
  

  
Abstract—Recently, robot technology has gained popularity 

because of labor shortage, ability to work for long hours, etc. 
Remote-controlled robots are especially being put to practical 
use for several purposes such as conveying and security systems, 
etc. This is because their safety is higher than autonomous 
robots in addition to their easier development. However, 
remote-controlled robots require a user interface that can 
control the robot actions and show information captured by 
robot to the users. In this work, we develop a simple interface 
for mobile robots. In robot actions, movement of the robot itself 
is most important. To use this interface, the users need only 
point to the position on a screen where they want the robot to 
move to. After that, the interface controls the robot movement 
between the current and the target positions autonomously. 
Therefore, to move the robot to the selected point, the robot 
needs to calculate the target's 3D location. To calculate the 3D 
location, we use motion stereo vision that uses a single camera. 
Using this method, the interface can be applied to many robot 
systems. In this paper, we proved the effectiveness of the 
proposed method by performing experiments in real 
environments.  
 

Index Terms—Robot interface, motion stereo, single camera.  
 

I. INTRODUCTION 
Recently, labor shortage due to the low birthrate and aging 

population has become a major social problem in Japan. In 
addition, Japanese industrial technologies have been 
declining because of competition from countries with 
low-cost labor. Robot technology is one of the methods that 
could solve the problems because the robots can replace the 
workforce at low cost. This idea has been discussed for about 
10 years. However, the robots have not yet become practical 
due to several obstacles. Of these problems, robot 
productivity is the main one.  Currently, research institutes 
and companies are making robots from scratch.  However, 
many of the processes are unnecessary. The common 
functions such as communication and motor control should 
be reused as function modules. Although RT (Robot 
Technology) middle-ware [1], [2] which makes it easy to 
develop robots is proposed and developed, it is seldom used 
because of low-feasibility, few supported hardware, etc. 
Moreover, the problems of safety, including whether the 
robots are safe around humans, are a major concern. However, 
although there are many obstacles in the spread of the robots, 
they are certainly needed. A remote controlled robot is one of 
the robots with comparatively high safety. They are 
commonly used for conveying, security, rescue, etc. They 
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demand a user interface which receives images from the 
robot and sends orders from the user to the robot. Currently, 
various devices and methods are used. However, they have 
several problems. For example, in a control method which 
sends commands such as FOWARD, ROTATION and STOP, 
it cannot control the minute movement of the robot. 
Additionally, another method using game controllers is 
difficult for new game users. A method using display of the 
images sent from the robot, directly displaying only the 
images is common. However, in this method, it is difficult for 
the user to get the depth of the objects. Moreover, if the 
distance to the object is too short, the user cannot see it. To 
solve the problem, an interface that shows the information of 
range sensors together with the image and one that shows 
overhead view from another camera mounted above are 
proposed. However, these methods are expensive and lack 
versatility.  

 Based on these reasons, in this work, we propose an 
easy-to-use interface that can be applied to many robots. 
Although various kinds of actuators are used on robots, 
almost all robots have mobile actuators. To control the 
movement of the robot easily, the interface should be 
intuitive.  For intuitive control, the robot should be controlled 
by a single instruction from the user indicating the point 
where they want the robot to move to. For example, the target 
could be an object which the user wants to carry in the 
conveying robot. The only task required from the users is a 
single identification of the target on the image sent from the 
robot. Therefore, the movement of the robot should be 
autonomous. For autonomous movement, the robot needs to 
know the target’s 3D location. To reconstruct 3D position, 
stereo cameras and range sensors are generally used [3], [4], 
and [5].  However, some robots which do not have these 
sensors also exist. In this work, we are aiming to develop the 
interface with versatility. Therefore, the robots equipped with 
single camera and odometry are targeted. 3D reconstruction 
method using a single camera has been proposed. Especially, 
motion stereo vision is often used [6], [7], and [8].  This is a 
method that reconstructs 3D location by same fundamental 
methods such as stereo vision, after capturing images by 
camera motion. In stereo vision, the longer the base-line 
length, the more the reconstruction accuracy is improved. 
Motion stereo vision can make the base-line longer, because 
base-line is the movement of the camera. Therefore, it can 
calculate 3D position with higher accuracy. However, 
odometry (movement calculation method using rotation of 
wheels) data often includes some error due to tire slips. In 
that case, motion stereo vision cannot reconstruct 3D position 
accurately. We consider that motion stereo vision is suitable 
for wheeled mobile robots, and use the method. Some 
previous studies using motion stereo vision already exist. 
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However, they have set conditions such as the following. 

• Experiments are only simulations. 
• Off-line processing due to high processing cost 

using high-resolution image. 
• Unnecessary information such as background and 

floor is removed in advance. 

Additionally, in camera movement, gaze movement is 
avoided, because reconstruction accuracy is reduced. In our 
proposed interface, the robot moves forward after facing the 
target. Thus, the possibility that gaze movement will occur 
depending on the angle of the camera is high. From this 
reason, we propose a method that can perform at high 
accuracy even in gaze movement, and confirm the 
effectiveness using experiments. Moreover, 3D positions are 
calculated on-line in unknown environments. 
 

II. STRUCTURE OF INTERFACE 

A. Supported Robot Systems and Environments 
Fig. 1 shows an example of the structure of the 

remote-control robot system. The robot and the control 
systems need not be at the same location. The user side 
terminal and the robot are connected by a network. The robot 
receives surrounding information from equipped sensors, and 
sends it to the terminal. The user can see this information on a 
screen, and if the user wants to move the robot, the user sends 
a command. Then, the robot should proceed depending on it. 
In this work, we assume that the terminal consists of a display 
and mouse for PCs. Instead of these devices, we can also 
allow the user to use touch panels. We also suppose that the 
robot has a single camera and an odometry system. Odometry 
is a method using rotation angles of tires (motors) to calculate 
self-location. As the odometry devices, rotary encoders, 
servomotors and stepping motors are usually used. 

 In this work, the targets are static and unknown objects 
having texture. Currently, the robot is designed to move on 
flat floors. There should also be enough illumination which 
enables capture of the images by the camera. 

 

 
 Fig. 1. Structure of remote-control robot system 

 

B. Movement Algorithm   
The interface can control the robot movement by only the 

instruction about the target. Fig. 2 shows the algorithm used 
by the robot to reach the target point from the target 
instruction. 

 
Fig. 2. Flow of robot movement  

 

•  [Step 1]The users can see the images sent from the 
robot on a display. They can then point to a position 
to which they want the robot to move to. 

•  [Step 2]The interface calculates the direction to the 
target, and turns the robot to face to the target. The 
instruction of the target is only once, therefore, the 
interface tracks the target on the images to keep 
target location. 

• [Step 3]The robot advances a set constant distance, 
and the interface calculates the distance to the 
target. 

•  [Step 4]The robot moves to the target position. 
 

In this way, there are no meaningless movements because 
we separate the rotation and forward movement operations. 

 

III. 3D POSITION CALCULATION  

A. Flow of Algorithm  
Fig. 3 shows the flow of process in the proposed interface. 

We will discuss each method in detail later. 
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Fig. 3. Flow of algorithm 

 

B. Direction Calculation  
Fig. 4 shows positions relationship between the target and 

the camera during target instruction in a pinhole camera 
model. Horizontal axis shows the X axis, vertical axis shows 
the Z axis.  sx is physical size of image sensor on vertical 
direction. 
 

 

Fig. 4. Pinhole camera model in direction calculation 

The angle θ to the target based on the optical axis is 
calculated by eq. 1. 
ߠ  = ݊ܽݐܿݎܽ ௫௙                                         (1) 
 
where, x is the value of normalized image coordinate, f is 
focal length.  

 
Therefore, the interface calculates the target direction and 

rotates the robot by the following algorithm. 
 

1. The image coordinate (u, v) clicked by the user is set 
as target center, and it is transformed to normalized 
image coordinate (x, y). 

2. The direction θ is calculated from its coordinate x 
and eq. 1. 

3. The interface rotates the robot θ degrees to face to 
the target. At this time the interface must keep track 
of the target on the images, because the target 

instruction is only once. The tracking method used 
is the KLT-Tracker algorithm.  

4. After rotation, the direction is re-calculated to 
confirm whether the robot rotated accurately. If the 
robot could not rotate exactly, the robot adjusts 
itself. 

 

C. Distance Calculation  
The distance to the target point is calculated by motion 

stereo vision. The algorithm is as follows. 
 
[Feature Point Extraction] 

First, feature points are extracted by KLT corner 
detector using the image (Image 1) captured after 
rotation. 

[Feature Point Tracking] 
Secondly, the robot advances a set constant distance, 
and captures Image 2. On the Image 2, the feature 
points are tracked using a KLT-Tracker. 

[Outlier Removal] 
The tracking of the feature points sometimes failed, and 
these points cannot reconstruct the 3D location exactly. 
Therefore, we should detect and remove these points. 
This algorithm is as follows. 

• If optical flow (movement vector of feature point on 
image before and after motion) is too short or long, 
the feature point is removed as a failed tracking 
point. 

• A straight line (y=ax+b) is calculated. 
• Repeat 1 and 2 for every feature points. 
• Average coordinate of intersection points for each 

optical flow is calculated as disappearance point 
(Fig. 5). 

• Distances between the disappearance point and the 
straight lines d are calculated (Fig. 6). If d is larger 
than threshold value, the feature point is removed as 
outlier. 

 

 
Fig. 5. Disappearance point 

 
   

 
Fig. 6. Remove outlier 
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[3D Position Calculation of Feature Point] 
3D locations are calculated from the correspondence 
coordinates of the feature points that were successfully 
tracked. In this step, eq. 2 is used. 
ܥ  = ‖ܺ − ଵܺ݉ଵ෦‖ଶݏ + ‖ܺ − ଶܴ݉ଶ෦ݏ −  ଶ      (2)‖ݐ

 
where, ݉1෦and ݉2෦  are extended vectors of the projected point, 
and s1, s2 are scalar expressing the vector length. 

 
[Calculation of Distance to Target Point] 

The distance to the target is calculated from the 3D 
position of the feature points. In this method, we 
assume that feature points of the target are located in 
constant distance from the pointed coordinate, and a 
median of these 3D positions Z is the distance to the 
target. 
 

 
Fig. 7. Calculation of distance to target 

 

IV. EXPERIMENTS  
Before mounting the proposed interface on the robot 

system, its effectiveness is confirmed. First, the direction is 
calculated and then the distance calculation is performed. 

A. Common Conditions  
 In this work, captured image size is 640x480 pixels and 

frame rate is 15 fps. Additionally, intrinsic parameters are 
pre-calculated by camera calibration. Moreover, information 
about background is unknown and projected scene is a real 
environment. 

B. Direction Calculations  
[Conditions] 

The direction to the target is approximated to within one 
degree, because the robots with higher precision are few. 
Additionally, the calculation area is set to 15 degrees 
right and left of the optical axis. This is because in many 
cases that horizontal angle of view of standard cameras 
is about 40 degrees. 

[Results] 
The experimental results are shown in Table 1. The 
directions are calculated in 5 degrees steps. From the 
result, it can be confirmed that the direction could be 
calculated accurately using the proposed method. 

C. Distance Calculations   
[Conditions] 

In this experiment, the camera captures the images while 
being manually moved. This situation is shown as Fig. 8. 
The target is a box put on the floor about 1000 mm away 

from the first camera position. We set 300 mm as the 
motion. Actual captured images are shown as Fig. 9 and 
10. 

 
TABLE I: RESULTS OF DIRECTION CALCULATION 

True value [mm] Calculated value [mm] 

15 15 

10 10 

5 5 

0 0 

-5 -5 

-10 -10 

-15 -15 

 
 

 
Fig. 8. Situation of experiment 

 
 

 
Fig. 9. Image 1 (before motion) 

 
 

 
Fig. 10. Image 2 (after motion) 
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 [Feature Points Extraction] 
From image 1, the effective feature points to track are 
extracted using KLT corner detector. The results are 
shown in Fig. 11. Red points are the extracted feature 
points. 
 

 
Fig. 11. Results of features extraction 

 
[Feature Points Tracking] 

After motion, the feature points extracted in image 1 are 
tracked in image 2. The results are shown as Fig. 12. Red 
points are the extracted feature point locations. Aqua 
points are the tracked feature point locations. Red lines 
show the optical flow. 
 

 
Fig. 12. Results of features tracking 

 
[Removal of Outliers] 

The results of the tracking contain some false tracked 
feature points. Therefore, we detected and removed these 
feature points as shown Fig. 13. The yellow circle is the 
average point of the intersections, and white circle is a 
set constant distance from it. We set 50 pixels as the 
constant distance in this experiment. As shown, green 
lines do not pass through the set circle and represents 
failed tracking. Conversely, red lines are successfully 
tracked. The feature points inside of white circle are the 
target feature points. 
 

 
Fig. 13. Result of outlier detection 

 
[3D Position Calculations of Feature Points] 

Fig. 14 shows the results of 3D reconstruction before 
removing outliers. In addition, the results after that are 
shown in Fig. 15. Fig. 16 shows the 3D location of the 
feature points with real objects location marked in. 
Horizontal axis represents X-axis, and vertical axis 
represents Z-axis. 
 

 
Fig. 14. Results of 3D feature positions (before remove outlier) 

 

 
Fig. 15. Results of 3D feature positions (after remove outlier) 

 

 
Fig. 16. Results of 3D position with real objects 

 
[Calculation of Distance to Target Point] 

The median of the feature point locations Z in the target 
area (blue circle) was 991mm (Fig. 17). This is the 
distance to the target. The true value of the distance is 
1000mm; therefore, calculation accuracy is 99.1%. 
 

 
Fig. 17. Results of calculated target distance 
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[Consideration] 
The feature points that could not be correctly tracked by 
the KLT-Tracker can be removed using the proposed 
outlier’s removal method. The 3D positions of these 
points are also calculated with high accuracy. 
Additionally, although the 3D positions Z in the target 
area were variable, the distance to the target can be 
calculated with high accuracy using the median value. 
Therefore, from these experiments, the effectiveness of 
the proposed method is confirmed in a real environment. 
However, when the interface is mounted on the robot, it 
is supposed that the motion amount (camera movement 
value) has some errors due to tires slip. Moreover, we set 
the target area to a constant distance from the pointed 
coordinate. It is possible that the median is 3D position 
outside of target such as background, etc. Conversely, if 
the target area is small, there might be no feature points 
detected. Thus, we need to mount the robot system 
taking into account these considerations. 
 

V. MOUNTING ON ROBOT SYSTEM 
In the previous experiments, two images are captured from 

the camera by hand, and the effectiveness of the proposed 
method in each step was confirmed for feature points 
extraction, tracking, 3D position reconstruction, etc. In this 
section, we investigate the effectiveness of these methods 
using actual robot system. 

A. Robot System    
Fig. 18 is the robot used in this experiment. The robot can 

connect with the terminal by serial communication, and the 
commands from terminal side (interface) to the robot are sent 
using a Bluetooth connection. As the camera mounted on the 
robot, we use a web camera. The captured images are sent to 
the terminal side at 15fps, and these are processed in the 
terminal side at real-time. 

  As the mobile actuator, the robot has two stepping motors 
left and right side. The stepping motors are rotated by a 
driving pulse; therefore, it does not need a feedback circuit. 
 

 
Fig. 18. Our robot 

 

B. Experiments     
The target conditions of this experiment are the same 

before.  The floor is a carpet. Table 2 shows the results of the 
distance calculation to the target for 10 trials. In addition, the 
detailed results of one trial are as shown in Fig. 19 to 23. In 
the figures of the 3D position reconstruction, horizontal axis 
is X-axis, and vertical axis is Z-axis. 

TABLE II: RESULTS OF DIRECTION CALCULATION 
Trial Calculated Distance [mm] Error [mm] 

1 885.0 -115.0 
2 856.0 -144.4 
3 1014.8 14.8 
4 955.0 -45.0 
5 1024.9 24.9 
6 1091.5 91.5 
7 1024.5 24.5 
8 753.3 -246.7 
9 742.1 -257.9 
10 871.5 -128.5 

 

 
Fig. 19. Captured image before motion 

 

 
Fig. 20. Captured image after motion 

 

 
Fig. 21. Results of feature point extraction 

 

 
Fig. 22. Results of feature points tracking 

 

 
Fig. 23. Result of outliers’ removal  

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

638



  

C. Consideration      
From the results, we recognized that the distance can be 

calculated with high accuracy in some cases. However, in 
other cases, the calculation accuracy is low. The causes are 
thought to be as follows. The first cause is the effect of the 
gaze movement (movement advancing toward one certain 
point). In the stereo vision, reconstruction accuracy in the 
case of the camera set at lateral direction from objects side 
view is better than front-back direction, because of the 
influence of the errors in capturing using image sensor. 
Therefore, the results were influenced by gaze movement. 
However, we consider that the effect is reduced if we use the 
median of Z value as the distance to the target. The second 
cause is a problem in the outlier’s removal method. In the 
experiments, the outliers are removed using the distance 
between disappearance point and lines passing through the 
optical flow. However, even if the tracking failed, the feature 
points near disappearance point cannot be removed by the 
method. Thus, we need to add to the method, information 
such as a direction of the optical flow. The third cause is a 
problem of the robot motion. At the beginning, the robot 
rotates just a little on circumjacent Y-axis. In this case, 
disappearance point is out of alignment on u axis of the image 
(Fig. 23). In the calculation, we assume that these rotations 
did not occur. Therefore, we think that just a little rotation 
affected the reconstruction accuracy. To solve the problem, a 
method which calculates the out of alignment of the motion 
from the disappearance point could be effective. 
 

VI. CONCLUSION 
In this paper, we proposed a simple interface, completely 

easy to use and versatile for mobile robots equipped with a 
single camera. Instead of the user, the interface can move the 
robot to the user selected target position autonomously. To 
achieve this, the interface needs to know the 3D location of 
the target, and in this work, we proposed its calculation using 
a motion stereo vision method. We then confirmed the 
effectiveness of the method by the experiments, and 
constructed the interface based on the method. Finally, we 
mounted the interface on the robot system, and performed the 
experiments in a real environment. From the results, although 
some problems still exist, we recognized that the proposed 
interface can be used in real environments.  

 As future works, the following three items will be 
considered. First, the solution for the motion error using the 
disappearance point should be introduced. Secondly, the 
target area should be optimized using a target recognition 
method. Finally, we should confirm the proposed interface in 
other environments such as various kinds of targets, cameras 
and robots.  Additionally, if the interface is combined with 
existing technology, its application can be expanded. For 
example, the operability of the remote-controlled robots can 
be improved. Moreover, in this paper the object which has 
texture (can extract feature points from target on image) is 
used as the target. To introduce a technology for floor 
detection, the floor with no texture can be used as the target.  
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