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Abstract
The task of a content-based image retrieval (CBIR)
system is to cater to users who expect to get rele-
vant images with high precision and efficiency in re-
sponse to query images. This paper presents a concept
learning approach that integrates a mixture model of
the data, relevance feedback and long-term continuous
learning. The concepts are incrementally refined with
increased retrieval experiences. The concept knowl-
edge can be immediately transplanted to deal with the
dynamic database situations such as insertion of new
images, removal of existing images and query images
which are outside the database. Experimental results
on Corel database show the efficacy of our approach.

1 Introduction
Meta knowledge in image/video databases can be used
to learn and refine visual concepts ([1] [2]). However,
this process necessitates a model for the learning pro-
cess. Vasconcelos [3] analyzed the probabilistic im-
age retrieval model based on mixture densities for the
quality of the solution and computational complexity.
However, neither relevance feedback nor the exploita-
tion of meta knowledge is considered for the model.
Barnard and Forsyth [4] organized images (with as-
sociated words) by a hierarchical model for browsing
and searching. In [4], some images are used to train
the clustering directly; this training stage is unreliable
since the training data set may not represent the im-
age distribution of the entire database, especially when
some images are added or removed during the database
lifetime.

The model estimation by the standard EM method
[5] may be far away from ground-truth model due to
the gap between numeric-oriented feature data and con-
cepts understood by humans. Recently, some papers
on semi-supervised learning based on mixture mod-
els have been published [6] [7]. These approaches as-
sume that the labeled data belong to some specified
classes. In reality, another kind of labeling information
that “some data do NOT belong to some classes” is
also available with relevance feedback, and it may im-
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Figure 1: System diagram for concept learning and
transplantation for dynamic image databases.

prove the effectiveness of the semi-supervised learning.
In [8], a new semi-supervised EM (SS-EM) algorithm
is proposed that integrates concept learning and rele-
vance feedback. However, the database is assumed to
be fixed, and the query images are always from the
database itself.

Fig. 1 illustrates our system for concept learning and
transplantation. The contributions of this paper are:
(a) Unlike most of the research in content-based image
retrieval field, in our system, images can be inserted to
or removed from the database, and the concept learn-
ing knowledge can be immediately transplanted to the
new images. We model the dynamic mechanism of im-
age databases, and learn concepts based on the SS-EM
algorithm [8]. (b) When the query image does not be-
long to the database, the system can still efficiently
search images using concept knowledge instead of im-
plementing the traditional K nearest neighbor (K-NN)
search. The approaches of [1] and [2] are incapable of
dealing with this situation.

2 Technical approach
• Dynamic database model: An image retrieval sys-
tem with relevance feedback mechanism may encounter
two kinds of events at any time during the long-term
operation: (a) users’ queries and (b) database changes
(i.e., image insertion or removal). We model the occur-
rences of these two events as Poisson random processes,
whose distributions are P [N (t) = k] = (λit)

k

k! e−λit (k =
0, 1, . . .) with i = 1 (query) and 2 (insertion/deletion),
respectively . The ratio of the two distribution param-
eters r = λ1

λ2
specifies the relative occurrence rate of
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these two events.
Since different users make a variety of queries and

perceive visual content differently, they may provide
different sets of positive and negative labeling informa-
tion, each of which is defined as a retrieval experience
E = {X+,X−}, where X+ = {x+

1 , x+
2 , . . . , x+

N+} are
labeled as belonging to (positive for) a certain but un-
known component (concept) while another portion of
samples X− = {x−

1 , x−
2 , . . . , x−

N−} are labeled as NOT
belonging to (negative for) that unknown component
(concept). Note that x+

i (i = 1, 2, . . . , N+) and x−
j

(j = 1, 2, . . . , N−) are image visual feature vectors. We
assume that query images in different query sessions are
all from the image database with equal probability of
being selected. With more users’ executions of their
queries, the estimation of the mixture model for the
database corresponding to the human concepts may be
continually refined over time, hence the concept learn-
ing is improved in the long term.
• Concept learning: We assume that the database
image distribution in feature space is a c-component
Gaussian mixture C = {C1, . . . , Cc}, whose pdf is

f(x; Ψ) =
c∑

i=1

πifi(x;µi,Σi) (1)

where x is d-dimensional feature, fi(x) are component
densities and πi (i = 1, 2, . . . , c) are component propor-
tions ( 0 ≤ πi ≤ 1 and

∑c
i=1 πi = 1 ). The component

densities are specified by means µi and covariances Σi.
Ψ =

⋃c
i=1{πi, µi,Σi}. For our image database sys-

tem with N images, there are c concepts each of which
is corresponding to one component. The task of con-
cept learning is accomplished by estimating the mixture
model parameters Ψ.

For a set of N i.i.d. samples X={x1,
x2, . . . , xN} from the model (1), define the
associated binary component-indicator vectors for

zji =
{

1 if xj is from ith component
0 otherwise , for j =

1, 2, . . . , N , i = 1, 2, . . . , c. The maximum likelihood
(ML) estimate of the unknown parameter vectors can
be obtained by the EM approach, which produces a
sequence of estimates {Ψ̂(t), t = 0, 1, 2, . . .} by pro-
ceeding iteratively in two steps (E-step and M-step)
until some termination criterion is met: In E-step,
The conditional expectation of Z defined as τji =
probΨ̂(t){zji = 1|X} is derived as

τji =
πifi(xj ; θ̂i)∑c

h=1 πhfh(xj ; θ̂h)
(2)

In M-step, the component proportions, means and co-
variances can be estimated [5].

In order to capture and accumulate previous users’
retrieval experiences in the long-term history, we des-
ignate a positive matrix PN×c and a negative ma-
trix QN×c to represent this kind of knowledge. P

are Q are initialized to be zero matrices at the be-
ginning. After each retrieval experience, the el-
ements

{
pj+

1 ,h, · · · , pj+
N+ ,h

}
in P and the elements{

qj−
1 ,h, · · · , qj−

N− ,h

}
in Q are increased by 1. The clus-

ter index h is estimated as
h = arg max

i=1,2,···,c
P(i) (3)

where P(i) is equal to
prob(x+

1 ∈ Ci, · · · , x+
N+ ∈ Ci, x

−
1 �∈ Ci, · · · , x−

N− �∈ Ci)

= {∏N+

j=1
prob(x+

i ∈ Ci)}{
∏N−

j=1
prob(x−

j �∈ Ci)}
= {∏

j∈J+ τji}{
∏

j∈J−(1 − τji)}
for i = 1, 2, . . . , c, where J+ and J− are the indices
for the samples in X+ and X− respectively. Due to the
knowledge accumulation mechanism of matrices P and
Q, the learning improvement of the system is guaran-
teed even though it is possible that the concepts being
sought are occasionally misidentified by (3).

With the accumulated knowledge contained in P and
Q, the component-indicator vector elements τji derived
in (2) can be modified as

τ̃ji =




τji + pji−qji∑c

ι=1
(pjι+qjι)

if pji > qji

0 if pji < qji

τji if pji = qji

(4)

for j = 1, 2, . . . , N and i = 1, 2, . . . , c. Then we nor-
malize these modified component-indicator vectors so
that

∑c
i=1 τ̃ji = 1. This means that, based on nu-

meric feature data, the component-indicator estimation
is modified with labeling knowledge derived from users’
retrieval experience. This modification step can be in-
serted between E-step and M-step so that concept the
learning result is closer to human’s understanding.
• Improving retrieval performance: The concept
learning result can help to improve retrieval perfor-
mance. When a query is presented to the system, for
the initial K nearest neighbor (K-NN) search, the Eu-
clidean distance in the feature space from one database
image xj (j = 1, 2, . . . , N) to the query xq is defined as
D(xq, xj), which we modify as

D′(xq, xj) = e−
βn
N D(xq, xj) −

c∑
i=1

τjiτqi (5)

where N is the database size and n is the number of
retrieval experiences. The second term on the right
side is for concept learning knowledge, which is given
more credit as the concept learning is improved with
the retrieval experiences increased. The parameter β is
to make balance between these two terms.
• Concept transplantation: When a new image is
inserted, since the database size N is increased by 1, the
positive matrix PN×c and the negative matrix QN×c

are both modified with one additional row, whose el-
ements are all zeros. Furthermore, the component-
indicator estimation of this new image can be computed
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• Given the data X , the number of clusters c, the num-
ber of images N . Initialize positive matrix PN×c and
negative matrix QN×c to be zero matrices.

• Implement standard EM algorithm on X .

• Repeat

(a) When new user executes retrieval: (Learning)

1. Derive a retrieval experience, update P and Q.

2. E-step: Estimate Z by (2).

3. Use P and Q to modify Z estimation by (4).

4. M-step: Compute component proportions,
means and covariances respectively.

5. Go to 2 until termination criterion is met.

(b) When images are inserted: (Transplantation)

1. N ← N + 1, update P and Q.

2. Estimate zN by (2) for new images.

Figure 2: Concept learning and transplantation.

by (2) with j = N + 1 and component proportions,
means and covariances being already known. In this
way, the database absorbs the new image with concept
knowledge transplantation. When some images are re-
moved from the database, the corresponding rows in
the matrices PN×c and QN×c are deleted. The rela-
tionship between the occurrence rates of user query and
database changes influences the speed of concept learn-
ing. Obviously, when database changes occur more fre-
quently compared with the event of user query, i.e.,
when the value of relative occurrence rate r is lower,
the concept learning becomes slower.

If the query image does not belong to the database,
the system extracts its visual features, computes τqi

(i = 1, 2, . . . , c) by (2), and implements K-NN search
using the distance measurement given in (5). Com-
pared with the traditional K-NN search that is solely
based on visual feature Euclidean distance measure-
ment, this approach yields better retrieval performance
since concept knowledge is adopted.

The concept learning and transplantation algorithm
is presented in Fig. 2. EM-algorithm for mixture model
estimation is computationally intense. To avoid that
clustering lags behind retrieval experience derivation
in the system, we implement user directed SS-EM al-
gorithm after every s (s ≥ 1) retrieval experiences.

3 Experiments
We collect 1200 images from Corel stock photo library
and divide them into 12 classes. Images are represented
by 22 texture and color features [8]. To validate the
clustering result R = {R1, . . . ,Rc} from an algorithm,
we compare R with the ground-truth mixture model
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Figure 3: Performances with different values of r.
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Figure 4: Retrieval performance at various times.

C = {C1, . . . , Cc} by using a statistical index. A pair
of vectors {xi, xj} are referred to as (I) BS if both
vectors belong to the same component in C and to the
same cluster in R, (II) SD if both vectors belong to
the same component in C and to different clusters in R,
(III) DS if both vectors belong to different components
in C and to the same cluster in R. Let ξ1, ξ2 and ξ3 be
the number of BS, SD and DS pairs of vectors of X ,
respectively. We use Jaccard coefficient JC = ξ1

ξ1+ξ2+ξ3
to evaluate clustering result.

We randomly select 800 out of the 1200 images as
the initial database images, i.e., N = 800, and insert
the other 400 images while the system is running. Our
concept learning approach on the database is imple-
mented with c = 12, s = 50 and β = 100. We set the
system running time as t = 0, 1, 2, . . .; at each t, one
of the events happens: user query or image insertion.
Queries within the database and images to be inserted
are randomly selected. Fig. 3(a) shows the concept
learning improvement. Initially, the Jaccard coefficient
by standard EM algorithm is 45.6%. If there are only
image insertions in the random process, i.e., r = 0, the
concept learning cannot be improved. When the users’
queries happen more frequently (r is higher), the con-
cept learning will be faster. Note that when r = 0 and
r = 2, after all the 400 images are inserted into the
system, t is around 400 and (400 + 2 ∗ 400) = 1200
respectively, and it cannot reach t = 2000. After an
image is inserted, we use the rest of the images outside
the database as queries and implement concept trans-
plantation method to compute the retrieval precision
(at relevance feedback iteration 0) by (5) . As shown
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Query image is outside the database.
User is looking for sunset images.

(a) no retrieval experience (t = 0): precision = 11
20

(b) t = 300: precision = 19
20

Figure 5: Retrieval precision is improved with retrieval
experiences increased.

in Fig. 3(b), the precision increases with more images
being inserted to the system due to the reason that
concept learning is improved since more retrieval ex-
periences are derived. Note that another factor that
improves the precision is that with more images being
inserted, there are more relevant images within each
class; thus, the probability that relevant images with
regard to the query image can be found increases. This
also explains that when r = 0, the precision still be-
comes a slightly higher with more images being inserted
although concept learning is not improved. Since we
only observe the process with t being from 0 to 2000,
when r = 16, only around 2000/(1 + 16) = 117 images
have been inserted. This is reason that the curve for
r = 16 cannot reach 400 in x-axis.

Fig. 4 presents the retrieval performance improve-

ment with increased running time for r = 16 and r = 2.
We select an image in this database as the query, imple-
ment our retrieval strategy, and repeat this experiment
by changing query until each of the database images
has been selected as query. Then we calculate the av-
erage precision at each iteration. With increased re-
trieval experiences, the average precision is improved,
especially at initial K-NN search iteration. This has
deep significance for retrieval performance in practical
applications since users usually don’t have enough pa-
tience to repeat relevance feedback iterations to search
the images. Fig. 5 shows two different retrieval results
with the same query image (outside the database) af-
ter different running time. In (a), there is no retrieval
experience, and K-NN search only yields 11 out of 20
sunset images (row 1: all the 5 images; row 2: 1, 2, 4;
row 3: 5; row 4: 1 and 5); In (b), when t = 300, 19
sunset images are presented (except the 3rd image on
the last row) by our concept transplantation approach.

4 Conclusions
This paper proposed a new concept learning approach
where the learned concept knowledge can be trans-
planted to new incoming images or to query images
outside the database efficiently.
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