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Abstract—A genetic map is an ordering of genetic markers calculated from a population of known lineage. Although, traditionally, a

map has been generated from a single population for each species, recently, researchers have created maps from multiple

populations. In the face of these new data, we address the need to find a consensus map—a map that combines the information from

multiple partial and possibly inconsistent input maps. We model each input map as a partial order and formulate the consensus

problem as finding a median partial order. Finding the median of multiple total orders (preferences or rankings) is a well-studied

problem in social choice. We choose to find the median by using the weighted symmetric difference distance, which is a more general

version of both the symmetric difference distance and the Kemeny distance. Finding a median order using this distance is NP-hard. We

show that, for our chosen weight assignment, a median order satisfies the positive responsiveness, extended Condorcet, and

unanimity criteria. Our solution involves finding the maximum acyclic subgraph of a weighted directed graph. We present a method that

dynamically switches between an exact branch and bound algorithm and a heuristic algorithm and show that, for real data from closely

related organisms, an exact median can often be found. We present experimental results by using seven populations of the crop plant

Zea mays.

Index Terms—Genetic map, median order, path and circuit problems, Kemeny distance, symmetric difference distance.

Ç

1 INTRODUCTION

CONSTRUCTING a genetic map is an involved process
which has traditionally led researchers to focus on

creating a single reference map from a single population for
each organism. However, to order a mapping locus, one
requires polymorphisms at that locus within the mapping
population. Because no population can contain polymorph-
isms for all of the desired mapping loci, it is useful to
construct maps from multiple populations. This trend has
identified the need to construct a consensus reference map
—a map that combines mapping data from multiple
population studies.

We address the problem of creating such a map, with the
caveat that the population maps might be inconsistent. We
focus on inconsistencies that can arise through errors in the
map making process. As it is harder to properly evaluate the
ordering of two proximate markers versus two distant
markers, this can be thought of as a resolution problem.
Although map making methods strive to eliminate errors, in
practice, misorderings can occur. In addition to experimental
error, it is possible that one population carries a rearrange-
ment relative to the other populations. At some level, it is
impossible to analytically discern between the possibilities of
actual differences and experimental errors. However, given
that experimental errors are more likely to be observed than

actual rearrangements, it is reasonable to assume that any
minor inconsistencies observed are due to errors.

We relate the consensus finding problem to similar
problems first addressed in the study of social choice.
Specifically, we formulate this problem as finding a median
relation between multiple binary relations under the
weighted symmetric difference distance, which is a more
general version of the well-known symmetric difference
distance [17] and Kemeny distance [20], and we note that
finding a median by using this distance is NP-hard.

Finding a median sequence or order has also been
applied to the problem of reconstructing the ancestral
genome in phylogenetic studies. In this case, the distance
function is motivated by the evolutionary model [28]. A
well-studied distance for this purpose is the reversal
distance, where the edit operations are signed reversal
and, perhaps, translocation [15], [16], [38]. Algorithms for
finding the reversal distance were originally designed for
total orders, although, recently, researchers have adopted
these algorithms to work with partial orders [31].

We model a genetic map as a partial order. Modeling the
input as a partial order instead of a linear order allows for
flexibility in specifying the input maps. To represent the
partial order, we use directed acyclic graphs (DAGs). Nodes
in a graph correspond to markers in a map, while paths
correspond to the ordering information. As we consider the
input maps to be imperfect observations of the same
phenomenon, our primary focus is to discover the most
likely underlying order, given the inputs. Thus, the method
is quite different from that described in [40], which also
represents maps as DAGs but focuses on data aggregation.

In finding the consensus order, we rely on many
graph algorithms, including all-pair shortest paths,
transitive closure and reduction, simple-cycle enumera-
tion, minimum-feedback arc set, and strongly connected
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component enumeration. All of these problems are well
studied in graph theory and the most limiting is finding
the minimum-feedback arc set because it is NP-hard.
There is an Oðlogn log lognÞ approximation algorithm for
the minimum-feedback arc set [10] and other solution
methods are presented in [6], [9]. We present a heuristic
algorithm that we use in combination with an exact
solver, both of which use a set cover formulation of the
problem. The problem can often be solved exactly in
practice, demonstrated by the experimental results pre-
sented in Section 9.

2 ERROR IN CONSTRUCTING GENETIC MAPS

Humans and most other plant and animal species contain
two homologous copies of each chromosome. Each homo-
logous chromosome contains a copy (allele) of each gene.
These alleles can be either the same or different for a
specific gene and we correspondingly term the organism as
either homozygous or heterozygous for that gene. One can
extend this idea to a population of individuals, terming the
population monomorphic or polymorphic for that gene.
During the sexual reproduction of a diploid, we can think of
a daughter chromosome as constructed by copying infor-
mation from either homologous parent chromosome. The
points at which the copying switches from one parent to the
other are known as crossovers. Thus, the genetic material in
the daughter is a recombination of the material in the
parents. Given the genotypes of the parent and the progeny
and polymorphisms at the locations of interest, one can
deduce if the alleles of two genes along the daughter came
from the same or different chromosomes of the parent.

The frequency at which alleles of two genes came from
different chromosomes of the parent is called the recombi-
nation fraction for that pair of genes. Because of the
crossover mechanism, two close genes will have a small
recombination fraction, while two distant genes will have a
fraction of approximately 1

2 as an odd or even number of
crossovers is equally likely to occur between them. Thus,
the recombination fraction can be converted to a distance of
sorts, although this distance is not considered a distance
metric. The reader is referred to [30] for more detail.
Regardless of the exact nature of map construction—be it a
maximum likelihood [21], [22], [30], [32] or a traveling
salesman-based method [11], [27], [26], [29]—maps are
prone to local errors due to the nature of the distance data.
Although a marker can be placed fairly certainly in the
proper neighborhood, even if we make the best placement
given the data, we cannot have perfect confidence in the
accuracy of the maps. Statistical methods such as boot-
strapping are used to minimize the error, but they cannot
eliminate it.

3 GRAPH REPRESENTATIONS OF PARTIAL ORDERS

We model a genetic map Mi as a partial order �i on a set of
markers Si. We say that a �i b for fa; bg 2 Si if and only if a
occurs before b in the known order of the markers,
determined through the analysis of experimental data. We
use the notation a �i b as equivalent to :ða �i bÞ. We use

the notation akib to indicate that a and b are incomparable in
�i , which is equivalent to saying that ða �i bÞ ^ ðb �i aÞ.

To manipulate a partial order algorithmically, we
represent it as a DAG G ¼ ðV ;EÞ. We use the notation
hu; . . . ; vi to denote a path between nodes u and v in G. We
define a set Gi of equivalent DAGs that correspond to the
order �i .

Definition 3.1. The set Gi is the set of graphs corresponding to
the partial order �i . G 2 Gi if and only if

1. there is a bijection between vertices in G and markers
in Si and

2. a path hu; . . . ; vi exists in G if and only if u �i v.

We will specifically work with two unique graphs in Gi:
the transitive reduction and transitive closure graphs [14].

Definition 3.2. The transitive reduction graph

GR
i ¼ ðV R

i ; E
R
i Þ 2 Gi i s the graph such that

ðu; kÞ 2 ER
i ^ ðk; vÞ 2 ER

i ) ðu; vÞ 62 ER
i .

Observation 3.3. GR
i is the graph in Gi with the minimum

cardinality edge set.

Definition 3.4. The transitive closure graph GC
i ¼

ðV C
i ; E

C
i Þ 2 Gi is the graph such that ðu; vÞ 2 EC

i , u �i v.

Observation 3.5. GC
i is the graph in Gi with the maximum

cardinality edge set.

The transitive reduction graph is of interest because, as
the graph with the least number of edges that still encodes
the partial order, it will be the most useful when displaying
the partial order. The transitive closure graph is of interest
because, with it, we can answer the question, “Is a related to
b?” in constant time by looking for the existence of an edge.

4 KEMENY DISTANCE FOR COMPARING ORDERS

In the consensus map problem, we have multiple imperfect
orderings, each being an approximation of the same
underlying order. The need to find the consensus among
multiple rankings or orders was identified as a problem by
social scientists interested in studying democratic processes
in the late 18th century. Modern study of the problem is
attributed to Kemeny [20], who described the problem of
finding a median relation, given a set of input relations.
Researchers often use how well a particular aggregation
scheme approximates the Kemeny median to evaluate that
scheme’s goodness [36].

Definition 4.1. The Kemeny distance between two total
orders, <i and <j , denoted Kð<i;<jÞ, is a count of the
number of pairwise conflicts between the orders. A pair ðsu; svÞ
is conflicting if su <i sv and sv <j su.

Definition 4.2. Given a set of total orders f<1; . . . ; <kg, the
Kemeny median <M is an order that minimizes the
function

Pk
i¼1 Kð<M;<iÞ.

Given a probability assignment for flipping two adjacent
elements, we can calculate the joint probability of one order
arising from an antecedent order, assuming that it is
constructed using a sequence of such steps. Under this
probability assignment, a median order that optimizes the
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Kemeny distance is also an order that most likely produces

the set of input orders as it is the order for which the least

number of moves is required in aggregate [8].
Let f�1;�2; . . . ;�kg be a set of partial orders. Let �A be

the order created using some order aggregation scheme.

The Kemeny median is an aggregate order that satisfies the

following criteria:

Definition 4.3. The positive responsiveness criterion [3]

asks that if ukAv, then changing v �i u to u �i v for some �i
or changing ukiv to u �i v for some �i will result in u �A v.

Definition 4.4. The Condorcet paradox is the term given to

the idea that a majority of orders might have u � v, v � w, and

w � u. In this case, the consensus order cannot contain all

orderings indicated by a majority of voters.

Definition 4.5. The Condorcet criterion [24] asks that if there

exists u such that, for all v; u �i v in the majority, then, for all

v; u �A v. In other words, u is the winner.

Definition 4.6. The extended Condorcet criterion [35] asks

that if a pair fu; vg is not involved in a cycle as identified by

the Condorcet paradox, u �i v for a majority of inputs implies

that u �A v.

Definition 4.7. The unanimity criterion asks that if all orders

rank u �i v, then u �A v.

Finding a median under the Kemeny distance is NP-hard

[37] and a 4
3 rd approximate algorithm exists which reduces

the problem to finding a minimum-feedback arc set in

tournaments [2].

5 MEDIAN PARTIAL ORDERS AND THE WEIGHTED

SYMMETRIC DIFFERENCE DISTANCE

Some of the notations used in this section has been adapted

from [4], [17].

Definition 5.1. A profile � ¼ f�1; . . . ;�kg is a set of partial

orders. Each order �i has a corresponding element set Si.

We wish to assign weights corresponding to our

confidence in each ordering. We denote the weight assigned

to an ordered pair u �i v as wiðu; vÞ.
Definition 5.2. A weight assignment wi is nondecreasing if

the following property holds: 8ft; u; vg, ðt �i uÞ ^ ðu �i vÞ )
ðwiðt; vÞ � wiðt; uÞÞ ^ðwiðt; vÞ � wiðu; vÞÞ.

Definition 5.3. A weight assignment wi is symmetric if

8fu; vg, wiðu; vÞ ¼ wiðv; uÞ.
Definition 5.4. A weight assignment wi is positive if 8fu; vg,
u �i v) wiðu; vÞ > 0.

Definition 5.5. The weighted symmetric difference dis-

tance between two partial orders �i and �j , denoted

�ð�i;�jÞ, is a summation over all pairs u; v 2 ðSi [ SjÞ, as

described in Fig. 1.

Observation 5.6. If u �i v and v �j u and wi and wj are

symmetric, then a total of 2ðwiðu; vÞ þ wjðu; vÞÞ will be added

to the distance.

Observation 5.7. If u and v are ordered in one order but not the
other and wi and wj are symmetric, then a total of wiðu; vÞ þ
wjðu; vÞ will be added to the distance.

Observation 5.8. If �i and �j are total orders and for all ðu; vÞ,
wiðu; vÞ ¼ 1

4 , then the weighted symmetric difference distance
is exactly the Kemeny distance.

Definition 5.9. The aggregate distance between a partial
order �p and a profile � is the sum of the distances between
�p and all orders in �:

�ð�p;�Þ ¼
X

i

�ð�p;�iÞ:

Definition 5.10. A median partial order, denoted �M , is an
order with element set SM ¼ S1 [ S2 [ . . . [ Sk that mini-
mizes �ð�M;�Þ. There could be multiple partial orders that
minimize this function.

Computing a median partial order using the symmetric
distance between relations is NP-hard [17]. The symmetric
difference distance is a special case of the weighted
symmetric distance, where all weights are 1

2 . Therefore,
computing a median partial order using the weighted
symmetric distance is also NP-hard.

Finding a median is trivial if the input orders have no
conflicts, that is, =9u; v; i; j such that u �i v and v �j u. In this
case, a median can be found by taking the superposition of
the DAGs representing the orders. The resulting DAG
corresponds to a median. However, the problem is more
difficult in general, where one might have u �i v and v �j u.
In this case, we must find a median using a more
complicated method.

In our application, we define the weight wiðu; vÞ ¼
wiðv; uÞ as the length of the shortest path from u to v or v
to u in GR

i . We use the classic Oðn3Þ Floyd-Warshal
algorithm [12] to find the pairwise shortest paths. If no
path exists between u and v or v and u, then we assign
wiðu; vÞ ¼ wiðv; uÞ ¼ 0. This weight assignment is nonde-
creasing, symmetric, and positive. Our choice of weight
functions is supported by our previous observation that,
within a genetic map, local mistakes in order are much
more likely than global mistakes.

For the median relation, we choose wMðu; vÞ ¼ 0 for all u
and v. This assignment is also nondecreasing and sym-
metric. Even if it were obvious what nonzero weight to
assign to the pairs in �M , if we were to alternately choose
wMðu; vÞ > 0, we would penalize any ordering in the
median u �M v if ukiv for some �i2 �. This contradicts
the goal of having the median contain as much ordering
information as consistent with �.

We will show that, under our chosen weight function, a
few nice properties hold. First, u and v can be unordered in
�M only if the total weight in � supporting u � v is equal
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to the total weight in � supporting v � u. Second, the

median satisfies the positive responsiveness, extended

Condorcet, and unanimity criteria defined in Section 4.
We will make use of the unique transitive reduction GR

i

and closure GC
i graphs for each input relation �i , as

described in Section 3. We use the conceptual inverse of the

Floyd all-pair shortest paths algorithm to find the transitive

reduction [1]. The details are left to the reader, with a good

reference being [5]. The interested reader is referred to [7]

for a recent treatment on closure and its uses.
Consider the global set of markers SM ¼ S1 [ S2 [

. . . [ Sn. Let t be the number of markers in SM . We

represent the graph GC
i using a t� t matrix Mi such that

Mi½u; v� ¼ wiðu; vÞ and Mi½v; u� ¼ �wiðu; vÞ for all u �i v.

Definition 5.11. The aggregate matrix MA ¼
Pn

i¼1 Mi.

Definition 5.12. The aggregate graph GA ¼ ðVA;EAÞ has

VA ¼ SM , with ðu; vÞ 2 EA ,MAðu; vÞ > 0. The edge

weight of each edge is !Aðu; vÞ ¼MA½u; v�.
Definition 5.13. The aggregate relation R is the binary

relation corresponding to the aggregate graph. uRv if and only

if a path hu; . . . ; vi exists in GA.

Definition 5.14. The aggregate weight for an ordered pair

ðu; vÞ, denoted Wðu; vÞ, is the sum of the weights wiðu; vÞ for

all �i , with u �i v.

Observation 5.15. By construction, MA½u; v� ¼ !Aðu; vÞ ¼
Wðu; vÞ �Wðv; uÞ.

MA can be thought of as a weighted vote for each

possible ordering u � v or v � u. After tallying the votes of

each map, the resulting relation R may be asymmetric if GA

contains cycles. However, let us first consider the case in

which GA contains no cycles, in which case R is a partial

order. In this case, R is a median partial order.

Theorem 1. Assume that R is a partial order. Then, R is a

median.

Proof. Let u, v 2 SM . There are three cases:
Case 1. uRv. In this case, the aggregate distance

is increased by 2W ðv; uÞ because of this pair.
uRv)MA½u; v� � 0) 2Wðv; uÞ � 2Wðu; vÞ. Therefore,
we cannot decrease the aggregate distance by reordering
t o vRu. 2Wðv; uÞ � 2Wðu; vÞ ) 2Wðv; uÞ �Wðv; uÞ þ
Wðu; vÞ. Therefore, we cannot decrease the aggregate
distance by removing the order uRv.

Case 2. vRu. In this case, the aggregate distance is
increased by 2Wðu; vÞ because of this pair. We cannot
reorderu and v or makeu and vunrelated and decrease the
aggregate distance by the same reasoning as in Case 1.

Case 3. u is not related to v. In this case, the aggregate
distance is increased by Wðu; vÞ þWðv; uÞ because of this
pair. Because they are unordered, MA½u; v� ¼MA½v; u� ¼
0 ) 2Wðu; vÞ ¼ 2Wðv; uÞ ¼Wðu; vÞ þWðv; uÞ. Therefore,
by reordering u and v, the aggregate distance will remain
the same.

Therefore, for all u; v, changing the ordering of u and v
in R will not cause the aggregate distance to decrease
and we conclude that R is a median. tu

Corollary 5.16. If two markers u and v are unordered in R, then

it must be the case that 2Wðu; vÞ ¼ 2W ðv; uÞ ¼Wðu; vÞ þ
W ðv; uÞ.

Corollary 5.17. If two markers u and v are unordered inR, we can

create a new relationR0 by arbitrarily choosinguR0v or vR0u. We

can also consider the transitive closure ofR0,R00, which will be a

partial order. We have �ðR00;�Þ ¼ �ðR0;�Þ ¼ �ðR;�Þ.

6 MEDIAN AS A MAXIMUM ACYCLIC SUBGRAPH

In the case where R is not asymmetric, GA contains cycles

that must be broken. This situation arises because of the
Condorcet paradox.

Definition 6.1. Given a weighted cyclic directed graph

G ¼ ðU; V Þ, find an edge set ER ¼ fðs1; e1Þ; . . . ; ðsk; ekÞg
such that G0 ¼ fU; V � ERg is acyclic and

P
i wðsi; eiÞ is

minimized. ER is known as a minimum feedback arc set.

G0 is known as a maximum acyclic subgraph.

Observation 6.2. For each edge ðu; vÞ 2 ER, the path hv; . . . ; ui
exists in G0.

Theorem 2. Let GC be a maximum acyclic subgraph of GA. The

relation �C corresponding to GC is a median partial order.

Proof. Let R0 be the binary relation such that

uR0v,MA½u; v� > 0. Let the weight wR0 ðu; vÞ ¼ 0 for all

ðu; vÞ. Due to the reasoning presented in Theorem 1,

�ðR0;�Þ is the minimum aggregate distance between

any binary relation and �. We call this aggregate

distance P . P is a lower bound on �ð�M;�Þ. If GA is

acyclic, R0 is asymmetric, and, because of Corollary 5.16,

P ¼ �ð�R;�Þ ¼ �ð�M;�Þ. However,GA might be cyclic.

By Observation 5.15 in conjunction with Observation 6.2,

we see that, for each edge that we remove in constructing

GC , we are adding the weight MA½u; v� to the aggregate

distance. Therefore, �ð�c;�Þ ¼ P þ
P

u;v2ERðMA½u; v�Þ.
By definition, GC is that graph, with

P
u;v2ERðM½u; v�Þ

minimized. Therefore, �ð�C;�Þ is the minimum and we

conclude that �C is a median. tu
We now can outline the complete method for computing

a median, shown in Fig. 2. First, the transitive closures of
the inputs are computed. Then, the graphs are merged to

form an aggregate graph. Next, cycles are broken in the
aggregate. Finally, the transitive reduction is taken and

displayed to the user. Although there are multiple orders
that minimize the median function, we will from now on

refer to a median found using this method as the median.

Theorem 3. If wi is nondecreasing and positive for all �i2 � and

we construct wM such that wMðu; vÞ ¼ 0 for all u, v 2 Si,
then the median order �M satisfies the unanimity criterion

defined in Section 4.

Proof. Let a and b be elements such that, for all �i2 �,
a �i b. Because W ða; bÞ > Wðb; aÞ, aRb in the aggregate

relation R. Therefore, in order for a �M b in a median, a
and b must be on some cycle in R. For this to be true,

there must exist some c such that bRc and cRa. We will
show that such a c cannot exist because bRc and cRa are

mutually exclusive.
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Choose some element c, c 6¼ a, c 6¼ b. There are five

possible ways that c can be ordered relative to a and b in

an input order, as shown in Fig. 3. The figure also labels
edges with the sum of all pairwise weights for inputs

that follow each case. For example, if inputs i and j are

exactly those input partial orders that follow Case 1, then

m ¼ wiðb; cÞ þ wjðb; cÞ.
Assume cRa. Using the edge labels described in Fig. 3,

this implies that y > pþ zþ v. We have q þ oþ t �
yþ oþ t due to a nondecreasing weight assignment

and yþ oþ t � y due to a positive weight assignment. In

addition, y > pþ zþ v � p, again, due to a positive

weight assignment. Finally, p � m due to a nondecreas-

ing weight assignment. Therefore, we have q þ oþ t > m

and we conclude that cRb and :ðbRcÞ.
Assume bRc. This implies that m > q þ oþ t.

By the same reasoning as above, we have

pþ zþ v � mþ zþ v � m > q þ oþ t � q � y. T h e r e -

fore, we conclude that aRc and :ðcRaÞ.

Therefore, 8c, cRa) :ðbRcÞ, and bRc) :ðcRaÞ. We
conclude that a and b do not lie on a cycle and a �M b.tu

Theorem 4. If wi is symmetric and positive for all �i2 �, then

the median satisfies the positive responsiveness criterion.

Proof. Let u and v be some nodes such that ukMv. Let �i2 �

be a partial ordering with either v �i u or ukiv. We wish

to show that if we change the order of u and v such that

u �i v, then u �M v.
Let �0 denote the input profile with this change andW 0

denote the aggregate weights associated with �0. Then,
W 0ðu; vÞ ¼Wðu; vÞ þ wiðu; vÞ and W 0ðv; uÞ ¼Wðv; uÞ �
wiðu; vÞ. By Corollary 5.16, ukMv only if Wðu; vÞ ¼
W ðv; uÞ. Therefore, W 0ðu; vÞ > W 0ðv; uÞ because wi is
positive. As u and v are unordered in �M , having
u �0M v will not create a cycle. In addition, ordering
u �0M v minimizes the aggregate distance due to the
pair ðu; vÞ because W 0ðu; vÞ > W 0ðv; uÞ.

However, for �0M to be a partial order, we must also
order u �0M w for all w such that v �M w and ukMw. By
Corollary 5.16, ukMw only if Wðu;wÞ ¼W ðw; uÞ. There-
fore, if the weight function is symmetric, we can have
u �M w without increasing the distance to the median.
Hence, we minimize the aggregate distance by ordering
u �0M v. We conclude that the median using the
weighted symmetric difference distance satisfies positive
responsiveness. tu

Theorem 5. If we generalize the extended Condorcet criterion to

allow for weighted voting, then the median satisfies the

extended Condorcet criterion.

Proof. By construction, the aggregate graph GA contains the

edge ðu; vÞ if and only if a weighted majority of maps has

the order ðu; vÞ. Let ðu; vÞ be some edge in GA that is not a

part of a cycle. It is easy to see that ðu; vÞwill not be in the

minimum feedback arc set. This implies that ðu; vÞ will

also be in any median relation. Therefore, finding the
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Fig. 2. (a) An example set of input graphs corresponding to a profile �.
All edges are directed in a downward manner. (b) The transitive closure
of the input graphs. (c) The aggregate graph GA. The cyclic subgaph is
shown with dotted lines. The single edge moving upward is marked.
(d) The maximum acyclic subgraph, which corresponds to �M , with the
upward traveling edge removed from the aggregate removed. (e) The
transitive reduction representation of �M .

Fig. 3. The possible ways in which an element c can be ordered
relative to a and b if a �i b for all �i2 �. The labels on the edges
represent the sum of the weights for all inputs in the profile that follow
that case. For example, if inputs �i and �j followed Case 1, then
m ¼ wiðb; cÞ þ wjðb; cÞ.



median using the weighted symmetric difference dis-
tance satisfies the extended Condorcet criterion. tu

7 MINIMUM FEEDBACK ARC SET AS SET COVER

Definition 7.1. Given a set of elements U ¼ fe1; e2; . . . eng, a

covering set is a set of sets of elements from U , S ¼
fs1; s2; . . . skg such that s1 [ s2 [ . . . [ sk ¼ U .

Definition 7.2. Given a set U , a covering set S, and a weight

assignment wðsiÞ, a minimum covering set is a covering set

S0 � S such that
P

si2S0 wðsiÞ is minimized. Finding a

minimum covering set is the optimization version of the set
cover problem.

Definition 7.3. Let CA ¼ fc1; c2; . . . ; cfg be the set of all simple

cycles in GA. The cycle set Cðu; vÞ for edge ðu; vÞ is the set of

all simple cycles in GA that contain the edge ðu; vÞ.
Observation 7.4. The minimum feedback arc setER is exactly

that set of edges such that the corresponding set S,

Cðu; vÞ 2 S , ðu; vÞ 2 ER, is the minimum covering set ofCA.

The set cover problem is NP-hard in the size of S. The
greedy approximation algorithm has great success however.
The greedy algorithm for the unweighted version of the
problem asks that, in each step, you choose the set that covers
the most uncovered elements. The greedy approximation has
been proven to be withinOðln dÞof the optimal, whered is size
of the largest set in S [25]. It has also been shown to be within
OðlnU ln lnUÞ of the optimal in general [33].

A problem that we face in our set cover formulation of
the feedback arc set problem is that the elements of U are
simple cycles in the graph, which can be exponential in the
size of the graph. If we were to instead consider all binary
strings of length E, where the assignment of one corre-
sponds to selecting the edge for inclusion in the minimum
feedback arc set, we could use a branch-and-bound
technique to the search among all 2E such binary strings
for the best solution. In this formulation, we would not have
to contend with the possibility of an exponential number of
simple cycles. However, the best known cycle enumeration
algorithm is optimal, running in OðCðjV j þ jEjÞÞ time,
where C is the number of simple cycles in the graph, as
described in [19], and, in practice, there is no problem with
enumerating the cycles for the problems that we have
looked at.

Formulating the problem as a set cover is attractive,
because we can make use of data reduction rules. Iteratively
applying the following data reduction rules to the set cover
formulation of the problem often makes the final problem
size given to the branch-and-bound solver quite small. We
use three data reduction rules, which are repeatedly applied
to the input data until no more reduction occurs [34]:

1. If si � sj and wðsiÞ � wðsjÞ, then si can be removed
from consideration. In this case, under any condition
for which one might choose si, one could choose sj
and be no worse off.

2. If, for all si, ek 2 si ) el 2 si, then ek can be removed
from consideration. Any set that covers el also
covers ek.

3. If element ek only appears in set si, then set si must
be selected and all elements el 2 si should be
removed from consideration as they have been
covered by the selection of si.

A solution to the problem is an assignment of inclusion
or exclusion to each edge. Thus, the search space for the
branch-and-bound algorithm is the set of all binary strings
of length g, where g is the number of sets in the set cover
formulation after data reduction. The branch-and-bound
algorithm performs depth-first traversal of the search tree
by using the best complete solution thus far to prune
subtrees that cannot give a better solution.

8 A METHOD FOR BREAKING CYCLES IN A

DIRECTED GRAPH

Definition 8.1. ÊC is the feedback arc set resulting from our
cycle breaking method. Ĝ0 is the corresponding acyclic
subgraph that results.

Observation 8.2. Given a directed graph G, the minimum
feedback arc set for G is the union of the minimum feedback arc
sets for all strongly connected components of G.

The flow of our cycle breaking algorithm is listed in Fig. 4.
First, all strongly connected components of GA with two or
more nodes are put into a queue. ÊC is initially empty. For
each strongly connected component S in the queue, we have
two options. If it is small enough, the exact cycle-breaking
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Fig. 4. A schematic of our cycle breaking algorithm. There are two main
data elements. ÊC , or the edge set removed to break cycles, is
represented by the bar on the left. The queue holding all of the
connected components in the graph is represented on the right. The flow
of the cycle breaking algorithm is outlined in the center diagram. See the
text for details.



method described in Section 7 is used to find the minimum
feedback arc set for S, ES

C . Then, ÊC ¼ ÊC [ES
C . If S is too

large for the exact algorithm to run in a reasonable time, we
will use the heuristic algorithm to add a single edge êmax to
ÊC . Removing êmax might break S into smaller strongly
connected components. Therefore, the strongly connected
component enumeration algorithm must be run on
S � êmax, with the resulting components with two or more
nodes enqueued.

Our heuristic algorithm attempts to emulate the
Oðln dÞ approximation algorithm for set cover. To use
the Oðln dÞ greedy approximation exactly, we would have
to find an edge emax on which the highest number of simple
cycles passes through. However, rather than enumerating
the potentially exponential number of cycles to discover
emax, we will use random cycle walking to look for an edge
êmax that is a likely candidate for emax. To randomly walk a
cycle, we first randomly select some starting node s. Then,
we perform a randomized depth-first search through the
graph until we find a cycle containing s. The path through
the DFS tree hs; . . . ; si is a randomly chosen cycle in the
graph, although each cycle will not be selected with the
same probability. After randomly selecting N cycles and
keeping track of the number of these cycles cðu; vÞ that pass
through each edge ðu; vÞ, we scan the edges to find an edge
with the highest cðu; vÞ. This edge is taken to be êmax and we
remove it from the graph and add it to ÊC .

The algorithm combines the greedy heuristic with the

exact solution to find a good solution quickly, invoking the

heuristic algorithm only if necessary. If the input maps are

reasonably consistent, the heuristic scheme is never used. In

this case Ĝ0 ¼ G0 and the exact solution is found. However,

the heuristic can be invoked when the input contains

outliers, that is, markers placed far of order in some map.

9 SOFTWARE AND EXPERIMENTAL RESULTS

We have implemented the proposed method in Java. The
software was first run on a suite of synthetic data to establish
that the method would be able to find a good consensus in the
face of local rearrangements [18]. We have also been able to
successfully generate consensus maps for maps generated
from seven populations of the crop plant Zea mays. We will
focus on the maize consensus in this paper.

The software reads the input maps in a tab-delimited text
format and outputs the resulting transitively reduced graph
in .gdl format, a format specified by the publicly available
graph drawing software aiSee, free for academic use (see
Fig. 5). The graph encodes information in addition to the
consensus order. If no maps disagree on the ordering of an
edge, then the edge is solid. If the edge is contested, then the
edge is dashed. We display all edges removed during cycle
breaking, which we term back edges, in red.

The software creates a separate set of metrics files used
for analyzing the result. The metrics files contain metrics
computed for each input map and the median. Some useful
information that it provides is the number of input,
reduction, closure, contested, and back edges. It records
the weighted symmetric distance to the median. It outputs
which of the nodes in each map act as hubs for contested
and back edges and nodes with four or more incident edges
of this type are tagged for human scrutiny.

The maize mapping data set used in the study was

assembled at the Center for Plant Genomics, Iowa State

University, in collaboration with the Laboratory of Abraham
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Fig. 5. The consensus map for chromosome 8 as displayed by the graph
drawing software aiSee. (a) The median before outliers are removed,
with the edges removed during cycle breaking drawn in. (b) The median
after removing marker IDP452 from input Map F and IDP2365 from input
Map C.



Korol, University of Haifa. Six populations of maize were
mapped, labeled populations A-F, with each map sharing
a large number of markers. The maps also shared markers
with the previously mapped IBM population, which we
term the IBM map [13], [23]. There have been multiple
versions of the consensus maps as the IBM map has been
refined over time. An older version of the IBM map was
used in conjunction with the population A-F maps to
produce the results described in [18].

The software used to create the maps for each line is based
on [27]. There are two versions of the genetic map generated
by this software. The skeletal map is less complete but more
accurate as it consists of the set of markers whose order
remains invariant after applying the statistical technique of
bootstrapping. The second more complete map adds addi-
tional markers by attaching each additional marker to the
skeletal marker to which it is closest.

The maize genome has 10 chromosomes and a consensus
map for each chromosome was assembled by the software
from the complete maps. For chromosomes 3, 4, 7, 9, and 10,
the mapping software produced a result without having to
do any cycle breaking. In addition, for chromosome 5, only a
single edge was removed to create the consensus. However,
for chromosomes 1, 2, 6, and 8, the maps showed larger
differences resulting in large components being broken by
the software, invoking the heuristic algorithm. See Fig. 6 for
more details.

By inspecting the resulting graph and looking at the
metrics files, we can discover outliers in the data, that is,
markers that are responsible for most of the disagreement
between a particular graph and the consensus. For example,
when inspecting the consensus map for chromosome 2, we
see that, of the 12 back edges removed to break cycles, 11 are
incident to node IDP618. Additionally, we see from the
metric file that map B has the largest distance from the
consensus. After inspecting map B, we see that IDP618 is not
part of the skeletal map but is one of the markers attached
with less certainty to the backbone. Therefore, it seems
reasonable that IDP618 might be misordered in map B. After
removing this suspect marker from map B, the resulting
consensus is cycle free. This underscores the importance
of providing information regarding inconsistencies to
users. There might be some underlying experimental or

methodological reason that one would trust some marker

or map over others and one could apply this extra

information to tweak the resulting map.
Fig. 7 shows some metrics taken before and after

removing outliers from the inputs for five chromosomes.

Although the main ordering is unchanged for some

chromosomes, we find that, for other chromosomes, the

outlier has pulled the ordering of markers away from the

most likely consensus location. In this case, the median

order produced after the removal of the outlier has a much

smaller distance to both the input containing the outlier and

the other unedited input maps.
In addition to providing information describing consis-

tency, the software assesses the completeness of the

resulting maps. We calculate the number of pairwise

relations that would exist in a total order of the markers

in the map. The number of edges in the aggregate graph GA

is a count of the number of relations given by the inputs.

The number of edges in the transitive closure of the median

graph GM is a count of the number of pairwise relations in

the median. We can calculate new ¼ closure� input, which

is a count of the number of new pairwise relationships

generated by the aggregation scheme. We can also calculate

missing ¼ total� closure, which is a count of the number of

missing pairwise relations in the consensus. Fig. 6 shows

these numbers on the Zea mays data set.
For example, there are 395 mapped markers for chromo-

some 1 and there would be 78,210 pairwise orderings in the

total ordering of these markers. There are only 35,303 known

pairwise orderings in the input data, but the consensus

contributes an additional 37,301, bringing the total to

72,604. Thus, as expected, finding the consensus results in

significant information increase when compared to the set

of inputs considered one by one.
We have done some independent verification of the

ordering produced by the consensus. This was done by first

finding a set of reference markers unordered in the IBM

map but mapped in some maps of A-F. These reference

markers were then placed into the IBM map by using a wet

lab process. We refer to the IBM map containing the

reference markers as �V .
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Fig. 6. Statistics on the raw maize data, all chromosomes. Back edges is a count of the number of edges in ER, that is, the edges removed to break
cycles. Conflicting edges report the number of edges with disagreements in order among the inputs. Reduction edges are the edges in the transitive
reduction of the median graph. The number of edges in the aggregate relation R0 are listed as the input edges. Closure edges are the edges in the
transitive closure of the median. The number of edges in a total order of markers is listed as well. The total order edge count can be compared to the
closure edge count to see how many relations are missing in the consensus. The closure edge count can be compared to the input edge count to see
how much information has been gained in the construction of the median.



Let u be an element in both �M and �V . The

comparable set of elements for some marker u, denoted

V ðuÞ, is the set fvj:ðukMvÞ ^ :ðukV vÞg. The agreeing set of

elements AðuÞ is the set fvjv 2 V ^ u �M v, u �V vg. In

total, 96 markers were used for verification. Of the 96, 85

showed perfect agreement when compared to the consen-

sus V ðuÞ ¼ AðuÞ. As shown in Fig. 8, only two markers

showed less than 95 percent of agreement. When taken as a

whole, the reference markers showed over 99.5 percent of

agreement.

10 DISCUSSION

We note that finding a median relation under the weighted

symmetric difference distance is NP-hard, but, for small

connected components, the problem can be exactly solvable.

For this reason, we implement an exact solver that works as

long as the connected components to be solved in the cycle

breaking problem are small. Additionally, we implement a

heuristic solver that is invoked when this is not the case. We

heuristically solve the problem edge by edge only until that

point at which the exact solver can again be employed.

We wish the viewer of the map to be informed of the
decisions that we make in coming to the consensus and, for
this reason, we calculate the information in addition to the
order itself. We show how we use this information to find
outliers in the data. The outcome represents an average of the
inputs and can be affected by such outliers. For this reason, we
remove the outliers and run the method the second time,
producing the final result. These outliers are also presented
with the result so that the data generation team can analyze
why they might have been placed out of order.

Areas of the consensus map that have significant
ambiguity can be identified by analyzing paths between
node pairs. If there are many paths or multiple long
independent paths between a pair of nodes, then there is a
lot of missing information about the relative ordering of
nodes on these different paths. Therefore, we can use the
consensus to prioritize laboratory experiments that would
fill in missing information such that the most ambiguous
areas of the map are fixed first.

We use one of the many weighting schemes that one
could envision by basing the edge weight on the path length
between two markers. We provide proofs that give
sufficient conditions for the median to satisfy various
criteria. Any weight function that satisfies the prescribed
conditions would result in a median that satisfies these
criteria. One could, for example, base the edge weight on
the genetic distance between markers. One could weight
each map based on the perceived quality (for example, the
number of individuals in the mapping population) and use
this as a multiplicative factor in the edge weights of each
map. The goal of these weighting schemes would be to
produce a higher quality consensus.

Some uses of a genetic map need distance information in
addition to the ordering information that we describe here.
Applying edge distances to the consensus is not a straight-
forward task as distances between two genetic maps are not
directly comparable [39]. For this reason, some sort of
complex normalization would be needed before even
considering using distances within the context of creating
consensus maps. This is an area in need of further research.
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Fig. 8. Of the 96 markers occurring both in the consensus map and the
verification map, 85 showed a perfect placement. Listed are those that
show disagreement between the two maps. For each marker u, the table
lists the number of markers v for which the ordering of u and v can be
determined in both maps. It also lists the number of markers for which the
ordering agrees, as well as the percent agreement. Of the 96 markers
verified, only two show less than 95 percent of agreement.

Fig. 7. In the raw input maps, there were a few outlying markers. These markers were obviously out of order when compared to their positions in the
other maps. These markers are identified using a two-step process. First, target markers are identified as those markers that are adjacent to edges
labeled as back edges or conflicting edges (described in Fig. 6). Second, the target map is identified as that with the largest weighted symmetric
difference distance to the median. This table shows how removing the outlying markers from the target maps affects the consensus. With the
targeted removal of these markers, very few disagreements remain among the profile.



11 CONCLUSIONS

We have formulated consensus genetic map creation as
finding a median partial order using the weighted
symmetric difference distance. We have shown that a
median found using this metric satisfies the extended
Condorcet, unanimity, and positive responsiveness criteria,
that is, criteria also satisfied by the Kemeny median, which
is widely used in the field of social choice. Finding the
median by using this distance is NP-hard.

We model each input map as a partial order and then
assign weights to each relationship u � v based on the
shortest path distance between u and v in the transitively
reduced graph corresponding to the order. We chose our
weight function with the idea that we are more certain of the
order of distant markers than close markers in genetic maps.

We model the cycle-breaking problem that arises in
finding a median as the set cover problem. Despite this
problem being NP-hard, we have been able to solve this
exactly by using data reduction in many cases. In the case
where the problem is not exactly solvable, we use a
heuristic algorithm based on the Oðln dÞ approximation of
the set cover, where d is the size of the largest set.

We have validated our implementation by constructing
consensus maps for seven populations of the crop plant
maize. The correctness of the ordering produced by these
maps has been verified independently in the wet lab, with a
99.5 percent agreement rate between the consensus map and
the validation map on the placement of the reference markers.
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