
3

Memory-Level Parallelism Aware Fetch
Policies for Simultaneous Multithreading
Processors

STIJN EYERMAN and LIEVEN EECKHOUT

Ghent University

A thread executing on a simultaneous multithreading (SMT) processor that experiences a long-

latency load will eventually stall while holding execution resources. Existing long-latency load

aware SMT fetch policies limit the amount of resources allocated by a stalled thread by iden-

tifying long-latency loads and preventing the thread from fetching more instructions—and in

some implementations, instructions beyond the long-latency load are flushed to release allocated

resources.

This article proposes an SMT fetch policy that takes into account the available memory-level

parallelism (MLP) in a thread. The key idea proposed in this article is that in case of an isolated

long-latency load (i.e., there is no MLP), the thread should be prevented from allocating additional

resources. However, in case multiple independent long-latency loads overlap (i.e., there is MLP),

the thread should allocate as many resources as needed in order to fully expose the available

MLP. MLP-aware fetch policies achieve better performance for MLP-intensive threads on SMT

processors, leading to higher overall system throughput and shorter average turnaround time

than previously proposed fetch policies.

This article extends “A Memory-Level Parallelism Aware Fetch Policy for SMT Processors” pub-

lished in the Proceedings of the 13th International Symposium on High-Performance Computer
Architecture (HPCA) in February 2007. It extends our prior work: by providing an expanded pre-

sentation and discussion; by providing performance numbers for a more realistic baseline processor

configuration, which includes a hardware prefetcher; in addition, the experimental setup is more

rigorous by considering SimPoint simulation points and more aggressively optimized binaries; by

studying the impact of the SMT processor microarchitecture configuration on the performance of

the MLP-aware fetch policy, thus providing more insight into the performance trends to be ex-

pected across microarchitectures; by exploring and evaluating a number of alternative MLP-aware

fetch policies; by evaluating the proposed fetch policies using system-level metrics, namely system

throughput (STP) and average normalized turnaround time (ANTT); by comparing the proposed

MLP-aware fetch policy against static and dynamic resource partitioning.

S. Eyerman and L. Eeckhout are Postdoctoral Fellows with the Fund for Scientific Research–

Flanders (Belgium) (FWO–Vlaanderen).

Authors’ address: Stijn Eyerman and Lieven Eeckhout, ELIS Department, Ghent University, Sint-

Pietersnieuwstraat 41, B-9000 Gent, Belgium; email: {seyerman,leeckhou}@elis.UGent.be.

Permission to make digital or hard copies part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to

redistribute to lists, or to use any component of this work in other works requires prior specific per-

mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1544-3566/2009/03-ART3 $5.00

DOI 10.1145/1509864.1509867 http://doi.acm.org/10.1145/1509864.1509867

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:2 • S. Eyerman and L. Eeckhout

Categories and Subject Descriptors: C.4 [Performance of systems]: Design Studies

General Terms: Design, Performance, Experimentation

Additional Key Words and Phrases: Simultaneous Multithreading (SMT), Fetch Policy, Memory-

Level Parallelism (MLP)

ACM Reference Format:
Eyerman, S. and Eeckhout, L. 2009. Memory-level parallelism aware fetch policies for simultaneous

multithreading processors. ACM Trans. Architec. Code Optim. 6, 1, Article 3 (March 2009), 33 pages.

DOI = 10.1145/1509864.1509867 http://doi.acm.org/ 10.1145/1509864.1509867

1. INTRODUCTION

A thread experiencing a long-latency load (a last cache level miss or D-TLB
miss) in a simultaneous multithreading processor [Tullsen et al. 1995; Tullsen
et al. 1996; Tuck and Tullsen 2003] will stall while holding execution resources
without making progress. This affects the performance of the coscheduled
thread(s) because the coscheduled thread(s) cannot make use of the resources
allocated by the stalled thread.

Tullsen and Brown [2001] and Cazorla et al. [2004a] recognized this problem
and proposed to limit the resources allocated by threads that are stalled due to
long-latency loads. In fact, they detect or predict long-latency loads, and as soon
as a long-latency load is detected or predicted, the fetching of the given thread
is stalled. In some of the implementations studied by Tullsen and Brown
[2001] and Cazorla et al. [2004a], instructions may even be flushed in order to
free execution resources allocated by the stalled thread, such as reorder buffer
(ROB) space, instruction queue entries, and so on, in favor of the nonstalled
thread(s). A limitation of these long-latency aware fetch policies is that they
do not preserve the memory-level parallelism (MLP) (long-latency loads over-
lapping in time) being exposed by the stalled long-latency thread. As a result,
independent long-latency loads no longer overlap but are serialized by the fetch
policy.

This article proposes a fetch policy for SMT processors that takes into ac-
count MLP for determining when to fetch stall or flush a thread executing a
long-latency load. More in particular, we predict the MLP distance per load
miss, or the number of instructions in the dynamic instruction stream over
which we expect to observe MLP, and based on the predicted MLP distance,
we decide to (i) fetch stall or flush the thread in case there is no MLP, or
(ii) continue allocating resources for the long-latency thread for as many in-
structions as predicted by the MLP predictor. The key idea is to fetch stall or
flush a thread only in case there is no MLP; in case there is MLP, we only allo-
cate as many resources as required to expose the available MLP. The end result
is that in the no-MLP case, the other thread(s) can allocate all the available
resources improving its (their) performance. In the MLP case, our MLP-driven
fetch policy does not penalize the MLP-sensitive thread, as done by the pre-
viously proposed long-latency aware fetch policies [Tullsen and Brown 2001;
Cazorla et al. 2004a]. Our experimental results using SPEC CPU2000 show
that the MLP-aware fetch policy achieves a 5.1% higher system throughput
(STP) and a 18.8% shorter average-normalized turnaround time (ANTT) for

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:3

MLP-intensive workloads compared to previously proposed load-latency aware
fetch policies [Tullsen and Brown 2001; Cazorla et al. 2004a]; and a 20.2%
and 21% better STP and ANTT, respectively, compared to ICOUNT [Tullsen
et al. 1996]. For mixed ILP/MLP-intensive workloads, our MLP-aware fetch
policy achieves a 22.4% and 4% better STP compared to ICOUNT and load-
latency aware fetch policies, respectively; and a 19.2% and 13.9% better ANTT,
respectively.

Dynamic resource partitioning mechanisms, such as DCRA proposed by
Cazorla et al. [2004b] and learning-based resource partitioning proposed by
Choi and Yeung [2006], also aim at exploiting MLP by giving more resources
to memory-intensive threads. DCRA gives a fixed amount of additional re-
sources to memory-intensive threads regardless of the amount of MLP; the
MLP-aware fetch policies proposed in this article, on the other hand, drive re-
source allocation using precise MLP information, and our evaluation shows
that the proposed MLP-aware fetch policy outperforms DCRA for memory-
intensive workloads. Learning-based resource partitioning learns the amount
of resources to give to each thread through performance feedback; MLP-aware
fetch policies are more responsive to dynamic workload behavior than learning-
based resource partitioning.

This article is organized as follows. We first revisit MLP and quantify the
amount of MLP available in our benchmarks (Section 2). We then discuss the
impact of MLP on SMT performance (Section 3). These two sections motivate for
the MLP-aware fetch policy that we propose in detail in Section 4. After having
detailed our experimental setup in Section 5, we then evaluate our MLP-aware
fetch policy in Section 6. Before concluding in Section 8, we also discuss related
work in Section 7.

2. MEMORY-LEVEL PARALLELISM

We refer to a memory access as being long-latency in case the out-of-order
processors cannot hide (most of) its penalty. In contemporary processors, this
is typically the case for accessing off-chip memory hierarchy structures, such
as large off-chip caches or main memory. The penalty for a long-latency load is
typically quite large—on the order of 100 or more processor cycles. (Note that
we use the term long-latency load to collectively refer to long-latency data cache
misses and data TLB misses.) Because of the long latency, in an out-of-order
superscalar processor, the ROB typically fills up on a long-latency load because
the load blocks the ROB head, then dispatch stops, and eventually issue and
commit cease [Karkhanis and Smith 2002]. When the miss data returns from
memory, instruction issuing resumes.

Multiple long-latency loads can be outstanding simultaneously in contempo-
rary superscalar out-of-order processors. This is made possible through various
microarchitecture techniques such as nonblocking caches, miss status handling
registers, and so on. In fact, in an out-of-order processor, long-latency loads that
are relatively close to each other in the dynamic instruction stream, overlap
with each other at execution time [Karkhanis and Smith 2002, 2004]. The rea-
son is that as the first long-latency load blocks the ROB head, the ROB will

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:4 • S. Eyerman and L. Eeckhout

Fig. 1. Amount of MLP for all of the benchmarks assuming a 256-entry ROB superscalar processor.

eventually fill up. As such, a long-latency load that makes it into the ROB will
overlap with the independent long-latency loads residing in the ROB, as long
as there are enough miss status handling registers and associated structures
available. In other words, in case multiple independent long-latency loads occur
within W instructions from each other in the dynamic instruction stream, with
W being the size of the ROB, their penalties will overlap [Karkhanis and Smith
2002; Chou et al. 2004]. This is called memory-level parallelism (MLP) [Glew
1998]; the latency of a long-latency load is hidden by the latency of another
long-latency load.

We use the MLP definition by Chou et al. [2004], which is the average number
of long-latency loads outstanding when there is at least one long-latency load
outstanding. Figure 1 shows the amount of MLP in all of the SPEC CPU2000
benchmarks assuming a 256-entry ROB superscalar processor. Table I (fourth
column) shows the average MLP per benchmark. (We refer to Section 5 for a
detailed description on the experimental setup.) In these MLP characterization
experiments, we consider a long-latency load to be an L3 data cache load miss
or a D-TLB load miss. We observe that the amount of MLP varies across the
benchmarks. Some benchmarks exhibit almost no MLP—a benchmark having
an MLP close to 1 means there is limited MLP. Example benchmarks are bzip2,
gap, and perlbmk. Other benchmarks exhibit a fair amount of MLP (e.g., applu,
apsi, art, and fma3d).

The fifth column in Table I shows the impact MLP has on overall perfor-
mance. This number was obtained from an experiment in which we compare
the performance difference between a serialized execution of all independent
long-latency loads versus a parallel execution of all independent long-latency
loads on a 256-entry ROB processor. And thus, it quantifies the performance
impact due to MLP (i.e., an MLP impact of 50% means that MLP speeds up the
execution by a factor of 2). For several benchmarks, MLP has a substantial im-
pact on overall performance, up to 77.9% for fma3d. Based on this observation,
we can classify the various benchmarks according to their MLP-intensiveness
(see the rightmost column in Table I). We classify a benchmark as an MLP-
intensive benchmark in case the impact of the MLP on overall performance

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:5

Table I. The SPEC CPU2000 Benchmarks, Their Reference Inputs, the Number

Long-Latency Loads Per 1K Instructions (LLL), the Amount of MLP, the Impact of MLP on

Overall Performance, and the Type of the Benchmarks; These Numbers Assume a

256-entry ROB Superscalar Processor with a 4MB L3 Cache

Benchmark Input LLL MLP MLP Impact Type

bzip2 program 0.14 1.00 0.03% ILP

crafty ref 0.08 1.34 1.29% ILP

eon rushmeier 0.00 1.83 0.08% ILP

gap ref 0.36 1.02 0.28% ILP

gcc 166 0.01 1.70 0.22% ILP

gzip graphic 0.08 1.81 3.22% ILP

mcf ref 17.36 5.17 60.39% MLP

parser ref 0.14 1.24 1.20% ILP

perlbmk makerand 0.30 1.00 0.01% ILP

twolf ref 0.10 1.37 1.05% ILP

vortex ref2 0.39 1.06 1.49% ILP

vpr route 0.09 1.43 1.35% ILP

ammp ref 1.71 3.94 40.25% MLP

applu ref 14.24 4.26 69.63% MLP

apsi ref 0.78 6.15 35.41% MLP

art ref-110 0.19 8.58 7.34% ILP

equake ref 24.60 2.69 58.19% MLP

facerec ref 0.41 1.51 7.56% ILP

fma3d ref 17.67 6.27 77.87% MLP

galgel ref 0.24 3.84 14.24% MLP

lucas ref 10.63 2.15 46.40% MLP

mesa ref 0.45 2.88 19.64% MLP

mgrid ref 6.04 1.76 35.84% MLP

sixtrack ref 0.10 2.61 4.92% ILP

swim ref 15.08 3.66 67.47% MLP

wupwise ref 2.00 2.20 36.81% MLP

is larger than 10%. The other benchmarks are classified as ILP-intensive
benchmarks. We will use this benchmark classification later in this article
when evaluating the impact of our MLP-aware fetch policies on various mixes of
workloads.

3. IMPACT OF MLP ON SMT PERFORMANCE

When running multiple threads on an SMT processor, there are two ways
cache behavior affects overall performance. First, coscheduled threads affect
each other’s cache behavior as they compete for the available resources in the
cache. In fact, one thread with poor cache behavior may evict data from the
cache detoriating the performance of the other coscheduled thread(s). Second,
memory-bound threads can hold critical execution resources while not mak-
ing any progress because of the long-latency memory accesses. In particular, a
long-latency load cannot be committed as long as the miss is not resolved. In
the meantime, the fetch policy keeps on fetching instructions from the blocking
thread. As a result, the blocking thread allocates execution resources without
making any further progress. This article deals with the latter problem of
long-latency threads holding execution resources.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:6 • S. Eyerman and L. Eeckhout

The ICOUNT fetch policy [Tullsen et al. 1996], which fetches instruc-
tions from the thread(s) least represented in the front-end pipeline and the
instruction queues, partially addresses this issue. ICOUNT tries to balance
the number of instructions in the pipeline among the various threads so that
all threads have an approximately equal number of instructions in the front-
end pipeline and instruction queues. As such, the ICOUNT mechanism already
limits the impact long-latency loads have on overall performance—the stalled
thread is most likely to consume only a part of the resources. Without ICOUNT,
the stalled thread is likely to allocate even more resources.

Tullsen and Brown [2001] recognize the problem of long-latency loads and,
therefore, propose two mechanisms to free the allocated resources by the stalled
thread. In their first approach, called stall, they prevent the thread executing
a long-latency load to fetch any new instructions until the miss is resolved. The
second mechanism, called flush, goes one step further and also flushes instruc-
tions from the pipeline. These mechanisms allow the other thread(s) to allocate
execution resources while the long-latency load is being resolved; this improves
the performance of the non-stalled thread(s). Cazorla et al. [2004a] improve the
mechanism proposed by Tullsen and Brown by predicting long-latency loads.
When a load is predicted to be long-latency, the thread is prevented from fetch-
ing additional instructions.

The ICOUNT and long-latency aware fetch policies do not completely solve
the problem though, the fundamental reason being that they do not take into
account MLP. Upon a long-latency load, the thread executing the long-latency
load is prevented from fetching new instructions and (in particular implemen-
tations) may even be (partially) flushed. As a result, independent long-latency
loads that are close to each other in the dynamic instruction stream cannot
execute in parallel. In fact, they are serialized by the fetch policy. This ex-
cludes MLP from being exposed and thus penalizes threads that show a large
amount of MLP. The MLP-aware fetch policy, which we discuss in great de-
tail in Section 4, alleviates this issue and results in improved performance for
MLP-intensive threads.

4. MLP-AWARE FETCH POLICY FOR SMT PROCESSORS

The MLP-aware fetch policy that we propose in this article consists of three
mechanisms. First, we identify long-latency loads, or alternatively, we predict
whether a given load is likely to be long latency. Second, once the long-latency
load is identified or predicted, we predict the load’s MLP distance. Third, we
drive the fetch policy, using the predicted MLP distance. These three mecha-
nisms will now be discussed in more detail.

4.1 Identifying Long-Latency Loads

We use two mechanisms for identifying long-latency loads—these two mecha-
nisms will be used in conjunction with two different mechanisms for driving
the fetch policy, as will be discussed in Section 4.3. The first mechanism simply
labels a load as a long-latency load as soon as the load is found out to be an L3
miss or a D-TLB miss.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:7

Fig. 2. Long-latency load miss pattern predictor.

The second mechanism is to predict whether a load is going to be a long-
latency load. The predictor is placed at the pipeline front-end, and long-latency
loads are predicted as they traverse the front-end pipeline. We use the miss
pattern predictor proposed by Limousin et al. [2001] shown in Figure 2. The
miss pattern predictor consists of a table indexed by the load PC; each table
entry records (i) the number of load hits (by the same static load) between
the two most recent long-latency loads and (ii) the number of load hits (by the
same static load), since the last long-latency load. In case the latter matches
the former, that is, in case the number of load hits since the last long-latency
load equals the most recently observed number of load hits between two long-
latency loads, the load is predicted to be a long-latency load. The predictor table
is updated when a load executes. This predictor, thus, basically is a last value
predictor for the number of hits between two long-latency misses per static
load. The predictor used in our experiments is a 2K-entry table with 6 bits per
entry (the total hardware cost is 12Kbits); and we assume one table per thread.
During our experimental evaluation, we explored a wide range of long-latency
load predictors, such as a last value predictor and the 2-bit saturating counter
load miss predictor proposed by El-Moursy and Albonesi [2003]. We concluded,
though, that the miss pattern predictor outperforms the other predictors—this
conclusion was also reached by Cazorla et al. [2004a]. Note that a load hit/miss
predictor has been implemented in commercial processors, as is the case in
the Alpha 21264 microprocessor [Kessler et al. 1998] for predicting whether to
speculatively issue load-consumers.

4.2 Predicting MLP

Once a long-latency load is identified, either through the observation of a long-
latency cache miss or through prediction, we need to predict whether the load is

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:8 • S. Eyerman and L. Eeckhout

Fig. 3. Updating the MLP distance predictor.

exhibiting MLP. The MLP distance predictor that we propose consists of a table
indexed by the load PC. Each entry in the table contains the MLP distance, or
the number of instructions one needs to go down the dynamic instruction stream
in order to observe the maximum MLP for the given ROB size. We assume one
MLP distance predictor per thread; the MLP distance predictor is assumed to
have 2K entries and a total hardware cost of 14Kbits in this article.

Updating the MLP distance predictor, as illustrated in Figure 3, is done
using a structure called the long-latency shift register (LLSR). The LLSR has
as many entries as there are ROB entries divided by the number of threads
(assuming a shared ROB), and there are as many LLSRs as there are threads.
Upon committing an instruction from the ROB, we shift the LLSR over 1 bit
position from tail to head, and then insert 1 bit at the tail of the LLSR. The bit
being inserted is a “1” in case the committed instruction is a long-latency load
and a “0” if not. Along with inserting a “0” or a “1”, we also keep track of the load
PCs in the LLSR. In case a “1” reaches the head of the LLSR, we update the
MLP predictor table. This is done by computing the MLP distance, which is the
bit position of the last appearing “1” in the LLSR when reading the LLSR from
head to tail. The MLP distance then is the number of instructions one needs to go
down the dynamic instruction stream in order to achieve the maximum MLP
for the given ROB size. In the example given in Figure 3, the MLP distance
equals 6. The MLP distance predictor is updated by inserting the computed
MLP distance in the predictor table entry pointed to by the long-latency load
PC. In other words, the MLP distance predictor proposed here is a fairly simple
last value predictor: The most recently observed MLP distance is stored in
the predictor table. The total hardware cost for the LLSR structures equals
1.6Kbits in our setup: 128 bits per thread (for the shift register) plus 128 times
11 bits (for keeping track of the load PC indexes in the 2K-entry MLP distance
predictor), assuming a 256-entry ROB, 128-entry load/store queue processor
configuration. According to our experimental results, this predictor performs
well for our purpose.

Figure 4 shows the cumulative distribution of the predicted MLP distance
for the six most MLP-intensive programs assuming a 256-entry ROB processor
with a 128-entry LLSR. We observe a wide range of MLP distance charac-
teristics. For example, mcf and fma3d have a large predicted MLP distance
(more than 100 instructions), which implies that MLP is to be exploited at

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:9

Fig. 4. Cumulative distribution of the predicted MLP distance for six MLP-intensive programs

assuming a 256-entry ROB processor with a 128-entry LLSR.

large distances; lucas on the other hand, has all of its MLP over short dis-
tances, that is, nearly 100% of the exploitable MLP is to be observed at an MLP
distance of less than 40 instructions; equake is an average example, which
finds its exploitable MLP over a distance that is smaller than 90 instructions
50% of the time. These results suggest that an MLP predictor may improve
resource utilization in an SMT processor: Only a fraction of the resources need
to be allocated for exposing the exploitable MLP while providing the remaining
resources to the other thread(s).

Note that the LLSR in the implementation evaluated in this article does
not make a distinction between dependent and independent long-latency loads.
The “1s” inserted in the LLSR represent a long-latency load irrespective of the
fact whether these long-latency loads are dependent or independent from each
other. By consequence, in case these long-latency loads are independent, the
resulting MLP distance corresponds to the actual MLP available. If, on the
other hand, these long-latency loads are dependent upon each other, the MLP

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:10 • S. Eyerman and L. Eeckhout

distance will overestimate the available MLP. The overestimation may be small
though in case the last dependent and independent long-latency loads appear
close to each other in the dynamic instruction stream. An interesting avenue
for future work may be to exclude dependent loads when computing the MLP
distance.

4.3 MLP-Aware Fetch Policy

We consider two mechanisms for driving the MLP-aware fetch policy, namely
stall fetch and flush. These two mechanisms are similar to the ones proposed
by Tullsen and Brown [2001] and Cazorla et al. [2004a]; however, these previous
approaches did not consider MLP.

In the stall-fetch approach, we first predict in the front-end pipeline whether
a load is going to be a long-latency load. In case of a predicted long-latency load,
we then predict the MLP distance, say m instructions. We then fetch stall after
having fetched m additional instructions.

The flush approach is slightly different. We first identify whether a load is a
long-latency load. This is done by observing whether the load is an L3 miss or a
D-TLB miss; there is no long-latency load prediction involved. For a long-latency
load, we then predict the MLP distance m. If more than m instructions have
been fetched since the long-latency load, say n instructions, we flush the last
n - m instructions fetched. If less than m instructions have been fetched since
the long-latency load, we continue fetching instructions until m instructions
have been fetched. Note that the flush mechanism requires that the microar-
chitecture supports checkpointing. Commercial processors, such as the Alpha
21264 [Kessler et al. 1998], effectively support checkpointing at all instruc-
tions. If the microprocessor would only support checkpointing at branches for
example, our flush mechanism could flush instructions starting from the next
branch after the m instructions.

Our MLP-aware fetch policies also implement the continue the oldest thread
(COT) mechanism proposed by Cazorla et al. [2004a]. COT means that in case
all threads stall because of a long-latency load, the thread that stalled first
gets priority for allocating resources. The idea is that the thread that stalled
first will be the first thread to get the data back from memory and continue
execution.

Note also that the proposed MLP-aware fetch policies resort to the ICOUNT
fetch policy in the absence of long-latency loads.

5. EXPERIMENTAL SETUP

We use the SPEC CPU2000 benchmarks in this article with reference inputs
(see Table I). These benchmarks are compiled for the Alpha ISA, using the Com-
paq C compiler (cc) version V6.3-025 with the -O4 optimization option. For all of
these benchmarks, we select 200M instruction (early) simulation points, using
the SimPoint tool [Sherwood et al. 2002; Perelman et al. 2003]. We use a wide
variety of randomly selected two-thread and four-thread workloads. The two-
thread workloads are given in Table II. These two-thread workloads are classi-
fied as ILP-intensive, MLP-intensive, or mixed ILP/MLP-intensive workloads.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:11

Table II. The Two-Thread Workloads Used in the

Evaluation, Divided into Three Categories: ILP-Intensive

Workloads, MLP-Intensive Workloads, and Mixed

ILP/MLP-Intensive Workloads

ILP-intensive

vortex-parser

crafty-twolf

facerec-crafty

vpr-sixtrack

vortex-gcc

gcc-gap

MLP-intensive

apsi-mesa

mcf-swim

mcf-galgel

wupwise-ammp

swim-galgel

lucas-fma3d

mesa-galgel

galgel-fma3d

applu-swim

mcf-equake

applu-galgel

swim-mesa

Mixed ILP-MLP

swim-perlbmk

galgel-twolf

fma3d-twolf

apsi-art

gzip-wupwise

apsi-twolf

mgrid-vortex

swim-twolf

swim-eon

swim-facerec

parser-wupwise

vpr-mcf

equake-perlbmk

applu-vortex

art-mgrid

equake-art

parser-ammp

facerec-mcf

Table III. The Four-Thread Workloads Used in the Evaluation, Sorted by the Number

of MLP-Intensive Benchmarks in the Workload

#MLP Workload

0 vortex-parser-crafty-twolf

facerec-crafty-vpr-sixtrack

swim-perlbmk-vortex-gcc

galgel-twolf-gcc-gap

fma3d-twolf-vortex-parser

1 apsi-art-crafty-twolf

gzip-wupwise-facerec-crafty

apsi-twolf-vpr-sixtrack

mgrid-vortex-swim-twolf

swim-eon-perlbmk-mesa

parser-wupwise-vpr-mcf

2 equake-perlbmk-applu-vortex

art-mgrid-applu-galgel

parser-ammp-facerec-mcf

swim-perlbmk-galgel-twolf

#MLP Workload

fma3d-twolf-apsi-art

2 gzip-wupwise-apsi-twolf

equake-art-parser-ammp

apsi-mesa-swim-eon

mcf-swim-perlbmk-mesa

mcf-galgel-vortex-gcc

3 wupwise-ammp-vpr-mcf

swim-galgel-parser-wupwise

lucas-fma3d-equake-perlbmk

mesa-galgel-applu-vortex

galgel-fma3d-art-mgrid

applu-swim-mcf-equake

4 applu-galgel-swim-mesa

apsi-mesa-mcf-swim

mcf-galgel-wupwise-ammp

The four-thread workloads are shown in Table III. These workloads vary from
ILP-intensive, over-mixed ILP/MLP-intensive workloads, to MLP-intensive
workloads.

We use the SMTSIM simulator v1.0 [Tullsen 1996] in all of our experi-
ments. The processor model being simulated is the 4-wide superscalar out-
of-order SMT processor shown in Table IV. The default fetch policy is ICOUNT
2.4 [Tullsen et al. 1996], which allows up to four instructions from up to two
threads to be fetched per cycle. We added a write buffer to the simulator’s
processor model: Store operations leave the ROB upon commit and wait in

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:12 • S. Eyerman and L. Eeckhout

Table IV. The Baseline SMT Processor Configuration

Parameter Value

fetch policy ICOUNT 2.4

pipeline depth 14 stages

(shared) reorder buffer size 256 entries

(shared) load/store queue 128 entries

instruction queues 64 entries in both IQ and FQ

rename registers 100 integer and 100 floating-point

processor width 4 instructions per cycle

functional units 4 int ALUs, 2 ld/st units and 2 FP units

branch misprediction penalty 11 cycles

branch predictor 2K-entry gshare

branch target buffer 256 entries, 4-way set associative

write buffer 8 entries

L1 instruction cache 64KB, 2-way, 64-byte lines

L1 data cache 64KB, 2-way, 64-byte lines

unified L2 cache 512KB, 8-way, 64-byte lines

unified L3 cache 4MB, 16-way, 64-byte lines

instruction/data TLB 128/512 entries, fully-assoc, 8KB pages

cache hierarchy latencies L2 (11), L3 (35), MEM (350)

hardware prefetcher 8 stream buffers, 8 entries each, w/ stride predictor

Fig. 5. Graph showing performance (IPC) for the baseline processor configuration running single-

threaded workloads both with and without hardware prefetching.

the write buffer for writing to the memory subsystem; commit blocks in case
the write buffer is full and we want to commit a store. The baseline SMT
processor configuration contains an aggressive hardware prefetcher consist-
ing of 8 stream buffers, 8 entries each. The stream buffers are guided by a
2K-entry stride predictor indexed by the load PC, and stream buffers are allo-
cated using the confidence scheme described by Sherwood et al. [2000]. Figure 5
shows single-threaded performance for all the benchmarks with and without
hardware prefetching. The (harmonic) average IPC speed-up achieved through
this hardware prefetcher equals 20.2%. We observe large performance improve-
ments for some of the benchmarks (see e.g., bzip2, applu, equake, lucas, and
mgrid).

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:13

We use two system-level performance metrics in our evaluation: STP and
ANTT [Eyerman and Eeckhout 2008]. STP is a system-oriented metric, which
measures the number of jobs completed per unit of time and is defined as:

STP =
n∑

i=1

CPIST
i

CPIMT
i

,

with CPIST
i and CPIMT

i , the cycles per instruction achieved for program i during
single-threaded and multithreaded execution, respectively; there are n threads
running simultaneously. STP is a higher-is-better metric and corresponds to
the weighted speed-up metric proposed by Snavely and Tullsen [2000].

ANTT is a user-oriented metric, which quantifies the average user-perceived
slowdown due to multithreading. ANTT is computed as

ANTT = 1

n

n∑

i=1

CPIMT
i

CPIST
i

.

ANTT equals the reciprocal of the hmean metric proposed by Luo et al. [2001]
and is a lower-is-better metric. In our earlier work [Eyerman and Eeckhout
2008], we argued that both STP and ANTT should be reported in order to gain
insight into how a given multithreaded architecture affects system-perceived
and user-perceived performance, respectively.

When simulating a multiprogram workload, simulation stops when one of the
coexecuting programs, say program j , has executed 200 million instructions.
The other thread(s) i �= j will then have reached xi million instructions (less
than 200 million instructions); the single-threaded CPIST

i used in the above
formulas then equals single-threaded CPI after xi million instructions. When
we report average STP and ANTT numbers across a number of multiprogram
workloads, we use the harmonic and arithmetic mean for computing the aver-
age STP and ANTT, respectively, following the recommendations on the use of
averages by John [2006].

6. EVALUATION

The evaluation of the MLP-aware SMT fetch policy is done in a number of steps.
We first evaluate the prediction accuracy of the long-latency load predictor.
We subsequently evaluate the prediction accuracy of the MLP predictor. We
then evaluate the effectiveness of the MLP-aware fetch policy and compare it
against prior work. And finally, we study the impact of the microarchitecture
on the performance of an MLP-aware SMT fetch policy, explore variations of
the MLP-aware policy proposed in this article, and compare against static and
dynamic resource partitioning.

6.1 Long-Latency Load Predictor

An MLP-aware stall fetch policy requires that we can predict long-latency loads
in the front-end stages of the processor pipeline. Figure 6 shows the prediction
accuracy for the 2K-entry 12Kbits long-latency load predictor that is, the num-
ber of correct hit/miss predictions divided by the number of load instructions.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:14 • S. Eyerman and L. Eeckhout

Fig. 6. The accuracy of the long-latency load predictor: the number of correct hit/miss predictions

per load.

Fig. 7. Evaluating the accuracy of the MLP predictor for predicting MLP.

We observe that the accuracy achieved is very high, no less than 94%, with an
average prediction accuracy of 99.4%.

The number of correct miss predictions divided by the number of misses is
also high. For the memory-intensive benchmarks (with at least one miss every
200 instructions), we achieve a prediction accuracy of at least 85% and up to
99% (for applu, equake, fma3d, lucas, mgrid, and swim); the only exception is mcf
for which the predictor achieves a prediction accuracy of 59%.

6.2 MLP Predictor

We now evaluate the effectiveness of the MLP predictor. This is done in two
steps. We first evaluate whether the MLP predictor can make an accurate (bi-
nary) MLP prediction. Subsequently, we evaluate whether the MLP predictor
can accurately predict the MLP distance.

Figure 7 evaluates the ability of the MLP predictor for predicting whether
a long-latency load is going to expose MLP (i.e., is the predicted MLP distance
zero in case the actual MLP distance is zero, and is the predicted MLP distance
nonzero in case the actual MLP distance is nonzero?). A true positive means
the MLP predictor predicts MLP in case there is MLP; a true negative means

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:15

Fig. 8. Evaluating the accuracy of the MLP predictor for predicting the MLP distance: Predicting

a far enough MLP distance is counted as a correct prediction.

the MLP predictor predicts no-MLP in case there is no MLP. The sum of the
fraction of true positives and true negatives is the prediction accuracy of the
MLP predictor in predicting MLP. The predictor evaluated in this experiment
is a 2K-entry table in which each entry contains log2�ROB size

n � bits (7 bits in
our setup); the entire predictor thus requires 14Kbits of storage. The average
prediction accuracy equals 91.5%. The average fraction of false negatives equals
4.8% and corresponds to the case where the MLP predictor fails to predict
MLP. This case will lead to performance loss for the MLP-intensive thread,
that is, the thread will be fetch stalled or flushed although there is MLP to be
exploited. The average fraction of false positives equals 3.7% and corresponds to
the case where the MLP predictor fails to predict there is no MLP. In this case,
the fetch policy will allow the thread to allocate additional resources although
there is no MLP to be exposed; this may hurt the performance of the other
thread(s).

Figure 8 further evaluates the MLP predictor and quantifies the probability
for the MLP predictor to predict a far enough MLP distance. In other words,
a prediction is classified as a misprediction if the predicted MLP distance is
smaller than the actual MLP distance (i.e., the maximum available MLP is
not fully exposed by the MLP predictor). A prediction is classified as a cor-
rect prediction if the predicted MLP distance is at least as large as the actual
MLP distance. This classification of correct versus incorrect predictions gives
emphasis on the ability of the MLP predictor to expose MLP rather than to pre-
serve resources for the other thread(s). The average MLP distance prediction
accuracy equals 87.8%.

6.3 MLP-Aware Fetch Policy

We now evaluate the proposed MLP-aware fetch policies in terms of the STP
and ANTT metrics. For doing so, we compare the following SMT fetch policies:

—ICOUNT, which strives at having an equal number of instructions from all
threads in the front-end pipeline and instruction queues. The following fetch
policies extend upon the ICOUNT policy.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:16 • S. Eyerman and L. Eeckhout

—The stall fetch approach proposed by Tullsen and Brown [2001] (i.e., a thread
that experiences a long-latency load is fetch stalled until the data returns
from memory).

—The predictive stall fetch approach, following Cazorla et al. [2004a], extends
the above stall fetch policy by predicting long-latency loads in the front-end
pipeline. Predicted long-latency loads trigger fetch stalling a thread.

—The MLP-aware stall fetch approach predicts long-latency loads, predicts the
MLP distance, and fetch stalls threads when the number of instructions has
been fetched as predicted by the MLP predictor.

—The flush approach proposed by Tullsen and Brown [2001] flushes on long-
latency loads. Our implementation flushes when a long-latency load is de-
tected (this is the “TM” or trigger on long-latency miss by Tullsen and Brown
[2001]) and flushes starting from the instruction following the long-latency
load (this is the “next” approach by Tullsen and Brown [2001]).

—The MLP-aware flush approach predicts the MLP distance m for a long-
latency load, and fetch stalls or flushes the thread after m instructions since
the long-latency load.

Note that all of these fetch policies also include the COT mechanism proposed
by Cazorla et al. [2004a] in case all threads stall on a long-latency load.

6.3.1 Two-Thread Workloads. Figures 9 and 10 show STP and ANTT, for
the various SMT fetch policies for the 2-thread workloads, respectively. There
are three graphs in Figures 9 and 10: one for the ILP-intensive workloads
(top graph), one for the MLP-intensive workloads (middle graph), and one for
the mixed ILP/MLP-intensive workloads (bottom graph). There are several in-
teresting observations to be made from these graphs. First, the flush policies
generally outperform the stall fetch policies. This is in line with the obser-
vations made by Tullsen and Brown [2001] and is explained by the fact that
the flush policy is able to free resources allocated by a stalled thread. Sec-
ond, for ILP-intensive workloads, the MLP-aware flush policy achieves a sim-
ilar STP and ANTT as flush and achieves an, on average, 6.4% higher STP
and 5.1% lower ANTT than ICOUNT. Third, for MLP-intensive workloads, the
MLP-aware flush policy achieves an, on average, 20.2% better STP and 21.0%
better ANTT than ICOUNT; and a 5.1% better STP and 18.8% better ANTT
than flush. Fourth, for mixed ILP/MLP-intensive workloads, the MLP-aware
flush policy improves STP by 22.4% over ICOUNT on average and by 4.0%
over flush, on average. Likewise, the MLP-aware flush policy improves ANTT
by 19.2%, on average, over ICOUNT and by 13.9% over flush. The bottom line
from the performance data presented in Figures 9 and 10 is that an MLP-aware
fetch policy improves the performance of MLP-intensive threads and does not
hurt the performance of ILP-intensive workload mixes. Or, in other words, for
MLP-intensive and mixed ILP/MLP-intensive workloads, the MLP-aware flush
policy improves STP slightly over flush (4.5%, on average) while improving a
program’s turnaround time substantially over flush (15.9%, on average).

This is further illustrated in Figures 11 and 12 where IPC stacks are shown
for MLP-intensive and mixed ILP/MLP-intensive workloads, respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:17

Fig. 9. STP for the various SMT fetch policies compared to single-threaded execution for the two-

thread workloads: ILP-intensive workloads (top), MLP-intensive workloads (middle), and mixed

ILP/MLP-intensive workloads (bottom).

These graphs show that an MLP-intensive thread typically achieves better
performance under an MLP-aware fetch policy. One example illustrating the
improved performance for an MLP-intensive thread is mcf-galgel (see Figure 11
[third cothread example]). The flush policy severely affects mcf’s performance
by not exploiting the MLP available for mcf. MLP-aware flush, on the other
hand, enables exploiting mcf’s MLP while giving more resources to galgel. As a
result, the performance for mcf under MLP-aware flush is comparable to under
ICOUNT, and the performance for galgel improves substantially compared to
ICOUNT. This results in a 7.4% better STP (see Figure 9) as well as a 53%
better ANTT (see Figure 10).

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:18 • S. Eyerman and L. Eeckhout

Fig. 10. ANTT for the various SMT fetch policies compared to single-threaded execution for

the two-thread workloads: ILP-intensive workloads (top), MLP-intensive workloads (middle), and

mixed ILP/MLP-intensive workloads (bottom).

6.3.2 Four-Thread Workloads. Figures 13 and 14 show STP and ANTT
for the various fetch policies for the 4-thread workloads, respectively. Here
we obtain fairly similar results as for the two-thread workloads. The MLP-
aware fetch policies achieve a better normalized turnaround time than non-
MLP-aware fetch policies. In particular, the MLP-aware flush policy achieves
the overall best normalized turnaround time: ANTT for the MLP-aware flush,
policy is 12.4% better than for ICOUNT, and 9.5% better than for flush; STP is
comparable for flush and MLP-aware flush, which is approximately 16% better
than for ICOUNT.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:19

Fig. 11. IPC values for the two threads “thread 0—thread 1” for the MLP-intensive workloads.

Fig. 12. IPC values for the two threads “thread 0—thread 1” for the mixed ILP/MLP-intensive

workloads. Thread 0 is the MLP-intensive thread; thread 1 is the ILP-intensive thread.

6.4 Impact of Microarchitecture Parameters

In order to gain more insight into how an MLP-aware fetch policy is affected
by the SMT processor’s microarchitecture, we now study the impact of two
major microarchitecture parameters that potentially have a large impact on
the MLP-aware fetch policy’s performance, namely main memory access latency
and processor core buffer sizes.

6.4.1 Memory Latency. In our first experiment, we vary the main memory
access latency while keeping the rest of the baseline processor configuration un-
changed. We vary main memory access latency from 200 processor cycles up to
800 processor cycles, in steps of 200 cycles. The results are shown in Figures 15
and 16 for STP and ANTT relative to ICOUNT, respectively. MLP-aware flush
policy is the clear winner, and its achieved throughput improves compared to
ICOUNT with increasing main memory access latency. The reason is that a
long-latency thread under ICOUNT holds more allocated resources for a longer
period of time as main memory access latency increases. The MLP-aware flush
policy, on the other hand, gives more resources to the other thread, yielding a
better overall STP. A program’s turnaround time achieved by the MLP-aware

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:20 • S. Eyerman and L. Eeckhout

Fig. 13. STP for the various SMT fetch policies compared to single-threaded execution for the

four-thread workloads.

flush policy improves compared to flush because the MLP-aware flush policy
does not penalize MLP-intensive threads as much as the flush policy.

6.4.2 Processor Core Structures. In our second experiment, we vary the
size of a number of processor core structures. We vary the ROB size, the
load/store queue size, the integer and floating-point issue queue sizes, and
the number of integer and floating-point rename registers. We consider four
design points and vary the ROB size from 128, 256, 512, up to 1,024; we si-
multaneously vary the load/store queue size from 64, 128, 256, up to 512, the
integer and floating-point issue queue sizes from 32, 64, 128, up to 256, as well
as the number of integer and floating-point rename registers from 50, 100, 200,
up to 400. The large sizings do not correspond to a realistic design point for
a conventional ROB-based out-of-order processor, but merely serve as a proxy
for a microarchitecture that strives at enlarging the instruction window size
at reasonable hardware cost such as runahead execution [Mutlu et al. 2003;
Mutlu et al. 2005], continual flow pipelines [Srinivasan et al. 2004], and kilo-
instruction processors [Cristal et al. 2004].

Figures 17 and 18 show the results for STP and ANTT, respectively. The
various fetch policies are compared relative to ICOUNT. We observe that the
performance improvement of a long-latency load aware fetch policy improves
with fewer resources (relative to ICOUNT). This is to be expected because the

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:21

Fig. 14. ANTT for the various SMT fetch policies compared to single-threaded execution for the

four-thread workloads.

Fig. 15. STP for the various SMT fetch policies as a function of memory access latency.

goal of the long-latency aware fetch policies is to allocate fewer resources in
case of a long-latency load. Also, the performance of an MLP-aware fetch policy
improves compared to a non-MLP-aware fetch policy with increased window
resources; compare the relative ANTT performance differences between MLP-
aware stall fetch versus predictive stall fetch, and MLP-aware flush versus
flush. The reason is that as the window resources increase, there is more MLP to
be exploited and the MLP-aware fetch policy better exploits the available MLP.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:22 • S. Eyerman and L. Eeckhout

Fig. 16. ANTT for the various SMT fetch policies as a function of memory access latency.

Fig. 17. STP for the various SMT fetch policies as a function of processor window size; the

load/store queue, issue queues, and register files are scaled proportionally.

6.5 Alternative MLP-Aware Fetch Policies

To gain more insight into the design trade-offs for an MLP-aware fetch policy, we
now consider a number of MLP-aware fetch policy alternatives. To facilitate the
discussion, the five alternatives considered here are schematically presented
in Figure 19. We consider the following five alternatives:

(a) The first alternative is the flush fetch policy as proposed by Tullsen and
Brown [2001]. Upon the detection of a long-latency load, the instructions
fetched after the long-latency load are flushed from the pipeline.

(b) The second alternative is the MLP distance + flush policy, which is the MLP-
aware fetch policy evaluated throughout this article: Upon the detection of
a long-latency load, the MLP distance is predicted, and the pipeline is fetch
stalled or flushed per the predicted MLP distance.

(c) The third alternative, MLP + flush assumes a binary MLP predictor that
predicts whether there is MLP to be exploited but does not predict the

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:23

Fig. 18. ANTT for the various SMT fetch policies as a function of processor window size; the

load/store queue, issue queues, and register files are scaled proportionally.

Fig. 19. A schematic representation of five alternative MLP-aware fetch policies.

MLP distance. Each entry in the binary MLP predictor is a 1-bit entry that
keeps track of whether MLP was observed in the previous occurrence of a
long-latency miss of that same static load. In case no MLP is predicted, the
long-latency thread is flushed. In case MLP is predicted, no flush will occur
and fetching will continue past long-latency loads following the ICOUNT
principle.

(d) The fourth alternative, MLP distance + flush at resource stall, uses an
MLP distance predictor that predicts how far down the instruction stream
we need to fetch instructions. Once the number of instructions determined
by the predicted MLP distance are fetched, we fetch stall the given thread.
If at some later cycle, a resource stall occurs—none of the threads can make
progress because of a full issue queue, ROB, or no more available rename
registers—the thread is flushed past the initial long-latency load; this is
illustrated in Figure 19 through the dashed lines. The intuition behind this

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:24 • S. Eyerman and L. Eeckhout

Fig. 20. Evaluating alternative MLP-aware flush policies in terms of STP.

Fig. 21. Evaluating alternative MLP-aware flush policies in terms of ANTT.

scheme is to free resources to be used by other threads, while still exploitings
MLP: Independent long-latency loads most likely will have started execu-
tion and their latencies will overlap. When the initial long-latency load re-
turns, fetching resumes and the load instruction, which was a long-latency
load previously (the light gray box in Figure 19), is likely going to be a hit—
there is a prefetching effect. Comparing (d) against (b), the trade-off is that,
under (d), instructions need to be refetched and reexecuted, which is not the
case under (b). On the other hand, under (d), more resources will be made
available to the other threads upon a resource stall.

(e) The fifth alternative, MLP + flush at resource stall, combines the binary
MLP predictor with the flush at resource stall policy.

Figures 20 and 21 evaluate these alternative MLP-aware fetch policies and
quantify STP and ANTT, respectively. The various bars represent the alter-
native fetch policies for the three two-thread workload groups, ILP-intensive,
MLP-intensive, and mixed ILP/MLP-intensive. There are three interesting ob-
servations to be made. First, for the flush policies, (b) and (c), it is important
to predict the MLP distance rather than to resort to a binary MLP prediction:

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:25

Predicting the MLP distance and fetch stalling (or flushing) past the predicted
MLP distance, as done under fetch policy (b), prevents the long-latency thread
from allocating and holding more resources compared to (c). As such, fetch policy
(b) is a better design option than (c). Second, also for the flush at resource stall
fetch policies, (d) and (e), predicting the MLP distance is a good design option
(in general), however, the reason why (d) outperforms (e) is different. Fetch pol-
icy (e) will continue fetching instructions past long-latency loads, even past the
last long-latency load in a burst of long-latency loads. This will result in more
resource stalls and, by consequence, more flushes than under (d). As a result,
fetch policy (e) suffers more frequently from the overhead of refetching flushed
instructions than (d). There are cases, however, where fetch policy (d) performs
less than (e), namely in case of an incorrect MLP distance prediction: An in-
correct MLP distance prediction under (d) leads to missed MLP exploitation
opportunities, whereas (e) fully exploits these MLP exploitation opportunities.
Third, and finally, comparing the (winner) fetch policies (b) “MLP distance +
flush” against (d) “MLP distance + flush at resource stall,” it follows that (d)
outperforms (b) for the MLP-intensive workloads. Under (d), an MLP-intensive
thread will be able to exploit the available MLP and will then flush the allocated
resources on a resource stall so that the other MLP-intensive thread can allocate
as many resources as possible to exploit its MLP. For mixed ILP/MLP-intensive
workloads, on the other hand, the ILP-intensive thread does not require as
many resources as an MLP-intensive thread and does not require flushing all
the allocated resources by the MLP-intensive thread, and thus (b) is a better
design option than (d).

6.6 Comparison Against Static and Dynamic Partitioning

So far, we assumed an SMT processor architecture in which the resources are
managed implicitly by the fetch policy, that is, the fetch policy determines which
thread to fetch instructions from, and, once fetched, the instructions compete
for the shared resources such as ROB entries, issue queue entries, and so on.
An alternative approach is to explicitly manage the available resources. There
are two ways for explicit resource management. One approach is to statically
partition the resources [Raasch and Reinhardt 2003], as done in the Intel Pen-
tium 4, that is, each thread in an n-threaded SMT processor gets a 1/n share of
the resources, and a thread cannot allocate more than its share. An alternative
approach is to dynamically partition resources based on application demands.
Different programs exercise different resource demands, and in addition,
resource demands may even vary over time. The idea behind dynamic resource
partitioning is identify resource demands at runtime, and allocate resources ac-
cordingly, while preventing resource-hungry programs to monopolize a shared
resource.

We now compare the MLP-aware flush policy against static resource parti-
tioning and dynamic resource partitioning. Static resource partitioning pro-
vides an equal share of the buffer resources (ROB, load/store queue, issue
queues, and physical register files) to each thread, while sharing the functional
units among the threads. The dynamic resource partitioning approach that we

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:26 • S. Eyerman and L. Eeckhout

Fig. 22. Evaluating MLP-aware flush against static partitioning and dynamic particitioning

(DCRA) in terms of STP for the two-thread workloads (top graph) and four-thread workloads

(bottom graph).

compare against is dynamically controlled resource allocation (DCRA) proposed
by Cazorla et al. [2004b], which manages the shared resources based on the oc-
cupancy counts in the issue queues, the number of allocated physical registers,
and the number of L1 data cache misses. The idea of DCRA is to give more re-
sources to memory-intensive threads for MLP exploitation. Figures 22 and 23
show STP and ANTT for the MLP-aware flush policy compared to static resource
partitioning and dynamic resource partitioning (DCRA); results are shown for
the two-thread and four-thread workloads. Although DCRA achieves a bet-
ter STP (2.9%) and ANTT (3.3%) than MLP-aware flush for the ILP-intensive
workloads, MLP-aware flush achieves a 5.4% better ANTT than DCRA for
MLP-intensive and mixed ILP/MLP-intensive workloads for a comparable or
slightly better STP (up to 2.1% for the MLP-intensive workloads). For MLP-
intensive four-thread workload mixes, MLP-aware flush achieves a 8.5% better
ANTT than DCRA. From this result, we conclude that DCRA is an effective

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:27

Fig. 23. Evaluating MLP-aware flush against static partitioning and dynamic particitioning

(DCRA) in terms of ANTT for the two-thread workloads (top graph) and four-thread workloads

(bottom graph).

approach for dynamically managing SMT processor resources; however, for
memory-intensive workloads, MLP-aware flush is more effective than DCRA
leading to shorter job turnaround times. The reason why MLP-aware flush out-
performs DCRA is as follows: DCRA is oblivious to the amount of MLP that
is, a thread is classified as a memory-intensive thread if at least one L1 cache
miss is outstanding, and allocates a fixed amount of resources for the memory-
intensive thread. On the other hand, MLP-aware flush allocates just enough
resources to exploit the available MLP, leaving the rest of the resources to the
other thread(s).

7. RELATED WORK

There are four avenues of research related to this work: (i) MLP, (ii) SMT fetch
policies and resource partitioning, (iii) coarse-grained multithreading, and (iv)
prefetching.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:28 • S. Eyerman and L. Eeckhout

7.1 Memory-Level Parallelism

Glew [1998] pointed out the performance impact of MLP and advocated mi-
croarchitectural modifications for increasing the number of outstanding cache
misses during single-program execution.

Karkhanis and Smith [2004] propose an analytical superscalar proces-
sor model that provides fundamental insight into how MLP affects overall
performance. An isolated long-latency load typically blocks the head of the
ROB after which performance drops to zero; when the data returns, perfor-
mance ramps up again to steady-state performance. The overall penalty for an
isolated long-latency load is approximately the access time to the next level in
the memory hierarchy. For independent long-latency loads that occur within W
instructions from each other in the dynamic instruction stream with W being
the ROB size, the penalties completely overlap in time.

Chou et al. [2004] study the impact of the microarchitecture on the amount
of MLP. Therefore, they evaluate the effectiveness of various microarchitecture
techniques such as out-of-order execution, value prediction [Zhou and Conte
2003; Tuck and Tullsen 2005], and runahead execution [Mutlu et al. 2003].
Mutlu et al. [2005] propose using MLP predictors to improve the efficiency of
runahead processors by not going into runahead mode in case there is no MLP
to be exploited. The MLP predictor proposed by Mutlu et al. [2005] is a load
PC indexed table with a two-bit counter in each entry; a two-bit counter keeps
track of the amount of MLP associated with a given long-latency load. If there
is MLP to be exploited for a long-latency load blocking the head of the ROB, the
processor will enter runahead mode; if no MLP is to be exploited, the processor
does not enter runahead. The MLP predictor proposed by Mutlu et al. [2005]
is a binary predictor that predicts whether there is MLP to be exploited, or
whether it is valuable to enter runahead mode. The Mutlu et al. [2005] pre-
dictor does not predict the MLP distance though. The MLP distance predictor
proposed in this article could improve on this scheme by determining whether
or not runahead mode should be entered and, if runahead mode is entered,
how long runahead mode should go on, based on the predicted MLP distance
(runahead should stop after the last long-latency load in the long-latency load
burst).

Qureshi et al. [2006] propose an MLP-aware cache replacement policy. They
propose to augment traditional recency-based cache replacement policies with
MLP information. The goal is to reduce the number of isolated cache misses and
if needed, to interchange isolated cache misses for overlapping cache misses,
thus exposing MLP and improving overall performance. The MLP-aware cache
replacement policy proposed by Qureshi et al. [2006] requires that an MLP-
based cost is computed per cache miss. Isolated cache misses get a large cost
assigned; overlapping cache misses get a smaller cost assigned. This MLP-based
cost is different from what we use in our MLP-aware SMT fetch policy. We need
to know how far we need to go in the dynamic instruction stream in order to
expose the maximum available MLP.

MLP can also be exposed through compiler optimizations. Read miss clus-
tering for example is a compiler technique proposed by Pai and Adve [1999]

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:29

that transforms the code in order to increase the amount of MLP. Read miss
clustering strives at scheduling independent, likely long-latency memory ac-
cesses as close to each other as possible. At execution time, these long-latency
loads will then overlap improving overall performance.

7.2 SMT Fetch Policies and Resource Partitioning

An important design issue for SMT processors is how to partition the avail-
able resources such as the instruction issue buffer and ROB. One solution is to
statically partition the available resources [Raasch and Reinhardt 2003]. The
downside of static partitioning is the lack of flexibility. Static partitioning pre-
vents resources from a thread that does not require all of its available resources
to be used by another thread that may benefit from the additional resources.

Dynamic partitioning, on the other hand, allows multiple threads to share
resources. In dynamic partitioning, the use of the common pool of resources is
determined by the fetch policy. The fetch policy determines from what thread
instructions need to be fetched in a given cycle. Several fetch policies have
been proposed in the recent literature. ICOUNT [Tullsen et al. 1996] prioritizes
threads with few instructions in the pipeline. The limitation of ICOUNT is that
in case of a long-latency load, ICOUNT may continue allocating resources for
a stalled thread; by consequence, these resources will be held by the stalled
thread and will prevent the other thread from allocating these resources. In
response to this problem, Tullsen and Brown [2001] proposed two schemes for
handling long-latency loads, namely (i) fetch stall the thread executing the long-
latency thread, and (ii) flush instructions fetched passed the long-latency load
in order to deallocate resources. Cazorla et al. [2004a] improved on the work
done by Tullsen and Brown [2001] by predicting long-latency loads along with
the COT mechanism that prioritizes the oldest thread in case all threads wait
for a long-latency load.

El-Moursy and Albonesi [2003] propose to give fewer resources to threads
that experience many data cache misses in order to minimize issue queue occu-
pancy for saving energy. They propose two schemes for doing so, namely data
miss gating and predictive data miss gating (PDG). Data miss gating drives the
fetching based on the number of observed L1 data cache misses (i.e., by count-
ing the number of L1 data cache misses in the execute stage of the pipeline).
When the number of L1 data cache misses exceeds a given threshold, the thread
is fetch gated. Predictive data miss gating strives at overcoming the delay be-
tween observing the L1 data cache miss and the actual fetch gating in the data
miss gating scheme by predicting L1 data cache misses in the front-end pipeline
stages.

A number of other fetch policies have been proposed driven by explicit re-
source partitioning. For example, Cazorla et al. [2004b] propose DCRA, which
monitors the dynamic usage of resources by each thread and strives at giving a
higher share of the available resources to memory-intensive threads. The input
to their scheme consists of various usage counters for the number of instruc-
tions in the instruction queues, the number of allocated physical registers and
the number of L1 data cache misses. Using these counters, they dynamically

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:30 • S. Eyerman and L. Eeckhout

determine the amount of resources required by each thread and prevent threads
from using more resources than they are entitled to use. As mentioned ear-
lier, DCRA drives the resource partitioning mechanism using imprecise MLP
information and allocates a fixed amount of additional resources for memory-
intensive workloads irrespective of the amount of MLP; the MLP-aware fetch
policies proposed in this article, on the other hand, predict the amount of re-
sources needed for exploiting the available MLP. Choi and Yeung [2006] go
one step further than DCRA, and use a learning-based resource partitioning
policy: They introduce a feedback loop that monitors the impact that resource
partitioning decisions have on overall performance and feed that back into the
resource partitioning mechanism for driving future decisions. Because of the
performance feedback loop, learning-based resource partitioning is less respon-
sive to dynamic workload behavior than an MLP-aware fetch policy. An interest-
ing avenue for future work may be to make these explicit resource partitioning
mechanisms MLP-aware.

Subsequent to our earlier work [Eyerman and Eeckhout 2007] and parallel
with this article, Ramirez et al. [2008] proposed runahead threads for miti-
gating the performance impact of long-latency loads. The idea of a runahead
thread [Mutlu et al. 2003] is to not block commit on a long-latency load but
to speculatively execute instructions ahead in order to expose MLP through
prefetching. Runahead threads have the important benefit not to clog any re-
sources. Ramirez et al. [2008] report significant performance improvements
using runahead threads in an SMT processor. We believe that the insights ob-
tained in this article can help improve the effectiveness of runahead threads.
The MLP predictor can be used to predict whether or not to go in runahead
mode. If the predicted MLP distance is small, it may be beneficial to apply
MLP-aware flush and not to go in runahead mode; only in case the predicted
MLP distance is large, runahead execution should be initiated. Studying SMT
architectures, which combine MLP-aware flush with runahead threads, is part
of our future work.

7.3 Coarse-Grained Multithreading

Coarse-grained multithreading (CGMT) [Agarwal et al. 1993; Thekkath and
Eggers 1994] is a form of multithreaded execution that executes one thread
at a time but can switch relatively quickly (on the order of tens of cycles) to
another thread. This makes CGMT suitable for hiding long-latency loads that
is, a context switch is performed when a long-latency load is observed. Tune
et al. [2004] combined CGMT with SMT into balanced multithreading in order
to combine the best of both worlds, that is, balanced multithreading combines
the ability of SMT to hide short latencies versus the ability of CGMT to hide long
latencies. Tune et al. [2004] provided the intuition that for some applications
a context switch should not be performed as soon as the long-latency load is
detected in order to exploit MLP. The insights obtained in this article provide
a way to further develop this idea: A context switch should not be done for
all long-latency loads, but should rather be performed at isolated long-latency
loads and at the last long-latency load in a burst of long-latency loads that occur

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:31

within a ROB size from each other. The MLP predictor proposed in this article
can be used to drive this mechanism.

7.4 Prefetching

Prefetching [Anderson et al. 1967; Collins et al. 2001; Luk 2001] is a technique
that addresses the long-latency load problem by seeking to eliminate the latency
itself by bringing the miss data ahead of time to the appropriate cache level.
Prefetching is orthogonal to the MLP-aware fetch policy proposed in this article,
that is, the MLP-aware fetch policy can be applied on the long-latency loads that
are not hidden through prefetching. The results presented in this article confirm
this: Our baseline processor configuration includes an aggressive hardware
prefetcher, and we still achieve performance speedups through an MLP-aware
fetch policy.

8. CONCLUSION

Long-latency loads are particularly challenging in an SMT processor because,
in the absence of an adequate fetch policy, they cause the thread to allocate
critical resources without making forward progress. This limits the achievable
performance for the other thread(s). Previous work proposed a number of SMT
fetch policies for addressing the long-latency load problem. The key notion lack-
ing in these fetch policies, however, is MLP.

This article showed that being aware of the available MLP allows for improv-
ing SMT fetch policies. The key insight from this article is that in case of an
isolated long-latency load, the stalling thread should indeed be fetch stalled or
flushed, as proposed by previous work. However, in case multiple independent
long-latency loads overlap—there is MLP—the fetch policy should not fetch
stall or flush the thread. Instead, the fetch policy should continue fetching in-
structions up to the point where the maximum available MLP for the given ROB
size can be achieved. Our experimental results showed that an MLP-aware fetch
policy achieves substantially higher STP and substantially smaller turnaround
times.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable
feedback and suggestions.

REFERENCES

AGARWAL, A., KUBIATOWICZ, J., KRANZ, D., LIM, B.-H., YEUNG, D., D’SOUZA, G., AND PARKIN, M. 1993.

Sparcle: An evolutionary processor design for large-scale multiprocessors. IEEE Micro 13, 3,

48–61.

ANDERSON, D. W., SPARACIO, F. J., AND TOMASULO, R. M. 1967. The IBM system/360 model 91:

machine philosophy and instruction-handling. IBM J. Res. Dev. 11, 1, 8–24.

CAZORLA, F. J., FERNANDEZ, E., RAMIREZ, A., AND VALERO, M. 2004a. Optimizing long-latency-load-

aware fetch policies for SMT processors. Int. J. High Perform. Comput. Network. 2, 1, 45–54.

CAZORLA, F. J., RAMIREZ, A., VALERO, M., AND FERNANDEZ, E. 2004b. Dynamically controlled

resource allocation in SMT processors. In Proceedings of the 37th Annual IEEE/ACM

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

3:32 • S. Eyerman and L. Eeckhout

International Symposium on Microarchitecture (MICRO-37). IEEE, Los Alamitos, CA, 171–

182.

CHOI, S. AND YEUNG, D. 2006. Learning-based SMT processor resource distribution via hill-

climbing. In Proceedings of the 33rd Annual International Symposium on Computer Architecture
(ISCA’06). ACM, New York 239–250.

CHOU, Y., FAHS, B., AND ABRAHAM, S. 2004. Microarchitecture optimizations for exploiting memory-

level parallelism. In Proceedings of the 31st Annual International Symposium on Computer Ar-
chitecture (ISCA’04). ACM, New York, 76–87.

COLLINS, J., WANG, H., TULLSEN, D., HUGHES, C., LEE, Y.-F., LAVERY, D., AND SHEN, J. P. 2001. Spec-

ulative precomputation: Long-range prefetching of delinquent loads. In Proceedings of the 28th
Annual International Symposium on Computer Architecture (ISCA’01). ACM, New York, 14–25.

CRISTAL, A., SANTANA, O. J., VALERO, M., AND MARTINEZ, J. F. 2004. Toward kilo-instruction proces-

sors. ACM Trans. Archit. Code Opt. 1, 4, 389–417.

EL-MOURSY, A. AND ALBONESI, D. H. 2003. Front-end policies for improved issue efficiency in SMT

processors. In Proceedings of the 9th International Symposium on High-Performance Computer
Architecture (HPCA’03). IEEE, Los Alamitos, CA, 31–40.

EYERMAN, S. AND EECKHOUT, L. 2007. A memory-level parallelism aware fetch policy for SMT

processors. In Proceedings of the International Symposium on High-Performance Computer Ar-
chitecture (HPCA’07). IEEE, Los Alamitos, CA, 240–249.

EYERMAN, S. AND EECKHOUT, L. 2008. System-level performance metrics for multi-program work-

loads. IEEE Micro 28, 3, 42–53.

GLEW, A. 1998. MLP yes! ILP no! In Proceedings of the Architectural Support for Programming
Languages and Operating Systems Wild and Crazy Idea Session.

JOHN, L. K. 2006. Aggregating performance metrics over a benchmark suite. In Performance
Evaluation and Benchmarking, L. K. John and L. Eeckhout Eds. CRC Press, Boca Raton, FL,

47–58.

KARKHANIS, T. AND SMITH, J. E. 2002. A day in the life of a data cache miss. In Proceedings of the
2nd Annual Workshop on Memory Performance Issues (WMPI’02). ACM, New York.

KARKHANIS, T. S. AND SMITH, J. E. 2004. A first-order superscalar processor model. In Proceedings
of the 31st Annual International Symposium on Computer Architecture (ISCA’04). ACM, New

York, 338–349.

KESSLER, R. E., MCLELLAN, E. J., AND WEBB, D. A. 1998. The Alpha 21264 microprocessor architec-

ture. In Proceedings of the 1998 International Conference on Computer Design (ICCD’98). IEEE,

Los Alamitos, CA, 90–95.

LIMOUSIN, C., SBOT, J., VARTANIAN, A., AND DRACH-TEMAM, N. 2001. Improving 3D geometry trans-

formation on a simultaneous multithreaded SIMD proceesor. In Proceedings of the 13th Interna-
tional Conference on Supercomputing (ICS’01). ACM, New York, 236–245.

LUK, C.-K. 2001. Tolerating memory latency through software-controlled pre-execution in simul-

taneous multithreading processors. In Proceedings of the 28th Annual International Symposium
on Computer Architecture (ISCA’01). ACM, New York, 40–51.

LUO, K., GUMMARAJU, J., AND FRANKLIN, M. 2001. Balancing throughput and fairness in SMT

processors. In Proceedings of the IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS’01). IEEE, Los Alamitos, CA, 164–171.

MUTLU, O., KIM, H., AND PATT, Y. N. 2005. Techniques for efficient processing in runahead execution

engines. In Proceedings of the 32nd Annual International Symposium on Computer Architecture
(ISCA’05). ACM, New York, 370–381.

MUTLU, O., STARK, J., WILKERSON, C., AND PATT, Y. N. 2003. Runahead execution: An alternative to

very large instruction windows for out-of-order processors. In Proceedings of the 9th International
Symposium on High-Performance Computer Architecture (HPCA’03). IEEE, Los Alamitos, CA,

129–140.

PAI, V. S. AND ADVE, S. V. 1999. Code transformations to improve memory parallelism. In Proceed-
ings of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-32).
IEEE, Los Alamitos, CA, 147–155.

Perelman, E., Hamerly, G., and Calder, B. 2003. Picking statistically valid and early simula-

tion points. In Proceedings of the 12th International Conference on Parallel Architectures and
Compilation Techniques (PACT’03). IEEE, Los Alamitos, CA, 244–256.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

Memory-Level Parallelism Aware Fetch Policies for SMT processors • 3:33

QURESHI, M. K., LYNCH, D. N., MUTLU, O., AND PATT, Y. N. 2006. A case for MLP-aware cache

replacement. In Proceedings of the 33rd Annual International Symposium on Computer Archi-
tecture (ISCA’06). ACM, New York, 167–177.

RAASCH, S. E. AND REINHARDT, S. K. 2003. The impact of resource partitioning on SMT processors.

In Proceedings of the 12th International Conference on Parallel Architectures and Compilation
Techniques (PACT’03). IEEE, Los Alamitos, CA, 15–26.

RAMIREZ, T., PAJUELO, A., SANTANA, O. J., AND VALERO, M. 2008. Runahead threads to improve

SMT performance. In Proceedings of the 14th International Symposium on High-Performance
Computer Architecture (HPCA’08). IEEE, Los Alamitos, CA, 149–158.

SHERWOOD, T., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2002. Automatically characterizing

large scale program behavior. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’02). ACM, New York,

45–57.

SHERWOOD, T., SAIR, S., AND CALDER, B. 2000. Predictor-directed stream buffers. In Proceedings of
the 33rd Annual International Symposium on Microarchitecture (MICRO-33). IEEE, Los Alami-

tos, CA, 42–53.

SNAVELY, A. AND TULLSEN, D. M. 2000. Symbiotic jobscheduling for simultaneous multithreading

processor. In Proceedings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’00). ACM, New York, 234–244.

SRINIVASAN, S. T., RAJWAR, R., AKKARY, H., GANDHI, A., AND UPTON, M. 2004. Continual flow pipelines.

In Proceedings of the 11th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’04). ACM, New York, 107–119.

THEKKATH, R. AND EGGERS, S. J. 1994. The effectiveness of multiple hardware contexts. In Proceed-
ings of the 6th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’94). ACM, New York, 328–337.

TUCK, N. AND TULLSEN, D. 2005. Multithreaded value prediction. In Proceedings of the 11th Inter-
national Symposium on High-Performance Computer Architecture (HPCA’05). IEEE, Los Alami-

tos, CA, 5–15.

TUCK, N. AND TULLSEN, D. M. 2003. Initial observations of the simultaneous multithreading Pen-

tium 4 processor. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT’03). IEEE, Los Alamitos, CA, 26–34.

TULLSEN, D. 1996. Simulation and modeling of a simultaneous multithreading processor. In Pro-
ceedings of the 22nd Annual Computer Measurement Group Conference. Curran Associates, Red

Hook, NY.

TULLSEN, D. M. AND BROWN, J. A. 2001. Handling long-latency loads in a simultaneous multi-

threading processor. In Proceedings of the 34th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-34). IEEE, Los Alamitos, CA, 318–327.

TULLSEN, D. M., EGGERS, S. J., EMER, J. S., LEVY, H. M., LO, J. L., AND STAMM, R. L. 1996. Exploiting

choice: Instruction fetch and issue on an implementable simultaneous multithreading processor.

In Proceedings of the 23rd Annual International Symposium on Computer Architecture (ISCA’96).
ACM, New York, 191–202.

TULLSEN, D. M., EGGERS, S. J., AND LEVY, H. M. 1995. Simultaneous multithreading: Maximizing

on-chip parallelism. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture (ISCA’95). ACM, New York, 392–403.

TUNE, E., KUMAR, R., TULLSEN, D., AND CALDER, B. 2004. Balanced multithreading: Increasing

throughput via a low cost multithreading hierarchy. In Proceedings of the 37th Annual Interna-
tional Symposium on Microarchitecture (MICRO-37). IEEE, Los Alamitos, CA, 183–194.

ZHOU, H. AND CONTE, T. M. 2003. Enhancing memory level parallelism via recovery-free value

prediction. In Proceedings of the 17th Annual International Conference on Supercomputing (ICS).
ACM, New York, 326–335.

Received June 2007; revised May 2008, September 2008; accepted September 2008

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 3, Publication date: March 2009.

