PA 15261

‡Computer Science
University of Pittsburgh, Pittsburgh PA 15261

!

Abstract—A rising horizon in chip fabrication is the 3D integration
technology. It stacks two or more dies vertically with a dense, high-
speed interface to increase the device density and reduce the delay of
interconnects significantly across the dies. However, a major challenge
in 3D technology is the increased power density which gives rise to
the concern of heat dissipation within the processor. High temperatures
trigger voltage and frequency throttlings in hardware which degrade the
chip performance. Moreover, high temperatures impair the processor’s
reliability and reduce its lifetime.

To alleviate this problem, we propose in this paper an OS-level
scheduling algorithm that performs thermal-aware task scheduling on
a 3D chip. Our algorithm leverages the inherent thermal variations
within and across different tasks, and schedules them to keep the
chip temperature low. We observed that vertically adjacent dies have
strong thermal correlations, and the scheduler should consider them
jointly. Compared with other intuitive algorithms such as a Random
and a Round-Robin algorithm, our proposed algorithm brings lower
peak temperature and average temperature on-chip. Moreover, it can
remove on average 46% of thermal emergency time and result in 5.11%
(4.78%) performance improvement over the base case on thermally
homogeneous (heterogeneous) floorplans.

Index Terms—3D processors, thermal-aware scheduling

1 INTRODUCTION

The 3D integration technology has gained significant
attention recently. This is a technology that reduces
wiring both within and across disparate dies, as wiring
has become a major latency, area and power overhead
in modern microprocessors. Studies have shown that
wires can consume more than 30% of the power within
a 2D CMP [3]. The 3D technology provides vertical
stacking of two or more dies with a dense, high-speed
interface, reducing the wire length by a factor of the
square root of the number of layers used [16]. This
significant reduction leads to improved performance and
lower power dissipation on the interconnection.

One key challenge in 3D die stacking is the heat
generation from the internal active layers because the
power density per unit volume increases drastically in
3D. This exacerbates existing hotspots and can create
new hotspots within the chip, especially when active
logic circuits are vertically aligned. For example, the

peak temperature can increase by 17∼20◦C in a two-
layer 3D implementation for an Alpha-like processor,
compared to a 2D design [14], [22]. Other studies on
logic-logic stacking 3D floorplans [1], [3], [23] also show
similar thermal constraint.

There are existing dynamic thermal management
(DTM) techniques such as dynamic voltage and fre-
quency scaling (DVFS) at the architecture level to mit-
igate this problem. Hardware DTMs can respond to
thermal crisis quickly and control the temperature effi-
ciently by reducing the processor power, but inevitably
leads to degraded performance. Recently, there has been
an increasing interest in OS-assisted task scheduling on
both single-core and 2D chip multiprocessors to alleviate
the thermal condition on chip [5], [8], [17], [18], [21].
OS-assisted task scheduling can reduce the number of
times DTMs are triggered while still meeting the thermal
constraint. This technique not only improves the chip
performance under the same thermal constraint, but also
does not require any hardware modifications. Hardware
DTMs are engaged only when task scheduling cannot
keep the temperature below the thermal threshold.

In this paper, we propose a heuristic OS-level tech-
nique that performs thermal-aware task scheduling on a
3D chip multiprocessor (CMP). The proposed technique
aims to improve task performance by keeping the tem-
perature below the threshold to reduce the amount of
DTMs. Unlike previous thermal-aware OS task scheduler
for single core or 2D CMP, our scheduler for 3D chips
must take into account the thermal conduction in the
vertical direction. Early studies have shown that verti-
cally adjacent dies have strong thermal correlations [2],
[26]. For example, a core in one layer could become
hot because of a high power task running in the same
vertical column but at a different layer. Based on these
observations, our proposed scheduler always considers
the aggregated power of cores that are vertically aligned.
Further, when a core is overheated, we choose to engage
DTM on a vertically aligned core that generates the
most power. Such an approach can greatly reduce the
total power in one vertical column and quickly cool
down the overheated core. Our experiments show that



2

the proposed scheduler outperforms a Random and a
Round-Robin scheduler. On average, we can remove 46%
of hardware DTMs and obtain a speedup of 5.11% over
the baseline on the thermally homogeneous floorplan.
With an enhanced version featured with dynamic tuning
scheme, we can remove 46% hardware DTMs and result
in 4.78% performance improvement over the base case
on the thermally heterogeneous floorplan.

The remainder of this paper is organized as follows.
Section 2 discusses previous related works. Section 3
elaborates the motivation of our thermal-aware heuristic
algorithms. Section 4 compares our proposed scheduling
algorithm with other alternatives. Section 5 introduces
the experimental methodology. Section 6 reports the
results and compares different algorithms. Section 7
concludes this paper.

2 PRIOR WORK

There have been many works recently investigating the
performance potential and the challenges in 3D CMP
designs. Mysore et al. [20] proposed to stack on top
of a normal processor a profiling die that can identify
memory leakage, perform diagnosis etc. to save the area
and power on the main die. Black et al. [3] studied
the performance advantages and thermal challenges for
stacking a large DRAM and SRAM cache on a processor,
as well as implementing a processor in two layers. Xie
et al. [26] reported that the peak temperature in a 3D
chip of 2 layers and one die per layer can be as high
as 125◦C. More importantly, there is only a difference
of a couple of degrees, in the worst case, between the
hotspots in the top die and the bottom die. This indicates
a strong thermal correlation among adjacent layers in a
3D processor. To ensure better heat dissipation in a 3D
chip, Puttaswamy et al. proposed a “Thermal Herding”
design [23] which lowers the power of the chip by
splitting individual function unit blocks across multiple
layers, and places the most frequently switched part, or
activity, closest to the heat sink. Alternatively, adding
thermal vias can also alleviate the thermal conditions
within a 3D chip. Goplen et al. [10] studied that proper
placement of thermal vias in 3D IC design can obtain
a maximum of 47.1% reduction in temperature. In the
multicore domain, Loh et al. [19] introduced different
approaches for implementing single-core and multicore
3D processors. Particularly, they pointed out that stack-
ing seperate cores (in multicore design) can significantly
reuse the existing 2D designs, and the interface between
the cores needs no more than a few thousand connec-
tions.

Compared to the previous work, this paper focuses
mainly on software approaches to thermal management
in 3D CMP. There have been proposals on OS-assisted
thermal management for single core chip. The Hyb-
DTM [17] technique controls temperature by limiting
the execution of a hot job once it enters an alarm zone.
This is achieved by lowering the priority of the hot

job so that the OS allocates fewer timeslices to it and
gives cool jobs relatively more timeslices to execute. An
ideal simulation study was performed in [18] to show
the benefits of interleaving hot and cool job executions.
However, neither performance study nor task switching
overhead was considered. In the 2D multicore domain,
Choi et al. [5] compared and implemented three different
task schedulers, heat-balancing, deferred execution, and
threading with cool-loops, to leverage temporal and spa-
tial heat slacks among application threads. The proposed
mechanisms are implemented in PowerPC5. Chong et
al. [6] proposed a 3D MPSoC thermal optimization al-
gorithm that conducts task assignment, scheduling, and
voltage scaling for a set of real-time workloads. The goal
was to slowdown the workloads as long as the deadlines
are met. This is quite different from our approach which
focuses on best performance and low thermal profile.

3 MOTIVATION AND RATIONALE

3.1 A representative floorplan
There have been a number of 3D CMP floorplans, as
shown in Figure 1 (a)-(c), proposed in literature [1],
[3], [19]. In these figures, cores are stacked on each
other, with extended cache or memory in between. We
observed that for a 3D stacked chip to be scalable in layer
count, it is inevitable to encounter more than one active
cores in one vertical core column, no matter how the
active cores and cache banks are placed in the floorplan.
Further, if we look at the distance of each core stack to
the heatsink (on either the top or bottom of the chip),
we can classify these flooplans into two categories.

Fig. 1. 3D chip multiprocessor floorplan options.

Figure 1(a) and (b) represent the first category in which
the distance of some core stacks, e.g. core stack 1 in (a), to
the heatsink is different from others such as core stack 2.
These flooplans are thermally heterogeneous, meaning that
the heat dissipation property of different core stacks is
different. For example, if the heatsink is on the bottom



3

of the stacked chip (as illustrated in Figure 2), core stack
2 is further away from the heat sink than core stack 1.
Thus, heat dissipation for cores in stack 2 will be more
difficult than those in stack 1. In contrast, Figure 1(c)
has a rather homogeneous thermal property because
all cores are equally distant from the heat sink. Our
preliminary work [28] focused only on homogeneous
floorplans while this paper considers both.

Despite these distinctions among different floorplans,
they still share some important property. The heat from
any core can quickly propagate vertically to other cores
above and below. For all these floorplans, the cache
layers almost serve as heat conductance between the core
layers. Considering this commonality among various
3D floorplans, we choose to use the floorplan in Fig-
ure 1(d) as a representative to first introduce the general
rationales behind our scheduling algorithms. Then, we
will discuss details of our algorithms for homogeneous
and heterogeneous flooplans respectively. In Figure 1(d),
there are two layers, and each layer contains four cores.
The cache banks are subsumed within each core.

3.2 Vertically adjacent layers have strong thermal
correlations

Fig. 2. A face-to-back 3D die stacking structure (adapted
from [3]), and the corresponding thermal model.

Similar to a regular 2D processor where heat dissipates
mostly in the vertical direction [13], 3D chips also have
better heat conductivity in vertical than horizontal di-
rection. This implies that vertically adjacent cores have
larger thermal impact among each other than horizon-
tally adjacent cores. We will use a simple heat transfer
model to explain this phenomenon. Figure 2 shows a
basic two-layer 3D chip structure (adapted from [3]).
We use a face-to-back bonding technology for better
scalability in layer count. The top layer is thinned for
better electrical characteristics and improved physical
construction of the through silicon vias for power deliv-
ery and I/O. A thin die also has better heat conductivity
than a thick die such as the bottom die. As we can
see, the distance between the two active silicon dies
are very small (< 100µm). This directly determines the
high heat conductivity between the two adjacent dies.
The heat transfer model for this 3D chip is shown on
the right of the figure. Here one die is modeled using

one node. Its temperature and power are denoted as T
and P respectively. R21 represents the thermal resistance
between the two nodes. R1 amb represents the thermal
resistance between the bottom node and the ambient air.
We omit the thermal capacitance here to model only the
steady state temperature (In our experiments later, both
thermal resistance and capacitance are modeled.). Let T1

and T2 be the temperature (relative to the ambient air)
in the bottom and top node respectively. Then,

T1 = R1 amb(P1 + P2) (1)

T2 = R1 amb(P1 + P2) + R21P2 (2)

Hence, the temperature difference between the two
nodes is R21P2. From the parameter used in literature [3],
[7], [13], [24], R21 is 0.0108− 0.0159K/W . P2 represents
the power generated by the entire die. This value is in
the range of 40−70W for a typical single-core processor.
Therefore, the temperature difference between the top
and bottom die is merely a 0.43− 1.11K.

Fig. 3. Thermal correlation between adjacent dies.

Such a strong thermal correlation between the two
adjacent dies can also be demonstrated from our sim-
ulation. Figure 3 shows a typical thermal profile of
running eight threads concurrently on eight cores as
floorplaned in Figure 1 (the experimental setup will be
introduced in Section 5). Here eight threads are eight
different benchmarks chosen from the benchmark suite
we use. We refer to vertically aligned two cores as a
core stack. We can see from Figure 3 that there are
four distinct clusters of temperature curves. Each cluster
has drastically different variations from others. However,
each cluster has two lines that are very close to each
other. Their variations are almost always synchronized.
The four clusters correspond to the four core stacks in the
floorplan. And the two lines in each cluster correspond
to the temperature variation of the two cores per stack.
This experiment shows clearly the strong correlation
between adjacent dies, as the temperatures for different
core stacks hardly have any dependencies among them,
but within each core stack, the temperatures of the two
cores are strongly correlated. Such correlation can still
be observed for a 4-layer floorplan in our experiments,
as the intermediate thin cache layers serve as good heat
conductors among their vertical core neighbors.



4

3.3 The die layers further from the heat sink are
usually hotter

Not only are the cores in a stack strongly correlated
in their temperatures, but also the ones on the top
are usually hotter than those near the bottom. This
has also been noted in the literature for steady state
temperatures [2], [19]. For clarity, we refer to the cores
further from the heat sink as “top” cores, as illustrated in
Figure 2. The intuition is that the bottom cores are closer
to the heat sink, therefore, their heat can be removed
more quickly. Here we give a more analytical analysis
taking into account the thermal capacitance as well.

Suppose in the thermal model depicted in Figure 2, the
thermal capacitance between the top die and ambient air
is C2. Then,

T2 − T1

R21
= P2 − C2

dT2

dt
, (3)

As mentioned earlier, P2, which represents the power of
a modern processor, has a typical value range of 40 −
70W . C2 represents how quickly temperature changes
from the top die. For a thin die within 100µm in a 2-
layer 3D chip, the thermal capacitance is reported as
23.6 − 37.4mW ·s/K [3], [24]. dT2/dt is the temperature
change rate within a short time. From our experimental
experience, and many other results in the literature,
temperature varies slowly with time. For example, we
observed a less than 6◦C increase in temperature in a
8ms window using Hotspot 3.0.2 for 3D chips. Hence,
the right hand side of equation 3 is usually positive with
a range of 12 − 52.3W . Therefore, T2 is usually higher
than T1.

We also performed simulations to testify the above
observation. We intentionally put the coolest job (lowest
average temperature in a 2D chip) in our benchmark
suite on the top die, and the hottest job on the bottom
die in a 2-core stacked 3D chip setting. The temperatures
of the two cores are shown in Figure 4. We can see that
the top core has higher temperatures than the bottom
layer almost always. Such an observation serves as a
guideline to the development of our heuristic scheduling
algorithm.

Fig. 4. Demonstration of the top die being hotter than the
bottom die.

4 SCHEDULING ALGORITHMS

The strong correlations among the cores in one stack
leads to a scheduling that considers the entire stack as a
whole. The fact that top cores are hotter than the bottom
cores suggests that threads within a core stack should
be placed with care. Furthermore, we take advantage of
this observation and introduce a new voltage/frequency
scaling mechanism that results in the fastest temperature
drop within the shortest amount of time, once the peak
temperature within a stack reaches the thermal thresh-
old. In this section, we present a sequence of thread
scheduling algorithms.

Since we have two categories of floorplans, we will
select a representative homogeneous floorplan as shown
in Figure 1(c), and a representative heterogeneous floor-
plan as shown in Figure 1(a). Both the homogeneous
and heterogeneous floorplan will be applied with five
algorithms: Baseline, Random, Round-robin, Balancing-
by-core, and our proposed Balancing-by-stack algorithm.

4.1 The baseline
We use the Linux 2.6 scheduler [4] as our baseline
algorithm. In this scheduler, each core has a task queue
that keeps track of all running tasks on that core. Each
queue contains two priority lists: active and expired list.
At runtime, the core selects to execute the tasks in the
active list, according to some policy. Once a task uses
up its time quota, it is moved to the expired list. If
all tasks are in the expired list, an epoch has finished,
and the scheduler iterates the process by swapping the
two lists. Each task in the active list has 10 − 200ms
of CPU cycle quota, depending on its own priority. By
default, the core switches to a different task every 100ms.
Thus, in our 8-core 3D chip, upon the scheduling interval
of every 100ms, the scheduler selects a task from each
core’s active list according to its original policy, and then
assigns it to a different randomly selected core.

This algorithm is simple, and has low context switch
overhead compared to other algorithms introduced later.
However, it may run into the risk of putting two hot
tasks into the same core stack, which may lead to
extremely high temperature that results in long and
harsh voltage/frequency scaling penalty to both tasks.
Moreover, once a poor scheduling has been made, it
stays in that condition for a long period of time (100ms
until the next scheduling time), exacerbating the already
serious thermal condition within the chip.

4.2 Random (Baseline+)
A quick fix of the baseline scheduler is to increase
the scheduling frequency. In the normal Linux OS, any
context switch interval between 10 − 200ms may be
used [4]. A minimum of 10ms is recommended to avoid
unnecessary context switch overhead. We used 8ms as
our scheduling interval mainly due to experimental
restriction on collecting the power traces. Also, 8ms is



5

close to the thermal constant of the core under testing.
However, the algorithm can be directly applied to any
scheduling interval recommended in Linux such as 10ms
if those restrictions don’t apply. Further, we take into
account the extra context switch overhead using an
8ms scheduling interval during our experiments. We
performed a real machine measurement on the time
required to perform a single context switch. For an 8ms
interval, it is ∼ 0.44%, a mild penalty that can be easily
offset by the performance gain from a better scheduling.

With the improved baseline scheduling algorithm
(termed Random to reflect the scheduling decision), the
chip can exit a poor thermal condition due to an un-
wise scheduling more quickly, resulting in less harmful
impact.

4.3 Round-Robin
The Random scheduler may result in uneven distribu-
tion of power and temperature as tasks are assigned
randomly to any core. A Round-Robin scheduler (RR)
can overcome this by rotating tasks among cores in
a fixed order periodically. Therefore, after N iterations
where N is the number of cores, each task has executed
on every core for one scheduling interval, e.g. 8ms.
This can help balancing the power and temperature
distribution in the long run.

4.4 Temperature balancing by core
An alternative way to balance the heat among the cores
is to explicitly arrange the tasks according to their power
consumption and the core temperatures. Essentially, a
high power task should be assigned to a low temperature
core. At each scheduling point, the scheduler sorts the
power consumption of all tasks and the current tempera-
ture of each core. It then assigns the task with the highest
power to the coolest core, the 2nd highest power to the
2nd coolest core, and so forth.

Such a mechanism should perform a better job in
balancing the temperature distribution among cores than
RR. However, recall that there is a strong thermal cor-
relation between two adjacent layers, and the cores in
one stack have only a small difference in temperatures.
This implies that if a core stack contains the hottest
core, it probably also contains the 2nd hottest core. When
the temperature Balancing-by-core algorithm is applied,
the tasks with the lowest and 2nd lowest power are
scheduled to this hot core stack. Similarly, the tasks with
the highest and 2nd highest power will be scheduled to
the coolest core stack. After that, the hottest/coolest core
stack will have the largest temperature drop/rise, which
may lead to temperature oscillations and task thrashing
between those two stacks, potentially leading to more
thermal emergencies. In that case, a RR, or a Random
algorithm may be a better solution.

Another issue with this mechanism is how the power
consumption of each task is obtained. Recently, there
has been proposals on obtaining the runtime power

consumption of an application through probing the per-
formance counters in a processor [15]. We also adopt this
approach and assume that each core is equipped with
such counters that can be used for power estimation.
Note that our power estimation need not be very accu-
rate, as we only need the sorted order of the power, not
the absolute values.

4.5 Temperature balancing by stack
The core-based temperature balancing algorithm can
create thrashing of tasks between the hottest core stack
and the coolest core stack, as we analyzed earlier. This
is because the algorithm, while trying to balance the
temperatures among all cores, treats each core indepen-
dently. However, as adjacent dies have strong temper-
ature correlations, cores in the same stack should in-
deed be considered together. Intuitively, we can assume
that each stack is a “super” core that has cores with
similar temperatures. Hence, scheduling of the tasks
within three dimensions can be reduced to scheduling
of “super” tasks within two dimensions. Apparently, a
super task is a set of tasks that are assigned to a super
core, i.e., a core stack.

4.5.1 Algorithm for homogeneous floorplans
We treat homogeneous and heterogeneous floorplans
differently in this algorithm as their super cores have
different thermal property. We first elaborate on the
algorithm for homogeneous floorplan.

Super tasks. Let L be the number of layers in a 3D chip,
and N be the number of cores per layer. As a super
core contains L cores, a super task should also contain
L tasks and there are N super tasks. The scheduling of
N super tasks among N super cores is now simply a 2D
problem, where a balanced temperature distribution is
desired. Hence, we first balance the power among super
tasks, i.e., let each super task have about the same power,
and then balance the temperatures among super cores
by scheduling a relatively high power super task onto a
relatively cool super core.

To balance the power among super tasks, we first sort
the powers of all N × L tasks. Let B1−N be N initially
empty bins. We will fill powers into these bins such
that each bin will contain L tasks, and the total powers
of each bin are about the same. In descending order of
powers, we put each power value into a bin that has
the smallest current total power among all bins. This
policy attempts to reduce the gap between the smallest
and the largest total power in each step, in order to
generate a relatively balanced total power across N
bins. Finally, all powers within a bin form a super task.
We remark that our policy is only a heuristic as an
optimum solution may require an exhaustive search. We
aim for a simple, effective, yet low-complexity heuristic
because the scheduler makes the decision at runtime.



6

Task distribution among and within super cores. The goal of
producing super tasks is to generate relatively balanced
power distribution across super cores. Once the super
tasks are formed, we sum up the temperatures of all
L cores in a super core, and sort them. Similar to the
previous procedure, we assign the hottest super core
with the super task of the lowest power, and so on.
Figure 5 shows an example of scheduling 8 tasks onto a
2-layer, 4-core-per-layer, 3D chip. Step (a)-(c) depict the
procedure except for how tasks within a super task are
allocated onto different cores within a stack.

As discussed earlier, the top cores are usually hotter
than the bottom cores in a core stack. Hence, we should
allocate tasks of higher powers onto the bottom cores
for better heat removal, and tasks of lower powers onto
the top cores. For example, if the temperatures of the
cores from bottom up are strictly increasing, then the
tasks allocated to them should have strictly decreasing
powers from bottom up. Figure 5’s last step illustrates
this policy in a two-layer floorplan.

Fig. 5. The temperature balancing-by-stack algorithm.
Scheduling procedure. To sum up, on every scheduling
interval (8ms in our case), the scheduler performs the
following steps:

1) Sort the powers of all tasks. Form super tasks. Sort
the power sums of the super tasks from low to high.

2) For each super core, sum up the temperatures for
all cores. Sort the temperature sums for all super
cores from high to low.

3) Create a sequential one-one mapping between the
sorted super tasks and sorted super cores.

4) In each super core, allocate the tasks in their in-
creasing power order onto the cores with decreas-
ing temperature order.

Our algorithm involves mostly sorting of the powers
and temperatures. Therefore, its time complexity is
O(NL log (NL)).

4.5.2 Algorithm for heterogeneous floorplans
The major difference in heterogeneous floorplans is that
different super cores have different heat dissipation ca-
pability due to their varying distances to the heatsink.
For this reason, even if two super cores are of the same
present temperature, the same super task assigned to
them will result in different future temperatures. There-
fore, unlike the algorithm for homogeneous floorplans
where the total power among super tasks should be well
balanced, the task bundling in heterogeneous floorplan
should intentionally create power imbalance to generate
balanced temperature distribution among super cores.
However, it is difficult to estimate how much power
difference we should create among super tasks because
the future temperature depends on not only power but
also the present temperature and duration of the power.
Therefore, for a given set of power values, our algorithm
forms the super tasks with minimum, moderate and
maximum total power difference (denoted as Min-diff,
Mod-diff and Max-diff respectively), and dynamically
make the selection of super tasks.

Let P1 · · ·Pn be n powers in ascending order. Super
tasks with Min-diff, Mod-diff and Max-diff are formed
as follows, assuming each super task contains L tasks:

• Max diff: {P1, P2 · · ·PL}, {PL+1, · · ·P2L}, · · ·
• Mod diff: {P1, PL+1, P2L+1 · · ·}, {P2, PL+2, · · ·}, · · ·
• Min diff: The principle is to balance the total pow-

ers of super tasks. This is identical to the algorithm
for homogeneous floorplans (Section 4.5.1).

Intuitively, when the temperature difference among
super cores is large, a super task with Max-diff is desired.
However, if the power difference among tasks is also
large, using the Max-diff may be an overkill. A Mod-diff
combination may be sufficient. Therefore, our decision
relies on both the temperature gradient (denoted as ∆T )
among the super cores and the power range (denoted as
∆P ) of the tasks. Let

θ =
∆T

∆P
. (4)

When θ is small, the temperature gradient (∆T ) is rel-
atively small compared with the power range (∆P ) of
the tasks. Super tasks of Min-diff are more appropriate
in this situation because we need only to perform mild
temperature adjustment. On the other hand, when θ is
large, a more aggressive task bundling to create power
difference is necessary, hence the selection will favor
Max-diff.

During our experiments, we use two heuristic θ val-
ues: θ1 = 0.5 and θ2 = 1 as the thresholds for choosing
different algorithms. The choice of these two values is
based on our experimental settings, and may vary with
thermal properties of the floorplan. If θ falls in the range



7

of [0, θ1), Min diff will be chosen. If θ is in the range
of [θ1, θ2], Mod diff is selected. If θ is greater than θ2,
Max diff will be selected.

4.5.3 A new thermal management scheme
A critical component in company with our proposed
scheduling algorithm is how to handle thermal emer-
gencies once a core temperature increases above the
hardware threshold. Conventionally, such a core will
be put to a low power state through DVFS. In a 3D
chip, since the top cores are usually hotter, thermal
emergencies usually occur in the top layers. Moreover,
our scheduler puts cooler tasks on the top layers, which
means that those tasks are more likely to undergo DVFS,
leading to their degraded performance.

The problems of such conventional thermal manage-
ment are twofold. First, the cooler tasks could be penal-
ized more often than the hotter tasks, which brings a
fairness issue among different tasks. Intuitively, hotter
tasks should be restrained by the system due to their
potential harmful impact to the chip. Second, applying
DVFS to the cooler tasks on the top layers does not yield
the same efficiency as in a 2D chip. This is because it
takes longer time to cool down the top cores due to their
high power neighbors at the bottom. In fact, it is because
of those hot bottom tasks are top cores overly heated.
Therefore, a more rational thermal management should
employ the scalings to the source of an overheating —
the bottom cores that are running high power tasks.

More formally, when core A of a super core S is
overheated, the thermal management will select core B
with the highest power in S to engage DVFS. B may or
may not be identical to A. Such a thermal management
strategy solves the two above problems effectively. First,
cool tasks are not penalized more often than hot tasks
because if a cool task becomes a temperature victim,
the hot task that caused the problem is penalized. Sec-
ond, all cores in S, including A and B, are quickly
cooled because the total power of S is reduced with
the maximum strength. For example in Figure 5, if the
super core containing the 20W-40W super task tripped a
thermal emergency on the 20W core, and suppose the
DFVS reduces the power of a core by half, then our
scheme will reduce the total power of this super core
to 20 + 40/2 = 40W , while the conventional thermal
management will only reduce it to 20/2 + 40 = 50W .
As we can see, if DVFS is applied to a relatively low
power task, the result is inferior because a task is being
penalized, but the total power in the chip is not reduced
as much. This is often the case for the temperature
Balancing-by-core scheduler as it tends to allocate cool
tasks on the top layer (since it is usually hotter).

As a result, our mechanism brings down the tempera-
ture of the hotspot at the highest speed, resulting in min-
imum penalty to the overall performance of this super
core. We will show later that our proposed temperature
balancing-by-stack scheduling algorithm with improved
thermal management results in the much less amount of

thermal emergencies and the much better performance
among all previous schemes.

5 EXPERIMENTAL METHODOLOGY
5.1 Floorplan setup
Our detailed experiments are conducted on floorplans
as depicted in Figure 1(a) and (c). Each floorplan has
four layers and a total of eight cores. We simulated 8 P4
Northwood cores in 3.0GHz clock frequency. Each core
has a size of 1.144 × 1.144 cm2. The remaining space
is left for extended cache or memory. So the die size
is 2.289 × 2.289cm2. Other physical parameters of the
floorplan are similar to [3].

5.2 Simulation tool and power trace collection
We used Hotspot [13] version 3.0.2 as our simulation
tool. We chose the grid model to experiment our 3D
floorplan. We substituted the 4th-order Runge-Kutta
method with TILTS [12] to generate accurate tempera-
tures at high speed.

Hotspot takes power traces as inputs, and temperature
variation within a die is a slower process compared to
other metrics such as IPC. Hence, we need to collect
extended power traces to model realistic temperature
variations such as warming up and cooling down due to
task scheduling. As mentioned earlier, we adopt the re-
cently proposed performance counter based method [15],
[25] to collect runtime hardware activities of a program
on a real machine. We obtained the power model (cal-
ibrated) from [15], [25] to produce long power traces
for programs from a Linux machine with a Pentium 4
core. The traces contain powers for each functional unit,
and all traces are complete execution of the programs in
SPEC2K.

For scheduling algorithms that require power informa-
tion (Balancing-by-core and Balancing-by-stack), we use
the power in the last 8ms interval to predict the power
in the next interval. That is, the scheduling decisions
are based on local power information. The scheduler
needs not to know whether a program is globally hot
or cool. Also, we use the last power predictor in the
scheduler due to its simplicity. We experimented with
more complex power predictors and found that their
overhead, both in time and space, is not appropriate for
on-line scheduling [27]. Most of the benchmarks exhibit
∼ 5% power mis-prediction rate. Our experiments show
that an error within 5% makes last power prediction
accurate enough for the scheduler.

5.3 Benchmark classification
We first ran the power traces of each benchmark to
obtain its temperature profile as shown in Figure 6.
We next classified these benchmarks as hot(power-
intensive), cool(power non-intensive), and mild(between
hot and cool). After that, we created 9 workload com-
binations, as listed in Table 1, each with one or more



8

hot tasks. The workload mixes without hot tasks are
less thermally critical and thus, are not considered here.
In Table 1, when the number of benchmarks in one
combination is less than 8, copies of the benchmarks will
be created to ensure that every core in the floorplan has
one task to run. This resembles the situation of running
parallel threads of the same program in multicore pro-
cessors.

Fig. 6. Temperatures of the benchmark in SPEC2000

TABLE 1
the combination of benchmarks in simulation

HC crafty mcf
HC sixtrack swim

HHCC bzip twolf art ammp
HMMC wupwise equake applu ammp

HM gzip mgrid
HM parser equake

HHMM crafty gzip mgrid apsi
HHMMMCCC gap twolf equake mgrid vortex ammp art swim
HHHHCCCC bzip gzip sixtrack wupwise ammp art mcf swim

5.4 DVFS implementation and context switching
overhead
We modified Hotspot to incorporate the hardware DVFS.
Every 80µs, 1/100 of a scheduling interval, Hotspot
checks if the temperature has trespassed the threshold.
If so, the voltage is lowered from 1.3V to 1.1V and
the frequency is reduced by 4/5. We charge 30 µs of
overhead on every voltage/frequency transition. During
a DVFS scaling, if the temperature persists above the
threshold after one 80µs, the scaling continues and no
additional DVFS switch overhead is charged. We do not
choose multi-level DVFS scheme to avoid unnecessary
switch overhead in every level transition.

Other overheads in our proposed scheduler is mainly
the increased number of context switches. We measured
this time in a Linux machine by enforcing a large number
of context switches between two tasks, and calculating
the average switch time from the increased execution
time of these two tasks. This quantity in our test machine
is ∼ 35µs. Later we will see that our proposed scheduler
can still outperform Linux baseline scheduler even with
much higher context switch frequency.

6 RESULTS AND ANALYSIS

The metrics we use to evaluate different scheduling algo-
rithms are peak temperature of all cores, the reduction
in time that a task stays above the thermal threshold
(termed “thermal emergency reduction” in later discus-
sion), and performance improvement in terms of total
execution time reduction of all tasks. The peak tem-
perature indicates how well a scheduler can alleviate
the worst cases of the thermal condition on-chip. The
thermal emergency reduction indicates the capability
of a scheduler to control the temperature below the
hardware threshold. The performance improvement is
the result of both the thermal emergency reduction and
the efficiency of lowering the temperature during an
emergency. Next, we present the results for homoge-
neous and heterogeneous floorplans separately.

6.1 Homogeneous floorplan

In the following we will introduce the experiment results
on the thermally homogeneous floorplan. Five sched-
ulers, Baseline, Random, Roundrobin, Balancing-by-core,
Balancing-by-stack, are tested in the experiments.

6.1.1 Thermal behavior comparison of different sched-
ulers

First, let us see a qualitative comparison among differ-
ent schedulers on the homogeneous floorplan. Figure
7 shows a close-up of temperature traces for 8 cores
running the HMMC workload under different schedul-
ing algorithms. Here, we did not enforce DVFS at the
threshold because otherwise, many high temperature
curves would be capped at the threshold. As we can see,
the baseline algorithm can result in a large temperature
gradient across different core stacks. A ∼ 13◦C differ-
ence between the hottest and the coolest core stack is
observed in this figure. For Random and RR scheduler,
the temperature gradient within the 3D chip gradually
reduces because their scheduling interval is 8ms, much
smaller than that in the baseline. Temperature gradi-
ent is between 4-6◦C in these schedulers. Finally, both
the Balancing-by-core and our proposed Balancing-by-
stack schedulers create the smallest temperature gradient
among all cores. The temperature curves of all cores
almost overlap entirely. The width of the temperature
band is 1-2◦C only, indicating an excellent balance of
temperature among the cores. However, the Balancing-
by-core scheduler generates more fluctuation. Note that
an ideal temperature balancer would create a 0◦C among
all cores. Hence, our proposed Balancing-by-stack algo-
rithm is only a couple of degrees from the ideal case.

6.1.2 Peak temperature reduction

Balancing the temperatures across the chip can help
to reduce the peak temperatures among all cores. Fig-
ure 8 shows the peak temperature generated from each



9

Fig. 7. A zoom-in of temperature variation over time under
different scheduling algorithms.

scheduling algorithm assuming there are no DVFS em-
ployed (otherwise, the peak temperature is just the ther-
mal threshold). We can see from the figures that baseline
algorithm can generate the highest peak temperature
of 118.31◦C. The Random, RR, Balancing-by-core and
Balancing-by-stack can reduce the peak temperature bet-
ter and better. Our proposed Balancing-by-stack schedul-
ing generates the second lowest peak temperature of
113.71◦C, a 4.6◦C lower than the baseline and a mere
0.03◦C higher than that of Balancing-by-core.

Peak temperature

118.31

114.69 114.15 113.68 113.71

105

115

125

baseline random roundrobin by_core by_stack

Scheduling algorithm

Te
m

pe
ra

tu
re

(C
)

Fig. 8. Peak temperatures of different scheduling algo-
rithms.

6.1.3 Thermal emergency reduction
A direct benefit from scheduling the tasks is the reduced
thermal emergency time, i.e. the time a core temperature
stays above the hardware thermal threshold. Note that
this metric does not necessarily correlate with the peak
temperatures reported in Figure 8, which are collected
under no DVFS. For example, a relatively low peak
temperature may still trip DVFS if temperature oscillates
around the threshold often. Figure 9 shows thermal
emergency time reductions from different algorithms,

normalized to the baseline case. As we can see, the
Random, RR and Balancing-by-core can reduce the emer-
gency time by 30.9%, 37.41% and 36.4% on average
respectively. Our Balancing-by-stack algorithm removes
the most emergency time in 8 cases of 9 benchmarks. An
average of 46.23% reduction is observed, with a range
of 6.06%-96.04%. Also, the Balancing-by-core algorithm
turns out to introduce as much emergency time as RR
algorithms even with lower peak temperature. This is
because (1) it tends to create temperature oscillations
among core stacks as discussed in Section 4.4; and
(2) it tends to allocate cooler tasks on the top layer
where DVFS is usually engaged for a long time. The
consequence is that the overall power in the entire chip
is not reduced as much as in other schedulers where
high power tasks can be scaled during emergencies.
Therefore, a Balancing-by-core scheduler may not be a
good scheduling candidate in practice.

Fig. 9. Thermal emergency time reductions in homoge-
neous floorplans.

6.1.4 Performance improvement

Corresponding to the thermal emergencies removed,
our proposed Balancing-by-stack algorithm achieves the
best performance speedup among all algorithms dis-
cussed. This is shown in Figure 10. The performance is
the total execution time of all 8 tasks in a workload.
The results are normalized to the baseline performance.
On average, the Balancing-by-stack achieves a 5.11%
speedup, while the Random, RR, and Balancing-by-core
algorithm achieve 1.45%, 1.72% and 1.65% improvement
respectively. This is primarily due to the amount of
thermal emergencies our algorithm removed, as well
as the high efficiency in handling them with our new
thermal management mechanism.

We also notice that in some occasions, the performance
may not improve even if the thermal emergency time
is reduced. This could happen when the temperature
floats around the thermal threshold, but does not in-
crease overly high. In such a scenario, there could be
many DVFS triggered, which introduce high transition
penalty and overkills the gains from scheduling. For
example in the HMMC workload, the Balancing-by-
core removed 18.01% of thermal emergency time in the
Balancing-by-stack, but its performance is 0.54% worse



10

than the Balancing-by-stack. Our Balancing-by-stack re-
moves more thermal emergency time than other sched-
ulers in th 8 cases of 9 benchmark combinations, and
therefore, achieves the most performance improvement.

Fig. 10. Performance speedups for homogeneous floor-
plans.

6.2 Heterogeneous floorplan
In addition to the five algorithms applied to the homo-
geneous floorplan, two additional algorithms are also
tested for heterogeneous floorplans. The first is the re-
vised Balancing-by-stack algorithm with dynamic super
task forming mechanisms. The algorithm is designed
to tackle the thermal heterogeneity of the floorplan as
discussed in Section 4.5.2. The second is a pseudo-
optimal algorithm that tests the quality of each discussed
algorithm. We term this algorithm a “1-step-optimal”
since it tries all task bundling mechanisms and chooses
the one that triggers the fewest DTMs in one next step.
Notice that this is not a true optimal algorithm which
would go beyond one-step to enumerate all possible
schedules and pick the optimum one (and so is termed
“1-step” only). Although it is not realistic to adopt “1-
step-optimal” algorithm online due to its complexity,
it does indicate the potential for improvement of the
discussed algorithms.

6.2.1 Thermal emergency reduction
Figure 11 shows the thermal emergency time reduction
for different algorithms normalized to the baseline case.
As we can see, Random and RR perform relatively
poorly compared with other algorithms because of the
heterogeneity in the floorplan. They achieve 12.41%
and 12.35% of thermal emergency time reduction re-
spectively. Our proposed dynamic Balancing-by-stack
algorithm achieves a total of 46.37% reduction, only
1.92% away from the 1-step-optimal on average, and
is better than the remaining algorithms. For example, it
removes 9.22% more emergency time than the original
Balancing-by-stack algorithm. This indicates that dy-
namically tuning of the task bundling is very helpful to
a thermally heterogeneous floorplan. The Balancing-by-
core algorithm is slightly better than dynamic Balancing-
by-stack in three cases: HHHHCCCC, HHMMMCCC
and HM gzip. This is because when ∆T and ∆P do

not change, our dynamic Balancing-by-stack algorithm
will select the same one from the fixed power bundling
schemes, while a slight re-ordering of core temperature
will cause Balancing-by-core to form a different and
better power bundle more flexibly. Also, Balancing-by-
core slightly surpasses 1-step-optimal in HHMMMCCC
and HM gzip workloads. This is because the 1-step-
optimal does not generate a global optimal schedule.

Fig. 11. Thermal emergency time reductions in heteroge-
neous floorplans.

6.2.2 Performance improvement
Compared with the thermal emergencies removed, our
dynamic Balancing-by-stack algorithm achieves the best
performance speedups on average among all the algo-
rithms except 1-step-optimal.

Figure 12 shows that Random and RR achieve 0.39%
and 0.31% speedup respectively, which is notebaly lower
than 1.45% and 1.72% speedup shown in Figure 10,
indicating that Random and RR are not as helpful
in heterogeneous floorplans as in homogeneous ones.
Balancing-by-stack achieves 2.46% speedup more than
Balancing-by-core, though Figure 11 shows it removes
6.74% less thermal emergency time than Balancing-by-
core. The reason behind this is that Balancing-by-core
tends to generate many overhead in DTM mode switches
though the total time above the emergency threshold
is low which was reported in Figure 11. Finally, the
dynamic Balancing-by-stack algorithm achieves the best
performance speedup of 4.78% with neglegible gap from
the 1-step-optimal.

Fig. 12. Performance speedups for heterogeneous floor-
plan.

7 CONCLUSIONS
We have demonstrated in this paper that OS task
scheduling is an effective approach to improve the ther-
mal conditions in 3D chip multiprocessors. It can reduce



11

the peak temperature within the chip, reduce the thermal
emergency triggering amount, and improve the overall
performance of the executing tasks.

In particular, we have shown that our proposed
scheduling mechanism, Balancing-by-stack, outperforms
other intuitive algorithms in the thermally homogeneous
floorplan because of the following three properties. First,
our scheduler takes into account the high thermal corre-
lations among the layers in one core stack, and schedules
tasks in bundles. Second, within every stack of cores,
hot tasks are allocated to the layers that are closest to
the heat sink for best heat dissipation. Third, upon a
thermal emergency, power scaling is engaged in a core
stack whose temperature exceeds the threshold, and to
the core that generates the largest power in this stack.
This can quickly cool down the core stack, reducing the
performance penalty imposed to the task.

We also presented a revised Balancing-by-stack algo-
rithm for heterogeneous 3D floorplans. This algorithm
refined task bundling mechanism to adapt to the hetero-
geneity in thermal distribution among the cores. Such
a refinement shows its strength over other algorithms
in both thermal emergency reduction and performance
speedup. Moreover, it achieves nearly the full potential
suggested by a local optimal algorithm.

REFERENCES
[1] Mans Swarthy, Rajeev Balasubramonian, “Exploring the Design

Space for 3D Clustered Architectures”, 3rd IBM Watson Conference
on Interaction between Architecture, Circuits, and Compilers (P=ac2),
Yorktown Heights, October 2006.

[2] K. Banerjee, S. Souri, P. Kapur, and K. Saraswat, “3-D ICs: A Novel
Chip Design for Improving Deep-Submicrometer Interconnect
Performance and Systems-on-Chip Integration,” Proceedings of the
IEEE, vol. 89, pp. 602–633, May 2001.

[3] Bryan Black, etc al., “Die Stacking (3D) Microarchitecture,” MI-
CRO 2006, 469-479

[4] D. Bovet, M. Cesati, “Understanding the Linux kernel, 3rd Edi-
tion,” O’Reilly Publisher, November, 2005.

[5] Jeonghwan Choi, “Thermal-aware Task Scheduling at the System
Software Level,” ISLPED’07, August 27-29, 2007, Portland, Page
213-218.

[6] S. Chong, L. Shang, and R. P. Dick, “Three-dimensional multi-
processor system-on-chip thermal optimization,” Proc. Interna-
tional Conference Hardware/Software Codesign and System Synthesis,
Sep. 2007

[7] Yangdong Deng, W. P. Maly, “2.5-dimensional VLSI system inte-
gration,” IEEE Trans. VLSI Syst., 13(6): 668-677 (2005).

[8] D. Donald, M. Martonosi, “Techniques for multicore thermal
management: classification and new exploration,” ISCA, pp 78-
88, 2006.

[9] Brent Goplen, Sachin S. Sapatnekar “Thermal via placement in
3D ICs,” ISPD 2005, pp.167-174.

[10] Brent Goplen, Sachin S. Sapatnekar, “Placement of Thermal Vias
in 3-D ICs Using Various Thermal Objectives,” IEEE Trans. on
CAD of Integrated Circuits and Systems 25(4), pp.692-709 (2006).

[11] Y. Han, I. Koren, C. M. Krishna, “Temptor: A lightweight runtime
temperature monitoring tool using performance counters,” the
3rd Workshop on Temperature-Aware Computer Systems, Held in
conjunction with ISCA-33, 2006.

[12] Yongkui Han, Israel Koren, C. Mani Krishna, “TILTS: A Fast
Architectural-Level Transient Thermal Simulation Method,” Jour-
nal of Low Power Electronics, 3(1): 13-21 (2007).

[13] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, and
S. Ghosh, “HotSpot: A Compact Thermal Modeling Method for
CMOS VLSI Systems,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 14(5):501-513, May 2006.

[14] W. Hung, G. M. Link, Y. Xie, V. Narayanan, and M. J. Irwin,
“Interconnect and Thermal-aware Floorplanning for 3D Micro-
processors,” the 7th ISQED, pp. 98-104, 2006.

[15] C. Isci, M. Martonosi, “Runtime power monitoring in highend
processors: methodology and empirical data,” MICRO, pp. 93-
104, 2003.

[16] J. Joyner, P. Zarkesh-Ha, and J. Meindl, “A Stochastic Global Net-
length Distribution for a Three-Dimensional System on Chip (3D-
SoC),” the 14th IEEE International ASIC/SOC Conference, 2001.

[17] A. Kumar, L. Shang, L.-S. Peh, N. Jha, “HybDTM: A coordinated
hardware-software approach for dynamic thermal management,”
DAC, pp. 548-553, 2006.

[18] E. Kursun, C.-Y. Cher, A. Buyuktosunoglu, P. Bose, “Investigating
the effects of task scheduling on thermal behavior”, the 3rd Work-
shop on Temperature-Aware Computer Systems, Held in conjunction
with ISCA-33, 2006.

[19] Gabriel H. Loh, Yuan Xie, Bryan Black, “Processor Design in 3D
Die-Stacking Technologies,” IEEE Micro, 27(3): 31-48 (2007).

[20] Shashidhar Mysore, Banit Agrawal, Navin Srivastava, Sheng-
Chih Lin, Kaustav Banerjee, Timothy Sherwood, “Introspective
3D chips,” ASPLOS 2006, pp. 264-273.

[21] M. D. Powell, M. Gomaa, T. N. Vijaykumar, “Heat-and-run:
leveraging SMT and CMP to manage power density through the
operating system,” ASPLOS 2004, pp. 260-270.

[22] Kiran Puttaswamy, Gabriel H. Loh “Thermal analysis of a 3D
die-stacked high-performance microprocessor,” ACM Great Lakes
Symposium on VLSI, 19-24, 2006.

[23] Kiran Puttaswamy, Gabriel H. Loh, “Thermal Herding: Mi-
croarchitecture Techniques for Controlling HotSpots in High-
Performance 3D-Integrated Processors,” HPCA, pp. 193-204, 2007.

[24] K. Skadron, K. Sankaranarayanan, S. Velusamy, D. Tarjan, M.R.
Stan, and W. Huang., “Temperature-Aware Microarchitecture:
Modeling and Implementation,” ACM TACO, 1(1):94-125, Mar.
2004.

[25] Wei Wu, Lingling Jin, Jun Yang, Pu Liu, Sheldon X.-D. Tan
“A systematic method for functional unit power estimation in
microprocessors,” DAC 2006, 554-557.

[26] Yuan Xie, Gabriel Loh, Bryan Black, and Kerry Bernstein, “Design
Space Exploration for 3D Architecture,” ACM Journal of Emerging
Technologies for Computer Systems, Vol. 2. No. 2, pp.65-103, April
2006.

[27] Jun Yang, Xiuyi Zhou, Marek Chrobak, Youtao Zhang, Lingling
Jin, “Dynamic Thermal Management through Task Scheduling,”
ISPASS, pp.191-201, 2008.

[28] Xiuyi Zhou, Yi Xu, Yu Du, Youtao Zhang, Jun Yang, “Thermal
Management for 3D Processor via Task Scheduling,” International
Conference on Parallel Processing, Sept. 2008.


