

American Journal of Networks and Communications
2015; 4(4): 95-103

Published online August 3, 2015 (http://www.sciencepublishinggroup.com/j/ajnc)

doi: 10.11648/j.ajnc.20150404.13

ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

Dependable Community-Cloud Framework for
Smartphones

Arnold Adimabua Ojugo
1
, Fidelis Obukowho Aghware

2
, Rume Elizabeth Yoro

3
,

Mary Oluwatoyin Yerokun
4
, Andrew Okonji Eboka

4
, Christiana Nneamaka Anujeonye

4
,

Fidelia Ngozi Efozia
5

1Dept. of Math/Computer, Federal University of Petroleum Resources Effurun, Delta State, Nigeria
2Dept. of Computer Science Education, College of Education, Agbor, Delta State, Nigeria
3Dept. of Computer Sci., Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria
4Dept. of Computer Sci. Education, Federal College of Education (Technical), Asaba, Delta State, Nigeria
5Prototype Engineering Development Institute, Fed. Ministry of Science Technology, Osun State, Nigeria

Email address:
arnoldojugo@yahoo.com (A. A. Ojugo), ojugo_arnold@yahoo.com (A. A. Ojugo), aghwarefo@yahoo.com (F. O. Aghware),

rumerisky@yahoo.com (R. E. Yoro), an_drey2k@yahoo.com (A. O. Eboka), agapenexus@hotmail.co.uk (M. O. Yerokun),

anujeonyechristy@gmail.com (C. N. Anujeonye), fenngo31@yahoo.com (F. N. Efozia)

To cite this article:
Arnold Adimabua Ojugo, Fidelis Obukowho Aghware, Rume Elizabeth Yoro, Mary Oluwatoyin Yerokun, Andrew Okonji Eboka, Christiana

Nneamaka Anujeonye, Fidelia Ngozi Efozia. Dependable Community-Cloud Framework for Smartphones. American Journal of Networks and

Communications. Vol. 4, No. 4, 2015, pp. 95-103. doi: 10.11648/j.ajnc.20150404.13

Abstract: Cloud computing enable users to access ubiquitous, on-demand, convenient and shared resource (apps and storage)

– as rapidly released by a provider with minimal managed effort. The increased growth of user access to mobile smartphones

from 42.5% in 2013 to 78.9% by 2013 and the advent of Androids has made smartphones a preferred choice over PCs due to its

design, portability, speed, functionality and Internet access ease – all of which continues to pose significant risk to user data

security with high vulnerability to attacks. With its implication to work related functions and biz issues, it exposes sensitive data

to adversaries. The study thus, describes a support tool named PushCloud that lets users account the ability to sign-in and perform

backup functions on contacts, messages, picture files, documents, videos and recorded voice amongst others. Its other benefit is

in the fact that it pools together cloud service providers and allows users a cross platform with minimal price difference. The

system helps address security related issue from a user’s end via AES-256 encryption on an integrated cloud model, explores its

storage capability to guarantee data recovery with a remote server (BDC) for back- and front-end data storage ease.

Keywords: Stochastic, Immunize, Network, Vertices, SIS, SIR, Function, Search Space, Solution, Models

1. Introduction

Today, Android is become a leading platform for mobile

devices with its open source feat that distinguishes it from

most other mobile platforms such Blackberry, Windows

Phone and iOS (Morril, 2010). It is not a specification or

distribution of traditional Linux, neither is it a collection of

replaceable components or chunk of software ported on a

device. Its open source platform is built by Google with OS,

middleware, and apps for mobile systems based on Linux

kernel that enables developers to write apps majorly in Java

with support for C/C++ (Bray, 2010). Its major success is its

license that allows third-party porting developments to it.

Since its release, it has been constantly improved either in

feats, supported hardware, and also extended to new device

types besides the originally intended ones (Maia et al, 2010).

Recent efforts are to enhance real-time capabilities as

employed in a variety of embedded systems (Tapas Kumar and

Kolin, 2010).

1.1. Android Platform (AP)

Pernel et al (2013) and Agam (2011) in “Google Android

and Linaro Android SDK” note AP is an eco-system layer of

app component implemented on mobile (smartphone)

hardware as thus (see fig 1):

a. Linux OS provides basic functionality such as security,

96 Ojugo Arnold Adimabua et al.: Dependable Community-Cloud Framework for Smartphones

process/memory management and networking to support

vast device drivers. It handles human machine interfaces,

file systems, network access etc. Its kernel is modified by

Google to use low memory killer, specific inter-process

communication system, kernel log feats, shared memory

system and many other changes as developed. It runs on

standard Vanilla Linux, merging specific changes into its

kernel. Recent release aimed at real-time Linux kernel is

v4.0.3 (Ice Cream Sandwich).

b. Library with Google’s libc called Bionic, media/graphics

(OpenGL|ES), browser-webkit and light-database

SQLite. DVM (Dalvik Virtual Machine) completely

differs from Sun’s JVM and uses register based byte code

to conserves memory, max performance and can

instantiate many of its apps multiple times, with each app

having its own private copy running. DVM uses Linux

for memory management and multi-threading to support

the Java language.

Fig. 1. Android OS Platform.

DVM uses bionic (not compatible with glibc) so that its

native libraries are faster to implement with small custom

pthread to support services such as system and logging

capabilities. Writable data segments are small so as to be

loaded into memory with each process. This keeps code size

small so that Linux loads only once, all read-only pages.

Bionic is used: (a) to avoid inclusion of GPL code at user space

level in its platform where BSD is used, and (b) for small

memory footprint devices with high speed CPUs at relatively

low frequencies. Bionic libc does not handle C++ exceptions

(though omitting such lower level exceptions pose no problem

as Java is Android’s primary language. It handles exceptions

internally). Bionic has no priority inheritance for mutexex as

implemented in glibc. Available in its kernel and accessed via

own library in system calls, its lack of priority inversion

disqualifies it for real-time capability as applied in

robotics/automotive. Google’s reason for a complete new VM

from scratch as accomplished with DVM’s register-based byte

code is to reduce patent infringement risk. Thus, existing

real-time apps modified for JVM cannot easily be ported to

DVM.

c. Application Framework provides higher-level services to

apps such as Java classes amongst others. Its use can

vary between/with varying implementation.

d. Application/Widget are Android routine distributed apps

such as email, SMS, calendar, contacts and Web browser.

1.2. Literature Review

In embedded systems (automotive or robotic), its ability to

meet deadlines, time constraints is a critical specification part

in its design as such systems must response to stimuli within a

certain pre-specified real-time constraints. Thus, the reliability

of software has not to focus only on the functional failures but

require and detailed evaluation of the ability of the system to

meet these timing specifications (Bhupinder and Vijay, 2010).

From a device mainly used for phone calls and messages,

the mobile phone (smartphone) is become a multi-purpose

device. Though favored by its size, there exists thermal

constraints, battery consumption and computational powers

that limits it usage and capabilities. Cloud computing has the

potential to transform the IT-industry. Thus, Harmen (2012)

investigated the possible increase in speed of smartphones by

offloading computational heavy app functions via cloud

computing. He developed an app that was used to conduct

computational heavy tests, and the results showed that it is not

beneficial to use cloud computing to carry out these types of

tasks; it is faster to use the smartphone.

Pernel et al (2013) In their test for real time behavior and

performance on the Android platform – so as to make clear if

Android usage be advised in open real-time environments –

used for evaluation, a test suite of four performance tests

namely: thread switch latency, interrupt latency, sustained

interrupt frequency, and semaphore acquire-release timing in

contention case, and one behavior test to checks the mutex

locking behavior. Their test results showed that the Android in

its current state cannot be qualified to be used in real-time

environments. Finally we provide some potential solutions for

using Android in such environments.

2. Cloud Computing Technology

Cloud computing is the underlying infrastructure that helps

scale services exponentially and flex resources rapidly in

response to variable supply and demand. Hurwitz et al (2010)

It hinges on terminologies and technologies such as:

a. Cloud Services are the actual apps employed by a user to

perform one or two tasks. Such as using Snapfish to

share photo online, Force.com to create niche market

services, NetSuite for ERP services, amongst others.

b. Multi-Tenancy Cloud services are either at software or at

 American Journal of Networks and Communications 2015; 4(4): 95-103 97

infrastructure layer. Thus, many instances of software

and platform it runs are made available to serves many

clients. With shared resources, providers have access

controls and security for a protected environment for

each user.

c. Enterprise-Services (software/infrastructure) is designed

to serve an enterprise’ specific internal needs not limited

to and includes data security, integration, configurability,

access, reliability and availability.

d. Global-Services (software/infrastructure) designed for

external, arbitrary and non-secure user. Software is

native, multi-tenant and designed with Web 2.0 to be

scalable and relies on software-based resiliency.

e. Private/Internal cloud connotes enterprise-class service

with virtualized and automated infrastructure. While

different from cloud-based infrastructures, they both

share similar feats, and benefits from same technologies

that help cloud services providers rapidly scale.

f. Elasticity allows flexibility to meet user preferences and

needs on a near real-time basis, in response to supply and

demand triggers. It is also ability of a service or

infrastructure to adjust to users’ fluctuating demands in

service by automatically provisioning of resources as

well as by moving the service to be executed on another

part of the system.

2.1. Cloud Computing Services

Hamrén (2012) Cloud services are grouped as thus:

a. On-demand self-service: A user can unilaterally

provision computing services such as network storage

and server time as needed automatically without

interference.

b. Network access is available of network accessed through

standard mechanisms that promote use by heterogeneous

thin or thick client platforms (e.g. mobile phones, tablets,

laptops).

c. Pooling allows a provider’s resources to serve many

users on a multi-tenant model, with various physical and

virtual resources, dynamically assigned/reassigned to

meet users’ needs irrespective of location dependence.

Users have no control over the exact location of provided

resources but are able to specify location at a higher level

of abstraction (like as country or datacenter). Resources

include storage, processing, memory, and network

bandwidth.

d. Elasticity is the release of services as automatically

scaled rapidly outward and inward on users’ demand. To

users, such capability should appear to be unlimited and

can be appropriated in any quantity at any time.

e. Service resource measure can be automatic, controlled

and optimized to leverage metering capability at some

level of abstraction appropriate to service type such as

storage, processing, bandwidth and active user accounts.

Internet resource usage can be monitored, controlled and

reported to provide the needed transparency for both

provider and users of the utilized service.

2.2. Service Model

Hamrén (2012) Service models are grouped into three as:

a. Platform as Service (PaaS) is the capability provided to

the user to deploy onto a cloud infrastructure,

user-created or acquired apps using programming

languages, libraries, services and tools as supported by a

cloud provider. The user only has control over his

deployed apps and possibly configuration settings for

app-hosting environment.

b. Software as Service (SaaS) are services and apps

provided to users on cloud infrastructure, accessible

from client’s devices via a thin client interface (email,

web browser), or via a program interface. User has no

control of underlying infrastructure such as network,

operating system, servers, storage, or individual apps;

but is limited to user-specific application configuration

settings.

c. Infrastructure as Service (IaaS) is capability provided to

user such as processing, storage and other resources, so

he can deploy and run arbitrary software to include

operating systems and apps. User only has control over

operating systems, storage, deployed apps and limited

control of selecting network devices (like firewalls and

SSH embedded within the organization wishing to

engage in cloud services. All of which is aimed at

improved data security and integrity from the

client-end).

2.3. Deployment Models

Deployment models deal with various forms of intrusion

from adversaries with malicious intent towards data. Thus,

data security must be ensured. Ureigho (2012) and Ojugo et al

(2012a) various methods to improve intrusion detection on

cloud infrastructure exist but clouds are deployed as:

a. Private cloud is exclusive to an organization with

multiple users. It is owned, operated and managed by

organization, third party, or both; and may exist on or off

premises.

b. Community cloud is exclusive to a specific community

of users from an organization with shared concerns such

as mission, security requirements, policy, and

compliance considerations. It may be owned, managed,

and operated by one or more of the organizations in the

community, a third party, or both; and may exist on or off

premises.

c. Public cloud is made for open use by the public. It may

be owned, managed, and operated by a business,

academic, or government organization, or some

combination of them. It exists on the premises of the

cloud provider.

d. Hybrid cloud combines two/more cloud infrastructures

(private, community or public) with unique entities, but

bound together by standardized or proprietary

technology to enables data and application portability.

For example, cloud bursts for load balancing between

clouds.

98 Ojugo Arnold Adimabua et al.: Dependable Community-Cloud Framework for Smartphones

3. Advanced Encryption Standard (AES)

AES is a specification for the encryption of electronic data

established by the U.S. National Institute of Standards and

Technology (NIST) in 2001. It is based on the Rijndael cipher

developed by two Belgian cryptographers, Joan Daemen and

Vincent Rijmen via proposal to NIST at the AES selection

process. Rijndael is a family of ciphers with different key and

block sizes. For AES, NIST selected three members of the

Rijndael family, each with a block size of 128-bits, but three

different key lengths: 128, 192 and 256 bits. AES 192/256 is

approved for top-secret data by most Governments as closely

aligned with public crypto.

Ureigho (2012) Crypto knowledge in the public and foreign

intelligence domains has skyrocketed, and a vulnerability that

the NSA can exploit is possibly a vulnerability that someone

else can exploit. Thus, drafting of AES focuses on choosing a

candidate standard that though may be broken given any

amount of time and data, but will prove intractable for a time.

Adversaries can only break crypto when they have the keys no

matter how mathematically secure the crypto is. Most

adversaries focus more on key retrieval via methods like brute

force by attacking the endpoints that generate the keys.

Though not as hard as it seems if we consider how many user

and corporate machines get infected with malware alongside

the sort/range of key-related backdoors are planted in popular

software), and a simple subpoena may get keys in some

situations. As more user data moves toward cloud, backdoors

in public services (voluntarily provided or not) are going to

make the job of key recovery even easier.

Hurtwiz et al (2010) AES was initiated in 1997 by National

Institute of Standards and Technology (NIST), a unit of U.S.

Commerce Department search to find a robust replacement for

the Data Encryption Standard (DES) and to a lesser degree

Triple DES. The specification called for symmetric algorithm

(same key for encryption/decryption) using block encryption

of 128-bits size, supporting key sizes of 128, 192 and 256 bits,

as a minimum. The algorithm was required to be royalty-free

for use worldwide and offer security of a sufficient level to

protect data for the next 20 to 30 years. It was to be easy to

implement in hardware and software, as well as in restricted

environments (for example, in a smart card) and offer good

defenses against various attack techniques.

Its selection process fully subjected to public scrutiny and

preliminary analysis by the world cryptographic community to

decide. This will ensure the best possible analysis design via

its full visibility. On this submission that saw Rijndael were

other cipher families also subjected to more extensive analysis

namely: (a) MARS by IBM Research team, (b) RC6 by RSA

Security, (c) Serpent by Ross Andersen, Eli Biham and Lars

Knudsen, (d) Twofish by a large team of researchers including

Counterpane's respected cryptographer, Bruce Schneier.

Implementations were tested extensively in C and Java for

speed, reliability in cryptosystem, key usage, algorithm set-up

time and its resistance to various attacks (both in hardware-

and software-centric systems). Detailed analysis was provided

by global crypto-community, and in 2000, NIST announced

Rijndael (standardized in 2001 by the Secretary of Commerce

and approved Federal Information Processing Standard). Thus,

all sensitive, unclassified documents will use Rijndael as AES.

Table 1 shows a number of key combinations and key size.

Table 1. Key combination and size.

Key Size Possible Combinations

16-bits 65536

32-bits 4.2 * 109

56-bits (DES) 7.2 * 1016

64-bits 1.8 * 1019

128-bits (AES) 3.4 * 1038

192-bits (AES) 6.2 * 1057

256-bits (AES) * 1077

There is an exponential increase in possible combinations

as key size increases. DES is a symmetric crypto algorithm

with a key size of 56 bits that has been cracked in the past

using brute force attack. The argument that a 128-bit

symmetric key is computationally secure against brute-force

attack is proved thus: if (a) fastest supercomputer of 10.51

Pentaflops = 10.51 x 10
15

 flops (floating point operations per

second), (b) flops per combination check is 1000, (c)

combination checks per second = (10.51 x 10
15

) / 1000 = 10.51

x 10
12

, and (d) number of seconds in one Year = 365 x 24 x 60

x 60 = 31536000, then the number of year required to crack

128-AES is given by:

�����	��		��	
	128���	��� = 	
3.4 ∗ 10��

31536000�10.51 ∗ 10�� 	

= 1.02 ∗ 10�� = 1	!�""��# − !�""��#	%����

Table 2. Key combination and time to crack.

Key Size Time to Crack

56-bits (DES) 399secs

128-bits (AES) 1.02 * 1018 years

192-bits (AES) 1.872 * 1037 years

256-bits (AES) 3.31* 1018 years

Fig. 2. Multi-bit key cryptographic algorithm.

AES’s strength is generally expressed in length of the

numeric 'key' used to scramble/unscramble messages. The

study aims to display the strength of the AES against brute

force attacks with different key sizes and the time it takes to

successfully mount a brute force attack factoring future

advancements in processing speeds. A cryptographic

algorithm requires multi-bit key to encrypt the data as shown

in Fig. 2.

 American Journal of Networks and Communications 2015; 4(4): 95-103 99

3.1. Brute Force Attack on AES

The key length used in the encryption determines the

practical feasibility of performing a brute-force attack, with

longer keys exponentially more difficult to crack than shorter

ones. Brute-force attack systematically checks all possible

keys till correct key is found. Brute force attack on a 5-bit key

is as in fig 3. This shows it takes max of 32-rounds to check

every possible combination starting with 00000. Given

sufficient time, a brute force attack is capable of cracking any

known algorithm.

Fig. 3. Brute force attack on 5-bit key.

3.2. Advanced Encryption Standard in Browsers

The cipher AES-256 is used among other places in

TSL/SSL across the Internet. It's considered amongst the top

ciphers and in theory, it is less penetrable with its extensive

combinations of keys, which is and remains massive.

Kangas (2012) SSL/TLS provide the majority of security in

the data transmitted over the Internet today. Most users are

unaware of the degree of security and privacy inherent in a

secure connection ranging from almost none to a really good

enough for US government TOPSECRET data. The cipher

and encryption technique is what varies and thus provides the

variable level of security needed. There are a large number of

different ciphers. Some are very fast and very insecure. Some

are slower and very secure. Others are weak (export-grade).

AES is a successor cipher and encryption technique to DES

and was standardized in 2001 after a 5 year review. Currently,

one of the most popular algorithms used in symmetric key

cryptography (used for actual data transfer in SSL and TSL). It

is also the gold-standard encryption method and many

security-conscious organizations require its employees to use

AES-256 (256-bit AES) for all communications.

This study highlights AES role in SSL, which web browsers

and email programs support it, how to implement the 256-bit

AES encryption on all secure communications, and more.

AES is FIPS (Federal Information Processing Standard)

certified with no known brute-force attack success (except

some side channel timing attacks on processing of AES that

are not feasible over a network environment, not applicable to

SSL in general). AES security is strong enough to be certified

for use by most governments for top secret information.

Its design and strength of all key lengths (128, 192 and 256

bits) are sufficient to protect classified information up to the

SECRET level. TOPSECRET data requires the use of either

192 or 256 key lengths. AES in products intended to protect

national security systems and data must be reviewed/certified

by NSA prior to their acquisition and use. (Hathaway, 2003)

It is often debated if 128-bit AES is computationally secure

against brute-force attack. Governments and businesses place

a great deal of faith in the belief that AES is so secure that its

security key can never be broken. From table 2, it takes the

fastest supercomputer, 1 billion-billion years to crack AES

128-bit via brute force attack. If we assume that a computing

system existed that can recover DES key in 1sec, it take same

machine approximately 149 trillion years to crack 128-bit

AES. Though, difference in cracking AES-128bit and

AES-256 is minimal as any breakthrough in 128-bit will

probably render 256-bit tractable also. AES remains safe

against brute force attacks contrary to belief and arguments. Its

key size for encryption always be large enough despite the

considerable advancements in processor speeds based on

Moore's law as in fig. 3.

4. Framework and Implementation

Data stored in cloud receives malicious attempts. Clients

may not understand security feats provided by Cloud Service

Providers. Thus, study proposes a reliable AES encryption,

employed at a client’s end on community cloud to help protect

data, separate from firewalls and other infrastructure in place

by cloud providers. We models a security framework to make

cloud “dependable” and achieve these:

a. Implement an integrated community-cloud that allows a

user choice at sign-in unto the cloud infrastructure with

AES-256 encryption at the client’s end for improved data

integrity against adversary to yield a dependable cloud.

b. Storage support for the integrated cloud with a remote

server (completely transparent to user).

c. Data, at client’s end is secured via AES-256 (to protect

user data and message contents at end-to-end connection

within the community cloud). SSL protects the username

and password – alongside NAT, firewall and gateway

that are implemented within the (Intranet) framework.

d. Sync, selected content in mobile devices to any available

cloud technology on the model and ensure they are

available anywhere and anytime you want to access or

manage them which also takes out anxiety of losing

important files, if device is damaged, lost or stolen.

e. Recommend suitable security models from existing

benchmarks to improve user confidence in cloud

computing services.

4.1. The Nigerian Front for Integrated Mobile Cloud

The framework will bring see many cloud service providers

(infrastructure and services) brought together into one single

user platform via mobile computing. It is an extension of the

miniaturization process and faster computing on Moore’s law,

bringing about dependable and secure data storage capability

to users via portable mobile devices.

100 Ojugo Arnold Adimabua et al.: Dependable Community-Cloud Framework for Smartphones

4.2. Experimental Model Design Overview

The study provides a community-cloud model and support

for users at Federal University of Petroleum Resources

Effurun Nigeria. The model achieves this via a native app for

mobile device (operable from Android v2.2) with support for

web-service to allow Internet connectivity ease and

connection to remote server and cloud-provider services via

an API call (adapter). The framework will masks all technical

nuances between application-model and data-models such as

session management, connectivity, authentication and

authorization. Its security is handled via AES-256

implemented on SSL/TSL applied to all data as backed by the

cloud firewall to ensure security. Its client end-to-end

encryption solution uses AES-256 to protect its data; while

SSL protects username and password (see fig 4).

Fig. 4. Application and Data Model for FUPRE Community-Cloud.

Tools used for the development of this native app include

Android SDK, Apache XAMPP and Google’s Android

Studio. This native app is enabled and ported on any Android

platform from v2.2 with forward compatibility.

The system implements AES-256 encryption as supported

by SSL/TSL. It is adopted because: (a) it is computationally,

mathematically secure against brute force attacks, (b) quite

flexible, (c) its small-size Java codes and support for C(++/#),

(d) memory size required is small as ported on AP. Thus, has

no effect on smartphone speed and performance, and (e) ease

of integration as implemented with Java and support for

C-language into its web browsers with ease of connectivity.

Web-browser used includes Safari, Firefox and Netscape –

all of which enable AES-256 encryption on SSL/TLS protect

data transfer between user and server. However, data transfer

over the Internet between the sender and recipient remains

unprotected, no matter how good SSL in use is.

4.3. System Implementation / Snapshots

Implementing the app on Android emulator with many of

its snapshots as in Appendix, lets a user to download the

native app and create an account so as to be able to sign-in

and perform backup functions on contacts, messages, picture

files, documents, videos and recorded voice amongst other

backups and/or synchronization. After which, the user on

first backup is notified to choose the cloud platform

(whichever choice is made comes with its many benefits but

the price difference is minimal). The technical nuances are

not discussed such as billing etc. The app then performs AES

encryption of user data before they are backed up too either

to the remote server (backup domain controller – BDC) or to

the integrated cloud provider’s server via a cloud service API

call (adapter).

4.4. Rationale for Cloud Implementation

AES is secure, its data encryption is more mathematically

efficient, is elegant cryptographic algorithm with a model

whose strength resides in the key-length options. Time

required for an intruder to crack algorithm is directly

proportional to length of key used to secure data transfer or

communication. AES allows a choice between 192 and

256-bit implementation, making it exponentially stronger.

There are no significant tradeoffs in functionality, speed and

memory – as implementation on Android Studio makes it

quite portable for target device. Required memory is

relatively small and does not affect device speed even with

extra functionalities. Target Android OS is v2.2 with forward

compatibility to v4.0. This will bring closer to users, cloud

technology with its many benefits at a cheap price.

5. Conclusion

The incessant need of users to protect stored, online data

continues to foster the field of Data Forensic, which aims at

measures to help detect network intrusion alongside keeping

such adversaries off-bay via biometrics and cryptography so

as to achieve the needed data non-repudiation, confidentiality,

security and integrity for client end-to-end transaction.

Cloud infrastructure is a system that enables 5-essential feats

namely: self-provision, pay-per-use, on-demand resources

availability, scalability and resource pooling. It consists of a

physical layer of hardware resources necessary to support

cloud services (such server, storage and network devices)

and an abstraction layer of software-deployed on physical

layer to manifests as cloud feats such as virtualization, grid

computing, outsourcing and utility computing. Thus, study

yields an integrated cloud on Android platform for

smartphones as motivated by the need to proffer clients’

transaction the much required security.

 American Journal of Networks and Communications 2015; 4(4): 95-103 101

Appendixes

Appendix A. Snapshot of PushCloud App installed on Android.

Appendix B. User Account Login on PushCloud.

Appendix C. PushCloud Dashboard with Menu for Contacts.

Appendix D. Contact backup with AES Encryption first.

Appendix E. Contacts Backup successful on PushCloud.

Appendix F. PushCloud Integrated setting for User Choice of Cloud

Infrastructure to backup Data.

102 Ojugo Arnold Adimabua et al.: Dependable Community-Cloud Framework for Smartphones

Appendix G. Dropdown Menu of PushCloud Integrated setting for User

Choice of Cloud Infrastructure to backup Data.

Appendix H. Documents List with Backup Option.

References

[1] Agam, S., (2011). Google's Android 4.0 ported to x86
processors, retrieved online via:
http://www.computerworld.com/s/article/9222323/Google_s_
Android_4.0_ported_to_x86_processors.

[2] Alonso, G., Rellermeyer, J and Roscoe, T., (2011). R-osgi:
Distributed applications through software modularization, IFIP
Lecture Notes in Computer Science (LNCS), 4834, p1–20.

[3] Android, Linaro Android Build Service,
https://android-build.linaro.org/ last accessed January 2014.

[4] Bhupinder, S.M and Vijay, K.M (2010). Reliable Real-Time
Applications on Android OS, retrieved online via:
www.users.ece.gatech.edu/~vkm/Android_Real_Time.pdf.

[5] Bray, T., (2010). Ongoing by Tim Bray-What Android Is,
www.tbray.org/ongoing/When/201x/2010/11/14/What-Androi
d-Is.

[6] Chun, B., Ihm, S., Maniatis, P., Naik, M and Patti, A., (2011).
Clonecloud: Elastic execution between mobile device and
cloud, Proc. of 6th ACM conference on Computer systems,
p301–314.

[7] Cohen, R., (2010). The cloud computing opportunity by the
numbers.
www.elasticvapor.com/2010/05/cloud-computing-opportunity-
by-numbers.html.

[8] Cole, B., (2012). Real-time Android: real possibility, really
hard to do - or just plain impossible?
www.embedded.com/electronics-blogs/cole-bin/4372870/Real
time-Android/real-possibility-really-really-hard-to-do-or-just-
plain-impossible.html.

[9] Crysta X, Crysta X. NET, [online]
www.crystax.net/nl/android/ndk/7. Last accessed January
2014.

[10] Dinh, H.T., Lee, C., Niyato, D and Wang, P., (2012). A survey
of mobile cloud computing: architecture, applications and
approaches, Wiley Wiresless Communications and Mobile
Computing,
http://onlinelibrary.wiley.com/doi/10.1002/wcm.1203/abstract.

[11] Divya, V.L., (2012). Mobile application with cloud computing,
Int. J. of Scientific Research Publications, 2(4), p1-6.

[12] Google, Android SDK,
http://developer.android.com/sdk/index.html.

[13] Giurgiu, I., Riva, O., Juric, D., Krivulev, I and Alonso, G.,
(2009). Calling the cloud: Enabling mobile phones as interfaces
to cloud applications, Proc. of ACM/IFIP/USENIX 10th Int.
Conf. on Middleware. Springer-Verlag, p83–102.

[14] Guo, Y., Zhang, L., Kong, J., Sun, J., Feng, T and Chen, X.,
(2011). Jupiter: Transparent Augmentation of Smartphone
Capabilities through Cloud Computing, ACM Transaction on
Mobiheld, Portugal: Cascais, ACM-978-1-4503-0980-6/11/10.

[15] Gupta, P and Gupta, S., (2012). Mobile Cloud computing:
future of cloud, Int. J. Adv. Res. in Electrical, Electronics and
Instrumentation Engineering, 1(3), p134.

[16] Hamrén, O., (2012). Mobile phones and cloud computing: A
quantitative research paper on mobile phone application
offloading by cloud computing utilization, Master’s Thesis,
Dept of informatics, Human Computer Interaction SPM
2012.07, UMEA University.

[17] Hurwitz, J., Bloor, R and Kaufman, M., (2010). “Cloud
computing for dummies: HP special edition”, Wiley
publications, New York.

[18] IBM, (2014). Inside the Linux 2.6 Completely Fair Scheduler,
[Online].
www.ibm.com/developerworks/library/lcompletely-fair-sched
uler/.

[19] Jeong, S., Zhang, X., Kunjithapatham, A and Gibbs, S., (2010)
Towards an elastic application model for augmenting
computing capabilities of mobile platforms, Mobile Wireless
Middleware, Operating Systems, and Applications, p161–174.

[20] Kalkov,I., Franke, B and Schommer, J., (2012). A Real-time
Extension to the Android Platform, In Proceedings of the 10th
International Workshop on Java Technologies for Real-time
and Embedded Systems, Copenhagen, Denmark.

 American Journal of Networks and Communications 2015; 4(4): 95-103 103

[21] Krishnan, S., (2010). Programming Windows Azure. O’Reilly
Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

[22] Kumar, K. & Lu, Y. (2010). Cloud computing for mobile users:
can offloading computation save energy? IEEE Computer
Society.

[23] Lu, Y., Li, S and Shen, H., (2011). Virtualized screen: A third
element for cloud-mobile convergence, IEEE Multimedia,
18(2), p4–11.

[24] Maia, C., Nogueira, L and Pinho, L.M., (2010). Evaluating
Android OS for Embedded Real-Time Systems, Proceedings of
6th International Workshop on Operating Systems Platforms
for Embedded Real-Time Applications, Brussels, Belgium.

[25] Marinelli, E.E., (2009). Hydrax: Cloud computing on mobile
devices using MapReduce, Masters’ Thesis, School of
Computer Science, Carnegie Mellon University, Pittsburg,
CMU-CS-09-164.

[26] Marrapese, B., (2010). Google ceo: a few years later, the
mobile phone becomes a super computer.
http://www.itnews-blog.com/it/21320.html.

[27] Mei, L., Chan, W and Tse, T., (2008). A tale of clouds:
paradigm comparisons and some thoughts on research issues,
IEEE Asia-Pacific Services Computing Conference APSCC’08,
p464.

[28] Ojugo. A.A., Orobor, A.I., Yoro, R.E and Aghware, F.O.,
(2012a). Dependable community cloud model implemented
using model view controller: a case of FUPRE, Technical
report on cloud Technologies (FUPRE-Tech-03-2012), p11–24.

[29] Ojugo. A.A., Eboka. A.O, Okonta, E.O, Yoro, R.E and
Aghware, F.O., (2012b). Implementation issues of VoIP for
rural telephony in Nigeria, J. Emerging Trends in Computing
and Info System, 4(2), p172.

[30] Ojugo, A.A., Eboka, A.O and Yoro, R.E., (2013a). Technical
issues for IP-based network in Nigeria, J. of Wireless
Communications and Mobile Computing, 2(2) p43-50.

[31] Ojugo, A.A., Eboka, A.O., Yerokun, M.O., Iyawa, I.J.B and
Yoro, R.E., (2013b). Cryptography: salvaging exploitation
against data integrity, Int. J. Networks and Communications,
2(2), p47-55, doi: 10.11648/j.ajnc.20130202.14.

[32] Pernel, L, Fayyad-Kazan, H and Timmerman, M., (2013).
Android and real time application: take care, J. Emerging
Trends in Computing and Info. Systems, 4, Special Issue
ICCSII, ISSN 2079-8407.

[33] Rittinghouse, W.J and Ransome, F.J., (2010). Cloud Computing
implementation, management and security. Boca Raton, FL:
CRC Press

[34] Reese, G. (2009). Cloud Application Architectures. O’Reilly
Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

[35] Sarna, D.E.Y., (2011). Implementing and developing cloud
computing applications. Taylor and Francis Group, Boca Raton,
FL: CRC Press.

[36] Satyanarayanan, M., Bahl, P., Caceres, R and Davies, N.,
(2009). The case for vm-based cloudlets in mobile computing,
IEEE Pervasive Computing, 8(4), p14–23.

[37] Shetty, K and Singh, S., (2011). Cloud Based Application
Development for Accessing Restaurant Information on Mobile
Device using LBS, Int. J. UbiComp, 2(4),
DOI:10.5121/iju.2011.2404 37.

[38] Sung, A., Xu, J., Chavez, P., Mukkamala, S., (2004). Static
analyzer of vicious executables, Proceedings of 20th Annual
Computer Security Applications Conf., IEEE Computer
Society, p326-334.

[39] Tapas Kumar, K and Kolin, P., (2010). Android on Mobile
Devices: An Energy Perspective, IEEE 10th International
Conference on Computer and Information Technology,
Kuala-Lumpur, Malaysia.

[40] Ureigho, R.O.J., (2012). Dependable cloud computing: a
framework for secure cloud, Unpublished PhD thesis,
Department of Computer Science, Ebonyi State University
Abakiliki, Ebonyi State.

[41] Vinutha, S., Raju, C.K and Siddappa, M., (2012). Development
of hospital management system utilizing cloud computing and
Android OS using VPN connections, Int. J. Sci. Tech. Res, 1(6),
p59.

[42] Zhang, X., Kunjithapatham, A., Jeong, S and Gibbs, S., (2011).
Towards an elastic application model for augmenting the
computing capabilities of mobile devices with cloud computing,
Mobile Networks and Applications, 16(3), p270–284.

