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ABSTRACT

Context. Quiescent solar prominence fine structures are typically modelled as density enhancements, called threads, which occupy
a fraction of a longer magnetic flux tube. This is justified from the spatial distribution of the imaged plasma emission/absorption of
prominences at small spatial scales. The profile of the mass density along the magnetic field is however unknown and several arbitrary
alternatives are employed in prominence wave studies. The identification and measurement of period ratios from multiple harmonics
in standing transverse thread oscillations offer a remote diagnostic method to probe the density variation of these structures.
Aims. We present a comparison of theoretical models for the field-aligned density along prominence fine structures. They aim to
imitate density distributions in which the plasma is more or less concentrated around the centre of the magnetic flux tube. We consider
Lorentzian, Gaussian, and parabolic profiles. We compare their theoretical predictions for the period ratio between the fundamental
transverse kink mode and the first overtone to obtain estimates for the ratio of densities between the central part of the tube and its
foot-points and to assess which one would better explain observed period ratio data.
Methods. Bayesian parameter inference and model comparison techniques are developed and applied. Parameter inference requires
the computation of the posterior distribution for the density gradient parameter conditional on the observable period ratio. Model
comparison involves the computation of the marginal likelihood as a function of the period ratio to obtain the plausibility of each
density model as a function of the observable and the computation of Bayes Factors to quantify the relative evidence for each model,
given a period ratio observation.
Results. A Lorentzian density profile, with plasma density concentrated around the centre of the tube seems to offer the most plausible
inversion result. A Gaussian profile would require unrealistically large values of the density gradient parameter and a parabolic density
distribution does not enable us to obtain well constrained posterior probability distributions. However, our model comparison results
indicate that the evidence points to the Gaussian and parabolic profiles for period ratios in between 2 and 3, while the Lorentzian
profile is preferred for larger period ratio values. The method here presented can be beneficial to obtain information on the plasma
structure along threads, provided period ratio measurements become widely available.
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1. Introduction

When observed with high spatial resolution instrumentation, the
fine structure of solar prominences appears to be distributed in
the form of fine strands of plasma presumably aligned with the
local magnetic field. This strands become visible as bright/dark
filamentary structures in emission/absorption when observing
prominences in the limb/on the disk. As described by Heinzel
(2007), the fine structure of prominences is manifested differ-
ently in the case of limb observations and on disk filaments thus
making difficult to identify the same structures as seen on the
limb and on the disk. When observed on the limb, the fine struc-
ture is composed by horizontal and vertical threads and knots
of prominence plasma that exhibit a significant dynamical be-
haviour (see e.g., Heinzel 2007; Berger et al. 2008; Mein & Mein
1991; Schmieder et al. 2010, 2013, 2014). On the disk, the high-
resolution Hα images show fine-structure fibrils, visible along
the spine of quiescent filaments, with average widths of the or-
der of 0.3′′, whereas their length is in between 5′′and 40′′(Lin
et al. 2005; Lin 2011). Filament threads are thought to be made

of relatively cold and dense plasma, with chromospheric prop-
erties, occupying a fraction of a longer invisible magnetic flux
tube and surrounded by hot plasma with coronal properties.

In the last years, the analysis of spectra and images of promi-
nence plasmas and the improvement of non-LTE radiative trans-
fer models have enabled the development of inversion and for-
ward modelling techniques to infer plasma parameters in solar
prominences (see Labrosse et al. 2010, for a review). Tandberg-
Hanssen (1995) and Patsourakos & Vial (2002) give a compila-
tion of various density determinations in prominences and show
that this parameter varies by at least 2 orders of magnitude, from
109 to 1011 cm−3. Magnetic fields show a similar variability with
field strengths that range from a few G to 20-30 G in quiescent
prominences (e.g., Bommier et al. 1994; Merenda et al. 2006;
Gunár et al. 2007) to higher values in active region prominences.
Spectro-polarimetric observations are now able to offer informa-
tion on the prominence magnetic field, although individual flux
tubes cannot yet be resolved (López Ariste & Casini 2002; López
Ariste et al. 2005; Orozco Suárez et al. 2014). These studies
have provided a wealth of knowledge on the physical quantities
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and dynamics of prominences (Heinzel & Anzer 2006; Heinzel
2007; Mackay et al. 2010; Labrosse et al. 2010; Parenti 2014;
Vial & Engvold 2015).

To obtain information about the value of physical quantities,
such as the temperature, density, and magnetic field strength,
and their spatial variation along and across the magnetic field
is of fundamental importance to understand the physical prop-
erties and dynamical processes operating in solar prominences.
A widely followed approach is the 1D and 2D non-LTE mod-
elling of prominences and filaments, including their fine struc-
tures, and the comparison between the observed spectral line
properties with the synthetic line characteristics (e.g., Heinzel
1995; Paletou 1995; Gouttebroze & Labrosse 2000; Gunár et al.
2007, 2013, 2014; Heinzel 2015). An alternative approach is the
theoretical modelling of magnetohydrodynamic (MHD) waves
in fine-structure equilibrium models and the comparison of the
observed waves with the theoretical MHD wave properties, a di-
agnostic tool known as prominence seismology (Ballester 2005,
2006; Oliver 2009; Ballester 2014).

The method of prominence seismology relies on the com-
parison between observed and theoretical properties of waves
and oscillations. The analysis of imaging and spectroscopic data
has clearly shown the presence of small amplitude oscillations in
prominence fine structures (see Arregui et al. 2012, for a review).
Some of these oscillations produce the transverse displacement
of the threads and have been interpreted in terms of MHD trans-
verse kink waves (Lin et al. 2009; Lin 2011). The observed dis-
turbances have characteristic periods of a few minutes and ve-
locity amplitudes of a few km s−1. By measuring the oscillation
properties and confronting them to theoretical predictions infor-
mation on the unknown parameters can be obtained. Because of
the relatively simple structure of prominence threads, in compar-
ison to the full prominence structure, seismology studies approx-
imate their magnetic and plasma configuration using simplified
magnetic flux tube models in cylindrical geometry. By adopting
the zero plasma-β approximation, models that study linear tube
oscillations are then constructed by specifying a particular den-
sity structure that defines the thread inside the tube. Following
this approach, models have been used to analyse the oscillatory
properties of standing transverse thread oscillations. Díaz et al.
(2002) use a piece-wise constant density profile along and across
the thread to model a cold thread embedded in a hotter coronal
gas. Soler et al. (2010) extended this model by considering a
smooth variation of density across the field, in order to study
damped transverse oscillations and Arregui et al. (2011) further
increased the complexity of the modelling by adopting fully non-
uniform density models with a smooth variation of density along
and across the magnetic field. In all these studies, the density
structuring along and across the field was arbitrarily prescribed.

In a recent study, Soler et al. (2015) have considered three
alternative models for the density profile along threads and have
computed period ratios between the fundamental kink mode and
the first overtone of transverse thread oscillations. Period ratios
are sensitive to the details of the density variation along the mag-
netic field, hence the inversion of observed period ratios using
longitudinally non-uniform density models provides information
on the density profile of prominence threads (see e.g., Díaz et al.
2010). Following this approach, and using their theoretical pre-
dictions, Soler et al. (2015) obtain estimates of the magnitude of
the density gradient along the thread.

Because any inference is model dependent, their results are
conditional on the specific models that have been assumed to
explain observations. A second level of inference consist in pre-
senting the same data to different models to assess in a quantita-

tive manner which one is favoured. This paper presents the so-
lution to that problem, which necessarily demands the Bayesian
solution to the model comparison problem. The Bayesian for-
malism for inference and model comparison is the only fully
correct way we have to obtain information about physical param-
eters and the plausibility of hypotheses from observations under
incomplete and uncertain information (see e.g. Trotta 2008; von
Toussaint 2011). The three density models adopted by Soler et al.
(2015) are considered to devise a method by which their relative
plausibility in explaining period ratio data for transverse thread
oscillations can be obtained, hence inferring the degree of evi-
dence for each one. The method thus developed can be applied to
the analysis of future period ratio measurements in prominence
threads.

The layout of the paper is as follows. Section 2 describes
the considered prominence thread density models. In Section 3
the solutions to the forward problem for transverse thread os-
cillations are discussed. Seismology results for the inference of
the density gradient along threads are shown in Section 4. In
Section 5, the three models are compared to evaluate which one
would better explain observed period ratios. Section 6 presents
our conclusions.

2. Thread density models

Because of the apparent filamentary structure of prominence
plasmas at small spatial scales, individual threads are commonly
modelled by means of magnetic flux tube models in which a den-
sity enhancement, surrounded by plasma in coronal conditions,
occupies a fraction of a longer magnetic flux tube. Although
prominences are formed by many threads, observations often
show that individual threads oscillate independently. We neglect
the interaction between neighbouring structures and consider a
model for an individual and isolated structure. Following Soler
et al. (2015), we consider such a prominence thread model con-
sisting of a straight cylindrically symmetric magnetic flux tube
of radius R and length L, with the magnetic field directed along
the longitudinal coordinate, z (see Figure 1 in Soler et al. 2015).
The ends of the tube are located at z = ±L/2. The magnetic field
strength, B0, is uniform and under the plasma-β = 0 approxima-
tion the spatial distribution of the mass density, ρ0, can be chosen
arbitrarily. This fact is used to consider three alternative density
distributions along the equilibrium magnetic field that are to be
compared in our study.

Prominence threads are denser near the tube centre than at
the foot-points. By denoting the internal density at the centre as
ρi(0) = ρi,0 and that at the foot-point as ρi(L/2) = ρi,L/2, the ratio
of densities is given by χ = ρi,0/ρi,L/2 with χ ≥ 1. For χ = 1,
the thread in homogeneous. The density variation is stronger for
larger values of χ.

Using the above definitions, Soler et al. (2015) construct
three alternative density models for longitudinally inhomoge-
neous prominence threads: a Lorentzian profile with

ρL
i (z) =

ρi,0

1 + 4(χ − 1)z2/L2 , (1)

a Gaussian profile with

ρG
i (z) = ρi,0 exp

(
−4

z2

L2 ln χ
)
, (2)

and a parabolic profile with
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Fig. 1. Spatial variation of the equilibrium mass density along the mag-
netic flux tube for prominence thread models with a Lorentzian pro-
file (solid line), a Gaussian profile (dotted line), and a parabolic profile
(dashed line). The ratio of centre to foot-points densities is χ = 100.

ρP
i (z) = ρi,0

(
1 − 4

χ − 1
χ

z2

L2

)
. (3)

Figure 1 shows the spatial variation of the density distribution
for the three considered profiles. For the Lorentzian profile, the
dense plasma is located in a narrow fraction of the tube around
its centre and the density decreases significantly as soon as we
move towards the foot-points of the tube. For the parabolic pro-
file, the density is broadly distributed along the tube. These pro-
files represent two extreme cases. The intermediate case is given
by the Gaussian profile for which the dense plasma is also lo-
cated around the centre of the tube, but the gradient is smoother
that in the Lorentzian case and sharper than in the parabolic case.

None of the specifically assumed density profiles is expected
to be an accurate quantitative representation of the real den-
sity variation along solar prominence threads, but they provide a
means to model alternative cases which, by means of the model
comparison technique presented in this paper, can offer informa-
tion about whether the density is more or less distributed around
the denser central part of the magnetic flux tube.

3. The period ratio of inhomogeneous threads

Each of the assumed equilibrium density profiles produces dis-
tinct transverse wave signatures. In particular, the ratio of peri-
ods between the fundamental transverse kink mode and its first
overtone is known to be sensitive to the longitudinal variation of
the density along the magnetic flux tube. This is known since the
study by Andries et al. (2005b) in the context of coronal loop
oscillations. Andries et al. (2005a) were the first to use this fact
to perform a seismic inversion of the longitudinal density struc-
turing from observations of period ratios of transverse loop os-
cillations, an approach that has been frequently employed since
then (see Andries et al. 2009, for a review). Period ratio mea-
surements are scarce in prominence oscillations, but Díaz et al.
(2010) employed the same technique to investigate the depen-
dence of the period ratio on the equilibrium parameters to find
that for prominence plasmas the period ratio is larger than two,
and to obtain an estimate of the length of the supporting mag-
netic tube.

Fig. 2. Dependence of the period ratio between the fundamental mode
and the first overtone as a function of the density gradient parameter, χ,
for a Lorentzian profile (solid line), a Gaussian profile (dotted line), and
a parabolic profile (dashed line).

For the particular three density profiles described above,
Soler et al. (2015) obtained analytical and numerical approxi-
mations to the period ratio of transverse oscillations of individual
threads. The obtained period ratios are functions of a single pa-
rameter, the ratio of the central density to the foot-point density.
Soler et al. (2015) compute period ratios as a function of the in-
creasing density gradient parameter χ by reducing the foot-point
density, while keeping the density at the central part of the tube
and find that the period ratio r = P0/P1 is larger than 2. They
note however that by doing so the total mass in the thread is dif-
ferent for different profiles, making a direct comparison between
the results from different profiles unsuitable. To solve this prob-
lem, Soler et al. (2015) consider the same average density in the
thread, by defining an average internal density, which keeps the
period ratio variation as a function of the average density equal
for the three profiles. The relevant expression is Eq. (17) in Soler
et al. (2015) which is empirically obtained after analysing their
numerical computations. The important result behind this equa-
tion is that the period ratio is only a function of the ratio of the
average density to the central density. This property enables to
express the period ratio as a function of χ, although the func-
tional dependence on this parameter is different for each con-
sidered density profile. The relevant forward solutions for each
adopted density profile are obtained upon substitution of their
expressions (18), (19), and (20) for the average density as a func-
tion of χ into their Equation (17) for the period ratio as a function
of the average density (see Soler et al. 2015). These expressions
are

rL =

(
P0

P1

)L

= 1 +

 √
χ − 1

arctan
√
χ − 1

1/2

, (4)

rG =

(
P0

P1

)G

= 1 +

 2 lnχ
√
π erf

√
ln χ

1/2

, (5)

and

rP =

(
P0

P1

)P

= 1 +

(
3χ

2χ + 1

)1/2

, (6)
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Fig. 3. (a) Posterior probability distribution for log χ under the Gaussian density gradient model, MG, for a period ratio of r = 3.0 and uncertainty
given by σ = 0.2 (dashed); σ = 0.4 (solid); σ = 0.8 (dotted) and considering log χ ∈ [1, 60] in the prior range. For σ = 0.4, the inferred median
of the distribution is logχ = 19+16

−10, with uncertainty given at the 68% credible interval. (b) Posterior probability distribution for χ under the
Lorentzian density gradient model, ML, for the same period ratio and uncertainty given by σ = 0.2 (dashed); σ = 0.4 (solid); σ = 0.8 (dotted) and
considering χ ∈ [2, 500] in the prior range. For σ = 0.4, the inferred median of the distribution is χ = 51+47

−28.

where the superscripts of the period ratio indicate that the so-
lution of the forward problem corresponds to the Lorentzian,
Gaussian, and parabolic density profiles, respectively.

The three solutions for the period ratio as a function of the
density variation along the thread are displayed in Figure 2.
When χ = 1, the three curves go to the period ratio r = 2, for
longitudinally homogeneous thread models (Soler et al. 2015).
As the density variation increases the period ratio increases in
the three cases. This increase is more marked for the Lorentzian
profile and very subtle in the case of the parabolic profile. For
the Gaussian profile an intermediate result is obtained regarding
the rate of period ratio increase.

4. Parameter inference

Using the solutions to the forward problem for the three density
profiles, a method to perform parameter inference is now devised
that can be used to obtain information on the density gradient
along the threads from period ratio measurements. To this end,
we use Bayes’ theorem (Bayes & Price 1763),

p(χ|r,Mi) =
p(r|χ,Mi)p(χ|Mi)∫
dχp(r|χ,Mi)p(χ|Mi)

, (7)

to perform the inversion of parameter χ from data r, assuming
density models Mi, where we choose upper-scripts P, G, L in
model names MP,G,L as representations of the parabolic, Gaus-
sian, and Lorentzian profiles, respectively. Bayes’ theorem states
that the posterior probability distribution of the unknown param-
eter given the period ratio data, p(χ|r,Mi), is proportional to the
likelihood function, p(r|χ,Mi) and the prior probability, p(χ|Mi).
The posterior encodes all the information about the parameter χ
and quantifies the degree of belief on its values conditional on
the observed data and the assumed model.

The forward solutions to the period ratio are given by
Eqs. (4), (5), and (6) for the Lorentzian, Gaussian, and parabolic
profiles, respectively. To evaluate the likelihood for each profile,
we assume the model is true. Then, the period ratio measurement
(r) will differ from the prediction, say rL for the Lorentzian pro-
file, because of measurement uncertainties (e), so that r = rL± e.

The probability of obtaining the measured value is equal to the
probability of the error. Assuming Gaussian errors, the likeli-
hood for the three models is then expressed in the following
manner

p(r|χ,Mi) =
1
√

2πσ
exp

[
−

[r − ri(χ)]2

2σ2

]
, (8)

with i = P,G, L depending on the model under consideration
and σ2 the variance associated to the observed period ratio. Note
that we have explicitly stated in the above expression that the
likelihood is conditional on the parameter χ. In the following we
assign observed period ratio errors to the standard deviation σ.

The prior indicates our level of knowledge (ignorance) on the
model before considering the observed data. This is translated to
the level of knowledge (ignorance) on the possible values of the
parameter χ. We have adopted a uniform prior distribution for
this parameter upon which the three model depend over a given
range, so that we can write

p(χ|Mi) =
1

χmax − χmin for χmin ≤ χ ≤ χmax, (9)

and zero otherwise. We only consider models with a positive
density gradient from foot-point to tube centre, hence χ ≥ 1.
In the following, we adopt χmin = 2 and χmax = 500 unless
otherwise stated.

The Bayesian framework enables us to perform the infer-
ence making use of all the available information in a consistent
manner and with a correct propagation of errors in the observa-
tions to uncertainty on inferred parameters. Figure 3 shows pos-
terior probability distributions for the density gradient along the
thread computed using Eq. (7) with likelihood and prior given by
Eqs. (8) and (9), for an hypothetical period ratio measurement,
r = 3, for three values of the period ratio measurement error and
two out of the three density models, the Gaussian and Lorentzian
profiles. The values of σ have been chosen so as to be represen-
tative of period ratio measurements in which a relative error on
both periods of about 10% is assumed, which leads to ∆r = 0.4
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for a value of r = 3. For these cases, well constrained distribu-
tion are obtained that enable us to say something about the most
plausible value of χ. Notice the markedly asymmetric distribu-
tions in both cases, with larger upper error bars. The larger the
value of σ, the less constrained are the obtained distributions.
For the Gaussian profile (Fig. 3a) the inversion is more conve-
niently done for the logarithm of χ. Equation (5) for this profile
leads to a very slowly increasing period ratio as a function of χ
(see dotted line in Figure 2). For σ = 0.4, the posterior distri-
bution has a median of log χ ∼ 19, which seems unrealistically
large. For the Lorentzian profile (Fig. 3b) the inversion leads to
a posterior with a median of χ ∼ 51, considering the same ob-
servational error. For the parabolic profile the inversion does not
lead to a well constrained posterior distribution. The reason is
that the forward solution, given by Eq. (6), predicts a constant
period ratio of r = 2.22 for χ � 1. The fact that the inference for
the parabolic profile fails to constrain the density gradient or that
the inversion with the Gaussian profiles leads to unrealistically
large values of χ does not mean that models MP and MG must
be discarded, as will be next shown in the model comparison
analysis.

5. Model comparison

The Bayesian framework also enables us to present different
models to the same data and assess in a quantitative manner
which one is favoured by them. To develop the method to per-
form such a comparison, we follow a procedure similar to the
one employed by Arregui et al. (2013) for coronal loop oscilla-
tions in expanding and/or stratified loops. Let us rewrite Bayes’
theorem in terms of the probability of a given model, conditional
on the observed data, as

p(M|D) ∝ p(D|M)p(M). (10)

In order to determine the relative plausibility of two competing
models one needs to evaluate their posterior probabilities to as-
certain their relative merits. Consider two such models, Mi and
M j. By applying Eq. (10) to them, the relative plausibility of
one model against the other will be given by the posterior ratio
(Jeffreys 1961)

p(Mi|D)
p(M j|D)

=
p(D|Mi)
p(D|M j)

p(Mi)
p(M j)

. (11)

The first ratio on the right-hand side expresses how well the
observed data are predicted by model Mi, compared to model
M j. The second ratio, the prior odds ratio, measures how much
our initial beliefs favoured Mi over M j, before considering the
data. As we have no particular a priori preference for any of the
three models compared in this study, we will consider p(Mi) =
p(M j) = 1/2 in all our model comparisons. Our assessment of
the plausibility of models will then be based on the computation
of the so-called Bayes Factor of Mi against M j given by

BF i j =
p(r|Mi)
p(r|M j)

. (12)

In our study, Bayes Factors are computed in order to assess
which model, among the three proposed density profiles, better
explains a given period ratio measurement.

Before computing Bayes Factors, relevant information con-
cerning the plausibility of each model is obtained by first com-
puting their marginal likelihood, which inform us on how well a
given model is in explaining data on period ratios. This is so
because, in model comparison, we are interested in the most
probable model, independently of the parameters, i.e., we should
marginalise out all parameters. This is achieved by performing
an integral of the likelihood over the full parameter space. In our
particular one-dimensional problem, the marginal likelihood for
a given model Mi can be written as

p(r|Mi) =

∫ χmax

χmin
p(r, χ|Mi)dχ =

∫ χmax

χmin
p(r|χ,Mi)p(χ|Mi)dχ,

(13)

where χ ∈ [χmin, χmax] represents the range in the parameter of
the models and we have used the product rule to expand the prob-
ability of r and χ, given model Mi. Figure 4 displays marginal
likelihoods for the three models under study. They are computed
using expressions (13) and using the forward models (4), (5),
and (6) for period ratios in the range 2 to 6. In Figs. 4a-c, three
different values of σ are considered to see the influence of dif-
ferent measurement error on the distribution of the plausibility
for each model. Figure 4d compares the marginal likelihood for
the three models for a fixed period ratio measurement error. The
magnitude of each of the curves provides us with the plausibility
of each model, for a given observed period ratio.

From Figs. 4a-c, it is easy to see that by increasing the value
of σ, related to the uncertainty on the measured period ratio,
the magnitude of the three marginal likelihoods decreases and
the distributions spread out over a larger range of values of r,
thus decreasing the amount of evidence for or against any of the
considered models. When comparing the marginal likelihood for
the three models in Fig. 4d, we see that the parabolic and Gaus-
sian profiles are likely to produce period ratios in the lower half
of the considered period ratios range, from 2 to 4. Beyond that,
their likelihood decreases significantly. According to Eq. (6), see
also Figure 2, the parabolic profile predicts period ratios that ap-
proach the value r = 2.2 and then keep this constant value for in-
creasing values of χ. The integrated marginal likelihood, dashed
line in Figure 4d, peaks at that value but could also explain a
bit lower and larger period ratios, hence spreads both sides of
the peak because of the considered uncertainty on the measured
period ratio. The Gaussian profile produces a similar marginal
likelihood, shifted towards larger values of the period ratio. This
means that the Gaussian profile is likely to reproduce period ra-
tio values similar to the ones reproduced by the parabolic profile.
Hence, if our observed period ratio is en in range between 2 and
4, it can be difficult to obtain significant evidence for one model
to be preferred over the other. The Lorentzian profile predicts
period ratios as given by Eq. (4). The corresponding marginal
likelihood distribution shows that this model is more likely to
reproduce values of the period ratio larger than those that can
be reproduced by the parabolic and the Gaussian profiles. The
distribution peaks at about 4.4, but is rather extended and covers
almost all values of the considered range for the period ratio.

In order to make statements on the relative plausibility of one
model over another, based on quantitative calculations, Bayes
Factors are computed using Eq. (12). They are functions of the
marginal likelihood ratios and provide us with quantitative in-
formation on the magnitude of the evidence for one model to
be preferred over another. In order to assign different levels of
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Fig. 4. (a)–(c) Marginal likelihoods computed using Eq. (13) for models MP, ML, and MG as a function of the period ratio for different values of
the uncertainty, with σ = 0.2 (dashed); σ = 0.4 (solid), and σ = 0.8 (dotted). (d) The three marginal likelihoods computed for a fixed value of
σ = 0.4: p(r|MP) in dashed-line; p(r|MG) in dotted-line, and p(r|ML) in solid-line. In all plots, χ ∈ [2, 500].

evidence to the values of the Bayes Factors, we use the empiri-
cal table by Kass & Raftery (1995) which assigns evidence for
model Mi against model M j that is minimal evidence to values
of 2 log(BF i j) in between 0 and 2; positive evidence to values in
between 2 and 6; strong evidence to values in between 6 and 10;
and very strong evidence to values of 2 log(BF i j) larger than 10.

5.1. Parabolic vs Gaussian profile

Figure 5a shows the Bayes Factors corresponding to the com-
parison between the parabolic and the Gaussian density models
(BFPG in solid line and BFGP in dashed line), as a function of
the observable period ratio. Different shades of grey limit ranges
in period ratio with different levels of evidence for one model
being preferred against the alternative, depending on the mag-
nitude of the Bayes Factors and following the scale described
above. White regions indicate values of period ratio for which
there is minimal evidence for any of the models that are being
compared. Different shades of grey indicate regions with posi-
tive, strong, and very strong evidence, with the level of evidence
being larger for darker regions.

The marginal likelihoods for the two models (see Figure 4d)
tell us that the Gaussian and parabolic profiles have a signifi-
cant likelihood for reproducing period ratio values on a similar
range, with the likelihood for the parabolic profile being slightly

shifted towards smaller values of the period ratio. Bayes Fac-
tors quantify and locate exactly where and in which amount the
plausibility for one model is larger than the alternative. Look-
ing first at regions where BFPG is positive, meaning that the evi-
dence for the parabolic profile is larger than that for the Gaussian
profile, we find that the evidence for MP instead of MG is mini-
mal, since BFPG never reaches values above 2. The region where
both Bayes Factors are too small to provide positive evidence for
any of the models corresponds to the values r = [2.0 − 2.84]
(white region). Looking then at the regions where BFGP is posi-
tive, meaning that the evidence for the Gaussian profile is larger
than that for the parabolic profile, we find positive evidence for
MG instead of MP for period ratios in the range r = [2.84−3.64];
strong evidence in the range r = [3.64 − 4.41]; and very strong
evidence for r > 4.41.

In summary, the evidence in favour of MP instead of MG

or vice-versa is minimal until we reach a period ratio of r =
2.84. Period ratios larger than this value imply positive, strong,
and very strong support for the Gaussian profile instead of the
parabolic profile for which no supporting evidence can be found
in the considered period ratio range.
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Fig. 5. Bayes Factors computed using Eq. (12) for the model compar-
isons between (a) the parabolic, MP, and the Gaussian, MG, density
models; (b) the parabolic, MP, and the Lorentzian, ML, density models;
and (c) the Gaussian, MG, and the Lorentzian, ML, density models, as
a function of the period ratio. A value of σ = 0.4 has been considered
and χ ∈ [2, 500] in all computations.

5.2. Parabolic vs Lorentzian profile

Figure 5b shows the Bayes Factors corresponding to the com-
parison between the parabolic and the Lorentzian density mod-
els (BFPL in solid line and BFLP in dashed line), as a function
of the observable period ratio. As before, the different shades of

grey limit ranges in period ratio with different levels of evidence
for one model being preferred against the alternative.

The marginal likelihoods for the two models (see Figure 4d)
tell us that the regions on measured period ratio for which each of
the two models better predicts the observable are quite differen-
tiated, with the marginal likelihood for the parabolic profile con-
centrated in between 2 and 4 and the marginal likelihood for the
Lorentzian profile being significant for larger values of the pe-
riod ratio. To what extend observed period ratios would support
one model against the alternative is assessed by the magnitude of
the Bayes Factors. Looking first at regions where BFPL is posi-
tive, meaning that the evidence for the parabolic profile is larger
than that for the Lorentzian profile, we find strong evidence for
MP instead of ML for period ratios in the range r = [2.0 − 2.34]
and positive evidence in the range r = [2.34 − 2.81]. Then, a re-
gion appears in white, with r = [2.81−3.14], where the evidence
in favour of any of the two models is minimal , because of the low
values of both Bayes Factors. Looking then at the regions where
BFLP is positive, meaning that the evidence for the Lorentzian
profile is larger than that for the parabolic profile, we find posi-
tive evidence for ML instead of MP for period ratios in the range
r = [3.14− 3.40]; strong evidence in the range r = [3.40− 3.62];
and very strong evidence for r > 3.62.

The evidence for data supporting any of the competing mod-
els is inconclusive in a small range of period ratio values around
r ∼ 3, where both marginal likelihoods have similar magnitude.
A measured period ratio with a value to the left of that region
would support the parabolic profile, the more strongly the lower
the value of the measured period ratio. A measured period ra-
tio with a value to the right of that region would support the
Lorentzian profile, the more strongly the larger the value of the
measured period ratio.

5.3. Gaussian vs Lorentzian profile

Finally, Figure 5c shows the Bayes Factors corresponding to the
comparison between the Gaussian and the Lorentzian density
models (BFGL in solid line and BFLG in dashed line), as a func-
tion of the observable period ratio.

The marginal likelihoods for the two models (see Figure 4d)
indicate that, as in previous comparison, the regions on measured
period ratio for which each of the two models better predicts the
observable are well differentiated. Looking at the values of the
Bayes Factors, and first at regions where BFGL is positive, mean-
ing that the evidence for the Gaussian profile is larger than that
for the Lorentzian profile, we find positive evidence for MG in-
stead of ML for period ratios in the range r = [2.0 − 3.08]. The
evidence is minimal in the region r = [3.08 − 3.46], because
of the low values of the Bayes Factors. Looking then at the re-
gions where BFLG is positive, meaning that the evidence for the
Lorentzian profile is larger than that for the Gaussian profile,
we find positive evidence for ML instead of MG for period ra-
tios in the range r = [3.46 − 3.74]; strong evidence in the range
r = [3.74 − 3.97]; and very strong evidence for r > 3.97.

Similarly to what we found with the comparison between
MP and ML, the evidence in favour of MG instead of ML or
vice-versa is inconclusive in a small range of period ratio val-
ues around r ∼ 3.25, for which their marginal likelihoods have
similar magnitude. A measured period ratio with a value to the
left of that region would positively support the Gaussian pro-
file. A measured period ratio with a value to the right of that
region would support the Lorentzian profile, the more strongly
the larger the value of the measured period ratio.
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5.4. Discussion of results

Bayesian model comparison enables only to compare face to
face the performance of two models at a time. However, by
inspection of the previous results, we can summarise them as
follows. When the period ratio is roughly in between 2 and 3,
the evidence for the Lorentzian profile is lower than that for the
parabolic and Gaussian profiles. However, the latter two profiles
show evidence that is minimal. Hence the question cannot be
settled as to which model among MP and MG is more plausi-
ble. When the period ratio is roughly in between 3 and 4, the
evidence for the Gaussian profile and for the Lorentzian profile
are both larger than that for the parabolic profile. In turn, the
Lorentzian profile has larger evidence than the Gaussian for pe-
riod ratios beyond ∼ 3.5. Finally, for larger period ratios, the
Gaussian profile has larger evidence than the parabolic profile,
but the Lorentzian profile clearly shows the largest evidence in
comparison to both the Gaussian and parabolic profiles. This
means that the Lorentzian profile, with the mass density occu-
pying a narrow extension around the central part of the flux tube
offers the most plausible explanation for the density profile of
prominence threads along the magnetic field if measured period
ratios are larger that ∼ 3.5.

Soler et al. (2015) note that no reliable simultaneous mea-
surements of the two periods are available yet in observations
of prominence thread oscillations. Lin et al. (2007) report the
presence of such a possible case, with a measured period ratio
of r = 4.44. In Section 5 of Soler et al. (2015), a seismology
application is performed using this observed ratio, which leads
to χ ∼ 347 if the Lorentzian profile is used and χ ∼ 1048 if the
Gaussian profile is used. This leads Soler et al. (2015) to con-
clude that the measured period ratio would be compatible with
the Lorentzian profile, since the inversion offers a more realis-
tic value for the density gradient parameter. The Bayesian model
comparison presented in this paper enables us to confirm this
conclusion on the basis of the computed Bayes Factors. For in-
stance, for r = 4.44, BFGP = 10.16 leading to very strong ev-
idence supporting model MG instead of model MP. However,
BFLP = 29.73 and BFLG = 19.56 leaving ML as the most plau-
sible model, and with very strong evidence.

It must be noted that these particular numbers are obtained
assuming an uncertainty on the data with σ = 0.4. The marginal
likelihoods in Fig. 4 and the Bayes Factors in Fig. 5 depend on
the uncertainty on the data. Measured errors corresponding to
these events, which are not provided by Lin et al. (2007), should
be used to properly confirm this result. When we repeat the cal-
culations for the same value of r = 4.41, but doubling the er-
ror to σ = 0.8, we obtain BFGP = 2.41; BFLP = 7.03 and
BFLG = 4.61. We would have positive evidence for MG instead
of MP; strong evidence for ML instead of MP; and positive evi-
dence for ML instead of MG. The conclusion would therefore be
similar, with the evidence supporting the Lorentzian profile, but
to a lesser extent.

6. Conclusions

Observed and theoretically modelled wave dynamics offer an al-
ternative way to infer information about physical parameters in
prominence fine structures. This seismology approach works by
proposing a given model for which wave properties are com-
puted and by inferring the unknown plasma and field conditions
from a comparison with observed wave properties. Alternative
models are usually proposed and they might lead to different
inversion results. This makes necessary to obtain information

about which one among alternative models better explains ob-
served data.

Bayesian analysis techniques offer the only self-consistent
method to compare theoretical models and observations and to
propagate uncertainty from measured quantities to inferred pa-
rameters or to amount of evidence supporting a given model. We
have applied Bayesian inference and model comparison tech-
niques to obtain information on the density structure along solar
prominence threads and to assess which one among three alter-
native models for the density variation along prominence threads
would better explain given observed values for the period ratio.

The three density models offer different results for the inver-
sion of the density gradient parameter. A Lorentzian density pro-
file, with plasma density concentrated around the centre of the
tube seems to offer the most realistic inversion result. A Gaussian
profile, with the mass spread over a larger fraction of the tube,
would require unrealistically large values of the density gradient
parameter. A parabolic density distribution does not enable us to
obtain well constrained posterior probability distributions for the
density gradient. However, this does not imply that the parabolic
and Gaussian models can be disregarded.

Our model comparison results indicate that for period ra-
tios roughly in between 2 and 3, the parabolic and Gaussian
profiles lead to the largest marginal likelihoods. By computing
Bayes factors we have obtained a full quantitative assessment on
the plausibility of each model as a function of the observed pa-
rameter considering all the information available on data, their
uncertainty, and the model parameters. The different levels of
evidence for different ranges of the observable are obtained on
the basis of the magnitude of the Bayes Factors. They depend
on the specific models and the uncertainty on the data and are,
therefore, by no means presented as general limits. The proce-
dure should be repeated for every observation. Our results indi-
cate that a Lorentzian profile, with the mass density concentrated
around the centre of the magnetic flux tube, would offer the most
plausible explanation for measurements in which the period ratio
deviates significantly from its value of 2 in homogeneous thread
models. For period ratio measurements roughly in between 2 and
3, the evidence would be inconclusive and not sufficient to de-
cide between the Gaussian and the parabolic profiles.

The models used in this study consider static threads and do
not take into account the effect of flows. Results from Soler &
Goossens (2011) on flowing threads suggest that the period ra-
tio may change as the dense part of the thread flows along the
magnetic flux tube.

Although no observations of the period ratio in prominence
threads are currently available, the framework developed in this
article has the potential to infer information about the spatial
variation of density along threads if observations of the period
ratio are eventually reported.
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