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This article describes our research on spoken language translation aimed toward the application
of computer aids for second language acquisition. The translation framework is incorporated into
a multilingual dialogue system in which a student is able to engage in natural spoken interaction
with the system in the foreign language, while speaking a query in their native tongue at any time
to obtain a spoken translation for language assistance. Thus the quality of the translation must be
extremely high, but the domain is restricted. Experiments were conducted in the weather informa-
tion domain with the scenario of a native English speaker learning Mandarin Chinese. We were
able to utilize a large corpus of English weather-domain queries to explore and compare a variety
of translation strategies: formal, example-based, and statistical. Translation quality was manually
evaluated on a test set of 695 spontaneous utterances. The best speech translation performance
(89.9% correct, 6.1% incorrect, and 4.0% rejected), is achieved by a system which combines the
formal and example-based methods, using parsability by a domain-specific Chinese grammar as a
rejection criterion.

Categories and Subject Descriptors: 1.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Language parsing and understanding; language generation; machine translation; K.3.1 [Com-
puters and Education]: Computer Uses in Education—Computer-assisted instruction

General Terms: Algorithms, Experimentation, Languages

Additional Key Words and Phrases: Speech translation, machine translation, dialogue systems,
computer-aided language learning

1. INTRODUCTION

Speech-to-speech translation is a challenging problem due to the nonstan-
dard/informal style typically associated with spontaneous speech as well as
errors caused by automatic speech recognition. To achieve a usable perfor-
mance level, most speech translation systems reported in the literature op-
erate within more or less restricted domains [Alshawi et al. 2000; Levin
et al. 2000; Ney et al. 2000; Gao et al. 2002; Casacuberta et al. 2004].
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Knowledge-lean statistical machine translation approaches [Brown et al. 1993]
are nearly universally embraced for the task of unrestricted text translation,
perhaps because it is more difficult to effectively exploit knowledge in the broad
domain. In restricted domains, however, it becomes possible to explore the use
of deep linguistic and even world knowledge in the translation process. For
instance, Levin et al. [2000] uses a semantic interlingua called Interchange
Format, and both the parsing and generation components use formal gram-
mar rules. Gao et al. [2002] also uses semantic information as an interlingua;
however, a statistical framework is adopted both for parsing and generation.
Some speech translation systems pursue a purely statistical machine transla-
tion approach [Alshawi et al. 2000; Ney et al. 2000; Bangalore and Riccardi
2002; Kuman and Byrne 2003; Casacuberta et al. 2004], while emphasizing a
tighter interface between the recognition and the translation components that
is typically achieved by way of lattice-based decoding algorithms or finite-state
models.

Our goal is to develop a speech-to-speech translation framework to be used as
a language tutor in computer-aided language learning (CALL) systems [Seneff
et al. 2004]. This presents special challenges because the quality of the trans-
lation must be essentially perfect to avoid teaching the student inappropriate
language patterns. To achieve this goal, we have proposed an interlingua-based
translation framework in which formal rule-based translation is augmented
with an example-based translation mechanism for improved robustness [Wang
and Seneff 2004]. The formal approach consists of separate parsing and gener-
ation steps, mediated by a semantic frame, our instantiation of the interlingua,
which is a hierarchical structure encoding detailed semantic and syntactic in-
formation of the input sentence. The formal method is able to produce very
high-quality translation for inputs within the coverage of the rules. However,
it has the disadvantage of hard failure on novel inputs, that is, when a user
uses expressions unforeseen by the rule developer or when the inputs are ill-
formed due to nonstandard usage or automatic speech recognition (ASR) errors.
To overcome this deficiency, we devised a more robust translation-by-example
mechanism in which the semantic frame is reduced to a list of key-value (KV)
pairs representing critical semantic information of the input sentence. The KV
information is then used to match against a KV-indexed translation corpus to
find an appropriate candidate. Since KV information can usually be extracted
even with keyword spotting, this method is much more robust to new linguistic
patterns and ill-formed sentences. The KV-indexed translation corpus can be
automatically constructed by running the formal translation procedure on a set
of sentences as described later in this article.

With the formal rule-based translation system, we are able to automatically
create a large bilingual parallel corpus from a monolingual (English) one, col-
lected over the years from a publicly available dialogue system in the weather
domain [Zue et al. 2000]. This has enabled us to explore other translation frame-
works such as purely statistical methods. Thus a second goal of this article is
to benchmark our system against other approaches to machine translation, in
particular statistical methods. Statistical machine translation systems have
achieved state-of-the-art performance for general-domain translation. We are
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interested in finding out whether they can achieve competitive performance for
narrow-domain applications given adequate in-domain data for training.

In the remainder of the article, we first give an overview of our transla-
tion framework in Section 2. We then describe each technology component in
more detail. Section 3 covers the interlingua representation which is derived by
parsing the input sentence. Sections 4 describes the natural language genera-
tion component. Section 5 describes the example-based translation framework
which includes a class-based back-off mechanism. Empirical results on manu-
ally and automatically derived speech transcriptions are reported in Section 6
with comparison to a baseline system obtained by training a phrase-based
statistical machine translation model for our application domain. Related re-
search is discussed in Section 7, followed by conclusions and future work in
Section 8.

2. SYSTEM OVERVIEW

Our translation framework adopts the interlingua approach and is integrated
with the dialogue system development by means of a shared meaning represen-
tation which we call a semantic frame. Given an input sentence, a parse tree
is derived, and critical syntactic relations and semantic elements in the parse
tree are extracted. The resulting semantic frame can be used to generate key-
value information for querying the dialogue system and to generate a sentence
in the original language (paraphrasing) or in a different language (transla-
tion). We adopt a formal approach in both the parsing and generation compo-
nents, while emphasizing portability of the grammar and generation rules to
new domains [Rayner and Carter 1997]. The parser [Seneff 1992b] utilizes a
context-free grammar augmented by a feature unification mechanism. It also
automatically acquires a probability model for the context-free rules by parsing
a corpus of unlabeled data. The generation is controlled by a set of rules and a
context-sensitive lexicon which can be fine-tuned to achieve high quality.

Our dialogue-based tutoring system employs two grammars, one to parse
the native language (L1) for translation, and one to parse the foreign lan-
guage (L2) for dialogue processing. We can make use of the L2 grammar to
achieve some quality assurance on the translation outputs. If the generated
translation fails to parse under the L2 grammar, we resort to an example-
based method in which semantic information encoded as key-value pairs is
used to search a precompiled indexed L2 corpus for a suitable candidate. If
both methods fail, the system will prompt the student to rephrase. We think
that a null output is better than an erroneous one, given the intended use of
our system. The example-based mechanism complements the rule-based gener-
ation in that it tends to be more robust for ill-formed inputs [Levin et al. 2000;
Frederking et al. 2002]. Figure 1 illustrates the flowchart of the translation
procedure.

Figure 2 summarizes the formal rule-based translation system, configured
for the scenario of a native English speaker learning Chinese. Translation is
achieved by parsing the English sentence to obtain a semantic frame and gen-
erating from the semantic frame a Chinese surface string. As illustrated in the
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Fig. 1. Flowchart of the translation procedure.
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Fig. 3. Schematic diagram for example-based translation method. (KV = Key Value)

figure, this procedure can also be used to automatically produce an indexed
Chinese corpus from a collection of English sentences to serve as a transla-
tion memory for the example-based method. In this case, a list of key-value
pairs is automatically generated from the semantic frame for each English in-
put which is then used to index the corresponding Chinese surface string in
the translation table. The translation table can also be augmented with any
available original Chinese data in which case the key-value index can be de-
rived using the Chinese grammar for parsing into a common semantic frame
representation.

The example-based translation method is very straightforward, given the
availability of a KV-indexed translation corpus. Figure 3 summarizes the proce-
dure, again for the scenario of translating English sentences into Chinese. The
English sentence is parsed to obtain a semantic frame from which a KV string
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is generated using trivial generation rules. The KV string is used to retrieve an
appropriate Chinese sentence from the translation table as the output.

3. PARSING AND THE INTERLINGUA

The first step in our translation procedure is to derive an interlingua repre-
sentation of the input sentence which is a structured object that hierarchically
encodes the relationships among major syntactic constituents of the sentence.
We use the TiNA system [Seneff 1992b] which utilizes a context-free grammar to
define allowable utterance patterns within each domain, augmented by a fea-
ture unification mechanism to enforce agreement and handle movement phe-
nomena. The system supports a probability model which is acquired by parsing
and tabulating frequency counts on a large corpus of data. A robust parsing
mechanism handles ill-formed queries [Seneff 1992a].

Constructing a grammar for each conversational domain (lesson plan) is
a time-consuming process that requires either large amounts of labelled in-
domain data to automatically induce and train a grammar, or linguistic ex-
pertise to compensate for the lack of data. In either case, manual effort is un-
avoidable, either to annotate the data, or to write grammar rules. It is thus
appealing to develop a syntax-based grammar that covers a broad domain so
that the manual effort would be a one-time investment that can benefit a wide
range of applications. The Penn Treebank project [Marcus et al. 1993] exem-
plifies such a philosophy in which linguistic information (syntactic structure
and part-of-speech tags) of naturally-occurring text (Wall Street Journal, the
Brown Corpus, etc.) is annotated. Facilitated by the Treebank corpus, a number
of data-driven statistical parsers have been developed, achieving high accuracy
on the same type of data [Collins 1997]. Unfortunately, the performance typi-
cally does not carry over to conversational domains where both the style and
the semantic content are quite different from those of the Wall Street Jour-
nal. There is no similar effort like Penn Treebank in collecting and annotating
conversational speech except for some limited effort in the SwitchBoard do-
main [Godfrey et al. 1992] and the ATIS air travel information domain [Price
1990]. In human-computer dialogue system development, a practical compro-
mise is to train a shallow semantic parser from coarsely (and possibly auto-
matically) labeled data [Tang et al. 2002; He and Young 2003] which usually
results in a relatively flat semantic structure. Such a representation, while
acceptable for dialogue processing, is generally not adequate for deriving an
accurate translation of the input.

Our solution is to construct a generic core grammar that is linguistically
rich and easily adaptable for different domains within the dialogue interac-
tion scenario. The grammar is induced semiautomatically, making heavy use
of existing resources such as several grammars developed for various dialogue
applications [Zue et al. 2000; Seneff and Polifroni 2000] as well as speech cor-
pora collected using those systems. We began by substituting domain-specific
nouns, verbs, and adjectives in the collected user data in various domains with
their corresponding part-of-speech (POS) tags. We then developed a largely
syntax-based core grammar to parse these pseudo sentences. The core grammar
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senltence
question
will sublject predlicate
pronoun intr_verb_phrase
. -
intr_verb intr_verb_args
weather_verb | locative temporal
in a_city day_list
city_lname this  weskend
| | |
will it rain in boston this weekend

Fig. 4. Parse tree of an example sentence “Will it rain in Boston this weekend?”

{c verify
:auxil "will"
:topic {g pronoun
:name "it" }
:pred {p rain
:pred {p locative
:prep "in"
;topic {q city
:name "boston" }}
:pred {p temporal
‘topic {q weekday
:quantifier "this"
:name "weekend" }}}}

Fig. 5. Semantic frame of an example sentence “Will it rain in Boston this weekend?”

contains top-level rules specifying detailed syntactic structure with part-of-
speech nodes to be expanded into words or word classes specific to a domain.
Rules for general semantic concepts such as dates and times are organized into
subgrammars that are easily embedded into any domain. Phrases for subgram-
mars are also extracted from existing speech transcripts which can be re-used
to train a statistical language model for the speech recognizer in the new do-
main [Seneff et al. 2003].

Figure 4 illustrates the parse tree obtained using our core English grammar
adapted for the weather domain. The subgrammars to parse the location phrase
“in Boston” and the date phrase “this weekend” (highlighted in rectangular
shades in the figure) are directly provided by the core grammar. Only domain-
specific nouns and verbs (e.g., rain as a weather_verb) need to be entered by a
developer.

The parse tree is then mapped to a semantic frame, our instantiation of
the interlingua. The term semantic frame came historically from our dialogue
system development research; in our current framework, it captures both syn-
tactic and semantic information to enable the generation component to produce
a highly accurate translation of the original input. The mapping from parse tree
to semantic frame is very straightforward: selected parse nodes are mapped to
constituents in the semantic frame (clauses, topics, and predicates, etc.), with
their hierarchical relationships in the parse tree preserved in the semantic
frame representation. Figure 5 illustrates the semantic frame derived from the
parse tree shown in Figure 4.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 2, July 2006.



Speech-to-Speech Translation for Computer-Aided Language Learning . 7

It is desirable, if not mandatory, to maintain high consistency in the se-
mantic frame derived from different languages to make it a true interlingua.
This is challenging when the ordering of major syntactic constituents in differ-
ent languages differs significantly as exemplified by wh-questions in English
and Chinese. Wh-questions in English are formed by preposing the wh-marked
constituent to the beginning of the sentence: “How much snow will they get?”
By contrast, in Chinese, wh-marked noun phrases occur in the same unmoved
position as their non-wh-marked counterparts:

tal men2 hui4 de2 duol shao3 yu3
they will get how much  snow

However, Chinese does utilize a similar forward-movement strategy to topi-
calize locatives and temporals for both statements and questions where the
presence of the question particle “ma5” encodes the interrogative form:

ming2 tianl bol shi4 dun4 hui4 xiad yu3 [ma5]
tomorrow Boston will  rain [question-particle]

This sentence corresponds to a statement “It will rain in Boston tomorrow.”
or a question “Will it rain in Boston tomorrow?” depending on the absence or
presence of “mab.”

To achieve a homogeneous representation, we utilize a trace mechanism
in our parsing algorithm, supporting constituent movement and restoring the
moved constituent to its underlying natural position in the derived semantic
frame. A complementary mechanism exists in the generation system to manage
the reverse process as described in the next section. The parsing rules guiding
the movements are included in the core generic grammar and are readily avail-
able to all domain-specific grammars without extra effort from the developer.

Any remaining language-dependent aspects in the semantic frame such as
features that are present only in certain languages (e.g., articles in English,
particles in Chinese, etc.), and special/idiomatic expressions are handled by
the generation component as described in the next section.

4. NATURAL LANGUAGE GENERATION

To generate well-formed strings in L2, we utilize the GENEsSIS language genera-
tion framework [Baptist and Seneff 2000]. It works from a lexicon which pro-
vides context-dependent word-sense surface strings for each vocabulary item,
along with a set of recursive rules that specify the ordering of constituents in the
generated string. Variability in the surface form can be achieved by randomly
selecting among alternative rules and lexical entries. For example, there are two
ways to construct yes-no questions in Chinese. We illustrated the statement +
question-particle construct earlier, but an equally correct alternative is the
so-called A-not-A construct:

ming2 tianl bol shi4 dun4 hui4 bu2 hui4 xia4 yu3
tomorrow Boston will-not-will rain
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The English example in Figure 4 can be alternatively realized as the Chinese
Statement + question-particle construct or the A-not-A construct with addi-
tional permutations on the ordering of the date and location phrases. Thus, the
same English input processed through the system four times could yield four
different variants. This is useful not only to the language student, but also to
system development since we can generate a rich set of Chinese sentences for
training the language models of the speech recognizer.

GEeNEsIs has recently been enhanced to include a preprocessor stage [Cowan
2004] which handles the transfer step in the translation process. It augments
the frame with syntactic and semantic features specific to the target language,
for example, deciding between definite and indefinite articles for noun phrases
translated from Chinese to English. In rare cases, the structure of the frame
must be transformed, to handle situations where a concept is expressed very
differently in the two languages, for instance, “What is your name?” translating
literally into “You called what name?” in Chinese.

One of the features of our generation mechanism is the ability to support
sharing of generation rules among a large number of elements that follow a
common generation pattern. Typically, there is a default rule for each of the
three major constituent types: clause, topic, and predicate, that covers the most
common generation pattern for each type. Verbs that can take a clause comple-
ment are grouped together into a common class, associated with a specialized
generation rule that handles the clause complement. For example, if a new
verb is introduced into the domain, instantiating generation coverage for itself
and its arguments/complements amounts to figuring out which group it logi-
cally belongs to and adding its surface form realization to the lexicon. Thus, we
feel that the generation rules, while domain-dependent, provide a substantial
domain-independent core rule base that would support an efficient port to a
new domain, a strategy that is analogous to our approach in parsing.

A difficulty in translating utterances in a database query domain is that
most of the utterances are questions which are encoded very differently in
different languages. We have given some examples of wh-questions and yes-no
questions in the previous section. An even more complicated situation arises
in spoken language by a prevalence of polite forms with embedded clauses,
“Do you know if it will snow tomorrow in Boston?” In English, an inversion
of the main clause is sufficient to encode the interrogative form, whereas in
Chinese, when the A-not-A construct is used, both the main clause and the
embedded clause are question-marked: “You know-not-know tomorrow Boston
will-not-will snow?” The particle form of the question obligatorily has only
one mab at the end of the sentence: “You know tomorrow Boston will snow
ma5?” As previously noted, the locative and temporal expressions, “Boston” and
“tomorrow” are typically brought to the front of their clause constituent for both
questions and statements in Mandarin.

We have solved the understanding half of the previous problem by employing
the trace mechanism in parsing to produce a homogeneous semantic frame.
Similarly, the generation system needs to rearrange the hierarchical structure
of the semantic frame to achieve the desired surface ordering in the target
language. Our generation system supports two mechanisms for dealing with
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movement which we call a push and a pull mechanism, respectively. The push
mechanism decouples the generation of a constituent from its placement in
the surface string, allowing a constituent which needs to be preposed to be
generated at its deep-structure location and placed typically at the head of its
parent clause. The pull mechanism allows the parent clause to control both
generation and placement of a deeply-nested constituent.

The handling of question form in Mandarin is intricate and involves both
the lexicon and the preprocessor in addition to the main generation processor.
It is rendered more complex in part because we wanted to be able to allow both
forms of questions to be produced as alternates. In the preprocessing stage, an
additional feature is introduced into the semantic frame whenever the clause
is a yes-no question. When the feature is present, the lexical entries for several
verbs, auxiliaries, and adjectives, for example, “know,” “will,” and “cold,” cycle
through two alternatives, one introducing the A-not-A question form and the
other introducing the g-particle based question form. In order to prevent a
duplicate mab for the parent and subordinate clauses in sentences of the form,
“do you know if ...”, a mechanism in the main processor is able to suppress the
second mab on the basis of a flag instantiated during production of the first one.

Another important aspect of high quality translation is the selection of the
appropriate word sense for multisense words. A simple example that is preva-
lent in the weather domain is the multiple interpretations of the word “what.”
Consider the two seemingly similar sentences “What is the weather tomor-
row?” and “What is the temperature tomorrow?” For “weather” the appropriate
translation for “what” is “zen3 me5 yang4” (literally “how”), whereas for “tem-
perature,” a correct translation is “duol shao3” which would literally mean
“how much.” Our generation framework allows the NP constituent to set up a
semantic flag which is then available as a conditioning context for selecting the
appropriate sense of the word “what.” Our lexical entry for “what” includes five
distinct conditioning contexts.

5. EXAMPLE-BASED TRANSLATION

The example-based approach requires a collection of preexisting translation
pairs and a retrieval mechanism to search the translation memory. Similarity
can be based on parse trees [Sato 1992], complete sentences [Veale and Way
1997], or words and phrases [Brown 1999; Levin et al. 2000; Marcu 2001]. It is
usually necessary to modify the optimal candidate sentence or to piece together
partially-matched fragments if the domain is unrestricted due to sparse data
issues.

It is natural in our system to index the translation table using some form of
interlingua. In a way, our example-based translation follows the same paradigm
(i.e., interlingua based translation) as the formal method: parsing and gener-
ation. The only difference is that the target sentence is generated by looking
up pre-existing examples using an interlingua as the matching criterion. The
complexity of the index determines the degree of correspondence between the
matched translation pairs: a more detailed index potentially leads to a closer
match but at the increased risk of search failure due to data sparseness. We
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{c eform

:WEATHER "rain"
:CITY "<CITY>"
:DATE "<DATE>"
:CLAUSE "verify"
:sentences (
"<CITY> <DATE>
"<CITY> <DATE>
"<CITY> <DATE>
"<DATE> <CITY>
"ni3 zhil dao4

hui4 xia4 yu3
hui4 bu2 huid
xia4 bu2 xiad
hui4 xia4 yu3
<CITY> <DATE>

ma57?"

xia4 yu3?"
yus?ll

ma5?"

xiad yu3 mab57"

- )}

Fig. 6. Example of a group of Chinese sentences with the same key-value index.

use very lean syntactic and semantic information, encoded as key-value pairs,
to index our automatically generated translation corpus. In the following, we
describe how to generate an indexed corpus as well as the retrieval mechanism
to search the corpus.

5.1 Generation of Translation Corpus

Our example-based translation begins with the construction of an indexed
translation corpus which is done automatically by utilizing the parsing and
generation components, along with a monolingual English corpus. Each En-
glish sentence is first parsed to yield a semantic frame from which a Chinese
translation is derived using formal generation rules as described in Section 2
and 3. In addition, a set of trivial generation rules are created to extract very
lean semantic and syntactic information from the semantic frame as key-value
pairs which can then be used as an index for the Chinese sentence. For exam-
ple, from the semantic frame shown in Figure 5, the Chinese translation would
be “bol shi4 dun4d zhei4 zhoul mo4 hui4 xia4 yu3 ma5?” (among other vari-
ations), and the KV representation is “WEATHER: rain CITY: Boston DATE:
this weekend CLAUSE.: verify.”

In order to prevent erroneous translations from confusing the student (who
is trying to learn the language), we use the L2 grammar developed for the
dialogue system to ensure that the translation output is a legitimate sentence.
We noticed that the grammar would occasionally reject good translations due
to coverage gaps in the L2 grammar. However, we think that this is a desirable
feature because those sentences will nevertheless fail in subsequent system
processing if the students choose to imitate them during their conversation
with the system.

To improve efficiency, all unique Chinese sentences with the same set of key-
value pairs (ignoring order) are grouped together in the indexed corpus. We can
further reduce the corpus size (and data sparseness) by mapping the values of
certain keys (e.g., city names, months, dates, etc.) to a generic class label, both in
the key-value index as well as in the sentence. We refer to these keys as classed
keys. Figure 6 shows a typical group of such indexed sentences/templates. Given
the thin KV index, it is possible to have sentences with very different surface
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forms map to the same index. This is a useful feature for language learning: we
can present multiple translation choices to a student for increased exposure to
variability.

5.2 Retrieval Mechanism

The basic function of the retrieval mechanism is to find a candidate sentence
whose KV index matches the input KV specification. To allow certain flexibility
in matching the key-value pairs and alleviate the data sparseness problem,
keys are differentiated into several categories depending on whether they are
optional or obligatory and whether or not the value of a key is masked dur-
ing the matching. These are specified in a header file in the indexed corpus in
order to allow a developer to flexibly modify the matching strategy. Each oblig-
atory key in the input KV specification has to be accounted for in the matching
process, while optional keys in the input can be ignored to avoid a matching
failure (but will be preferred otherwise). Value masking during retrieval typi-
cally applies to the classed keys (e.g., city names). After a sentence template is
retrieved, the values of class keys are first translated by simple lexical lookup
(“Boston” becomes “bol shi4 dun4”) and reinserted into the appropriate slots in
the surface string. This is equivalent to the technique of replacing lexical en-
tries with classes during example-based matching described in Brown [1999].
If more than one group of sentences is retrieved, the selection pool includes all
the groups.

We will illustrate the retrieval process with an example to highlight some of
the distinctions in the different key types. Assume we want to retrieve from the
indexed corpus a Chinese translation for “What is the chance of rain in Seattle
tomorrow?” The parsing and generation systems will first produce the following
key-value pairs for the input.

WEATHER: rain

CITY: Seattle
DATE: tomorrow
CLAUSE: wh-question

Suppose the corpus contains only the example shown in Figure 6, with
WEATHER as an obligatory key required to match on the key-value level, CITY
and DATE obligatory keys required to match on the key level, while CLAUSE is
an optional key required to match on the key-value level. All of the sentence
templates are legitimate candidates, and a possible translation would be:

xil ya3 tu2 ming2 tianl hui4 xia4 yu3 mab
Seattle tomorrow will  rain question-particle

If the CLAUSE were specified as an obligatory key matching on the key-value
level, then the search would fail to generate any output. For an input such
as “Will it rain in Seattle?”, the search would also fail because of the extra
obligatory key DATE in the corpus.

Notice that the example-based translation does not necessarily convey the
exact meaning as the input because the KV information can be lossy (e.g.,
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Multiple sentences
Hi, I am in Boston. What is the weather like today?
CITY: Boston WEATHER: weather DATE: today

False starts
How hot is it - How hot is it in Seattle?
CITY: Seattle WEATHER: hot

Recognition error
I am in Boston is going to rain today
CITY: Boston WEATHER: rain DATE: today

Fig. 7. Examples of problematic sentences with associated KV strings in development data.

the nuance of “chance of rain” is lost in the translation). However, since KV
can usually be extracted even with keyword spotting, this method is much
more robust to unexpected linguistic patterns and ill-formed sentences. Figure 7
illustrates some example sentences observed in our development data with
associated KV strings.

6. EVALUATION

We conducted evaluation experiments in the weather query domain using
English spontaneous speech data recorded from telephone calls to the publicly-
available JUPITER weather information system [Zue et al. 2000]. Our test data
consists of 695 utterances selected from a set of held-out data previously de-
fined to facilitate speech recognition evaluations. Utterances whose manually-
derived transcription can not be parsed by the English grammar are excluded
from the evaluation since they are likely to be out-of-domain sentences and
would simply contribute to null outputs. Metalevel sentences such as “start
over” and “goodbye” are also excluded since our system in its usage responds to
them rather than translating them. The test data have on average 6.5 words per
utterance. The recognizer uses the MIT landmark-based summiT system [Glass
2003] which adopts a finite state transducer-based search algorithm. The class
n-gram language model is automatically generated from the natural language
grammar using techniques described in Seneff et al. [2003]. The recognizer
achieved 6.9% word error rate and 19.0% sentence error rate on this set.

In addition to the held-out data, we also have over 120,000 transcribed utter-
ances collected via the JUPITER system used for training the recognizer’s acoustic
and language models. These data enabled us to derive a large indexed transla-
tion corpus for the example-based translation system. We also used these data
as a development set to improve coverage of the formal rule-based system.

The availability of this large quantity of domain-specific data also allowed us
to explore other machine translation methods, such as statistical-based transla-
tion, which typically requires large amounts of bi-text data for adequate train-
ing. We use the formal translation procedure to automatically obtain a paral-
lel English-Chinese bilingual corpus from the orthographic transcriptions. We
again use parsability by the Chinese grammar as a quality check of the gener-
ated translation which yielded about 50,000 high-quality parallel translation
pairs.
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Among statistical machine translation systems, phrase-based methods have
been shown to produce the best translation performance [Koehn 2004]. For
the baseline system, we trained a state-of-the-art phrase-based model [Koehn
et al. 2003; Koehn 2004] using the 50K English-Chinese sentence pairs in the
weather domain. The training process involves deriving word alignments using
GIZA++ [Och and Ney 2003] and extracting and scoring translation phrases
from the word-aligned data. During testing, we simply used the default settings
of the Pharaoh decoder [Koehn 2004] without special parameter tuning.

The translation quality was manually rated by a bilingual judge based on
grammaticality and fidelity where the input to the translation module is either
the manual transcription of the test utterances or the speech recognition out-
puts (I-best or 10-best lists). In all cases, fidelity is judged against the reference
orthographies so that errors caused by the speech recognition system (e.g., a
misrecognized date or city) result in translation errors. We designed a highly
efficient procedure to minimize the amount of required manual ratings as well
as to reduce human inconsistency and bias similar to the methodology adopted
in Ney et al. [2000].

The rating procedure works as follow. First, the translations for the test ut-
terances are generated under each test condition. The translations are then
grouped by the corresponding reference orthographies. In our experiments, we
generated 2,207 unique translations which are grouped by 599 unique refer-
ence orthography for the 695 test utterances. A bilingual judge then rated the
599 groups of translations without explicit knowledge of the testing condition
of each translation, which avoids bias towards any testing condition. The rating
procedure enables the judge to rate each unique translation pair once and only
once. The judge can also compare the translations within a group when rating
the quality of each translation which leads to improved consistency of the rat-
ings. Three categories are used in the manual rating: Perfect (P), Acceptable
(1), and Incorrect (I). It is possible for our system to produce null output
which is categorized as Failed (F). Figure 8 shows some example translation
outputs and the corresponding human ratings.

Two criteria are defined to evaluate the translation performance: accuracy
and success rate. Accuracy is defined as the percentage of perfect and acceptable
outputs over the total number of nonempty outputs, that is,

P+A

P+A+T ()

Accuracy =

Success Rate is defined as the percentage of perfect and acceptable outputs
over all data:

P+ A
SuccessRate = PrATILF (2)

In the following, we first compare the performance of the three individual
translation methods. We then report performance of the integrated system in
our language tutoring system. Some analysis of the translation outputs is also
provided.
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1. Can you give me a forecast for tomorrow?
la. ni3 neng2 bu4 neng2 gei3 wo3 ming?2 tianl deb tianl qi4 P
1b.  wo3 neng2 you3 ming2 tianl de5 tianl qi4 yu4 bao4 mab P
lc.  ni3 you3 ming2 tianl deb xin4 xil mab P
1d. ni3 you3 ming2 tianl deb tianl qi4 yud bao4 mab P
le. ni3 neng2 gei3 wo3 ming?2 tianl deb tianl qi4 mab P
2. What are the chances that it is going to rain in Boston tonight?
2a.  bol shi4 dun4 jinl wan3 hui4 bu2 hui4 xia4 jil luud shi4 duol shao3 yi2 xia4d mab I
2b.  bol shi4 dun4 jinl wan3 deb xia4 yu3 jil luu4 shi4 duol shao3 P
2c.  jinl wan3 bol shi4 dun4 hui4 xia4 yu3 deb jil luu4 shi4 duol shao3 P
2d.  bol shi4 dun4 jinl wan3 hui4 xia4 yu3 deb jil luud shi4 duol shao3 P
2e.  bol shi4 dun4 jinl wan3 hui4 xia4 yu3 mab A
3. Can we make snow in Boston?
3a. ni3 neng2 wo3 men2 make bol shi4 dun4 xiad xue3 mab I
3b.  bol shi4 dun4 you3 mei2 you3 xue3 I
3c.  wo3 men2 neng2 bu4 neng2 I
3d.  bol shi4 dun4 you3 xue3 mab I
3e. wo3 men2 neng2 mab I
3f.  bol shi4 dun4 hui4 bu2 hui4 xia4 xue3 I
3g. bol shi4 dun4 xia4 xue3 mab I
3h.  bol shi4 dun4 you3 bao4 fengl xue3 mab I
3i.  bol shi4 dun4 hui4 xia4 xue3 mab I

Fig. 8. Translation outputs and human ratings for three English inputs. (P = Perfect, A = Accept-
able, I = Incorrect)

Table I. Performance of Each Translation Method in Text Mode on
a Set of 695 Unseen Test Utterances

Quality P+A I F | Accuracy | Success Rate
Formal 633 + 27 31 4 95.5% 95.0%
Example 607 + 45 23 | 20 96.6% 93.8%
Statistical | 551 + 43 | 101 0 85.5% 85.5%

Table II. Performance of Each Translation Method on Speech Recognition
Outputs (I-Best or 10-Best) on a Set of 695 Utterances

Quality P+A I F | Accuracy | Success Rate
Formal (1-best) 585 + 31 55 | 24 91.8% 88.6%
Formal (10-best) 599 + 29 57 | 10 91.7% 90.4%
Example (I-best) 564 + 53 37 | 41 94.3% 88.8%
Example (10-best) | 575 + 50 42 | 28 93.7% 89.9%
Statistical (I-best) | 516 + 47 | 127 5 81.6% 81.0%

6.1 Performance of Individual Translation Methods

Table I and Table IT summarize the performance of each translation method
in text mode and speech mode, respectively. We do not impose a parsability
check in this configuration; however, the example-based method has an implicit
parsability check due to the way in which the translation corpus is generated.
The formal method achieves very good performance in text mode (95% overall
success rate). The example-based method alone did not outperform the formal
method in overall success rate, despite the fact that it is expected to be more
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robust. This is because the translation corpus only represents a subspace of
the outputs reachable by the generation method (due to the parsability check
as well as data sparseness) which resulted in more failures. We also suspect
that most of the text inputs are well-formed which gives the formal method
an advantage. The statistical method is always able to generate an output and
achieved an 85.5% success rate in text mode.

Not surprisingly, the performances degraded when moving to speech mode
for all methods. As expected, the degradation is smaller for the example-based
method than for the formal method. The example-based method has a com-
parable success rate to the formal method, while the accuracy is higher (due
to the implicit parsability check). Since our natural language parsing system
can parse N-best lists, we also explored using a 10-best list as the interface
between the recognizer and the translation system as shown in Table II. The
10-best list improved the overall success rate, although with a slight degrada-
tion in accuracy for both the formal and example-based methods because the
natural language understanding system is able to parse more utterances with
a deeper search space.

It is interesting to observe some of the characteristics of the outputs of dif-
ferent translation methods. For example, Sentence 2 in Figure 8, “What are the
chances that it is going to rain in Boston tonight?” represents a challenging
sentence that has long-distance dependencies and that was unobserved in the
training data. One of the perfect Chinese translations (2¢ in Figure 8) produced
by the formal method is:

jinl wan3 bol shi4 dun4 hui4 xia4 yu3 de5 jilluu4 shi4 duol shao3
tonight Boston will rain +s chance is how much

In comparison, the output from the statistical method (2a) is a string of
locally-(almost) coherent short phrases but does not correspond to an overall
well-formed Chinese sentence.

bol shi4 dun4 jinl wan3 hui4 bu2 hui4 xia4d jil luu4
Boston tonight will-not-will fall  chance

shi4 duol shao3 yi2 xia4 mab
is how much once question-particle

Notice that the incompatibility of “will-not-will” and “question-particle” is also
violated.

The output from the example-based method (2e) received an acceptable rat-
ing because the notion of chance is missing from the otherwise well-formed
translation output:

bol shi4 dun4 jinl wan3 hui4 xia4d yu3 mab
Boston tonight will  rain question-particle

This is because the KV string from the input, “CLAUSE: verify CITY: Boston
Date: tonight WEATHER: rain,”is simply mapped to a Chinese sentence equiv-
alent to “Will it rain in Boston tonight?” during example retrieval.
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Table III. Performance of Formal, Example, and Formal + Example
Methods in Text Mode on a Set of 695 Unseen Test Utterances (All
methods include a parsability check.)

[ Quality | P+A [ I [ F | Accuracy | Success Rate |
Formal 612+ 9 6 | 68 98.9% 89.4%
Example 607 +45 | 23 | 20 96.6% 93.8%
Formal + Example | 644 + 17 | 21 | 13 96.9% 95.1%

Table IV. Performance of Formal, Example, and Formal + Example
Methods on Automatic Speech Recognition Outputs (10-best list) on a Set
of 695 Unseen Test Utterances (All methods include a parsability check.)

[ Quality | P+A [ I [ F | Accuracy | Success Rate |
Formal 582+ 17 | 19 | 77 96.9% 86.2%
Example 575 +50 | 42 | 28 93.7% 89.9%
Formal + Example | 610 +21 | 43 | 21 93.6% 90.8%

Sentence 3 in Figure 8 represents an out-of-domain query for which all
methods produced incorrect translations, however, in very different ways. The
statistical method simply strung together word/phrase translations (with the
word “make” untranslated) which resulted in “you can we make Boston snow
question-particle” (output 3a). The generation method produced the Chinese
equivalent of “can we” (3¢ and 3e) because the predicate “make” is absent from
the generation rules. The example-based method produced the equivalent of
“Will it snow in Boston?” (3b,3d,3f-i) because the KV string for the input is
simply “CLAUSE: verify CITY: Boston WEATHER: snow.”

6.2 Performance of Integrated System

In our deployed language tutoring system, we adopt the strategy of prefer-
ring the formal generation-based output if it can be accepted by the Chinese
grammar. The formal method is able to achieve high fidelity in the translation,
preserving syntactic correspondence between English and Chinese as much as
possible. A parsability check is imposed on the formal method, and we back off
to the example-based method if the generation method failed.

Table III and Table IV summarize the performance of the combined formal +
example method with comparison with each individual method (with parsabil-
ity check), in text mode and speech mode, respectively. Notice that the accuracy
of the formal method increased to almost 99%, along with the drop in success
rate down to below 90%. This drop is partially due to coverage gaps in the
Chinese grammar used for checking. The example-based method is unaffected
because of the implicit checking already in place in the translation corpus, and
out-performs the formal method in this configuration. However, the combined
method is able to improve both the success rate and accuracy over the example-
based method alone in text mode. Similar trends can be observed in speech
mode, although the performances of all methods have degraded, as expected.
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6.3 Error Analysis

We performed a detailed analysis of the errors made by the integrated system
(formal + example) in speech mode. We observed that 18 of the 43 incorrect
translations (41.9%) are caused by speech recognition errors (insertions, dele-
tions, and substitutions) on city names and dates. An additional 11 incorrect
translations (25.6%) are caused by recognition errors on what type of infor-
mation the user is seeking (weather, high/low temperature, etc.). Since our
language learning system paraphrases the recognized user query and plays it
back to the user, these types of errors are unlikely to cause confusions because
the user is aware of the context of the translation error.

There are 11 errors (25.6%) caused by gaps in domain coverage which include
(arguably) 7 out-of-domain queries, such as:

—Can we make snow in Boston?

—What is a tornado?

—Should I go to work tomorrow morning?
— Where is your location?

We hope that these types of queries will occur minimally among language learn-
ers with adequate user education and lesson preparation.

The remaining 3 incorrect translations are caused by errors/inadequacies in
the natural language understanding and generation components. For example,
“What is the weather going to be like in Boston tomorrow Tuesday?” was inter-
preted as “tomorrow and Tuesday” by the parser. Another query “Do you only
know information about weather?” was translated into the Chinese equivalent
of “Do you know weather information?” because the adverb “only” was missed in
generation. These errors are more harmful to the language learners, but, fortu-
nately, they account for less than 7% of the errors in our system. Furthermore,
once identified, they can easily be corrected in the rules used by the parsing
and generation components.

7. RELATED WORK

Spoken language translation first emerged as an attractive, if challenging, re-
search topic in the mid 1980’s, driven in part by the ambitious goals set forth by
the then newly, formed Advanced Technology Research (ATR) laboratories in
Japan. ATR played a leadership role in advocating the example-based transla-
tion method (EBMT) [Sumita and Iida 1991; Sato 1992; Iida et al. 1996; Sumita
2001; Shimohata et al. 2003] which is particularly well suited to languages with
widely differing word order such as English and Japanese. While initial efforts
involved extensive manual annotation of training data, techniques for utter-
ance tagging eventually became more automatic, and indexing in the original
EBMT has migrated towards a new paradigm called TDMT (transfer-driven
MT) where examples are decomposed into phrasal units and a second stage
assembles the retrieved phrases into well-formed sentences [Seligman 2000].
While our own approach to EBMT does exploit classes for generalization, we
have not yet attempted to break down sentences into phrasal units for increased
generality from our example templates.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 2, July 2006.



18 . C. Wang and S. Seneff

The Multilingual Automatic Translation System (MARS) at IBM [Gao et al.
2002] is a project aimed at conversational speech-to-speech translation between
English and Mandarin Chinese for limited domains. Their approach is similar
to ours in that translation is modeled as a cascade process of parsing and gen-
eration. However, the MARS system uses only semantic information in the
interlingua and adopts a statistical approach to parsing and natural language
generation. The semantic parser and natural language generation components
are both trained from annotated domain-specific data, thus no handcrafted
grammars or rules are needed. In contrast, our interlingua representation cap-
tures both syntactic and semantic information and the parsing and generation
adopt a formal framework.

The system in the literature that most resembles our formal method is proba-
bly the Janus system [Levin et al. 2000]. In fact, over the years, their strategies
have exhibited marked parallels to ours even when we were mainly concerned
with multilingual dialogue systems. They, like us, utilized semantic rules to
encode domain-specific knowledge and advocated parsing from multiple lan-
guages into a common meaning representation. Our multilingual systems al-
ways included a paraphrase of the user query that was displayed or spoken
back to the user to confirm understanding and help maintain dialogue coher-
ence in the face of possible recognition errors. Likewise, their translation sys-
tem offered a paraphrase in the source language to the speaker for verification.
Furthermore, both systems have focused on the travel domain, and both have
been working towards the goal of merging grammars from multiple domains
into a single shared grammar resource with common elements such as dates
and times compartmentalized into subgrammars. We have taken this exercise
a step further in capturing syntactic structure in the upper nodes of the parse
tree, thus providing a more detailed accounting of the syntax and easing the
pain of grammar development for new database query domains.

Spearheaded by the ambitious efforts of IBM [Brown et al. 1990, 1993], sta-
tistical machine translation emerged in the early 1990’s as a powerful technique
for handling the many ambiguities in language without requiring painstaking
effort from linguists. For text translation, statistical methods are viewed today
as offering clear advantages, particularly when bilingual corpora can be dis-
covered on the Web and sentence alignments can be largely automated [Och
and Ney 2003]. Most statistical translation methods decompose the problem
into three components: a lexical model, an alignment model, and a target lan-
guage model [Ney et al. 2000]. Phrase-based statistical MT, which is relatively
new [Wang and Waibel 1998; Och et al. 1999; Alshawi et al. 2000; Zens et al.
2002; Koehn et al. 2003], improves word-based alignment models by exploiting
shallow phrase structures. Phrase-based techniques have been quite competi-
tive in recent evaluations [Koehn et al. 2003].

8. CONCLUSIONS AND FUTURE WORK

In this article, we have demonstrated an effective approach for domain-
restricted speech-to-speech translation from English to Mandarin Chinese,
based on a combination of formal and example-based translation techniques.
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Evaluated on an unseen test set of nearly 700 utterances, we have shown that
the system can outperform a state-of-the-art statistical method. We believe
that formal methods are appropriate for the situation where translation quality
needs to be extremely high but the domain is restricted. Statistical methods are
limited by the localized patterns observed in the training data and are therefore
sometimes unable to handle long-distance dependencies appropriately. Using
formal methods to create a translation corpus for the example-based approach
is an effective strategy for handling ill-formed sentences, consequential to ei-
ther spontaneous speech disfluencies or recognition errors.

While we believe that our methodology will be effective for language learning
applications, we have yet to demonstrate that this is the case. We also want to
port it to many other applications besides weather to form a suite of lesson plans
on different topics. Our syntax-based formulation of the English grammar will
ease the burden of porting to other domains. We are also conducting research
on automatic techniques to induce the Chinese grammar given the English-to-
Chinese translation framework [Lee and Seneff 2004].
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