
Jdib: Java Applications Interface to Unshackle the Communica-
tion Capabilities of InfiniBand Networks

Wan Huang1,2, Hongwei Zhang1,2, Jin He1 , Jizhong Han1, Lisheng Zhang1
 1. Institute of Computing Technology, Chinese Academy of Sciences

 2. Graduate University, Chinese Academy of Sciences
{huangwan, zhanghongwei,hejin, hjz, zhang}@ict.ac.cn

Abstract
Using existing TCP/IP emulation layers over InfiniBand
networks in Java applications presented rather poor com-
munication performance and heavy overhead in host CPU.
In this paper, we propose Jdib (Java Direct InfiniBand), a
Java application acceleration technique to directly exploit
RDMA (Remote-Direct-Memory-Access) capability of In-
finiBand network hardware. The preliminary test results
show that with Jdib API, micro-benchmark written by Java
can achieve latency performance (~9us) comparable with
that of micro-benchmarks written by C language (~8.5us)
in 20Gbps InfiniBand fabrics.

Keywords
InfiniBand, Verbs API, JNI, RDMA

1 INTRODUCTION
For its portability, secure and easy-to-learn properties,

Java has become the most popular programming language
in the past 10 years. Nowadays, Java begins to play a role
that C and C++ have been done successfully in last thirty
years, especially in critical enterprise computing applica-
tions. To a great extent, Java is changing into a system-
level programming language instead of the Internet specific
programming language that it was designed to be.

With a byte-code executable, how to improve the execu-
tion efficiency and performance of Java applications’ per-
formance has been an active topic for a long time. Much
efforts have been committed there. One of the most suc-
cessful approaches is JIT (Just-In-Time technique). By
caching the native code snippets of frequently used byte-
code, JIT can help remarkably cut-down the numbers of the
byte-code to native code translation and improve the per-
formance of byte-code executions.[28][29]reported excel-
lent (nearly the same as C/C++) Java application perform-
ances with JIT technique.

It is well known that the overall performance of applica-
tions is determined not only by the “pure” instruction exe-
cution efficiency but also by the I/O. For Java, I/O per-
formance was not one of the primary design efforts obvi-
ously from the beginning because of its specification for
security and garbage-collection memory management
mechanism. So in a long time, the progress of Java I/O per-
formance lagged far behind that of Java byte-code instruc-
tion execution optimizations. When Java is becoming a

language much like C/C++, people have to confront the I/O
performance problem in Java.

In recent years, more and more Java application servers
have been deployed within data centers with InfiniBand
Architecture fabrics (IBA) [1]. With industry efforts to of-
fer low latency, high throughput and low CPU overhead
characteristics inter-connection networks, the InfiniBand
networks present two outstanding features: the Remote
Direct Memory Access (RDMA) capability and dedicated
protocol offload engines. Moreover, according to the In-
finiBand industry community, OpenFabrics Alliance, In-
finiBand can cut-down dramatically the system manage-
ment costs for intelligent system management facilities
embedded in the InfiniBand switches and host interface
cards.

However, currently no direct support provided in Java to
fully exploit the communication capability of InfiniBand
networks. According to our recent research works [30], we
found in Giga-bit Ethernet environment, the bandwidth and
latency performances of Java micro-benchmark is nearly
the same as that of C micro-benchmark, though with a bit
higher CPU utilization. However because the only viable
approach in Java to use InfiniBand is the TCP/IP emulation,
our tests results with TCP/IP emulation layers over Infini-
Band in Java and C micro-benchmarks show rather big
gaps no matter bandwidth/latency or CPU utilization[4]. It
suggests it is necessary and important to design a new Java
API and supporting stuffs to make full use of InfiniBand in
Java network applications.

In this paper, we propose Jdib (Java Direct InfiniBand), a
Java application interface to directly exploit RDMA (Re-
mote-Direct-Memory-Access) capability of InfiniBand
network hardware. The preliminary test results show that
with Jdib API, micro-benchmark written by Java can
achieve latency performance (~9us) comparable with that
of micro-benchmarks written by C language (~8.5us) in
20Gbps InfiniBand fabrics.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents the details
of design and implementation of Jdib. Section 4 gives the
preliminary experimental results. Finally, Section 5 dis-
cusses open issues and future work, summarizes our find-
ings and concludes the paper.

2007 IFIP International Conference on Network and Parallel Computing - Workshops

Unrecognized Copyright Information
DOI 10.1109/NPC.2007.111

598

2007 IFIP International Conference on Network and Parallel Computing - Workshops

0-7695-2943-7/07 $25.00 © 2007 IEEE
DOI 10.1109/NPC.2007.111

596

2007 IFIP International Conference on Network and Parallel Computing - Workshops

0-7695-2943-7/07 $25.00 © 2007 IEEE
DOI 10.1109/NPC.2007.111

596

2 BACKGROUND AND RELATED WORK
In this section, we first present an overview of Infini-

Band. Then we discuss the related work.

2.1 InfiniBand Architecture
InfiniBand Architecture (IBA) [1] is an interconnect

technology primarily used in high performance computing.
The IBA specification defines a connection between proc-
essor nodes and I/O nodes such as storage devices. It is
independent of hardware and software environments. IBA
has many benefits. It affords high bandwidth, reliability and
scalability features for I/O. It has extremely low latency
and low CPU overhead. With IBA, applications directly
access the IBA network hardware, without the interaction
of operating systems (OS), which makes message-passing
operation more efficient.

Two types of channel adapters are defined in IBA: Host
Channel Adapter (HCA) and Target Channel Adapter
(TCA). HCA offers an interface through which the con-
sumer can use the functions specified by IBA verbs. TCA
is a programmable DMA engine that initiates DMA opera-
tions locally and remotely.

Figure 1: Linux OpenFabrics Stack (from [27])

Two useful communications are provided by IBA: chan-
nel semantics and memory semantics. The former, also
called Send/Receive, is a classic communication style that
one pushes the data and the other receives the data. The
memory semantics, also known as RDMA, provides a way
for an initiating node to directly read or write the virtual
address space of a remote node. When the initiating node
sends a read or write request, data are retrieved from or
placed to the remote memory without the remote applica-
tions or OS involved. This is especially useful in massively
parallel computing clusters.

2.2 Related Work
Javia [8, 9] in Cornell University is one of the earliest re-

search projects about Java I/O performance. In Javia, a spe-
cial Java-level buffer abstraction is provided. It allows Java
applications to allocate regions of memory outside the Java
heap (under the control of Java garbage-collection mecha-
nism) and to use them directly and safely as Java arrays.
Although targets both of disk and network I/O performance

optimization, the major highlights of Javia is its Java inter-
face to the VIA (Virtual-Interface-Architecture) network
interfaces. As an fruit of joint industry research efforts from
Intel, Microsoft and Compaq (now HP), VIA enabled ap-
plications to directly access network interface hardware
with necessary security assurance and by-pass the kernel
from the message exchange critical path so as to decrease
host CPU utilization dramatically. The results of micro-
benchmarks with Javia showed that Java applications could
achieve almost the same of peak network communication
performance as those of C applications.

Jaguar[5, 6],developed by Matt Welsh as a PhD candi-
date in UCBerkeley, is another important early research
project in Java I/O performance optimization. Jaguar is
much like Javia that its low-level interconnection is also a
VIA network by UC Berkeley [7]. With JIT technology,
Jaguar extended Java runtime to enable Java applications to
directly access operating system and hardware resources
instead of using JNI interface that was rather low-efficiency.
JaguarVIA [6] is a Java application interface to the Berke-
ley VIA based on Jaguar. Performance tests showed that
Java application achieved nearly identical performance of
that of C. However, the Jaguar approach to extend JIT
compiler raised a security concern, that’s generated-code
by Jaguar actually failed to preserve the type-safety proper-
ties of Java byte-code.

The work of Jaguar influenced the engineers of Sun Mi-
crosystems deeply after a wonderful presentation by Matt
Welsh there. Java New I/O [10] (Java NIO) of JDK 1.4.2 in
2003, is the first efforts of Sun Microsystems to try to sys-
tematically improve the I/O performance of Java. Java NIO
provided many more one-to-one mappings between Java
API and host native API so as to decrease the semantic
gaps and speedup the I/O executions. One of most out-
standing features by Java NIO is the direct buffer. It’s
much alike a memory region allocated in C/C++ applica-
tions with malloc c function or new method and is out of
the scope of Java garbage collection mechanism. No extra
data copy operations are needed while sharing data between
native operating systems and Java applications with the
direct buffer. Now a new extension to NIO, naming NIO2
[11], is being developed under JSR 203.

Taboada [4] examined Java socket performance optimi-
zations methodologies and proposed the Java Fast Socket
(JFS) on their SCI (Scalable-Coherent-Interface) [3] test-
bed. The performance tests results demonstrated that it’s
possible that Java applications based on JFS can achieve
performance closed to those of C application over standard
SCI socket interface.

Other related research work of Java communication per-
formance optimization included many efforts in the Java
Remote Method Invocation (RMI [12]). RMI is a common
communication facility for Java applications. Manta [13, 14]
provided an optimized RMI interface with a Java to native
code complier. JavaParty [15] proposed an optimized strat-
egy of Java object serialization and an improved RMI inter-

599597597

face (KaRMI [16, 17]). Manta utilized native code for Java
object serialization and de-serialization on Myrinet [31],
and left out the type check, so it demolished the Java secu-
rity. KaRMI got several data copy operations in critical
data transportation path and resulted in poor performance.
Java MPI [32] was introduced to replace RMI to provide
high performance cluster communication mechanism in
parallel computing environments. As a pure Java message-
passing framework by University of Maryland, MPJava [20]
harnessed the high-performance communication capabili-
ties of Java NIO and delivered performance competitive
with native MPI codes.

3 DESIGN AND IMPLEMENTATION
Java NIO provides us one scheme to access the network

directly. Based on that, we can improve Java’s communica-
tion performance by using specific protocol.

As we discussed above, the high overhead of IPoIB
makes it difficult to fully exploit the performance of In-
finiBand. Therefore, we focus on investigating how to util-
ize RDMA to improve the performance of Java communi-
cation.

3.1 JNI
Java Native Interface (JNI) is a standard programming

interface for writing Java native methods and embedding
the Java virtual machine into native applications. The pri-
mary goal is binary compatibility of native method libraries
across all Java virtual machine implementations on a given
platform.

Figure 2: JNI Interface [33]

The most important benefit of the JNI is that it imposes
no restrictions on the implementation of the underlying
Java VM. Therefore, Java VM vendors can add support for
the JNI without affecting other parts of the VM. Program-
mers can write one version of a native application or libra-
ry and expect it to work with all Java VMs supporting the
JNI.

The JNI framework allows a native method to utilize
Java objects in the same way that Java code uses these
objects. A native method can create Java objects and then
inspect and use these objects to perform its tasks. A native
method can also inspect and use objects created by Java
application code.

The JNI is used to write native methods to handle
situations when an application cannot be written entirely in

the Java programming language. For example when the
standard Java class library does not support the platform-
specific features or program library. It is also used to
modify an existing application, written in another
programming language, to be accessible to Java
applications. Many of the standard library classes depend
on the JNI to provide functionality to the developer and the
user, e.g. I/O file reading and sound capabilities.
Performance- and platform-sensitive API implementations
in the standard library allows all Java applications to access
this functionality in a safe and platform-independent
manner.

Based on the current IB verbs API implemented in C, we
encapsulated it with JNI to provide a new version of IB
verbs API. Java applications can perform the RDMA
operations through this new interface to improve the per-
formance of Java communication.

3.2 Implementation
IBA describes the service interface between a host chan-

nel adapter and the operating system by a set of semantics
called Verbs. Verbs describe operations that take place be-
tween a host channel adapter and its operating system
based on a particular queuing model for submitting work
requests to the channel adapter and returning completion
status. They also describe the parameters necessary for con-
figuring and managing the channel adapter, allocating (cre-
ating and destroying) queue pairs, configuring QP opera-
tion, posting work requests to the QP, getting completion
status from the completion queue.

The foundation of IBA operation is the ability of a con-
sumer to queue up a set of instructions that the hardware
executes. This facility is referred to as a work queue. Work
queues are always created in pairs, called a Queue Pair
(QP), one for send operations and one for receive opera-
tions. In general, the send work queue holds instructions
that cause data to be transferred between the consumer’s
memory and another consumer’s memory, and the receive
work queue holds instructions about where to place data
that is received from another consumer.

The encapsulating procedure can be described as follows:
First, we constructed a java class named Device whose
methods perform the operations needed by RDMA, de-
scribed in the following table:

600598598

Table 2. Methods of class Device

Method Description

Find IB device

getDeviceList() Get the device list

Initiation Operations

openDevice() Initialize device for use

queryDevice() Get device properties

allocPD() Allocate a
protection domain

regMR() Register a memory region

createCQ() Create a completion queue

createQP() Create a queue pair

modifyQPtoINIT() Modify a queue pair to
 INIT state

initWR() Init a work request

Create connection

queryPort() Get port properties

exchDest() Exchange descriptions between
server and client

modifyQPtoRTR() Modify a queue pair to
Ready-to-Receive state

modifyQPtoRTS() Modify a queue pair to
Ready-to-Send state

Data Transport

postSend() Post a list of work requests to a
receive queue

pollCQ() Poll a CQ for completions
This class performs as a bridge between the java applica-

tions and the C IB verbs library. Then the java applications
can create an instance of the class Device and invoke its
methods to perform the whole flow of RDMA operation. In
addition, all the methods of class Device is implemented by
native C code through JNI.

3.2 Design Decisions
We abstract the verbs API to a higher level to provide an

interface much easier to use. The application programmers
need not to maintain complex data structures representing
the devices and connection contexts. They just need to
specify the basic parameters for RDMA, such as IB port,
bytes to transport, size of RDMA buffers and so on.

4 PERFORMANCE EVALUATION

4.1 Experimental Testbed
The experiments environment we used to conduct the

performance testing is an 8-node cluster. Each node is a

DELL SC430 pc server. The detailed hardware configura-
tion of the DELL Power-Edge SC430 is as followings:
• CPU: Intel Pentium-4 2.8GHz, Hyper-Thread enable

• DRAM: DDR II 400, 1GB

• Chipset: Intel E7230 and ICH7R

• On-board Giga-bit Ethernet Controller: Broadcom
NetXtreme Tg3

• InfiniBand HCA: Mellanox MT25204, Single Port,
20Gbps

The software installed in each node contains:
• RedHat AS 4.0 with Linux kernel 2.6.9-42.ELsmp

• InfiniBand drivers and library: OFED-1.2

• Sun JDK: 1.6-b-105

The shared facilities of the cluster include:
• InfiniBand Switch: MT47396, 24 port, 20Gbps/port

• Ethernet Switch: HUAWEI Quidway S1224, 24 port,
1Gbps/port

• NFS Server (shared home directory): DELL SC1420
with High-Point S-ATA RAID

4.2 Jdib Performance
Figure3 and Figure4 compare the RDMA read perform-

ance obtained by using C and Java verbs API (Jdib).

Figure 3: RDMA read throughput

601599599

Figure 4: RDMA read latency

The difference between Jdib (native buffer) and Jdib (JVM
buffer) is that the former stored the data in the buffer allo-
cated in native code, while the latter additionally copied
them to the JVM buffer through the JNI. The extra copy
through JNI cost some time. The JNI's strength lies in de-
coupling native codes from a specific JVM implementation
by providing relatively opaque access to JVM internals,
data, and services. The cost of this property is efficiency,
namely large runtime overheads during callouts to native
functions, and even larger ones during callbacks to access
Java code and data.

5 CONCLUSION AND FUTURE WORK
In this paper, we explored the viable approach to make

use of the low-level InfiniBand user verbs API in Java ap-
plications and proposed the Jdib API based on standard
Java JNI interface. From the test results, it’s concluded that
it’s possible to exploit the potential capability of InfiniBand
network in Java applications with the help of Jdib. The pre-
liminary performance test revealed that latency perform-
ance difference between Java runtime based on Jdib and C
language is trivial.

However, at the same time, we observed the Java JNI is
rather poor of parameters passing between Java runtime
and native world. We deemed there are two possible ap-
proaches in future to attack this problem. The first is quite
straightforward: based on open-source Java, to make the
low-level emulation layer architecture be more adaptable
with Java runtime semantics and behaviors, and to get a
better performance than that of now. The Second is to use
direct-buffer mechanism provided by Java NIO in the Java
Verbs API. The direct buffer is allocated outside of the
normal garbage-collected heap, even outside the JVM
process space. Thus, JVM can perform native I/O opera-
tions directly upon direct byte buffers, avoiding the copy of
buffer’s content using an intermediate buffer whenever an
invocation of one of the underlying operating system’s na-
tive I/O operations is done. We expect the latency gap be-
tween Java and C to be reduced after using this direct-

buffer. Currently we have commenced work on designing a
Jdib version based on Java NIO.

ACKNOWLEDGMENTS
This study was supported by funds from the China Na-

tional 973 program (2004CB318202). The project team
thanks Professor Chengde Han for his support. The work of
Zhiying Jiang, Nan Wang and Yonghao Zhou to help setup
the test-bed is highly appreciated.

REFERENCES
[1] A. H. Pajjuri A., "A Performance Analysis of Java and

C," 2001.
[2] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B.

Shubert, F. Berry, A. M. Merritt, E. Gronke, and C.
Dodd, "The Virtual Interface Architecture," Micro,
IEEE, vol. 18, pp. 66-76, 1998.

[3] K. Alnaes, E. H. Kristiansen, D. B. Gustavson, and D.
V. James, "Scalable Coherent Interface," 1990, pp.
446-453.

[4] G. L. Taboada, J. Tourino, and R. Doallo, "Designing
Efficient Java Communications on Clusters," 2005, pp.
182a-182a.

[5] M. Welsh, "Safe and Efficient Hardware Specialization
of Java Applications," 2000.

[6] D. C. M. Welsh, "Jaguar: Enabling Efficient Commu-
nication and I/O from Java," in Concurrency: Practice
and Experience, 1999.

[7] B. Philip, G. Andrew, and C. David, "An implementa-
tion and analysis of the virtual interface architecture,"
in Proceedings of the 1998 ACM/IEEE conference on
Supercomputing (CDROM) San Jose, CA: IEEE Com-
puter Society, 1998.

[8] C.-C. Chang, "Safe and Efficient Cluster Communica-
tion with Explicit Memory Management," 2000.

[9] C.-C. Chang and T. v. Eicken, "Javia: A Java interface
to the virtual interface architecture," 2000.

[10] Sun Microsystems, "Java New I/O," p.
http://java.sun.com/j2se/1.4.2/docs/guide/nio/, 2002.

[11] Sun Microsystems, "More New I/O APIs for the
JavaTM Platform ("NIO.2") ", 2006.

[12] Sun Microsystems, "Java Remote Method Invocation
Specification," 1997.

[13] R. v. N. J. Maassen, R. Veldema, H. Bal, T. Kielmann,
C. Jacobs, and R. Hofman, "Efficient Java RMI for
parallel programming," Programming Languages and
Systems, vol. 23(6):747-775, 2001, 2001.

[14] M. Jason, N. Rob van, V. Ronald, E. B. Henri, and P.
Aske, "An efficient implementation of Java's remote
method invocation," in Proceedings of the seventh
ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming Atlanta, Georgia, United
States: ACM Press, 1999.

602600600

[15] B. H. M Philippsen, C Nester, "More efficient seriali-
zation and RMI for Java," in Concurrency Practice and
Experience Chichester, West Sussix: John Wiley &
Sons, Ltd, 2000.

[16] U. Karlsruhe, "KaRMI: Efficient RMI for Java."
[17] N. Christian, P. Michael, and H. Bernhard, "A more

efficient RMI for Java," in Proceedings of the ACM
1999 conference on Java Grande San Francisco, Cali-
fornia, United States: ACM Press, 1999.

[18] N.-B. C. Laboratory, "MPI over InfiniBand Project."
[19] I. T. Association, "InfiniBand Trade Association."
[20] B. Pugh and J. Spacco, "MPJava: High-Performance

Message Passing in Java using Java.nio," "in Proceed-
ings of the Workshop on Languages and Compilers for
Parallel Computing (LCPC'03), College Station, TX,
2004.

[21] "The Public Netperf Homepage,"
http://www.netperf.org/netperf/.

[22] wikipedia.org, "Sockets Direct Protocol."
[23] P. B. S. B. H.-W. J. D. K. Panda, "Asynchronous Zero-

copy Communication for Synchronous Sockets in the
Sockets Direct Protocol (SDP) over InfiniBand," in
Workshop on Communication Architecture for Clus-
ters (CAC); in conjunction with the International Paral-
lel and Distributed Processing Symposium (IPDPS)
Rhodes Island, Greece, April, 2006., 2006.

[24] InfiniBand Trade Association, InfiniBandTM Archi-
tecture Specification Volume 1, Release 1.2,2004.

[25] Sheng Liang , The Java Native Interface Programmer’s
Guide and Specification, 1999.

[26] Mellanox Technologies, Inc. InfiniHost III Program-
mer's Reference Manual, 2005.

[27] Johann George, QLogic, “A Tour of The OpenFabrics
Stack”, June 2006, presentation of 2006 OpenFabrics
Workshop.

[28] O. Hirotaka, S. Kouya, M. Satoshi, M. Fuyuhiko, S.
Yukihiko, and K. Yasunori, "OpenJIT: An Open-
Ended, Reflective JIT Compiler Framework for Java,"
in Proceedings of the 14th European Conference on
Object-Oriented Programming: Springer-Verlag, 2000.

[29] T. O. T. Suganuma, M. Takeuchi, T. Yasue, M. Kawa-
hito, K. Ishizaki, H. Komatsu, and T. Nakatani, "Over-
view of the IBM Java Just-in-Time Compiler ": re-
search.ibm.com, 2000.

[30] Hongwei Zhang, “A Performance Study of Java Com-
munication Stacks over InfiniBand and Giga-bit
Ethernet”, technical report, 2007.

[31] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. N. Seizovic, and S. Wen-King,
"Myrinet: a gigabit-per-second local area network,"
IEEE Micro, vol. 15, pp. 29-36, 1995.

[32] N.-B. C. Laboratory, "MPI over InfiniBand Project."

[33] L. Stepanian, A. D. Brown, A. Kielstra, G. Koblents,
and K. Stoodley. Inlining java native calls at runtime.
In VEE '05: Proceedings of the 1st ACM/USENIX in-
ternational conference on Virtual execution environ-
ments.

603601601

