
Optimal Multiple Surfaces Searching for Video/Image Resizing - A
Graph-Theoretic Approach

Dongfeng Han‡ Xiaodong Wu†‡ Milan Sonka†‡

handongfeng@gmail.com xiaodong-wu@uiowa.edu milan-sonka@uiowa.edu
† Department of Electrical and Computer Engineering

‡ Department of Radiation Oncology
The University of Iowa, Iowa City, IA, USA

Abstract

Content-aware video/image resizing is of increasing rel-
evance to allow high-quality image and video resizing to
be displayed on devices with different resolution. In this
paper, we present a novel algorithm to find multiple 3-D
surfaces simultaneously with globally optimal solution for
video/image resizing. Our algorithm is based on graph the-
ory and it first analyzes the video/image data to define the
energy value for each voxel. Then, a 4-D graph is con-
structed and the costs are assigned according to the en-
ergy values. Finally, multiple 3-D surfaces are detected
by a global optimization process which can be solved via
s-t graph cuts. By removing or inserting these multiple 3-
D surfaces, content-aware video/image resizing is achieved.
We also have proved that our algorithm can find the globally
optimal solution for crossing surfaces problem, in which
several surfaces can cross each other. The proposed method
is demonstrated on a variety of video/image data and com-
pared to the state of the art in video/image resizing.

1. Introduction
With the development of new IT technology, it is pos-

sible for people to watch video or image information on

displays of different aspect rations or different resolutions,

including small portable devices like cell phones, PDAs or

MP4 players. However, a problem that needs to be over-

come is that different devices often have different resolu-

tions, so it is necessary to resize videos or images in a con-

tent aware manner.

In [1], seam carving is proposed as a method for im-

age resizing based on dynamic programming optimization.

When extended to video, dynamic programming does not

work and graph cuts is used for optimization to find surfaces

[9]. Their algorithm greedily removes or inserts seams that

pass through the less important regions in the video. When

(a) (b) (c) (d)

Figure 1. Image resizing example using our optimal multiple sur-

faces searching method and single surface method. When search-

ing multiple surfaces simultaneously, there are less artifacts than

single surface method. (a) Original image. (b) The detected mul-

tiple surfaces using our algorithm. (c) Resizing result using our

optimal multiple surfaces searching method. (d) Result using sin-

gle surface algorithm [9].

successively removing these seams, large artifacts may oc-

cur. The fact is that successively removing surfaces with

minimal energy from the video does not guarantee the final

solution to be globally optimal ( Figure 1 shows an exam-

ple). To resolve this problem, a new approach having the

capability of simultaneous detection of multiple seams in

an optimal way with respect to the cost function is urgently

needed.

In this paper, we present a novel algorithm which can

simultaneously detect multiple seams with a guaranteed

global optimality. The basic idea is to formulate the

video/image resizing problem as an optimization problem

which seeks multiple seams whose total energy is mini-

mized. We use a weighted geometric graph (a graph whose

vertices and arcs are embedded in a geometric space) to

model the problem. In our formulation, a seam corresponds

to a terrain-like surface in the graph. The optimization

problem is then employed to simultaneously detect multi-

ple terrain-like surfaces in the geometric graph while min-
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imizing the total cost of those surfaces. This task can be

solved in low-order polynomial time by computing a min-

imum s-t cut in a derived directed graph. The apparently

daunting combinatorial explosion structure makes the mul-

tiple surfaces detection problem appear to be computation-

ally intractable at one’s first sight. Interestingly, Li et al. [7]

developed an efficient graph-searching approach for solv-

ing the problem while the sought surfaces are allowed to

pass the same vertex. However, the sought seams in the

video/image resizing problem could cross each other and

are required not to pass the same voxel, which makes the

problem much more involved. Compared to the method in

[9], the major advantage is that our method can directly find

multiple seams simultaneously while guaranteeing a glob-

ally optimal solution. It thus can retain more important in-

formation and may have less artifacts. In addition to the

globally optimal solution, our method can control the spa-

tial and temporal connectivity constraints flexibly and more

locally than other graph-cuts-based methods [9].

In summary, the major contributions of this work are

two-folds:

(1) Based on the multiple-surface searching technique,

we present a novel algorithm for solving the video/image

resizing problem. To the best of our knowledge, this is the

first algorithm that guarantees the global optimality for the

problem with respect to the energy function.

(2) We introduce the optimal multiple surface searching

method into the field of computer video and further extend

the method to video resizing. While the developed method

is of interest on its own, we expect that it can shed some

light on solving other important optimization problems aris-

ing in the field.

1.1. Related Work

Many algorithms have appeared in the literature from re-

targeting images to displays of different resolutions and as-

pect ratios. Traditional methods perform uniform or simple

non-uniform resizing without considering the video/image

content. In order to resize the videos/images while min-

imizing adverse effects to the main image content, many

approaches have been presented to remove the unimpor-

tant information from the video/image periphery. We di-

vide these methods in two categories: warping-based meth-

ods [4, 13, 15, 12] and voxel-based methods [1, 9].

One of the simple warping-based method is to uniformly

scale/resize the video/image to the target size. Such an ap-

proach is not content-aware and ignores the uneven impor-

tance of different image areas, and changes of their relative

importance over time. Gal et al. [4] proposed to warp an

image into various shapes, enforcing the user-specified fea-

tures to undergo similarity transformations. Wolf et al. [13]

proposed a method which is constrained to preserve the

shapes of important regions. Zhang et al. [15] proposed

to employ shrinkable maps and random walk to acceler-

ate the scaling process and decrease the storage require-

ments. Wang et al. [12] presented a scale-and-stretch warp-

ing method. The method iteratively computes optimal local

scaling factors for each local region and updates a warped

image that matches these scaling factors. The main problem

of this technique is the behavior causing that the distortion

is distributed in all spatial directions. Consequently, some

objects may be excessively distorted and the globally spatial

structure of the original image may be damaged.

Voxel-based methods successively remove or add some

unimportant voxels to resize the video/image. Rubinstein et
al. [9] proposed a video retargeting algorithm which works

by removing 2-D seam manifolds from 3-D space-time vol-

umes (we call it a single surface method). They use a graph

cuts approach to find the seam manifolds. Their method

supports the creation of multi-sized video and can produce

very impressive results. However, the seam found in each

iteration may be at same position, which can damage the

original video/image content and produce artifacts. One

such example is shown in Figure 1.

The limitations of existing approaches is the main impe-

tus for designing a way to find multiple surfaces simulta-

neously while guaranteeing a globally optimal solution to

overcome the above problems.

2. Problem Modeling
Denote by I(x,y, t) a video having T frames each with

size of X×Y voxels (that is, the video is of size X×Y ×T ).

A seam is a monotonic and connected surface (manifold)

with respect to the x- (y-) dimension, which cuts through

the video 3-D volume. Due to the flexibility of the sur-

face, the seams can adaptively change over time in each

frame of the video. Figure 2 shows a possible orienta-

tion of two seams in a video volume, in which the seams

are orthogonal to y-dimension. Thus, we view a horizon-

tal seam S as a function S(x, t) mapping (x, t) pairs to

their y-values. A vertical seam can be defined in a simi-

lar way. We focus on searching for horizontal seams. For

vertical seams, all constructions are the same with an ap-

propriate rotation. The connectivity of a seam, which en-

sures the surface continuity to preserve temporal/spatial co-

herency, is of great importance in video/image retarget-

ing [9]. Specifically, the connectivity specifies the maxi-

mum allowed change in the y-dimension of a feasible seam

along each unit distance change in the x- and t-dimensions.

For each (x, t) pair, 0 ≤ x < X and 0 ≤ t < T , the

voxel subset {I(x, y, t)|0 ≤ y < Y } forms a column par-

allel to the y-axis, denote by Col(x, t). Two columns are

neighboring if their (x, t) coordinates satisfy some neigh-

borhood conditions. For instance, under the 4-neighbor set-

ting, the column Col(x, t) is neighboring to Col(x′, t′) if

|x − x′| + |t − t′| = 1. Henceforth, we use a model of
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Figure 2. The orientation for two seams.

the 4-neighbor setting; this simple model can be easily ex-

tended to other neighboring setting. Precisely, the seam

connectivity constraint is defined as follows. If I(x, y′, t)
and I(x, y′′, t+1) (resp., I(x, y′, t) and I(x+1, y′′, t)) are

two neighboring voxels on a feasible seam and for δt and δx
are two given connectivity parameters, then |y′ − y′′| ≤ δt
(resp., |y′ − y′′| ≤ δx).

By removing one horizontal seam from a video volume,

the video size is reduced by one in the y-dimension. To

reduce the video size by κ in the y- dimension, κ seams

satisfying both monotonicity and connectivity constraints

need to be removed. The seam carving method in [9] seeks

to minimize the energy of one seam at a time. The iter-

ative method can certainly re-compute the per-voxel costs

after each iteration. Although seam carving approach can

guarantee that each of the removed κ seams passes through

different voxels, the total energy of those κ seams may not

be minimized. To overcome the difficulty, we strive to find

the κ seams simultaneously. The objective function of our

method is to minimize the total energy of κ seams simul-

taneously and no two seams pass though the same voxel in

the video volume. From this point of view, our objective

function is different from that of the seam carving method.

3. The Algorithm
Let us formulate the resizing problem as simultaneous

detection of multiple surfaces in a 3-D geometric graph. Al-

though the graph search method in [7] can simultaneously

detect multiple crossing surfaces, it allows the sought sur-

faces to pass the same vertex. We extend the method to han-

dling the simultaneous detection of multiple surfaces which

may cross each other and no two of which pass though the

same vertex, thus optimally solving the video/image resiz-

ing problem.

3.1. Handling Crossing Video Seams

Note that to reduce the size of a given video I by κ, we

need to remove κ seams. A set of κ seams may cross each

other. Precisely, we say that two video seams S1 and S2

cross each other if ∃(x′, t′) such that S1(x′, t′) > S2(x′, t′)
and ∃(x′′, t′′) such that S1(x′′, t′′) < S2(x′′, t′′) as well.

We want to prove that there exists an optimal solution to the

video resizing problem, which consists of a set of κ seams

such that no two of them cross each other.

Denote S = {S1, S2, . . . , Sκ} an optimal set of κ seams

to be removed to reduce the size of the given video I . Con-

sider the union U of all the voxels on those κ seams, that

is, U =
⋃κ

k=1 ∪(x,t)I(x, Sk(x, t), t). We define the upper
envelope S′1 of U as follows. For each pair (x, t), let ytop

be the maximum y-coordinate of the voxels in U on Col-

umn Col(x, t). Then, S′1(x, t) = ytop. This results in a new

seam S′1 in I . Removing all voxels on S′1 from U , we can

compute the upper envelope S′2 of the remaining voxel set

U − S′1. By doing this iteratively, we obtain a new set of κ
seams, denoted by S ′ = {S′1, S′2, . . . , S′κ}. We prove below

that S ′ is an optimal solution to the video resizing problem.

First, we show that each seam S′k ∈ S ′ is a feasi-

ble video seam. From the definition of upper envelope,

S′k is monotonic with respect to the x-t plane. To prove

that S′k satisfies the connectivity constraint, we apply the

prove-by-induction technique. Consider two neighboring

voxels I(x′, y′, t′) and I(x′′, y′′, t′′) on seam S′1. If both

I(x′, y′, t′) and I(x′′, y′′, t′′) are on a same seam of S,

then they satisfy the connectivity constraint. Otherwise,

assume that I(x′, y′, t′) ∈ Si and I(x′′, y′′, t′′) ∈ Sj

(i �= j). Denote by I(x′, ȳ, t′) ∈ Sj the voxel on which

Sj cuts Col(x′, t′). Note that S′1 is the upper envelope of

U . Thus, y′ > ȳ. Since Sj is a video seam, I(x′, ȳ, t′)
and I(x′′, y′′, t′′) satisfy the connectivity constraint, that

is, |ȳ − y′′| ≤ δx or δt depending on Col(x′, t′) and

Col(x′′, t′′) being neighboring along x- or t-dimension.

Let I(x′′, ŷ, t′′) be the voxel on Si. Using a similar argu-

ment as above, we have y′′ > ŷ and |ŷ − y′| ≤ δx (or δt).

Hence, |y′ − y′′| ≤ δx (or δt). Therefore, I(x′, y′, t′) and

I(x′′, y′′, t′′) satisfy the connectivity constraint. We thus

assume that S′l (l = 1, 2, . . . , k − 1) satisfies the connectiv-

ity constraint. From the computation of S′k, it is the upper

envelope of U − ∪k−1
l=1 S′l . The same argument as we used

for S′1 reveals that S′k satisfies the connectivity constraint.

We thus prove that S′k is a feasible video seam.

Since S is an optimal solution, no two seams in S pass

though the same voxel. It is obvious that no common voxels

may be present in any two seams in S ′. The union of the

voxels on the seams in S is the same as the union of the

vertices on the seams in S ′. Thus, the total energy of the

seams in S equals to that of the seams in S ′. We thus prove

that S ′ is an optimal solution to the video resizing problem.

In the optimal solution S ′ = {S′1, S′2, . . . , S′κ}, S′k is on

the “top” of S′k+1 for k = 1, 2, . . . , κ−1, and the minimum

distance between S′k and S′k+1 is no less than 1. Hence,

Theorem 1 follows.

Theorem 1 Given an instance of the video/image resizing
problem, there exists an optimal solution consisting of κ
non-crossing seams with the minimum distance between any
two adjacent seams no less than 1.
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Figure 3. The flowchart of the proposed method.

3.2. Finding Optimal Multiple Surfaces by Graph
Searching

In this section, we apply the graph searching method [7]

to simultaneously detect optimal κ non-crossing seams in

the 3-D video volume, which is an optimal solution to the

video/image resizing problem based on Theorem 1. The

seam connectivity constraint and the seam distance con-

straint are enforced in the graph construction. In this sec-

tion, we use the term surfaces instead of seams since we are

working on the graph constructed from the given video. In

Figure 3, the flowchart of the proposed algorithm is given.

Details are presented in the following sections.

A. Graph Construction
Without loss of generality, the surfaces are oriented as

shown in Figure 2. Each voxel in the video is assigned an

energy cost (denoted as e(x, y, t)) which reflects the likeli-

hood that the desired surface contains the voxel. In order to

find κ surfaces, a weighted directed graph G = (V,E) in

4-D is constructed with V =
⋃κ

i=1 Vi and E =
⋃κ

i=1 Ei,

each subgraph Gi = (Vi, Ei)i=1,...,κ is used to detect one

surface. The vertices in each subgraph Gi have one-to-one

correspondence to the voxels in the video. Thus a column

Col(x, t) of voxels in the video I corresponds to a vertex

column Vi(x, t) in Gi. Each vertex is assigned a cost value

using Eq.(1)

{
ci(x, y, t) = e(x, y, t), if x = 0;
ci(x, y, z) = e(x, y, z)− e(x− 1, y, t), otherwise

(1)

In order to find feasible surfaces, three types of graph

arcs are used to enforce the monotonicity, surface connec-

tivity and surface distance constraints.

(1) Intra-column arcs. The intra-column arcs enforce the

monotonicity property of the surfaces, which means each of

the sought surfaces must contain one and only one vertex

of each vertex column. The intra-column arcs are put in

each 3-D subgraph. For each vertex column Vi(x, t), every

vertex Vi(x, y, t) has a directed arc to Vi(x, y − 1, t).
(2) Inter-column arcs. The inter-column arcs incorpo-

rate the surface connectivity constraint. The constraint is

represented by the spatial parameter δx and the temporal

parameter δt, reflecting the allowed changes on the sur-

face when moving from one surface vertex to the next

neighboring one in the x-direction and t-direction, respec-

tively. The inter-column arcs are added in each 3-D sub-

graph. For any two neighboring vertex columns Vi(x′, t′)
and Vi(x′′, t′′) along the x-direction, a directed arc is put

from each vertex Vi(x′, y, t′) to Vi(x′′, max(0, y− δx), t′′)
and a directed arc is added from each vertex Vi(x′′, y, t′′) to

Vi(x′, max(0, y−δx), t′). The same operation is performed

along the t-direction. In [1, 9], the connectivity constraint

allows the maximum shift of one voxel. Our method pro-

vides a more flexible way to control the spatial and temporal

connectivity.

(3) Inter-surface arcs. The above intra-column and inter-

column arcs are added to each 3-D subgraph. The individual

subgraphs are connected with inter-surface arcs to enforce

the surface distance constraint. Note that based on Theo-

rem 1, we only need to consider the non-crossing case with

one surface on top of the other having the minimum dis-

tance in between no less than 1. Suppose that for the two

sought surfaces S1 and S2, we know that S1 is on top of S2.

Let the 3-D graphs used for the search of S1 and S2 be G1

and G2, respectively. For the two corresponding columns

V1(x, t) ∈ G1 and V2(x, t) ∈ G2, a directed arc is put from

each vertex V2(x, y, t) to V1(x, y + 1, t).
B. Optimization via Graph Cuts
Our goal is to find κ surfaces subject to certain con-

straints, which can be converted to find minimum-cost

closed set C� using the graph constructed above. The

problem of finding minimum-cost closed set C� can be

solved by a graph cuts method. Define a new s-t graph

Gst = (V
⋃

(s, t), E
⋃

Est). The new graph consists of the

vertex set V plus a source vertex s and a sink vertex t. An

infinity cost is assigned to each arc in E. We link the source

s to each vertex with negative cost and assign the arc cost

as −ci(x, y, t). Similarly, we link each vertex with non-

negative cost to sink t and assign the arc cost as ci(x, y, t).
Finally, the optimal set of κ surfaces can be found by com-
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puting a minimum s-t cut in Gst [3, 2, 6, 14, 7].

The optimal κ seams correspond to the upper envelope of

the minimum closed set C�. They can be recovered in the

following way. Each subgraph Gi, i = 1, . . . , κ is used to

search for the target surface Si. For every x ∈ x and t ∈ t,

let VB(x, t) be the subset of vertices in both C� and the

column Coli(x, t) of Gi, i.e., VB(x, t) = C�
⋂

Coli(x, t).
Denote by Vi(x, y�, t) the vertex in VB(x, t) with the largest

y-coordinate. Then, vertex Vi(x, y�, t) is on the ith optimal

surface Si. In this way, the minimum closed set C� of G
uniquely defines the optimal κ surfaces in I .

4. Implementation
4.1. Energy Computing

The energy values are used to determine the importance

of the individual voxels in video/image. Voxels with less

energy value tend to be removed. Because we have no prior

knowledge about what is important in the video/image, de-

termining the importance is difficult and commonly subjec-

tive. Some methods use an interactive way to determine the

importance of the video/image. Under our framework, any

energy method can be used in our algorithm such as image

gradient, local saliency [5, 8], montion features, object de-

tection [10], and interactive mask [11].

We use image gradient (Eq.(2)) and optical flow (Eq.(3))

to capture both spatial and temporal features.

Espatial =

√∥∥∥∥∂I(x, y)
∂x

∥∥∥∥
2

+
∥∥∥∥∂I(x, y)

∂y

∥∥∥∥
2

, (2)

Etemporal(x, y) =
√
‖Vx‖2 + ‖Vy‖2, (3)

Vx and Vy can be computed using Eq.(4),

∂I(x, y)
∂x

Vx +
∂I(x, y)

∂y
Vy +

∂I(x, y)
∂t

Vt = 0, (4)

where Vx,Vy are the x and y components of the velocity or

optical flow of I(x, y, t) and
∂I(x,y)

∂x ,
∂I(x,y)

∂y and
∂I(x,y)

∂t are

the derivatives of the image at (x, y, t) in the corresponding

directions. The final measure is computed using Eq.(5).

E(x, y) = αEspatial + (1− α)Etemporal. (5)

In practice, it is better to change the fraction between the

spatial energy and temporal energy according to a specific

video type.

4.2. Accelerating Running Time

The graph cuts algorithms run in a polynomial time.

Suppose that there are κ surfaces and total n vertices. Then

the graph Gst has O(κn) vertices and O(κn) arcs. The

(a) (b)

(c) (d)
Figure 4. Results with different connectivity constraints. In this

case, we aim to search for vertical seams, so the connectivity con-

straints are along the y direction. (a) The detected multiple seams

with δy = 1. (b) The resizing results with δy = 1. (c) The de-

tected multiple seams with δy = 2. (d) The resizing results with

δy = 2.

multiple surfaces can be found in T (κn, κn) time, where

T (κn, κn) is the time for finding a minimum s-t cut in

an arc-weighted directed graph with O(κn) vertices and

O(κn) arcs. In practice, graph cuts methods have been ob-

served to have linear running time on average [2].

Common video data consist of several hundred frames.

Consequently, direct use of a multiple surfaces searching

algorithm will be computationally expensive. We use three

strategies to improve the running time. (1) For long videos,

separate shot detection is applied to partition the video into

several single-shot parts. The proposed algorithm is then

used on each sub-video. (2) Multi-resolution method. Each

image frame of a video sequence can be first down-sampled

by a factor of 2. (3) In order to find κ seams, it helps to

iteratively find κ′ < κ seams several times. We observe that

finding about 10-15 seams each time can obtain a balance

between resizing quality and acceptable running time.

4.3. Geometry Constraints

As shown in Section 3.2, our algorithms can preserve

several geometry constraints. Parameters δx, δy and δt can

control the connectivity along the x, y and t directions. In

Figure 4, an example is shown with different connectivity

constraints. The connectivity constraints are δy = 1 and

δy = 2 (note we are interested in vertical seams). It can be

seen that the resizing with δy = 1 gives a smoother appear-

ance than when using δy = 2. In [9], connectivity is used to

enforce that the voxels belonging to individual seams must

be connected. We can provide flexible connectivity param-

eters according to different media content.
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Figure 5. Comparison of our approach with seam carving. (a) The original image. (b) Shrink result using our method. (c) Shrink result

using seam carving with backward energy. (d) Shrink result using seam carving with forward energy. (e) Expansion result using our

method. (f) Expansion result using seam carving with backward energy. (g) Expansion result using seam carving with forward energy.

(a) (b) (c)
Figure 6. Comparison of our approach with seam carving. (a) Our

result. (b) Seam carving with backward energy. (c) Seam carving

with forward energy.

5. Experiments
The reported experimental results were achieved

on publically available video data obtained from

http://www.faculty.idc.ac.il/arik/SCWeb/vidret/index.html.

5.1. Results on Images

Our algorithm can be easily applied to images by setting

t = 1. In such a case, only the gradient energy is used and

motion features are not considered.

Figure 1 gives an example of performance on a vase im-

age. Our algorithm produced result with visually observable

less artifacts than the seam carving method due to simulta-

neously detecting multiple seams. Successively removing

single seam can not maintain the global image content. This

problem has been previously reported in [9]. The results

in Figure 5 also exemplified the validity of the proposed

method.

Our algorithm, however, does not guarantee to outper-

form seam carving for all cases. In Figure 6, seam carv-

ing with forward energy demonstrated to give a better result

than our approach. But, the result of our method was visibly

better than the result of seam carving while using backward

energy.

5.2. Results on Video Data

In Figure 7, we compared our algorithm with directly-

scaled method and seam carving [1, 9]. Clearly, both our

method and the seam carving approach outperformed the

raw scaled method. Because both our method and the seam

carving are based on graph cuts methods, the two algo-

rithms share some advantageous properties. The sample re-

sults demonstrated the quality improvement with respect to

different criteria (such as artifacts, the size of interesting ob-

jects, etc). For example, the person in the akiyo video was

bigger than that in the compared results and the head had

less distortion (the first two rows of Figure 7), which means

our method was able to keep more important information.

It can also be observed in the basketball video results. For

the waterski video, our method was able to keep the promi-

nent wave-front information. We can see that our algorithm

can preserve most of the significant video information. In

addition, we are expecting even better results by optimizing

the parameters and post-processing.
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6. Discussion
6.1. Limitations

Despite the many good properties, the proposed method

is based on voxel removal (insertion) and as such, it may

cause noticeable artifacts in structural objects. Another lim-

itation is associated with the relatively long execution time.

Although we incorporated several methods to improve the

running time, content-aware resizing of videos at real-time

remains challenging. Implementation directly on GPU may

solve this problem in the future.

6.2. Guarantee of Globally Optimal Solution

We have proved that for any optimal solution, if the

seams in the solution cross each other, then we can find an

equivalent optimal solution (i.e., having the same objective

value) in which no two seams cross each other. That means

there exists an optimal solution in which no two seams cross

each other. We thus restrict that the sought seams should not

cross each other.

Our algorithm is theoretically proven to be able to find

the globally optimal solution to the presented video/image

resizing problem. The graph construction in Section 3.2

guarantees to find an optimal set of κ seams, which are

not piece-wise crossing each other. Since in Section 3.1

we have proven that an optimal set of κ crossing seams can

be arranged such that they do not cross each other, we thus

can guarantee finding the globally optimal solution.

7. Conclusion
A low-order polynomial time algorithm for identify-

ing the optimal multiple seams in 3-D video/image data

was presented. Based on this algorithm, we introduced a

method for video/image resizing, where instead of finding

one seam at a time, multiple seams are identified simul-

taneously while guaranteeing global optimality of the so-

lution. The multidimensional nature of the algorithm en-

sures 3-D (2-D + time)consistency of the results. The seam

connectivity parameters provide a flexible and mathemati-

cally justified means for modeling various inherent proper-

ties of the desired seams. The seam distance parameters can

control the position of detected multiple seams. The algo-

rithm was evaluated on video/image resizing task and the

results showed promising performance. Most importantly,

our work introduced the use of optimal multiple surface de-

tection to multimedia resizing problems and possibly iden-

tified a new and promising research direction.
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Figure 7. Comparison of our algorithm with directly scaled method and seam carving [1, 9].
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