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Abstract In this paper, we introduce a novel approach for face depth es-
timation in a passive stereo vision system. Our approach is based on rapid
generation of facial disparity map, requiring neither expensive devices nor
generic face models. It consists of incorporating face properties into the dis-
parity estimation process to enhance the 3D face reconstruction. We propose a
model-based method which is independent from the specific stereo algorithm
used. Our method is a two-step process. First, an algorithm based on the Ac-
tive Shape Model (ASM) is proposed to acquire a disparity model specific to
the concerned face. Second, using this model as guidance, the dense disparity
is calculated and the depth map is estimated. Besides, an original algorithm
of post processing is proposed in order to detect holes and spikes in the gen-
erated depth maps caused by false matching and uncertainties. It is based
on smoothness proprieties of the face and a local and global analysis of the
image. Experimental results are presented to demonstrate the reconstruction
accuracy and the rapidity of the proposed method.
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1 Introduction

Depth estimation for faces is an important problem that has been conjointly
studied with face animation [28], facial analysis and face recognition [23,18].

In the past few decades, many approaches have been proposed for face
depth estimation, including 3D from stereo matching, 3D morphable model
based methods [3], Shape from Shading (SfS)[4], Shape from Motion tech-
niques (SfM) [15,26] and statistical techniques [8,25]. A 3D morphable model
is generally built from a registered set of 3D laser-scanned heads. Principal
Component Analysis (PCA) is then generally applied on the shape and tex-
ture features in order to create the feature subspace which constitutes a generic
3D model of the face. Given one or multiple images, a deformation step of the
3D model is applied according to the given images in order to obtain the 3D
model of the face. The Shading information is also explored in some works
in order to recover the 3D shape of the face by dealing with the reflectance
models. The shape from motion method is explored by many researchers in
order to give a solution to face depth estimation problem. Authors in [15]
propose a similarity transform based method to derive the 3D structure of a
human face from a group of face images under different poses. Unfortunately,
the high cost of time processing due to the genetic algorithm process used to
estimate the depth and how to design a feasible gene operation scheme remain
difficult problems. To reduce the computation of the method in [15], the non-
linear least-squares (NLS) model-based methods are proposed in [26]. A basic
NLS model and a symmetric NLS model and are proposed to estimate the
depth values of facial features point using one frontal-view face image and one
non-frontal-view face. For cases when multiple non-frontal-view face images
are available, a model-integration approach is proposed to improve the depth
estimation accuracy. Some works based on multiple images use statistical tech-
niques for depth recovery. By considering the observations as mixing signals,
a novel algorithm for maximizing the posterior shape was developed in [8] to
estimate the shape from perspective of blind source separation (BSS). In the
same way, authors in [25] propose a model based on Independent Principle
Component (ICA) in order to estimate face depth from one image. As in [26],
an integration scheme is proposed in cases where more images are available.

However, how to efficiently acquire facial depth information from stereo
images is still a challenging problem, especially in binocular passive systems,
where only one image pair is used and neither structural lighting is available
nor morphable model is needed.

In the literature, a wide spectrum of works dealing with the problem of 3D
reconstruction using a binocular passive stereo system is proposed [22]. The
major problem of these approaches lays in the definition of a stereo match-
ing scheme for a given image pair. Indeed, this problem is more crucial with
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poorly-textured face images. This leads to ambiguities and additional com-
plexities for matching algorithms. Therefore, a few approaches for dense 3D
face reconstruction in binocular passive stereo system have been proposed,
compared to those of active and multi-view stereo vision.

In this paper, we propose an improved method for determining the disparity
information of a human face from stereo matching in a binocular vision system
in real-time application by considering the topological properties of the face
and its shape smoothness. An algorithm of post processing of the depth map
is proposed which consists of detecting and removing holes and spikes.

The remainder of this paper is organized as follows. In section 2, we de-
scribe the general depth estimation process based on binocular images, the
existing approaches in this field and we highlight some of the recent works
on stereo depth estimation for human faces. An important step after depth
estimation consists of the post processing consisting of depth map denoising
in order to remove holes and spikes. We introduce the problem of depth map
denoising and we present how works in face reconstruction are addressing this
problem. In Section 3, we introduce the proposed method for disparity esti-
mation consisting of incorporating prior knowledge on the face shape in the
estimation process and we show how this could enhance the state of the art
methods. Then, we present the proposed algorithm for post processing which
use local and global analysis and assume the smoothness of the face shape
in order to deal with noise detection (holes and spike). We finish this section
by some experimental results to demonstrate the accuracy of the proposed de-
noising method. The experimental results are presented in Section 4, where we
evaluate the accuracy and the rapidity of our method qualitatively and quan-
titatively. Finally, Section 5 concludes the paper and gives some perspectives
of this work.

2 Related works

Depth estimation process in binocular system consists of estimating a so-called
disparity map of a scene captured from two different points of view. In order
to calculate this map, a step called stereo matching is applied. It consists on
finding corresponding pixels in the both images representing the projection of
the same real word 3D point. Since, initially, we do not know where we might
find a corresponding point; the search space for matching a point is relatively
large. A rectification process which consists in projecting the stereo pair onto
a common image plane is applied to constrain the size of the search to 1D
dimension.

Once the disparity map is estimated, the depth of a point p(x, y, z) with a
disparity value d is calculated as:

z =
fb

d
. (1)

where f and b are the camera focal and baseline respectively.
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In order to estimate the disparity map, many algorithms have been pro-
posed [22]. They can be classified into two categories: global and local meth-
ods. Global methods resolve an optimization problem on the disparity map
by including complex energy minimization methods. Some popular paradigms
are, graph cut [14], belief propagation [24] and dynamic programming [27].
The global methods give a good accuracy since they process the pixels in a
dependent way. However, they encounter difficulties in determining the corre-
spondence pairs at non-edge pixels. This is because images may be ambiguous
locally. For example, there may be many patches with similar appearance.
Another feedback of global methods is that they require a long processing
time.

Local methods (also called block-matching methods) are based on intensity
correlation and they can be used in real time applications because of the low
complexity of the algorithms. Correlation-based stereo matching algorithms
typically produce dense depth maps by calculating the matching costs for
each pixel at each disparity level in a certain range. Afterwards, the matching
costs for all disparity levels can be aggregated within a certain neighborhood
window. Finally, the algorithm searches for the lowest cost match for each
pixel. Different similarity measures are used in correlation-based methods. The
most common ones are: Sum of Absolute Differences (SAD), Sum of Squared
Differences (SSD), Normalized Cross Correlation (NCC) and Sum of Hamming
Distances (SHD). However, these methods suffer from 2 essential problems:

– Implicit hypothesis: all points within a correlation window move with same
motion, which is incorrect at discontinuities and leads to blurred object
boundaries.

– Aperture problem: the context can be too small in certain regions (ho-
mogenous regions), lack of information.

2.1 Face depth estimation

For face depth estimation, the stereo matching process is more complex (in-
cluding using local or global method) because of the homogeneity of the face
regions especially when the system is binocular and only one stereo pair is
used. The homogenous aspect of the face present a limitation in all stereo
methods (local or global) since all the patch have close intensities and there-
fore it is difficult to find the exact corresponding pixel when all the pixels give
the same or close similarity values. This homogeneity leads to obtain more
holes, spikes and many uncertain disparities in the depth map.

In the literature, most of the existing methods for face depth estimation
from stereo systems are based on a fitting step of the estimated depth to a
generic 3D model [16,20,32]. Le et al. [16] have built a coarse shape estimation
based on 3D key points, and then used a linear morphable model to efficiently
match the detailed shape and texture. Authors in [20] fit a sparse reconstruc-
tion of manually selected points to a generic model using a Thin-Plate Spline
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(TPS) method. In [32], a reference 3D face is used as an intermedium for cor-
respondence calculation. The virtual face images with known correspondences
are first synthesized from the reference face. Then the known correspondences
are extended to the incoming stereo face images, using face alignment and
warping. The complete 3D face can thus reliably be reconstructed from stereo
images. The main problems of these methods are the large processing time re-
lated to the fitting step (due to the high algorithmic complexity) and the man-
ual initialization requirement e.g. in [32], for the face alignment step. Another
disadvantage of these methods is the fact that the resulting faces are more
similar to the generic model than to their specific model. In [17], Lengagne et
al. proposed to apply an iterative algorithm to refine the face model resulting
from the fitting process of the sparse disparity to the 3D generic model using
differentials constraints. This method has an additional computation cost since
it includes an iterative deformation step plus the calculation of the principle
curvatures on each vertex. Also, it is very sensitive to noise because it uses the
second derivative for calculating curves.

Some attempts have been proposed to use the Shape from Shading (SfS)
method to enhance the stereo matching process. Cryer et al. [6] propose to
merge the dense depth maps obtained separately from shape from stereo and
shape from shading in the frequency domain. The merging process is based on
the assumption that shape from stereo is good at recovery of high frequency
information and shape from shading is good at recovery of low frequency
information. However, they formulate the shading model using orthographic
projection which is far from reality. Chow et al. [4] propose to enhance the
work of Cryer et al. by using a rectification process to convert any lighting
direction from oblique to orthographic. However, in all these method both
processes (stereo and shading) are very sensitive to the lighting conditions.
Besides, SfS methods are based on many assumptions as the direction of the
light source and the surface reflection.

2.2 Face depth map denoising

The depth data resulting from the face reconstruction process is generally
affected by two types of noise which are holes and spikes. Holes are pixels with
undefined depth values. The disparity values for these pixels are set to zero
in the process of disparity estimation. They occur in cases of occlusion or bad
illumination condition. Spikes are pixels with wrong estimated depth value.
They are generally caused by a wrong matching and they occur mostly in
homogenous areas where pixels have approximately identical intensity value.

In the literature, different methods are proposed to face depth map de-
noising. We propose to classify them in two classes: global and local. Global
methods consist in applying a noise reduction filters on the hole depth image
to remove spikes and fill holes. The median filter is commonly applied for this
purpose. In the work of [13], [1], and [11], a pass over the range image with
a median filter smoothes the data and removes spikes in the z -coordinate.
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Authors in [29] used three Gaussian filters with different variances to remove
spikes, fill small holes, and smooth the data. Applying these kinds of filters
can give good results for small noises. However, if the noisy area is large, these
filters cannot eliminate the noise, but can only change the pixels values ac-
cording to their neighborhood. The accuracy of these filters is much related
to the kernel size which is also related to the noise size. Thus, the kernel size
cannot be fixed and generalized for all the data. Another drawback of these
methods is the fact that they can cause the loss of the exact data because they
affect even pixels with a precisely estimated depth value.

Local methods consist in a local processing of the face depth map, which
can essentially be divided into two sub-problems: identifying the holes and find-
ing appropriate parameterizations that allow the reconstruction of the missing
parts using the available data. Identifying holes consist of finding regions in
the disparity map with zero-values (i.e. unidentified depth values). In [7], this
is done by processing the data row by row, where boundary pixels are initially
determined by a sweep through the depth image, to find the first and last
non-zero pixels in each row. This process is repeated until no additional pixel
is created. After identifying the boundary of holes, the filling step generally
consists in applying an interpolation algorithm or a local median filter. This
approach is more precise than the global one since it process only noises and
preserve the non-noisy data. However, it can only handle holes since they have
a known value (zero or undefined value), and therefore cannot be applied for
removing spikes since they usually have a random values.

2.3 Main contribution

In our work, we propose to enhance the stereo matching process without us-
ing neither 3D generic model nor shading techniques. Our method consists
of using a reconstructed disparity model of the face independently from the
stereo matching method and incorporating smoothness and topological face
properties in the estimation process to improve its result in real time applica-
tion. We choose to use the block-matching method to estimate the disparity
map of the face for its rapidity and low complexity. Assuming the rigidity
of the face and its smoothness, the first problems of block-matching method
will not influence the estimation results. However, the aperture problem is
a major problem for face disparity estimation since the face has many ho-
mogenous areas. We propose to overcome this problem by incorporating the
smoothness and the topological properties of the face while maintaining a low
computational complexity. Some preliminary statistical works [12] reveals that
the differences between pixels depth are smaller than 7 for a neighborhood of
radius equal to 2 for 93% of the pixels of the depth map. Assuming this prop-
erty of smoothness of the face depth, we propose also a free-parameterization
algorithm for addressing noise (holes and spikes) detection in face depth maps,
which give better results than the median filter that is commonly used in the
state of the art as in [1] and [11].
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3 Proposed method for face depth estimation

In order to estimate the disparity map, photo-consistency measures used in
block-matching methods are not always sufficient to recover the precise ge-
ometry, particularly in low-textured scene regions (aperture problem). Since
the face is a specific object having its proper structure and properties, it can
therefore be helpful to incorporate face properties that bias the reconstruction
to have desired characteristics. For this purpose, we search to construct a dis-
parity model of the face from the stereo images using some prior knowledge
as the smoothness of the face and the topological properties of its shape. In
order to build the disparity model, we propose to use an Active Shape Model
(ASM) fitting process. Then, the dense disparity map for the whole face is es-
timated using the common block-matching method considering the topological
information obtained by the reconstructed disparity model and the smooth-
ness properties of the face. Finally, the post processing proposed algorithm is
presented.

3.1 Disparity model construction

The first step of our method consists of constructing a disparity model of the
given face. This model gives a holistic representation of the disparity distri-
bution of the face points which will be used as guidance in the disparity map
calculation step. In order to establish the disparity model, we start by applying
an ASM [19] fitting algorithm on both images to localize a set of corresponding
points of high confidence (Fig.1.a). The ASM is a statistic shape model ob-
tained from a learning process on an annotated face database. Fitting the ASM
on a new face image consists of estimating the shape parameters of the model
by minimizing a cost function defining how well a particular instance of the
model describes the evidence in the image. For a great source of information
on ASM-related research, the reader is referred to [19] and [5].

 

(a) (b) 

x 
d(disparity) 

y 

x 
Fig. 1 Disparity model construction.
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We use the ASM fitting, because in addition to the color information used
in the block-matching method, it includes the shape information obtained by
the off-line learning process, which guarantees a good face features localization
in the stereo pair, and therefore a high disparity confidence for those points.

After fitting the ASM on both the left and right images separately, we
obtain the 2D coordinates of n face feature points in the right image R =
{(xi, yi), i ∈ [1, n]} and in the left image L = {(x′

i, y
′

i), i ∈ [1, n]}, which are
then used to obtain the final set of 3 coordinates: P = {pi(x, y, d), i ∈ [1, n]},
that represents the disparity model of the face under consideration (Fig.1.b).
The disparity d of the points is calculated using the Euclidian distance as
follows:

di =
√

(xi − x
′
i)

2 + (yi − y
′
i)

2. (2)

Since we use a calibrated system and rectified stereo pairs, the y coordinates
of each corresponding points should be identical. So the disparity is calculated
using the distance between only the x coordinates as:

di =
√

(xi − x
′
i)

2. (3)

If the y coordinates of the corresponding points resulting from the fitting
step are not the same due to a fitting error -generally caused by noises in the
stereo images-, we normalize it to their mean value.

The disparity model of the face constructed in this step is used in the next
step as guidance for calculating the dense disparity map.

3.2 Disparity map calculation

In this step, we calculate the dense disparity map in a two-step process. In the

                                  

d (disparity) 

y 

x 

(a) (b) 

Fig. 2 Disparity model decomposition. (a) The decomposition process. (b) The 2D projec-
tion process
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first step, a process consisting in decomposing the face disparity model into
different ranges is performed with a set of level planes with associated disparity
values (Fig.2.a). Using the assumptions of the depth face smoothness and
concavity, the level planes are defined to be perpendicular to the normal vector
centered on the point with the smallest disparity given by the face disparity
model. This point is usually the nose tip when the head pose orientation is
not too large.

 

Fig. 3 Disparity model decomposition with different head pose orientations.

After the decomposition step, we can define different areas in the face im-
age with different disparity ranges. In Fig. (2.b), we generate shapes regions
in the right (or left, chosen arbitrarily) stereo image that corresponds to the
intersection of the level planes and the points of the disparity model. A dis-
parity range is assigned to each shape according the disparity values of the
points belonging to the level plane. In figure 3, we demonstrate how the de-
composition step of the disparity model considers the pose variation of the
face.

The decomposition step guaranties the smoothness of the final estimated
disparity map and also reduces the search area, instead of the entire epipolar
line to just a small segment (inside the shape). It also reduces the number of
spikes since it limits the disparity range of each face part to the minimum and
the maximum of the neighbor ranges. Another advantage of the decomposition
step is considering the face orientation (See Fig. 3).

In order to obtain the disparity value of a given pixel p belonging to a given
shape Si, we define the disparity interval as [DispMinp, DispMaxp] where
DispMinp is the disparity value associated to the shape Si and DispMaxp is
that of Si+1.
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In the second step, we calculate the disparity of the face points, using their
disparity ranges to initialize the block-matching algorithm.

Given a face point p, with the right projection pr and the left projection
pl, a correlation window w and a disparity interval [DispMinp, DispMaxp],
we aim to obtain the disparity d ∈ [DispMinp, DispMaxp], which maximizes
the correlation equation E(d) :

E(d) = Similarity(pl(x, y), pr(x+ d, y)) (4)

For the similarity function, we have used the Sum of Absolute Differences
(SAD) [10] measure defined as:

SADIl(x,y),Ir(x
′ ,y′ )) =

m∑
u=0

n∑
v=0

|Il(x+ u, y + v)

− Ir(x
′
+ u+ d, y

′
+ v)|. (5)

where:

Il,Ir are the left and the right images.
m× n is the correlation window size.

Finally, using the estimated disparity, the depth map is obtained by ap-
plying Eq.1.

3.3 Depth map denoising

After depth estimation, a process of post processing is needed in order to
remove holes and spikes caused by uncertainties and false matching. Since the
global methods affect all the data and cause a data losing, we choose to follow
a local methodology. Local methods consist of two steps: Noise detection and
Noise removing.

3.3.1 Noise detection

Local method for depth face denoising are strongly depending to the noise
detection step which is easily performed for holes and small spikes but it
became difficult when it comes to detect wrong data represented by large
spikes caused by false matching in homogenous surfaces of the face. As in the
face depth estimation process, we aim to incorporate knowledge on face in
order to propose a new method for addressing this problem. We propose an
algorithm for automatically identifying holes and spikes in face depth images
by incorporating the smoothness propriety of the face. A method consisting of
local and global analysis is used in order to classify the depth map into noisy
and non-noisy parts. In our algorithm, we do not distinguish between spikes
and holes, and therefore we consider both to be noise. Our method differs
from those of the state of the art in its ability to identify holes but also small
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and large spikes in order that the filling step impacts only the detected noise
and doesn’t affect the rest of the data. Another advantage of our algorithm
is that it does not require any parameterizations and it is fully automatic. It
is conceptually very simple and its implementation is straightforward. After
identifying and removing noises, any state-of-the-art method can be used for
filling the missing data. We choose to use a simple interpolation between the
noise borders.

The process of the algorithm consists in searching the noisy parts by scan-
ning the depth map row by row. Since the face surface is smooth horizontally
and vertically, we can process the data row by row or column by column. In
this work, we choose arbitrarily using the rows. It is a two-steps process. First,
it consists in segmenting each depth row into different slices using the gradi-
ent. Then, slices are classified into noisy and non-noisy using local and global
analysis of the depth row.

The segmentation step consists of cutting the depth rows in different slices.
Considering the depth line as a smooth function, we use its first derivative to
detect the main cut-points which segment it into a set of slices.

We consider a given depth as a function f defined as follows:

f : N 2 → R
f(x, y)→ z

where x ∈ [1, N − 1] and y ∈ [1,M − 1] are the coordinates of the pixels in a
depth image with N ×M size and z is the depth value at those coordinates.

In this work, we process the depth row by row separately as the work in [7],
because of that, we limit the function only to x coordinates and we consider
y as a constant. Therefore the derivative f

′
can numerically be approximated

as:

f
′
(x, y) =

f(x+ h, y)− f(x, y)

(x+ h)− x
(6)

Since our processing use the direct neighborhood of the pixel, we put h = 1
and therefore the equation is given as:

f
′
(x, y) = f(x+ 1, y)− f(x, y) (7)

In order to find the cut-points, we calculate the first derivative using Eq.7
with and we solve the equation below:

|f
′
(x, y)| ≥ t (8)

where t is a threshold consisting of the mean of the derivative function
f

′
(x). It is calculated as:

t =

∑n
i=0 f

′
(x, y)

n
(9)

where n is the number of pixels in the depth row.
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Fig. 4 Detection of cut points and depth line decomposition.

In the figure 4, we illustrate how to find the cut-points and define the main
slices in a given depth-row.

The second step consists in noise-identification. In this step, we will classify
the slices detected previously for each row into ”noisy” and ”non-noisy” slice.
For this purpose, we use the standard deviation σ to measure the dispersion
of the slices from their mean (See Eq (10)) and therefore identify the noisy
slices. In Fig 5, the slice in red is identified as ”noisy”. The standard deviation
is calculated as follows:

σ =

√√√√ 1

n
×

n∑
i=1

(zi − z)2 (10)

where z1, z2, . . . , zn are the depth row values and z is their mean value.

Given a depth raw with a mean µ, a standard deviation σ, and a set of
segmented slices s1, s2, ..., sn (obtained in the row decomposition step) with
associated means m1,m2, ...,mn, we identify a given slice si with a mean mi

as a noise if mi 6∈ [µ− σ, µ+ σ]

In figure 5, we illustrated the step of noise identification given a noisy depth
row.

3.4 Noise removing

After noise detection, all noisy parts are set to zero and then a hole-filling step
using an interpolation algorithm is applied. The cubic interpolation is used
because it can accurately fill in the holes which are to some extent large. In
Fig.6, we illustrate an example of our depth map denoising process.
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(a) (b) (c) (d) 

Fig. 6 Depth map denoising: (a) depth map with holes, (b) gradient, (c) noisy slices de-
tection, (d) corrected depth map.

4 Experiments, results and discussion

In this section, we evaluate qualitatively and quantitatively the results of the
proposed framework. First, the noise detection algorithm proposed for post
processing of face depth map is evaluated. Then different experiments are
performed on three public databases in order to evaluate the results of the
proposed face depth estimation method and to compare it to the state-of-
the-art methods, using different measures. The two first databases are Texas
3D face Texas 3D database [9] and Bosphorus database [21]. One prominent
advantage with using these two databases is that the 3D coordinates of each
face image of are available. Then, the estimated depth values of a reconstructed
3D face structure can be compared to its ground true values. Consequently, the
performances of 3D reconstruction algorithms can be evaluated and compared
more accurately. The third database consists of stereo images that we have
created using a stereo camera (The point gray bumblebee stereo camera).
This database allows only a qualitative validation since it doesn’t contain the
ground truth of the face models.
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4.1 Noise detection

The noise detection algorithm is evaluated in this section in order to show how
this step contribute in filling the missing data with keeping the original value
of the boundary of the noise. In order to evaluate the ”noisy-to-non-noisy”
classification used in noise detection algorithm, the confusion matrix (See Fig.
7 ) is constructed from a set of 100 depth rows selected randomly from different
face depth maps on which synthetic noises with different sizes are generated.
The holes are easily detected since their values are null. Therefore, we generate
more spikes then holes in the depth rows used in this experiment. The total
number of the slices obtained by the segmentation step (See Seq. 3.3.1) is 269
were 108 are noisy and 161 are non-noisy-slice.

 Noisy Non-noisy 

Noisy 102 4 

Non_noisy 6 157 
 

Fig. 7 Confusion matrix for noisy-to-non-noisy classification

The confusion matrix shows the ability of the algorithm to pick out the
noisy parts of a given depth row. The accuracy is 96.28%. We note that the
false classification given by the algorithm correspond to cases when the noisy
part is larger than the non-noisy part in the depth row. Indeed, in this case
the statistic values calculated on the depth row are influenced more much by
noise than by the correct data and therefore the classification is inverted.

In order to show how our algorithm contribute in depth filling step, we
compare, in figure 8, a depth map denoised by applying a cubic interpolation
for the detected noise defined by our proposed algorithm Fig. 8.(c) to two
method of the state of the art : global method based on median filter (Fig.
8.(a)) like works of Kakadiaris et al. [13] and Berretti et al. [1], and local
method based on identifying and removing steps proposed in [7] Fig. 8.(b).
We can see that local methods (Faltemier at al. [7], and our method) correct
the noisy parts with preserving the depth information and details unlike the
global method where the entire range image is modified and the exact depth
information of pixels locating around noise are lost. Holes in the depth map
are perfectly removed using method of Faltemier et al. [7] However, spikes
are not detected and still present in the depth map. Our proposed algorithm
was able to detect all the spikes and holes in the same way since it does not
search only the zero-value region but calculate statistical measures on the
depth map locally and globally to identify the different noises (spikes and
holes). In addition, unlike the filter-based methods, the proposed algorithm is
parameterization-free so it is independent from noisy part size.

In order to measure the accuracy of the different depth denoising methods,
we calculate the RMS (root-mean-square) [22] between the ground truth and
the denoised depth maps obtained by the different methods. We calculate also
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Noisy depth map Ground trouth 

(a) 

K= 25 K= 15 

Depth detection Depth removing 

Depth detection Depth removing 

(b) 

(c) 

Fig. 8 Depth map denoising comparison : (a) Global method based on median filter (used
in [13] and [1]), (b) Local method [7] , (c) Proposed method

the RMS error between the ground truth and the noisy depth map to use it
as reference in the comparison. We can see in Fig. 9, that the RMS obtained
for the global method is bigger than the RMS of the noisy map. Although the
results of the global method based on the median filter seem visually satisfying
and the noise removed, the RMS error obtained is bigger than that obtained
by the noisy map since the global process affect all the map and therefore, the
exact data is lost.

The smallest error is obtained by our method which proves its accuracy.

 

0 0,5 1 1,5 

Our method 

Faltemier et al. 

Noisy depth map 

Global method based on median filter 
(k=7) 

Global method based on median filter 
(k=11) 

Global method based on median filter 
(k=25) 

RMS  error 

Fig. 9 RMS mesure between denoised depth map and the ground truth
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4.2 Face depth estimation

In this work, we choose to evaluate our results on three databases. First a
comparative study is performed using the Texas database between the results
obtained by our method and the conventional Block-matching method in order
to show how much the disparity model construction and the integration of
prior information about faces can improve the depth estimation process. A
qualitative evaluation is then performed on the database that we reconstructed
under different poses and comparison with the state of the art is given.

4.3 Evaluation on the Texas database

In order to compare our results quantitatively, we have synthesized a binocular
stereo database of 105 faces from the Texas 3D Face Database [9] in order to
compare the estimated results to a ground truth. Disparity maps are estimated
from the stereo pairs of faces from different persons using our method, the
standard block-matching method on which our method is based [2] in order to
show how the integration of prior information obtained by the disparity model
construction step enhanced the depth estimation process using neither 3D
morphable model nor additional processing time. The graph-cut based method
[14] is also used in the comparison as an example of global methods. The depth
maps are then generated by applying the equation Eq. 1 on the disparity maps.
Finally, a post processing step consisting of filling holes and removing spikes in
the depth maps estimated by the three methods is applied using our proposed
method for depth map denoising. Faces in the Texas database are 501 × 751
pixels in size, with a resolution of 0.32 mm along the x, y, and z dimensions.
For FRGC, the size is 501 × 751. Figure 10 shows the reconstructed depth
maps compared to the ground truth depth maps of sample faces from Texas
database.

In order to compare the results illustrated in Fig. 10, we calculate The
RMS (root-mean-square) [22] error (Eq. 11) and the PBM (Percentage of Bad
Matching pixels) (Eq. 12), between the ground truth maps and the estimated
maps of faces obtained from block-matching (BM), graph-cut based method
(GC), and our method.

RMS = (
1

np
×
∑
(x,y)

|dE(x, y)− dT (x, y)|2)
1
2 (11)

PBM = 1
np ×

∑
(x,y)D(x, y) where D(x, y) =

{
0 if(|dE(x, y)− dT (x, y)| ≤ δd)
1 otherwise

(12)
where :

– np is the number of pixels in the depth map.
– dE(x, y), dT (x, y) : are the estimated disparity and the ground truth dis-

parity of the pixel (x, y), respectively.
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(a) (b) (c) (d) 

Depth map 1 

Depth map 2 

Fig. 10 Depth maps:(a) original (b) our method (c) graph-cut (d) block-matching.

– δd : is a disparity error tolerance. For the experiments in this paper we
use δd = 1.0 since it is the most used value in the majority of previously
published studies [22].
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Fig. 11 RMS measure

Figure 11 shows that the RMS error is reduced from 7.33 in Block-matching
results to 4.95 in our method that incorporates the disparity model in the
block-matching process. The PBM graph (Fig. 12) shows how the percentage
of the bad matching pixels is very small comparing to that obtained using the
block-matching method. Although the block-matching method is rapid, our
method is faster and requires less time than block-matching method and more
less time than graph-cut method, since in our method the disparity interval
is fixed automatically as a small segment from the epipolar line using the
disparity model.
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Fig. 13 Processing time

The results of the graph-cut based method are less noisy since the esti-
mation of each pixel disparity is performed relatively to the neighbor pixels.
However, we can see that the estimated depth range is very small compared
to our results which give larger depth range and more details on topological
areas (nose, eyes, etc.), and which are very similar to the original 3D depth
map. The RMS and PBM obtained by our method and graph-cut method are
close, however, as shown in figure 13, our method requires about 50 times less
processing time than the graph-cut based method, for an image of 501 × 751
pixels.

We can see clearly that integrating the shape properties into the estimation
process enhances the results of the estimation in terms of accuracy and in terms
of reducing noises in the depth maps.

In order to evaluate the mesh characteristics of the resulting 3D faces, we
constructed a dissimilarity matrix of the estimated and the original models
(Fig. 14). First, we have generated 3D mesh from the ground truth depth
maps and the estimated depth maps, obtained from the three methods, using
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graphics tools. Then, each mesh is matched with all the ground truth meshes in
the database using the ICP (Iterative Closest Point) algorithm [31]. The ICP
algorithm computes the residual error between the estimated mesh (resulting
from our method, block-matching method and graph-cut based method) and
the 3D ground truth mesh from the database. Finally, the distance between an
estimated mesh and the original mesh is given by the Mean of the Point-Wise
Distance (MPWD) which is calculated by the Equation 13 as:

MPWD(mt,me) =

n∑
i=0,j=0

(D((Pi)
mt , (Pj)

me))/n (13)

Where :

– mt,me : are the ground truth mesh and the estimated mesh, respectively.
– D((Pi)

mt , (Pj)
me) : is the distance calculated by ICP between each pair of

corresponding points.
– n : is the number of points used in the ICP process.
– N : is the number of points in the mesh points (n ≤ N).
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Fig. 14 Similarity matrix (E : mean error of the diagonal).

Figure 14 shows the 4 dissimilarity matrices calculated for the ground
truth and the estimated 3D models. Each cell (i, j) of the matrix represents
the MPWD(mi

t,m
j
e). We can see that the matrix diagonal for our method

has lower values (light gray line) than for the block-matching method and
the graph-cut based method, meaning that the models reconstructed with our
method are more accurate and closer to the original 3D models. Besides, these
low values (E = 62, 02mm) are significantly different from the other higher
values in the matrix in our method. The diagonal line is darker in the other
two methods. This difference shows the specificity of the reconstructed model
of our method, which is guaranteed by using a disparity model for each person
(obtained by applying the ASM) when calculating the depth map.
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4.4 Evaluation on our database

We have built a database of 60 stereo pairs of faces with different pose and
expression variations using a Bumblebee stereoscopic system composed of two
CDD pre-calibrated cameras. The images’ size is 640× 480 pixels.

In Figure 15, we compare the disparity maps estimated with the block-
matching method, graph-cut based method, and our method of an example
from our database. The face size is 120×180 pixels, the window aggregation size
is 11 × 11. Since the block-matching and graph-cut method are very related
to the disparity interval, we applied some experimental tests with different
values and we fixed it to [0, 127] because it gives the best results. However,
for our method, this interval is defined automatically depending on the dis-
parity model of the face (see Section 4.1). The disparity maps showed here
are smoothed and an elliptical mask is applied automatically to remove the
background.

 Block-matching Graph-cut  Our method 

 

   

Time (sec) 1,031 10,769 0,106 
 

Fig. 15 Disparity maps.

The results show that considering the face shape and its properties, the
reconstructed disparity model of the face can enhance the disparity map in
terms of smoothness and also in terms of reducing the noise (holes and spikes)
occurring due to insufficient texture in homogenous face areas.

We can see that our method gives better results than the block-matching
method in terms of smoothness, disparity range estimation and noises. Al-
though the block-matching method is fast, our proposed method need less
time of processing since we associate for each point a limited disparity inter-
val defined according to the topological part of the face to which the point is
belonging.

When comparing our results to those of a global method based on the
graph-cut optimization [14], which is supposed to give very good estimation
results, we can see that our method, which includes face shape information
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and considers face proprieties, gives better results in terms of both disparity
range exploration and continuity while requiring much less time (about 10
times faster) than the graph-cut based method processing time. The graph-
cut-based method represents the image as a graph and tries to find cuts with
an iterative process in this graph, which correspond to different disparities.
When the image consists of a scene containing different objects, the method
gives good estimation. However, since the face is one continuous and smooth
surface, results of the graph-cut show flat regions with abrupt cuts, because
they originate from a segmentation process, which leads to an information loss
in depth and of smoothness loss of the disparity map.

In order to study the sensitivity of our method to pose variation, we applied
our algorithm on a set of stereo faces with different poses. Figure 16 shows
the ASM fitting step and the disparity map reconstructed with our method
for these faces with pose variations in yaw, pitch and roll.

We can see that the disparity estimation process gives an accurate and less
noisy result for the frontal view. In case of small pose variations (less than
30◦), our method still gives a good estimation since the ASM fitting process is
well done. However, when the pose variation is large, the ASM cannot find all
necessary points in order to be fitted to the face and consequently disparity
model can not be built. In that case, the disparity map cannot be calculated.

4.5 Evaluation on the Bosphorus database

Majority of the previous stereoscopic face reconstruction methods are evalu-
ated qualitatively only. Typically, the results are shown in different poses in
order to prove how the reconstruction is realistic. However, judging by hu-
man eyes is not the best way to evaluate the reconstruction results. Some
researchers have evaluated there results indirectly by recognition accuracy.
This evaluation gives an idea about the reconstruction step but does not give
precise information about the reconstruction error and how much the results
are closer to the ground truth and thus it is difficult to compare the accuracy of
the reconstruction algorithm. Therefore we are not able to compare the accu-
racy of our reconstruction method to these works. However, the result of some
recent works of depth face estimation [25,26] are evaluated quantitatively on
the public Bosphorus database. Thus, we follow the same configuration used
in these works in order to compare our results.

Five different models with different pose variation (annotated as PRD,
PRSD, PRSU , PRU and Y RR10) are used for each subject in the database.
The figure 17 shows an example of the used images. Using the depth im-
ages provided in the database, the stereo pairs corresponding to these images
are synthesized in order to apply our method for reconstruction. In order to
measure the accuracy of the methods, the correlation coefficient is calculated
between the reconstructed and the ground truth model using 22 feature points.
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Fig. 16 Disparity maps for frontal and non-frontal view.

     
PR_D PR_D PR_D PR_D PR_D 

Fig. 17 Examples of images used in the experiments.

In figures 19 and 20, we compare our method to some state-of-the-art
methods taking the first 30 and 20 subjects respectively. The number of images
used in the depth estimation process for all the methods is given in table 18
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 Number of images Type of images 

SM NM NM 

cICA 2 Frontal + Non Frontal 

cICA_MI More than 4 Frontal + Non Frontal 

NLS1_R_MI More than 4 Frontal + Non Frontal 

BSS_SMF NM NM 

Our method 2 Stereoscopic pair 
 

Fig. 18 Inputs of different methods used in comparison.

In Figure 19, we compare our result to the ICA based methods proposed
in [25] and named as cICA and cICAMI and the similarity transform based
method SM proposed in [15]. The results of SM method are reported from
[25]. The figure shows the correlation coefficient of the first 30 subjects of the
Bosphorus database. We can see that the results of SM method are very low
comparing to the cICA and cICAMI results. The results obtained by cICAMI
are more correlated to the ground truth than those obtained by cICA however
our results are the highest which prove the accuracy of the depth estimation
of our method. In addition, the obtained coefficients show that our method is
more robust to the identity of the person unlike the other methods where the
results are strongly different for different subjects (especially for SM based
method). This can be explained by the fact that we use a specific disparity
model for each face in the estimation process.
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Fig. 19 Correlation coefficients of the first 30 subjects from Bosphorus database.

In figure 20, the NLS based methods proposed in [26] are used for com-
parison. The BSS − SfM method [8] is also used for the comparison using
the results reported in [26]. The NLS based method give the lowest correla-
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tion coefficient and is the most sensitive to person identity. The correlation
coefficient are slightly improved by using the symmetry property of the face
in NLSMS and highly improved when more than two images are used in the
model integration step used in NLSMI method. Our method gives very high
correlation coefficients for all the subjects and they are comparable to those
obtained by BSS−SfM and NLSMI which use a training process with a set
of images.
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Fig. 20 Correlation coefficients of the first 20 subjects from Bosphorus database.

Taking subject 1 as an example, we compare the estimated values of the 22
features point to their ground truth values as shown in Fig. 21. All the values
are normalized between 0 and 1.

In order to evaluate the methods in case of pose variation, we report, in
table 22, the coefficients of correlation between the reconstructed and true
depth values of five images with different pose variation (as images shown in
Fig. 17) taking subject 1 as example. As we can see, the results of the proposed
method are approximately the same for the different poses. The mean obtained
by our method is better than the other results and with a small standard
deviation.

For the convenience of results displaying, only a part of the database (20
and 30 subjects) is used above. However, to evaluate the methods on a large
number of examples, we show in table 23 the mean and the standard deviation
of the correlation coefficient obtained using 105 subjects.

The quantitative and qualitative evaluation of the results of our method
on different databases and using a variety of accuracy measures shows that
the proposed strategy is robust to homogenous surfaces of the face and to the
small pose variations, accurate and fast.
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Fig. 21 Comparison of the true depth values and the estimated depth values of the facial
feature points of subject 1 in the Bosphorus database.

 PR_D PR_SD PR_SU PR_U YR_R10 µ σ 

SM 0.9312 0.2270 0.5665 0.7540 0.6201 0.6198 0.2608 

cICA 0.8822 0.8805 0.8775 0.8758 0.8789 0.8790 0.0025 

NLS2_SR 0.8916 0.8687 0.8380 0.8573 0.9015 0.8714 0.0257 

Our method 0.9678 0.9618 0.9478 0.9701 0.9616 0.9618 0.0057 

 

Fig. 22 correlation coefficients for different pose variation.

 µ σ 

SM 0.4920 0.2620 

cICA 0.8396 0.0631 

cICA_MI 0.8708 0.0599 

NLS1_R_MI 0.9290 0.0313 

BSS_SMF 0.9219 0.0290 

Our method 0.9239 0.0261 
 

Fig. 23 Mean and standard deviation for all subjects in the Bosphorus database.

5 CONCLUSIONS

This paper presents an original attempt of face depth estimation in a passive
stereoscopic system. Unlike other general methods used for disparity calcu-
lation for general objects, we introduced a dedicated method for face depth
estimation that uses the shape characteristics of the human face, obtained by
adjusting an ASM, in order to improve the results of the general, local and
global, methods. Our method enhances the classical block-matching method
for disparity calculation, in terms of depth estimation efficiency, while allow-
ing a very fast processing. The experimental results show that the proposed
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algorithm produces smooth and dense depth maps of human faces, applicable
to a wide range of 3D face reconstruction.

Our approach also opens up many perspectives for improvement and exten-
sion. The step of the disparity model reconstruction can also be incorporated
in the global methods as graph-cut method, in order to reduce their process-
ing time. The optimization step in the graph-cut methods can be done by
identifying an optimal cut in a special graph. In order to construct the graph,
this method consider for each pixel, all possible disparities between minimum
and maximum values. By integrating our disparity model step, only a small
disparity range is selected for each pixel which would reduce considerably the
processing time.

The estimation of the disparity model can be improved by using Active
Appearance Models [5] instead of ASM, which would give more successful
adjustments, because they use the texture information. In order to deal with
large pose variations, we aim to use a partial ASM based on the face symmetry
in order to deal with profile views because in this case, only one side of the
face is required for the fitting step. The 3D Active Appearance Models [30]
could also enhance the result to make it robust to large pose variation.
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