

Abstract—Recently, robot technology has gained popularity

because of labor shortage, ability to work for long hours, etc.
Remote-controlled robots are especially being put to practical
use for several purposes such as conveying and security systems,
etc. This is because their safety is higher than autonomous
robots in addition to their easier development. However,
remote-controlled robots require a user interface that can
control the robot actions and show information captured by
robot to the users. In this work, we develop a simple interface
for mobile robots. In robot actions, movement of the robot itself
is most important. To use this interface, the users need only
point to the position on a screen where they want the robot to
move to. After that, the interface controls the robot movement
between the current and the target positions autonomously.
Therefore, to move the robot to the selected point, the robot
needs to calculate the target's 3D location. To calculate the 3D
location, we use motion stereo vision that uses a single camera.
Using this method, the interface can be applied to many robot
systems. In this paper, we proved the effectiveness of the
proposed method by performing experiments in real
environments.

Index Terms—Robot interface, motion stereo, single camera.

I. INTRODUCTION
Recently, labor shortage due to the low birthrate and aging

population has become a major social problem in Japan. In
addition, Japanese industrial technologies have been
declining because of competition from countries with
low-cost labor. Robot technology is one of the methods that
could solve the problems because the robots can replace the
workforce at low cost. This idea has been discussed for about
10 years. However, the robots have not yet become practical
due to several obstacles. Of these problems, robot
productivity is the main one. Currently, research institutes
and companies are making robots from scratch. However,
many of the processes are unnecessary. The common
functions such as communication and motor control should
be reused as function modules. Although RT (Robot
Technology) middle-ware [1], [2] which makes it easy to
develop robots is proposed and developed, it is seldom used
because of low-feasibility, few supported hardware, etc.
Moreover, the problems of safety, including whether the
robots are safe around humans, are a major concern. However,
although there are many obstacles in the spread of the robots,
they are certainly needed. A remote controlled robot is one of
the robots with comparatively high safety. They are
commonly used for conveying, security, rescue, etc. They

Manuscript received July 10, 2012; revised August 29, 2012.
The authors are with the graduate School of Advanced Technology and

Science, The University of Tokushima, Japan. (e-mail:
karunga@is.tokushima-u.ac.jp).

demand a user interface which receives images from the
robot and sends orders from the user to the robot. Currently,
various devices and methods are used. However, they have
several problems. For example, in a control method which
sends commands such as FOWARD, ROTATION and STOP,
it cannot control the minute movement of the robot.
Additionally, another method using game controllers is
difficult for new game users. A method using display of the
images sent from the robot, directly displaying only the
images is common. However, in this method, it is difficult for
the user to get the depth of the objects. Moreover, if the
distance to the object is too short, the user cannot see it. To
solve the problem, an interface that shows the information of
range sensors together with the image and one that shows
overhead view from another camera mounted above are
proposed. However, these methods are expensive and lack
versatility.

 Based on these reasons, in this work, we propose an
easy-to-use interface that can be applied to many robots.
Although various kinds of actuators are used on robots,
almost all robots have mobile actuators. To control the
movement of the robot easily, the interface should be
intuitive. For intuitive control, the robot should be controlled
by a single instruction from the user indicating the point
where they want the robot to move to. For example, the target
could be an object which the user wants to carry in the
conveying robot. The only task required from the users is a
single identification of the target on the image sent from the
robot. Therefore, the movement of the robot should be
autonomous. For autonomous movement, the robot needs to
know the target’s 3D location. To reconstruct 3D position,
stereo cameras and range sensors are generally used [3], [4],
and [5]. However, some robots which do not have these
sensors also exist. In this work, we are aiming to develop the
interface with versatility. Therefore, the robots equipped with
single camera and odometry are targeted. 3D reconstruction
method using a single camera has been proposed. Especially,
motion stereo vision is often used [6], [7], and [8]. This is a
method that reconstructs 3D location by same fundamental
methods such as stereo vision, after capturing images by
camera motion. In stereo vision, the longer the base-line
length, the more the reconstruction accuracy is improved.
Motion stereo vision can make the base-line longer, because
base-line is the movement of the camera. Therefore, it can
calculate 3D position with higher accuracy. However,
odometry (movement calculation method using rotation of
wheels) data often includes some error due to tire slips. In
that case, motion stereo vision cannot reconstruct 3D position
accurately. We consider that motion stereo vision is suitable
for wheeled mobile robots, and use the method. Some
previous studies using motion stereo vision already exist.

A Simple Interface for Mobile Robot Equipped with Single
Camera using Motion Stereo Vision

Stephen Karungaru, Atsushi Ishitani, Takuya Shiraishi, and Minoru Fukumi

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

63310.7763/IJMLC.2012.V2.204

However, they have set conditions such as the following.

• Experiments are only simulations.
• Off-line processing due to high processing cost

using high-resolution image.
• Unnecessary information such as background and

floor is removed in advance.

Additionally, in camera movement, gaze movement is
avoided, because reconstruction accuracy is reduced. In our
proposed interface, the robot moves forward after facing the
target. Thus, the possibility that gaze movement will occur
depending on the angle of the camera is high. From this
reason, we propose a method that can perform at high
accuracy even in gaze movement, and confirm the
effectiveness using experiments. Moreover, 3D positions are
calculated on-line in unknown environments.

II. STRUCTURE OF INTERFACE

A. Supported Robot Systems and Environments
Fig. 1 shows an example of the structure of the

remote-control robot system. The robot and the control
systems need not be at the same location. The user side
terminal and the robot are connected by a network. The robot
receives surrounding information from equipped sensors, and
sends it to the terminal. The user can see this information on a
screen, and if the user wants to move the robot, the user sends
a command. Then, the robot should proceed depending on it.
In this work, we assume that the terminal consists of a display
and mouse for PCs. Instead of these devices, we can also
allow the user to use touch panels. We also suppose that the
robot has a single camera and an odometry system. Odometry
is a method using rotation angles of tires (motors) to calculate
self-location. As the odometry devices, rotary encoders,
servomotors and stepping motors are usually used.

 In this work, the targets are static and unknown objects
having texture. Currently, the robot is designed to move on
flat floors. There should also be enough illumination which
enables capture of the images by the camera.

 Fig. 1. Structure of remote-control robot system

B. Movement Algorithm
The interface can control the robot movement by only the

instruction about the target. Fig. 2 shows the algorithm used
by the robot to reach the target point from the target
instruction.

Fig. 2. Flow of robot movement

• [Step 1]The users can see the images sent from the
robot on a display. They can then point to a position
to which they want the robot to move to.

• [Step 2]The interface calculates the direction to the
target, and turns the robot to face to the target. The
instruction of the target is only once, therefore, the
interface tracks the target on the images to keep
target location.

• [Step 3]The robot advances a set constant distance,
and the interface calculates the distance to the
target.

• [Step 4]The robot moves to the target position.

In this way, there are no meaningless movements because
we separate the rotation and forward movement operations.

III. 3D POSITION CALCULATION

A. Flow of Algorithm
Fig. 3 shows the flow of process in the proposed interface.

We will discuss each method in detail later.

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

634

Fig. 3. Flow of algorithm

B. Direction Calculation
Fig. 4 shows positions relationship between the target and

the camera during target instruction in a pinhole camera
model. Horizontal axis shows the X axis, vertical axis shows
the Z axis. sx is physical size of image sensor on vertical
direction.

Fig. 4. Pinhole camera model in direction calculation

The angle θ to the target based on the optical axis is
calculated by eq. 1.
ߠ = ݊ܽݐܿݎܽ ௫௙ (1)

where, x is the value of normalized image coordinate, f is
focal length.

Therefore, the interface calculates the target direction and

rotates the robot by the following algorithm.

1. The image coordinate (u, v) clicked by the user is set
as target center, and it is transformed to normalized
image coordinate (x, y).

2. The direction θ is calculated from its coordinate x
and eq. 1.

3. The interface rotates the robot θ degrees to face to
the target. At this time the interface must keep track
of the target on the images, because the target

instruction is only once. The tracking method used
is the KLT-Tracker algorithm.

4. After rotation, the direction is re-calculated to
confirm whether the robot rotated accurately. If the
robot could not rotate exactly, the robot adjusts
itself.

C. Distance Calculation
The distance to the target point is calculated by motion

stereo vision. The algorithm is as follows.

[Feature Point Extraction]

First, feature points are extracted by KLT corner
detector using the image (Image 1) captured after
rotation.

[Feature Point Tracking]
Secondly, the robot advances a set constant distance,
and captures Image 2. On the Image 2, the feature
points are tracked using a KLT-Tracker.

[Outlier Removal]
The tracking of the feature points sometimes failed, and
these points cannot reconstruct the 3D location exactly.
Therefore, we should detect and remove these points.
This algorithm is as follows.

• If optical flow (movement vector of feature point on
image before and after motion) is too short or long,
the feature point is removed as a failed tracking
point.

• A straight line (y=ax+b) is calculated.
• Repeat 1 and 2 for every feature points.
• Average coordinate of intersection points for each

optical flow is calculated as disappearance point
(Fig. 5).

• Distances between the disappearance point and the
straight lines d are calculated (Fig. 6). If d is larger
than threshold value, the feature point is removed as
outlier.

Fig. 5. Disappearance point

Fig. 6. Remove outlier

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

635

[3D Position Calculation of Feature Point]
3D locations are calculated from the correspondence
coordinates of the feature points that were successfully
tracked. In this step, eq. 2 is used.
ܥ = ‖ܺ − ଵܺ݉ଵ෦‖ଶݏ + ‖ܺ − ଶܴ݉ଶ෦ݏ − ଶ (2)‖ݐ

where, ݉1෦and ݉2෦ are extended vectors of the projected point,
and s1, s2 are scalar expressing the vector length.

[Calculation of Distance to Target Point]

The distance to the target is calculated from the 3D
position of the feature points. In this method, we
assume that feature points of the target are located in
constant distance from the pointed coordinate, and a
median of these 3D positions Z is the distance to the
target.

Fig. 7. Calculation of distance to target

IV. EXPERIMENTS
Before mounting the proposed interface on the robot

system, its effectiveness is confirmed. First, the direction is
calculated and then the distance calculation is performed.

A. Common Conditions
 In this work, captured image size is 640x480 pixels and

frame rate is 15 fps. Additionally, intrinsic parameters are
pre-calculated by camera calibration. Moreover, information
about background is unknown and projected scene is a real
environment.

B. Direction Calculations
[Conditions]

The direction to the target is approximated to within one
degree, because the robots with higher precision are few.
Additionally, the calculation area is set to 15 degrees
right and left of the optical axis. This is because in many
cases that horizontal angle of view of standard cameras
is about 40 degrees.

[Results]
The experimental results are shown in Table 1. The
directions are calculated in 5 degrees steps. From the
result, it can be confirmed that the direction could be
calculated accurately using the proposed method.

C. Distance Calculations
[Conditions]

In this experiment, the camera captures the images while
being manually moved. This situation is shown as Fig. 8.
The target is a box put on the floor about 1000 mm away

from the first camera position. We set 300 mm as the
motion. Actual captured images are shown as Fig. 9 and
10.

TABLE I: RESULTS OF DIRECTION CALCULATION

True value [mm] Calculated value [mm]

15 15

10 10

5 5

0 0

-5 -5

-10 -10

-15 -15

Fig. 8. Situation of experiment

Fig. 9. Image 1 (before motion)

Fig. 10. Image 2 (after motion)

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

636

 [Feature Points Extraction]
From image 1, the effective feature points to track are
extracted using KLT corner detector. The results are
shown in Fig. 11. Red points are the extracted feature
points.

Fig. 11. Results of features extraction

[Feature Points Tracking]

After motion, the feature points extracted in image 1 are
tracked in image 2. The results are shown as Fig. 12. Red
points are the extracted feature point locations. Aqua
points are the tracked feature point locations. Red lines
show the optical flow.

Fig. 12. Results of features tracking

[Removal of Outliers]

The results of the tracking contain some false tracked
feature points. Therefore, we detected and removed these
feature points as shown Fig. 13. The yellow circle is the
average point of the intersections, and white circle is a
set constant distance from it. We set 50 pixels as the
constant distance in this experiment. As shown, green
lines do not pass through the set circle and represents
failed tracking. Conversely, red lines are successfully
tracked. The feature points inside of white circle are the
target feature points.

Fig. 13. Result of outlier detection

[3D Position Calculations of Feature Points]

Fig. 14 shows the results of 3D reconstruction before
removing outliers. In addition, the results after that are
shown in Fig. 15. Fig. 16 shows the 3D location of the
feature points with real objects location marked in.
Horizontal axis represents X-axis, and vertical axis
represents Z-axis.

Fig. 14. Results of 3D feature positions (before remove outlier)

Fig. 15. Results of 3D feature positions (after remove outlier)

Fig. 16. Results of 3D position with real objects

[Calculation of Distance to Target Point]

The median of the feature point locations Z in the target
area (blue circle) was 991mm (Fig. 17). This is the
distance to the target. The true value of the distance is
1000mm; therefore, calculation accuracy is 99.1%.

Fig. 17. Results of calculated target distance

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

637

[Consideration]
The feature points that could not be correctly tracked by
the KLT-Tracker can be removed using the proposed
outlier’s removal method. The 3D positions of these
points are also calculated with high accuracy.
Additionally, although the 3D positions Z in the target
area were variable, the distance to the target can be
calculated with high accuracy using the median value.
Therefore, from these experiments, the effectiveness of
the proposed method is confirmed in a real environment.
However, when the interface is mounted on the robot, it
is supposed that the motion amount (camera movement
value) has some errors due to tires slip. Moreover, we set
the target area to a constant distance from the pointed
coordinate. It is possible that the median is 3D position
outside of target such as background, etc. Conversely, if
the target area is small, there might be no feature points
detected. Thus, we need to mount the robot system
taking into account these considerations.

V. MOUNTING ON ROBOT SYSTEM
In the previous experiments, two images are captured from

the camera by hand, and the effectiveness of the proposed
method in each step was confirmed for feature points
extraction, tracking, 3D position reconstruction, etc. In this
section, we investigate the effectiveness of these methods
using actual robot system.

A. Robot System
Fig. 18 is the robot used in this experiment. The robot can

connect with the terminal by serial communication, and the
commands from terminal side (interface) to the robot are sent
using a Bluetooth connection. As the camera mounted on the
robot, we use a web camera. The captured images are sent to
the terminal side at 15fps, and these are processed in the
terminal side at real-time.

 As the mobile actuator, the robot has two stepping motors
left and right side. The stepping motors are rotated by a
driving pulse; therefore, it does not need a feedback circuit.

Fig. 18. Our robot

B. Experiments
The target conditions of this experiment are the same

before. The floor is a carpet. Table 2 shows the results of the
distance calculation to the target for 10 trials. In addition, the
detailed results of one trial are as shown in Fig. 19 to 23. In
the figures of the 3D position reconstruction, horizontal axis
is X-axis, and vertical axis is Z-axis.

TABLE II: RESULTS OF DIRECTION CALCULATION
Trial Calculated Distance [mm] Error [mm]

1 885.0 -115.0
2 856.0 -144.4
3 1014.8 14.8
4 955.0 -45.0
5 1024.9 24.9
6 1091.5 91.5
7 1024.5 24.5
8 753.3 -246.7
9 742.1 -257.9
10 871.5 -128.5

Fig. 19. Captured image before motion

Fig. 20. Captured image after motion

Fig. 21. Results of feature point extraction

Fig. 22. Results of feature points tracking

Fig. 23. Result of outliers’ removal

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

638

C. Consideration
From the results, we recognized that the distance can be

calculated with high accuracy in some cases. However, in
other cases, the calculation accuracy is low. The causes are
thought to be as follows. The first cause is the effect of the
gaze movement (movement advancing toward one certain
point). In the stereo vision, reconstruction accuracy in the
case of the camera set at lateral direction from objects side
view is better than front-back direction, because of the
influence of the errors in capturing using image sensor.
Therefore, the results were influenced by gaze movement.
However, we consider that the effect is reduced if we use the
median of Z value as the distance to the target. The second
cause is a problem in the outlier’s removal method. In the
experiments, the outliers are removed using the distance
between disappearance point and lines passing through the
optical flow. However, even if the tracking failed, the feature
points near disappearance point cannot be removed by the
method. Thus, we need to add to the method, information
such as a direction of the optical flow. The third cause is a
problem of the robot motion. At the beginning, the robot
rotates just a little on circumjacent Y-axis. In this case,
disappearance point is out of alignment on u axis of the image
(Fig. 23). In the calculation, we assume that these rotations
did not occur. Therefore, we think that just a little rotation
affected the reconstruction accuracy. To solve the problem, a
method which calculates the out of alignment of the motion
from the disappearance point could be effective.

VI. CONCLUSION
In this paper, we proposed a simple interface, completely

easy to use and versatile for mobile robots equipped with a
single camera. Instead of the user, the interface can move the
robot to the user selected target position autonomously. To
achieve this, the interface needs to know the 3D location of
the target, and in this work, we proposed its calculation using
a motion stereo vision method. We then confirmed the
effectiveness of the method by the experiments, and
constructed the interface based on the method. Finally, we
mounted the interface on the robot system, and performed the
experiments in a real environment. From the results, although
some problems still exist, we recognized that the proposed
interface can be used in real environments.

 As future works, the following three items will be
considered. First, the solution for the motion error using the
disappearance point should be introduced. Secondly, the
target area should be optimized using a target recognition
method. Finally, we should confirm the proposed interface in
other environments such as various kinds of targets, cameras
and robots. Additionally, if the interface is combined with
existing technology, its application can be expanded. For
example, the operability of the remote-controlled robots can
be improved. Moreover, in this paper the object which has
texture (can extract feature points from target on image) is
used as the target. To introduce a technology for floor
detection, the floor with no texture can be used as the target.

REFERENCES
[1] A. Ikezoe, K. Muranaga, H. Nakamoto, and M. Nagase, “Development

of RT-Middleware for Real-Time OS,” The Japan Society of
Mechanical Engineers, 2008.

[2] A. Ikezoe, H. Nakamoto, and M. Nagase, “OpenRT
Platform/RT-Middleware for VxWorks,” The Japan Society of
Mechanical Engineers, 2010.

[3] R. Hartley, R. Gupta and T. Chang, “Stereo from Uncalibrated
Cameras,” CVPR, pp. 761-764, 1992.

[4] K. Kanatani and H. Mishima, “3-D Reconstruction from Two
Uncalibrated Views and Its Reliability Evaluation,” Transactions of
Information Processing Society of Japan, vol. 42, no. SIG6 (CVIM 2),
pp. 1-8, 2001.

[5] K. Yamada, Y. Kanazawa, K. Kanatani and Y. Sugaya, “Latest
Algorithm for 3-D Reconstruction from Two Views,” Information
Processing Society of Japan, CVIM 2009-CVIM-168 (15), pp. 1-8,
2009.

[6] K. Yamazaki, H. Yaguchi, N. Hatao, Z. Nikolaus and M. Inaba,
“MonoSLAM in indoor environment by wide-angle Camera,” JSME
Conference on Robotics and Mechatronics, 2P1-G13, 2008.

[7] K. Yamazaki, M. Tomono, T. Tsubouchi and S. Yuta, “Object Shape
Reconstruction and Pose Estimation by a Camera Mounted on a
Mobile Robot,” Intelligent Robots and Systems, vol. 4, pp. 4019-4025,
2004.

[8] A. Yamashita, T. Harada, R. Kawanishi and T. Kaneko,
“Three-Dimensional Environment Modeling from Images Acquired
with an Omni-Directional Camera Mounted on a Mobile Robot by
Structure from Motion,” Transactions of the Japan Society of
Mechanical Enginners, vol. C 73, no. 726, pp. 512-519, 2007, in
Japanese.

Stephen Karungaru received a PhD in Information
System Design from the Department of information
science and Intelligent Systems, University of
Tokushima in 2004. He is currently an associate
professor in the same department. His research
interests include pattern recognition, neural networks,
evolutionary computation, image processing and
robotics. He is a member of IACSIT, RISP, IEEE and
IEEJ.

Atsushi Ishitani received a master degree from the
Department of Information Science and Intelligent
Systems, University of Tokushima in 2012.

Takuya Ishiatani received a master degree from the
Department of Information Science and Intelligent
Systems, University of Tokushima in 2012.

Minoru Fukumi received the B.E. and M.E. degrees
from the University of Tokushima, in 1984 and 1987,
respectively, and the doctor degree from Kyoto
University in 1996. Since 1987, he has been with the
Department of Information Science and Intelligent
Systems, University of Tokushima. In 2005, he
became a Professor in the same department. He
received the best paper awards from the SICE in 1995
and Research Institute of Signal Processing in 2011 in

Japan, and best paper awards from some international conferences. His
research interests include neural networks, evolutionary algorithms, image
processing and human sensing. He is a member of the IEEE, SICE, IEEJ,
IPSJ, RISP and IEICE.

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

639

