
Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 1

Stephan Klingner and Michael Becker

Formal Modelling of Components and
Dependencies for Configuring
Product-Service-Systems

The increasing entwinement of products and services in combined offers – so called Product-Service Systems
(PSS) – leads to various requirements regarding the modelling of those systems. Due to these requirements,
software support is needed for customer-specific configuration of complex PSS. To provide such software
a formal description of the structure of products and services is required. Furthermore, complex logical
interdependencies between products and services need to be described. Based on an existing service modelling
notation the following paper develops a holistic notation for PSS. To describe the interdependencies within
PSS, dependency rules are formally specified.∗

1 Introduction

Promoted by a growing economical relevance of
services in recent years (Hildebrand and Kloster-
mann 2007), there has been an increasing conver-
gence of products and services. Therefore, the
concept of combining products and services in
so-called Product-Service Systems (PSS) as a bun-
dled offer (Morelli 2002) has increasingly gained
relevance (Knackstedt et al. 2008; Mont 2002;
Stille 2003). Drivers are for instance a focus-shift
of customers from the purchase of single prod-
ucts or services to the more abstract purchase
of solutions respectively functionalities (Baines
et al. 2007; Isaksson et al. 2009). Likewise, ser-
vices are becoming more important as unique
distinguishing feature compared with the com-
petition (Knackstedt et al. 2008).

Although the concept of PSS already has its place
in the scientific discussion, the level of pervasion
in industrial applications is limited so far (Baines
et al. 2007; Meier and Uhlmann 2012). This is due
to a variety of challenges, which are the result of

∗This paper is an extended and revised version of the
paper Becker, Klingner - Formale Modellierung von Kompo-
nenten und Abhängigkeiten zur Konfiguration von Product-
Service Systems

a more holistic, integrating view on products and
services. Thus, the interdependencies between
products and services in PSS require new ap-
proaches regarding the development and design
of business processes, since new departments
need to be established respectively the collabora-
tion between existing departments needs to be
intensified (Mont 2002).

The interdependencies between products and
services also increase complexity, since design,
management, and composition of PSS is much
more sophisticated than the separate handling of
products and services (Isaksson et al. 2009; Mont
2002). For example, modifications in the product
portfolio may require correspondent modifica-
tions in the service portfolio and vice versa. Fur-
thermore, customers also demand individualised
PSS offers, so that the challenge of customer-
individual configured offers is extended on both
products and services.

To be able to keep PSS manageable – despite
their high complexity – adequate software sup-
port is required (Dietze 2008). Besides proces-
sual aspects, a precise description of the inter-
dependencies between products and services is

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000

2 Stephan Klingner and Michael Becker

needed (Becker et al. 2008). Therefore, the follow-
ing paper focuses research questions regarding
the configuration and individualisation of PSS.
To be able to offer software support for config-
uration, a complete, all-embracing modelling of
PSS is required, incorporating both product and
service model. This aim can be achieved using
three different approaches:

1. Using existing modelling approaches of the
respective domain and describing interdepen-
dencies between these heterogeneous models
separately.

2. Modelling products, services, and interdepen-
dencies in an all-encompassing model.

3. Reusing existing models of services and prod-
ucts by transformation into a holistic mod-
elling method.

Due to the vast amount of interdependencies be-
tween products and services it does not seem
reasonable to use the first approach. Further-
more, modelling should be conducted by using
a homogeneous modelling environment (Weber
et al. 2004). Thus, it is necessary to establish an
all-encompassing model. In this paper we pro-
pose an approach for modelling PSS based on
an existing notation for modelling services. The
approach focuses formalising dependencies be-
tween products and services and allows for reuse
of existing product models.

Therefore, the remainder of this paper is struc-
tured as follows. In Sect. 2 we present the ex-
isting method for modelling services. The basic
concept of this method is component-based mod-
elling. Since the conceptual origin of component-
based modelling lies in the industrial domain,
the application of this approach for modelling
PSS seems feasible. This application is shown in
Sect. 3 by modelling a PSS example. Section 4
introduces various interdependencies between
products and services found in academic litera-
ture. As a basis for a software implementation
these dependencies are classified and formalised,
with the aim to provide a lightweight description
of interdependencies between components. To

emphasise the practical applicability of the ap-
proach, different methods of describing structure
and variability of products and software were
analysed regarding the possibility to transform
them into the holistic PSS notation. Accordingly,
in Sect. 5 we show whether and how the various
already established models can be reused. Re-
lated work about service and PSS modelling is
presented in Sect. 6. Finally, Sect. 7 concludes
the paper and gives some directions for future
research.

2 Modelling Services
By modelling services, various objectives can be
addressed. A service model may support the
description of process flows, the allocation of
resources, or the creation of customer-specific
configurations of service offers. Driven by the
increasing economical relevance of customer-
specific offers, previous contributions already
focused on methods, models, and tools for con-
figuring services (Becker et al. 2011; Böttcher
and Fähnrich 2009; Böttcher and Klingner 2011a).
By also supporting the assignment of so-called
key performance indicators (KPI), the evaluation
of configurations regarding productivity aspects
becomes feasible as well (Böttcher et al. 2011a).

Since customers demand individualised PSS of-
fers, it has to be studied to which extent the
presented method for modelling services is appli-
cable for describing PSS. Therefore, subsequently
an aggregated overview of the previous work is
given.

2.1 Concepts
In this section we introduce and interrelate var-
ious concepts necessary for defining the meta-
model for describing services. The metamodel
was originally developed to cover four dimen-
sions for the description of services, as intro-
duced by Böttcher and Fähnrich (2009). Those
dimensions comprise a component model for de-
scribing the functionality of service elements, a
resource model to describe the components’ re-
sources and their interdependencies, a product

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 3

model to describe hierarchical dependencies be-
tween components, and a process model to spec-
ify the possible order of component execution.

The presented metamodel as of now focuses the
description of components and logical dependen-
cies between components. Thus, the resource
model is not within the focus of the following
remarks. The presented concepts of the meta-
model are formalised using propositional as well
as first-order logic. Although this might lead
to additional modelling effort at the beginning,
using formal logic has two main advantages. On
the one hand, a description based on formal logic
allows for a precise and non-ambiguous defini-
tion of concepts used in the metamodel. On the
other hand, creating extensions and adaptations
of the metamodel will be simplified. This is espe-
cially relevant in the context of this paper, since
one aim was the analysis of the extensibility of
the metamodel to support PSS.

The concepts for component-based description
of services can be summarised as follows:

• Components define the functionality of sin-
gle service steps respectively service elements.
The component model is described by the set
of all components.

• Hierarchical and non-hierarchical dependencies
describe structural connections between com-
ponents as well as temporal and logical de-
pendencies. Using those relations, the afore-
mentioned product and process model can be
represented.

• Cardinalities allow for a precise description
of logical relations between hierarchically di-
rectly connected components. In this way, the
product model can be enriched with further
semantics.

• Configurations are the composition of sepa-
rate, standardised components into customer-
specific service offers.

The structured compilation of various service
components describes the service portfolio. A
portfolio is formally defined using a tuple

P = (C,K,E, card,L,T, kpi, kpiV, att, attV, var)

with

• C is a finite, non-empty set of components,

• K is a finite set of connectors,

• E ⊆ (C × K) ∪ (K × C) ∪ (K × K) is a set
of edges establishing an acyclic configuration
graph representing hierarchical dependencies
between components,

• card : K → P(N × N) is a set of cardinalities
to assign additional semantics to connectors,

• L is a finite set of logical dependencies,

• T is a finite set of temporal dependencies,

• kpi is a finite set of key performance indicators
with possible values kpiV,

• att is a finite set of attributes with possible
values attV,

• var is a finite set of external variables.

In the following description of the metamodel,
we focus components and their hierarchic de-
pendencies. Thus, temporal dependencies, KPI,
attributes, and external variables will not be ad-
dressed in this paper. Logical dependencies are
used to integrate products and services. There-
fore, they are separately covered in Sect. 4.

2.2 Components

A service component represents a well-defined,
limited functionality, which uses and modifies
resources. The functionality is provided by pre-
cisely defined interfaces. Components repre-
sent subprocesses of a complete service (Böttcher
and Fähnrich 2009). Analogous to software com-
ponents, service components should describe
logical and functional related activities. Thus,
components should have a high cohesion and a
low coupling to be used efficiently (Brocke et al.
2010).

The customer-specific configuration of compo-
nents is provided by assembling a set of compo-
nents into a new complete service offer (compo-
sition). To structure an existing portfolio com-
ponents can be decomposed into smaller units.

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000

4 Stephan Klingner and Michael Becker

These units can be managed independently. Hav-
ing a structured set of decomposed services al-
ready offers advantages, e.g., in terms of reduced
effort, increased reusability, and increased clar-
ity (Böttcher et al. 2011b). The functionality of a
component consisting of other subcomponents
is the sum of the functionalities of all composed
subcomponents (Böttcher and Klingner 2011a).
A portfolio consists of several components rep-
resented by the set C.

Using KPI is a widely-used approach for assess-
ing productivity (Diewert and Nakamura 2005).
However, due to the nature of services, the mea-
surement of productivity is very complex. For
example, as Maroto and Rubalcaba (2008) state
increasing productivity might decrease customer
perceived service quality. In addition, customers
can influence service productivity to a great ex-
tent (Ojasalo 2003). As Harmon et al. (2006) state,
service variability adds to the complexity of mea-
suring productivity, too. Using the approach pre-
sented here, we do not tackle the first two chal-
lenges. However, decomposing services in more
fine-grained components reduces their complex-
ity. Using these more focused components sim-
plifies identification of relevant KPI. Therefore,
we introduce the assignment of KPI to single
components using the mapping KPIValue.

KPIValue : C × kpi→ kpiV

Hierarchical dependencies between components
as shown in the next section allow for the combi-
nation of KPI (aggregation). In doing so, produc-
tivity of more complex components consisting of
more fine-grained components can be assessed
by aggregating existing KPI. Therefore, the value
of a KPI (kpiV) assigned to a component might
either be a constant number or a calculation ref-
erencing KPI of other components. Since pro-
ductivity considerations are not the focus of this
work, the interested reader may find additional
details in (Böttcher and Klingner 2011a).

2.3 Hierarchical Dependencies

As stated above, decomposing services into more
fine-grained components has advantages itself.
Previously monolithic and very complex services
are split into less complex subparts. The result-
ing benefits include an efficient way to offer high
flexibility regarding customer requirements. Par-
ticularly in view of an increasing competitive
pressure, defining components is a suitable ap-
proach to handle the dichotomy of standardis-
ation and individualisation (Pine 1999; Sundbo
1994). However, defining components alone is
not sufficient to describe complex services. Ad-
ditionally, to allow for configuration of services,
it is necessary to define the structure of compo-
nents.

To define composition of complex services of
fine-grained components, hierarchical dependen-
cies between components need to be established.
In industrial engineering, using so-called gozin-
tographs (Vazsonyi 1954) is a common approach
for representing these dependencies. In software
engineering, using feature models (Mendonca et
al. 2009) is a widespread approach. Therefore, it
seems reasonable to adapt these approaches for
service modelling. Opposing to software respec-
tively product components, service components
represent parts of processes. Executing corre-
sponding activities results in realising a well-
defined functionality (Geum et al. 2011). There-
fore, the decomposition of service components
in fine-grained subcomponents can be seen as an
application of process refinement.

Hierarchical dependencies are represented using
a directed, acyclic configuration graph. The set
of nodes of the graph is established by the union
of components and connectors. An example for
such a configuration graph and, thus, for the
decomposition of a complex service is depicted
in Fig. 1. The left-hand side shows a component
PV Service representing a portfolio containing
services for photovoltaic installations. On the
right-hand side, this component is expanded to
depict its hierarchical dependencies with other

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 5

PV Service

Installation MaintenanceMonitoring

PV Service

Figure 1: Expanding a complex service

components. In the graphical notation provided
by the metamodel, components are represented
using rectangles. Hierarchical dependencies in
the configuration graph are represented by paths
between components, i.e., in the example the
subcomponents of PV Service are Installation,
Monitoring, and Maintenance.

In addition to components, Fig. 1 contains one
connector, too. Being aware of the definition of
edges in the service portfolios, components must
not be connected directly with each other. In-
stead, they must be connected using connectors.
This constraint is necessary to assign semantics
to the hierarchical dependencies between com-
ponents. Additional details about the semantics
are presented in the next section.

The configuration graph is restricted by several
other constraints besides prohibition of direct
connection between components. We mentioned
above that it needs to be acyclic. This is nec-
essary because a component must not contain
itself. To define additional constraints, we use
the two mappings prenodes and postnodes repre-
senting predecessors and successors of a node.

prenodes : C ∪ K→ P(C ∪ K)
∀v1 ∈ C ∪ K : prenodes(v1) =
{v2 ∈ C ∪ K : ∃e ∈ E : e = (v2, v1)}

postnodes : C ∪ K→ P(C ∪ K)
∀v1 ∈ C ∪ K : postnodes(v1) =
{v2 ∈ C ∪ K : ∃e ∈ E : e = (v1, v2)}

First, connectors need to have at least one suc-
ceeding node. This is necessary for a reason-
able configuration. Leaves of the configuration

Service A

Invoicing...

Sign
Invoice

Send
Invoice

Service B

Invoicing ...

Sign
Invoice

Send
Invoice

Figure 2: Standardised components without clones

graph should consist only of components. These
components can be seen as atomic services that
cannot be detailed any further.

∀k ∈ K : |postnodes(k)| ≥ 1

To facilitate traceability of configuration deci-
sions, connectors must have exactly on preced-
ing node.

∀k ∈ K : |prenodes(k)| = 1

Contrary, this restriction does not hold for com-
ponents. Decomposing services results in fine-
grained components that are candidates for stan-
dardisation. To facilitate reuse it should be pos-
sible to use standardised components in more
than one case. For example, imagine the (highly
simplified) case shown in Fig. 2. On the left-
hand side the component Service A consists of
a subcomponent Invoicing. Due to several legal
regulations, electronic invoicing is a highly stan-
dardised service. However, if we were not able
to reuse the invoice component in any way, it
is necessary to design this component over and
over again. This is shown on the right-hand side
of Fig. 2. Not only does this result in additional
initial effort. Furthermore, changes in the invoic-
ing component (e.g., adding new subcomponents
or adapting KPI) need to be propagated every-
where it is used.

To address this problem, we allow components
to have more than one incoming edge. This is

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000

6 Stephan Klingner and Michael Becker

Service A

Invoicing...

Sign
Invoice

Send
Invoice

Service B

...

Figure 3: Reuse of standardised components with clones

depicted in Fig. 3. The component Invoicing is
a subcomponent of both Service A and Service
B. We call components with more than one in-
coming edge clones. A clone facilitates reuse of
a standardised component because it needs to
be modelled only once. Using a clone simplifies
modifications since modifications in the respec-
tive component need to be conducted only once.
During configuration (see Sect. 2.6) clones are
copied throughout the configuration graph, i.e.,
the example in Fig. 3 has an equal configuration
graph to the example in Fig. 2. This is necessary
to distinguish between the specific components
that are selected during configuration.

2.4 Cardinalities

Using simple hierarchical dependencies is not
enough to define complex relations between com-
ponents. For example, it is not possible to define
whether succeeding components of a component
are optional or mutual exclusive. An example is
depicted in Fig. 4. Here, invoicing might either be
conducted electronically or paper-based. How-
ever, simple hierarchical dependencies do not
support distinguishing between different types
of composition.

Additional semantics for composition can be as-
signed using cardinalities to connectors. Cardi-
nalities allow for the specification of the number
of necessary succeeding nodes selected during
configuration. A cardinality is represented using
a tuple (min,max). The first value, min, specifies
the number of nodes that needs to be selected at

Invoicing

Electronic
Invoice

Paper
Invoice

Figure 4: Motivation for cardinalities

least for a configuration to be valid. Furthermore,
max specifies the maximum number of nodes
that are allowed to be selected during configu-
ration. To ensure satisfiability of cardinalities,
several constraints as shown in Tab. 1 restrict
their usage.

The constraint MINMAX specifies that the mini-
mum number of nodes necessary to select must
not be greater than the maximum number of
nodes that are allowed to select. Defining a cardi-
nality violating this constraint would result in a
configuration graph without any valid configura-
tion. Another constraint to ensure satisfiability
of cardinalities is POSTNODES. It defines that
the maximum number of allowed nodes to select
during configuration must not be greater than
the amount of succeeding nodes. Together with
the MINMAX constraint, POSTNODES does also
restrict the number of minimum nodes necessary
to select during configuration.

As can be seen from the definition of the map-
ping card, it is possible to assign an arbitrary
number of cardinalities to a single connector. In
doing so, cardinalities are connected using log-
ical disjunctions, i.e., only one of the specified
cardinalities needs to be satisfied during con-
figuration. To provide clarity, cardinalities of a
connector must not overlap. This is ensured by
the OVERLAPS constraint.

To increase usability of connectors and cardinal-
ities in practice, we provide a set of predefined
connectors as shown in Tab. 2. Every of these
connectors consists of exactly one cardinality.
Connector KALL specifies that during configu-
ration every succeeding node of the connector

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 7

Table 1: Constraints for specifying cardinalities

Name Formalisation
MINMAX ∀k ∈ K,∀(m,n) ∈ card(k) : m ≤ n
POSTNODES ∀k ∈ K,∀(m,n) ∈ card(k) : n ≤ |postnodes(k)|
OVERLAPS ∀k ∈ K,∀(m,n) ∈ card(k) : @(m⋆,n⋆) ∈ card(k) : m ≤ m⋆ ≤ n ∧m ≤ n⋆ ≤ n

needs to be active. When using KONE exactly
one succeeding node needs to be active. Finally,
for highest configuration freedom, the KANY con-
nector can be used. It specifies that an arbitrary
number (including none) of succeeding nodes
can be active during configuration.

2.5 Extensions

Based on formalised description of components
and their interdependencies, further extensions
are possible. To fulfil additional requirements
gathered from practice, the model was extended
with attributes and variables (Becker et al. 2011).
Variables represent certain aspects of the ser-
vice environment. They describe characteristics
which may influence the validity or efficiency
of customer-specific configurations but are not
part of the service model itself. For instance,
certain service components (or their character-
istics) of a call centre service might depend on
the expected number of incoming calls per day.
Those characteristics are customer-specific and
must be adapted for each customer. By using
variables, individual characteristics can be edited
independently from the model. Values need to
be set only during configuration. Thus, contrary
to pre-defined customisation points within the
model, the flexible integration of variables allows
for a higher abstraction regarding the modelled
environment respectively domain.

Further characteristics of components can be de-
scribed using non-functional properties. For ex-
ample, a call centre has a limited capacity of pro-
cessed calls per hour. Therefore, non-functional
properties have great impact on the selection
of components. Non-functional properties are
represented as attributes of components.

More extensions, e.g., for describing resource
consumption of components, are possible. Since
they are defined based on a formal structure,
they can be integrated easily into the existing
metamodel.

2.6 Configuration

Specifying portfolios using the above defined
concepts is the basis for establishing customer-
individual configurations of services. The config-
uration is carried out to generate service variants
best matching customer requirements. Due to
the formalisation of the portfolio, it is possible to
evaluate configurations regarding their validity.
Furthermore, by aggregating KPI, different valid
configurations can be compared based on their
productivity.

During configuration, components are selected
according to the constraints introduced by the
portfolio definition. A configuration is estab-
lished by the set of selected components. Hith-
erto, we do only consider hierarchical depen-
dencies, i.e., the configuration needs to be valid
regarding connectors. To evaluate the validity,
we use the set of activated nodes. A component
is activated when it is selected and vice versa.

∀c ∈ C : c ∈ selected↔ c ∈ activated

It is possible to establish configurations using a
top-down approach, a bottom-up approach, or a
combination of both approaches. Top-down ap-
proaches start with the topmost component. Ac-
cordingly, succeeding components are selected to
fulfil cardinalities of the connectors. Therefore,
top-down configurations refine components. To
support top-down configurations, succeeding

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000

8 Stephan Klingner and Michael Becker

Table 2: Predefined connectors

Name Formalisation
KALL ∀k ∈ KALL : card(k) = {(|postnodes(k)|, |postnodes(k)|)}
KONE ∀k ∈ KONE : card(k) = {(1, 1)}
KANY ∀k ∈ KANY : card(k) = {(0, |postnodes(k)|)}

connectors of an active component need to be
activated automatically.

∀c ∈ C,∀k ∈ postnodes(c) :
c ∈ activated→ k ∈ activated

On the other hand, bottom-up configurations
start with selecting specific services, i.e., select-
ing leaf components in the configuration graph.
Thus, customers having detailed requirements
are able to select services they need and the
overall configuration is established by applica-
tion of dependencies between components. We
support this type of configuration by activating
nodes with at least one activated direct succeed-
ing node.

∀n ∈ C ∪ K :
∃n⋆ ∈ postnodes(n) : n⋆ ∈ activated→
n ∈ activated

Figure 5 depicts a top-down configuration exam-
ple. The left-hand side shows a situation where
no component is selected, i.e., before the begin-
ning of the configuration. In the centre of the
figure, the topmost component Service B is se-
lected. Consequently, the succeeding connector
is selected, too. To establish a valid configuration,
the connector needs to be satisfied according to
its defined cardinalities. This may be achieved by
selecting component Invoicing as shown on the
right-hand side in Fig. 5. By selecting this compo-
nent, again the succeeding connector is activated
and has to be satisfied by selecting the correct
combination of Sign Invoice and Send Invoice.

A connector is valid if one of its cardinalities is
satisfied, i.e., the amount of activated succeeding

nodes must be tested against the cardinalities.

∀k ∈ K ∩ activated : ∃(m,n) ∈ card(k) :
m ≤ |postnodes(k) ∩ activated| ≤ n

3 Modelling PSS

Heretofore, the presented metamodel is used to
model complex services. However, due to its ori-
gins in industrial and software engineering, it
is feasible to use the metamodel for represent-
ing products, too. Especially in industrial engi-
neering, modularisation based on components
is a widespread approach. Therefore, we model
products as we model services presented above.
However, it is necessary to keep in mind that
decomposition of services means process refine-
ment while decomposition of products means
decomposing physical product parts (e.g., screws,
barrels etc.). With this approach, it is possible
to manage complex products using the configu-
ration graph as shown above. Furthermore, the
same constraints for validity apply.

A complex PSS consists of a product portfolio,
a service portfolio, and integration of these two
parts (Becker et al. 2008). To evaluate adaptability
of our approach we next give examples for both
portfolio types situated in the area of a photo-
voltaic (PV) installation. Building on this, Sect. 4
gives some insights about the integration of both
portfolios by specifying dependencies.

Above, we defined a service portfolio as a tuple.
Analogously, product portfolios are represented
using the same definition. However, the set of
temporal dependencies between product compo-
nents is always empty since temporal dependen-
cies only make sense in process terms. To de-
fine a complete PSS we use a tuple P = (P,S,D)

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 9

Service B

Invoicing ...

Sign
Invoice

Send
Invoice

Service B

Invoicing ...

Sign
Invoice

Send
Invoice

Service B

Invoicing ...

Sign
Invoice

Send
Invoice

Figure 5: Automated activation of nodes during configuration

with the product and service portfolios P and
S, respectively and the set D of dependencies
between these portfolios.

3.1 A Product Example

The product portfolio of the PV installation con-
sists of several physical parts. In our example, an
installation has four PV Modules. A real system
would allow for different types of panels, e.g.,
by giving a selection between various panel ma-
terials or sizes. However, for comprehensibility
reasons we do not elaborate on that. A panel
has several cells that convert light energy into
electrical energy.

Since panels produce direct current and electri-
cal grids use alternating current a PV Inverter
is necessary for converting. Furthermore, PV
inverters provide special functionality like max-
imum power point tracking. In our example,
customers can optionally install a LAN Interface
and an RS485 Interface for monitoring the perfor-
mance of the installation.

Besides necessary technical components, the pro-
vided PV installation also needs to be attached to
a roof. This is achieved by using the component
Substructure. According to the roof characteris-
tics, different substructures are necessary. For
example, installations on flat roofs have different

requirements than installations on pitched roofs.
Each substructure has eight Roof Hooks. Hooks
are used for mounting panels to the roof. They
are an essential and very important part, since
hooks support the whole installation. Finally,
four Mounting Profiles are necessary to attach
PV panels. In our example, we only use one pro-
file. However, in reality profiles with different
characteristics are available, e.g., different ma-
terials (usually steel or aluminium) or different
shapes. Figure 6 is a graphical representation of
the product portfolio.

Modelling the product portfolio makes use of
clones as described above. Thus, we can assure
that the components are equal and modifications
need to be done only once. For comprehensi-
bility reasons, we depict clones as overlapping
nodes. Besides using clones it would also be pos-
sible to annotate components that are necessary
multiple times. For example, the component roof
hook could be annotated with an amount of eight.
However, using clones allows for greater flexibil-
ity, since a cloned component has a real world
counterpart while annotated components do not.
Using the definition from above the product port-
folio P can be formalised as follows. For the sake
of brevity we use component identifiers rather
than full component names. Furthermore, since
we are focusing dependencies between products

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000

10 Stephan Klingner and Michael Becker

P1: PV-Installation

P2: Substructure P3: PV-Module P4: PV-Inverter

P5: Roof Hook P6: Mounting Profile P7: LAN Interface P8: RS485 Interface

P6: Mounting Profile

P6: Mounting Profile

P6: Mounting Profile

P5: Roof Hook

P5: Roof Hook

P5: Roof Hook

P5: Roof Hook

P5: Roof Hook

P5: Roof Hook

P5: Roof Hook

P3: PV-Module

P3: PV-Module

P3: PV-Module

K1P

K2P K3P

Figure 6: Product portfolio of the PSS PV Installation

and services and not performance evaluation, we
omit KPI and attributes.

P =(CP,KP,EP, cardP,LP,TP)
CP ={P1,P2,P3,P4,P5,P6,P7,P8}

KP ={K1P ,K2P ,K3P}

EP ={(P1,K1P), (K1P ,P2), (K1P ,P3), (K1P ,P3),
(K1P ,P3), (K1P ,P3), (K1P ,P4), (P2,K2P),
(P4,K3P), (K2P ,P5), (K2P ,P5), (K2P ,P5),
(K2P ,P5), (K2P ,P5), (K2P ,P5), (K2P ,P5),
(K2P ,P5), (K2P ,P6), (K2P ,P6), (K2P ,P6),
(K2P ,P6), (K3P ,P7), (K3P ,P8)}

cardP ={(K1P , (6, 6)), (K2P , (12, 12)),
(K3P , (0, 2))}

LP =∅,TP = ∅

3.2 A Service Example

The service portfolio for the PV installation can
be distinguished between installations at cus-
tomer and at provider site. For installations at
customer site the provider offers services for in-
stallation, maintenance, and monitoring. Instal-
lation includes delivery and construction, i.e., ei-

ther customers or service technicians from the
provider construct the PV installation.

Maintenance has several child components that
can be selected. In on-site maintenance service
technicians conduct a visual inspection of the in-
stallation. This is necessary to ensure security of
the installation and to provide its efficiency. Fur-
thermore, the installation is analysed for shading
effects and the proper function of the inverter
is verified. Since PV installations are exposed
to wind and weather, cleaning of the installa-
tion on a regular basis is necessary. Otherwise,
the degree of efficiency might decrease due to
dirt on the modules. To increase maintenance
efficiency, customers can select remote mainte-
nance. In doing so, the provider has the ability to
conduct several services without sending techni-
cians. Accordingly, this should result in reduced
maintenance costs.

Besides maintenance, monitoring is an important
activity to ensure installation efficiency. First of
all, recording data of the installation allows for
analysing the long term behaviour. Defining crit-
ical thresholds that must not be exceeded allows

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 11

for sending a signal in case of unexpected be-
haviour of the installation. Based on the recorded
data, it is possible to conduct an evaluation. For
example, changing the inclination angle of a PV
installation might increase its efficiency. Avail-
ability of recorded data also allows for the possi-
bility of an efficiency comparison with other PV
installations. Therefore, the performance of an
installation can be compared resulting in gaining
additional information.

If it is not possible to construct a PV installation
at the customer site, the provider offers the pos-
sibility for an investment in off-site installations.
In doing so, customers receive the energy they in-
vested for. Though different investment models
are possible, we do not go into detail. Since the
investment is a completely different offer, cus-
tomers can only select between on-site or off-site
installations. Thus, it is not possible to combine
the component external installation with other
components from the service portfolio.

We can describe the service portfolio S (as seen
in Fig. 7) using the above presented formalisa-
tions as follows.

S ={CS,KS,ES, cards,LS,TS}

CS ={S1,S2,S3,S4,S5,S6,

S7,S8,S9,S10,S11,S12,S13}

KS ={K1S ,K2S ,K3S ,K4S ,K5S}

ES ={(S1,K1S), (K1S ,K2S), (K1S ,S13),
(K2S ,S2), (S2,K3S), (K3S ,S5), (K3S ,S6),
(K2S ,S3), (S3,K4S), (K4S ,S7), (K4S ,S8),
(K4S ,S9), (K2S ,S4), (S4,K5S), (K5S ,S10),
(K5S ,S11), (K5S ,S12)}

cardS = {(KS1 , (1, 1)), (KS2 , (1, 3)), (KS3 , (1, 2)),
(KS4 , (0, 3)), (KS5 , (0, 3))}

LS = ∅,TS = ∅

4 Dependencies in PSS

An important requirement regarding the nota-
tion for modelling PSS is the representation of

interdependencies between elements. Thus, this
section elaborates the structure and types of de-
pendencies. Based on that, specific dependency
rules presented in literature are introduced. As
extension of the existing literature, the rules are
aggregated and formalised. Due to formalisa-
tion the (semi)automated evaluation of configu-
rations’ validity is possible. Thus, each depen-
dency rule is described both textual (supported
by different examples) and formal (correspond-
ing to the introduced metamodel).

In PSS different types of dependency relation-
ships are possible. According to Böttcher and
Klingner (2011a), descendent dependencies (Type
I) describe hierarchical relationships within a sin-
gle configuration graph. Since Böttcher focuses
only the description of relationships within ser-
vice models, we suggest an adapted definition of
the term cross-tree dependencies for the descrip-
tion of non-hierarchical dependencies in PSS.

Within the context of PSS non-hierarchical de-
pendencies can be divided into two different
types. Relationships within product or service
portfolios can be referred to as intra-tree depen-
dencies (Type II). These dependencies are rep-
resented in the portfolios as the set of logical
dependencies LP and LS respectively. Contrary,
relationships between the service and the prod-
uct portfolio are described as inter-tree depen-
dencies (Type III). Thus, descendent as well as
intra-tree dependencies describe relationships
between elements of one portfolio while inter-
tree dependencies always include both product
and service portfolios. Figure 8 provides an
overview of the different types of dependencies.
In the following, we describe dependencies ac-
cording to the PSS PV installation of Sect. 3. All
presented dependencies are of type III, i.e., they
include product and service elements. However,
they are valid for dependencies of type I and II
as well.

Furthermore, dependencies can be classified re-
garding their configuration impact. Existing de-
pendency rules in literature are mainly limited

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000

12 Stephan Klingner and Michael Becker

S1: PV-Service

S2: Installation S3: Maintenance S4: Monitoring

S5: Delivery S6: Construction

S7: On-site maint. S8: Cleaning S9: Remote maint.

S10: Recording S12: ComparisonS11: Evaluation

S13: External inst.

K1S

K2S

K3S

K4S

K5S

Figure 7: Service portfolio of the PSS PV Installation

II
I

III

I Descendent Dependency
II Intra-Tree Dependence
III Inter-Tree Dependency

Figure 8: Types of dependencies of PSS

to the aspect of restriction, defined by so called
constraints (Faltings and Weigel 1994; Gelle and
Weigel 1996; Jinsong et al. 2005). The complex
dependencies between elements of PSS suggest
a wider understanding of rules. This includes
the introduction of new rules, such as recom-
mendations (Te’eni and Shufer 2006) or alterna-
tives (Baines et al. 2007). Thus, it is possible to
identify three distinct classes of rules.

• Suggesting rules describe loose dependencies
between PSS elements. Since the application
of those rules is optional, the number of valid
configuration options is not limited.

• Restricting rules describe dependencies, which
reduce the number of valid configurations.

• Modifying rules describe changes of PSS ele-
ments.

During configuration several rules may have in-

terrelations with each other. To ensure satisfi-
ability, it is necessary to define these relations.
For example, elements requiring each other must
not prohibit each other, too. For this reason, we
formalised the rules as defined in (Becker and
Klingner 2012a). For practical application, we de-
veloped a Prolog listing adhering to this formali-
sation.1 This allows for automated validation of
configurations.

Using this formalisation, it is possible to establish
an order for evaluating rules. First, restricting
rules are validated in background during con-
figuration, i.e., combining elements that are re-
stricted is not possible. Furthermore, modifying
rules are applied. Contrary to restricting and
modifying rules, suggesting rules are not applied
automatically. This is due to the fact that their
application is optional. Therefore, these rules are
proposed and customers can decide whether or
not they apply them.

4.1 Rule Structure

Though the rules cover a variety of application
areas, they all adhere to a specific structure. In

1The listing and its application for the PV example are to
be found at http://sourceforge.net/projects/
kpstools/

http://sourceforge.net/projects/kpstools/
http://sourceforge.net/projects/kpstools/

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 13

the next section we present a selection of rules.
However, at this point their general structure is
introduced. Based on this structure, it is possi-
ble to define additional rules. These rules might
be necessary in several areas of application. In
doing so, defining new rules allows for establish-
ing a domain specific set of notational elements
and, accordingly, simplified modelling. In gen-
eral, a rule is a mapping from a domain D to a
codomain C:

rule : D→ C

The domain of the rules is established by a com-
ponent or a comparison of variables, attributes,
or KPI. Furthermore, elements can be combined
by a logic operation. Using the comparison, it
is possible to compare the respective elements
according to a previously defined value. There-
fore, the set comp = {<,>=} with the respective
meanings of the operators is used. Thus, a rule
states that a variable, attribute, or KPI needs to
be less than, greater than, or equal to a specific
number. The following equations for the formal-
isation of comparators show that the values of
attributes and KPI are compared with respect to
a specific component.

varComp =(var, comparator,R)
attComp =(att,C, comparator,R)
kpiComp =(kpi,C, comparator,R)

Using these definitions, it is possible to formalise
the domain of rules.

D = {C, varComp, attComp, kpiComp}

To be able to also use non-atomic domains, it is
necessary to extend and combine the elements of
the domain. Logic operations are used for an in-
ductive extension. This is necessary for practical
application, since often a combination of various
elements has impacts on other elements.

a ∈ D ∧ b ∈ D→ (a ∧ b) ∈ D
a ∈ D ∧ b ∈ D→ (a ∨ b) ∈ D

a ∈ D→ ¬a ∈ D

By means of the established definitions it is pos-
sible to define several domains. For example, a
domain could be as follows. The components A
and B are selected and the variable incomingCalls
is greater than 10’000 or the KPI price of compo-
nent C is greater than 200. This domain can be
formalised as follows.

A ∧ B ∧ (incomingCalls, >, 10′000)
∨ (price,C, >, 200)

Contrary to the domain, the codomain cannot be
defined in advance since it is too heterogeneous.
Valid elements of the codomain depend on the
semantics of the specific rule. To illustrate this,
we establish various rules for the above specified
rule classes. A comprehensive overview about
rule classes, analysed rules of this work, result-
ing constraints for the codomain, and academic
references is presented in Tab. 3. For a better
understanding we explain the rules according to
the PV example given above.

4.1.1 Suggesting Rules

In the following, we present the suggesting rules
alternative and recommendation. Alternatives
represent functional equivalent components that
can be interchanged with each other. Recom-
mendations define elements that supplement a
specific configuration.

Alternative

According to Baines et al. (2007) one motiva-
tion for providing PSS is to shift the focus from
selling products to selling functionalities. This
statement is based on the assumption that cus-
tomers do not care whether their requirements
are satisfied by products or by services.

We use the predicate surrogates to define alter-
native components. The domain and codomain
of alternatives is restricted to a logic operation
of components. This is reasonable considering
that this rule is used to state alternative product
and service parts satisfying identical customer
requirements by providing equal functionalities.

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000

14 Stephan Klingner and Michael Becker

Table 3: Rule classes and rules for defining PSS dependencies

Rule Class Rule Source Codomain
Suggesting Alternative Baines et al. (2007) component,

logic operation
Recommendation Uhlmann et al. (2008) component, comparators,

logic operation
Restricting Requirement Böhmann and Krcmar (2007);

Sun (2010)
component, comparators,
logic operation

Prohibition Faltings and Weigel (1994); Gelle and
Weigel (1996); Jinsong et al. (2005)

component, comparators,
logic operation

Modifying Modification Mont (2002) KPI modifier

In the PV example, the service external installa-
tion fulfils the same requirements as the product
PV Installation - energising customers. This re-
sults in the following rule.

surrogates(PV-Installation) =
External Installation

Recommendation

Recommendations are based on the assumption
that providers offer their customers additional
services when selecting specific products. For
example, Uhlmann et al. (2008) argue the pro-
ductivity of a machine does not only depend on
its physical characteristics but also on the qual-
ification of employees operating the machine
and on its general maintenance state. Recom-
mending specific components can furthermore
be generalised by recommending components
with particular characteristics. Thus, it is possi-
ble to leave out too fine-grained details. Finally,
the environment of a service might influence the
selection of components. Based on these depen-
dencies, organisations are able to compile innova-
tive portfolios. Consequently, by recommending
value-adding services or products it is possible to
exceed customer requirements (Chase and Hayes
1991). We use the predicate recommends to rep-
resent a recommendation rule.

In our PV example, the service component Clean-
ing is always recommended when customers se-
lect the product component PV Installation. This

guarantees constant performance of the instal-
lation. Selecting the service component On-site
maintenance recommends the product compo-
nent RS485 because it allows for fast and sta-
ble readout of installation data by service tech-
nicians. Additionally, it is recommended that
customers should not construct the installation
on their own if the roof pitch is less than 20 or
more than 50 degrees, i.e., in these cases the ser-
vice component Construction should be selected
and performed by specialised service technicians.
These rules can be formalised as follows.

recommends(PV-Installation) = Cleaning

recommends(On-site maintenance) = RS485

recommends((roofPitch, <, 20)∨
(roofPitch, >, 50)) = Construction

4.1.2 Restricting Rules

Restricting rules reduce the amount of valid con-
figuration variants. The rules requirement and
prohibition are restricting rules. Requirements
define elements or characteristics that are nec-
essary for a specific set of selected elements. By
using prohibitions, it is possible to identify ele-
ments that must not be included in one configu-
ration.

Requirement

Requirements are one of the most frequently
mentioned dependencies in literature. Sun (2010)

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 15

defines an interface that provides a service as
service carrier. This might either be a product
or a combination of products and different ser-
vices, e.g., the PSS medical treatment contains
the service examination and the product phar-
maceuticals. An example for external variables
in the domain of a requirement rule is given
by Böhmann and Krcmar (2007) with integrating
services and products into the value creation pro-
cess of customers. We represent a requirement
using the predicate requires.

The PV example has two requirements. First, for
selecting the service component Remote mainte-
nance, the inverter needs a LAN interface. Oth-
erwise, providers would not be able to access
the installation from a distance. Furthermore,
the service component Efficiency comparison re-
quires an installed base of 100 (installed base is
represented by the variable installedBase). Thus,
it ensures that enough comparison data is avail-
able.

requires(Remote maintenance) = LAN

requires(Efficiency comparison) =
(installedBase, >, 100)

Prohibition

The rule prohibition is used to define elements
that must not occur together in a single configu-
ration. This is often the case for alternative ele-
ments that cannot be combined with each other
(i.e., for mutual exclusive alternatives). It is possi-
ble to define prohibitions using the configuration
graph, too. This is supported by using KONE con-
nectors. However, non-hierarchic prohibitions
must be defined explicitly using the predicate
prohibits.

The service component External installation in
the PV example is mutually exclusive to the prod-
uct component PV Installation. Thus, customers
cannot select to construct a PV installation at
their site together with the participation in an
external installation.

prohibits(External Installation) =
PV Installation

4.1.3 Modifying Rules

As the name states, modifying rules modify val-
ues of elements. Particular configurations might
result in changes of KPI of other components.
These modifications can be quantified using the
rules.

Modification

Nowadays, production companies shift towards
offering of PSS because this allows for value-
adding of existing products by offering additional
services (Mont 2002). For a detailed definition of
this relation it is possible to define on compo-
nent level which service components increase
the value of which product components and vice
versa. This value modification can reflect in
terms of quality or in terms of price, too. We
use the predicate changedValue to define generic
modifications using a modifier.

The quality of the product component PV In-
stallation is increased when the construction is
conducted by trained service technicians, i.e., the
service component Construction is selected. The
increased quality is represented by increasing the
quality of the product component Substructure.

changesValue(Construction) =
(Substructure, quality, 1.2)

5 Transformation of Product Models

In industrial and software engineering the mod-
elling and the configuration of products are al-
ready well established (Hegge and Wortmann
1991). Therefore, it can be assumed that in com-
panies various models already exist. In this sec-
tion we analyse two common approaches for
modelling regarding the possibility of reusing
existing models. Based on these findings, trans-
formations between existing models and our pre-
sented PSS metamodel are introduced. A cor-
responding open source application was imple-
mented.2 Due to the open project structure, the

2The application is publicly available at http://
sourceforge.net/projects/kpstools/

http://sourceforge.net/projects/kpstools/
http://sourceforge.net/projects/kpstools/

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000

16 Stephan Klingner and Michael Becker

integration of additional modelling formats is
possible.

In the following, we analyse the notations Bill
of Material (BOM) and feature modelling. Both
approaches are compared with respect to their
applicability for transformation. For a better un-
derstanding, we model the product portfolio of
the PV example in both notations.

5.1 Bill of Material

In industrial engineering using BOM is a com-
monmethod to represent logical and quantitative
product data (Jiao et al. 2000; Zhu et al. 2007).
BOM describe product components and their
relations (Guoli et al. 2003; Stonebraker 1996).
Jiao et al. (2000) specify three mandatory aspects,
which need be considered in the model. Based
on these requirements, the essential elements of
a BOM can be derived:

• Items for defining components for structuring
a product.

• Goes-into relationships defining a connection
between parent and child component. This
connection is complemented with the num-
ber of child components needed to create the
parent component.

• Employment describing the influence of the
area of application. Depending on the environ-
ment respectively the position in the product
life cycle different variants of the creation of
BOM exist.

In this paper we restrict the analysis to standard
BOM. For a more detailed description of variants,
e.g., modular BOM (MBOM), engineering BOM
(EBOM), generic BOM (GBOM) or variant BOM
(VBOM) the interested reader may refer to the
literature (Hegge and Wortmann 1991; Jiao et al.
2000; Veen and Wortmann 1992; Zhu et al. 2007).

A practical example illustrating the above men-
tioned elements of a BOM can be found in Fig. 9.
Analogue to the previous examples a PV instal-
lation is modelled. It is important to note that
the depicted BOM represents only one possible

PV System

PV Inverter PV Module Subconstruction

LAN RS485 Mounting Profile Roof Hooks

4x 8x

1x 4x 1x

1x 1x

Figure 9: BOM representation of a PV installation

BOM PSS Metamodel
Item Component
Parent/Childnodes ALL-connector
Quantity Clones

Table 4: Mapping of BOM concepts to concepts of the
PSS metamodel

configuration. The creation of further config-
urations would result in various, very similar
BOM with a high level of redundancy (Hegge
and Wortmann 1991).

To evaluate the ability to transform BOM into the
PSS metamodel based on a practical example, we
modelled a BOM of the PV installation using the
web-based application Arena3. Arena produces
an XML file describing the model which we used
as the source for transformation.

The main part of the transformation is the ex-
traction of the items, which are transformed into
components. The structure of the BOM’s items
is mostly identical to the structure of compo-
nents of the transformed model. Since BOM
directly connect product components, we have
to add connectors. All added connectors are of
type KALL because every modelled component
is mandatory. To represent the BOM-specific
quantities the concept of clones are to be used
in the metamodel. The limited expressiveness of
BOM inhibits the description of complex logical
relationships. Therefore, the expressiveness of
the PSS metamodel can be mapped only partially,
as Tab. 4 indicates.

3http://www.arenasolutions.com

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 17

5.2 Feature Models

Feature models are widely-used in the area of
software engineering to describe so-called prod-
uct lines. Czarnecki and Eisenecker (2000) define
the concept of a feature as a function of the sys-
tem, which is visible for end users and a perceiv-
able characteristic of a concept, which is relevant
for certain stakeholders.

Similar to the PSS metamodel or the BOM pre-
sented above, features are arranged in a hierar-
chical structure. The following three different
types of compositions can be distinguished:

• Mandatory features have to be chosen if the
respective parent feature is chosen.

• From a set of alternative features exactly one
has to be chosen to create a valid configura-
tion.

• Optional features can be chosen, but do not
have to.

Additionally to these hierarchical relationships
also non-hierarchical dependencies can be de-
fined. Batory (2005) introduces simple inclusion
as well as simple exclusion. Simple inclusion de-
fines that choosing feature A results in an auto-
matic selection of feature B. Simple exclusion de-
termines the automatic deactivation of feature B
as consequence of choosing feature A. Those ba-
sic dependencies can be extended by using propo-
sitional formula. Czarnecki et al. (2004) present
further extensions of feature models, such as
cardinalities and annotations of features. How-
ever, this papers focuses only basic feature mod-
els. Figure 10 shows the representation of the
product portfolio of the PV installation as fea-
ture model. The model was created using the
Eclipse plug-in FeatureIDE (Kastner et al. 2009).
Mandatory features are depicted by a filled cir-
cle, whereas non-filled circles represent optional
features.

Similar to BOM, the concepts of feature models
can be transformed to elements of the PSS meta-
model as shown in Tab. 5. The expressiveness

Figure 10: Feature model representation of a PV instal-
lation

Feature Model PSS Metamodel
Concept Configured Product
Feature Component
Relationships Connectors
Mandatory Features Connector KALL
Optional Features Connector KANY
Alternative Features Connector KONE

Table 5: Mapping of feature model concepts to concepts
of the PSS metamodel

of feature models is comparable to the PSS meta-
model, so that transformations in either mod-
els can be conducted without losing expressive
power. Only cardinalities as represented by con-
nectors cannot be modelled in feature models
without using aforementioned extensions. There-
fore, the components roof hooks, mounting pro-
file, and PV module are represented by only one
feature. Missing data regarding quantities can be
added using feature attributes.

6 Related Work
Since our presented metamodel has its origins
in the domain of service engineering, in this sec-
tion we first discuss various approaches for ser-
vice modelling. This is followed by an overview
of different methods for describing PSS. A deep
analysis of product modelling approaches is not
in the focus of this paper. A detailed discussion
of various approaches for modelling products is
carried out by Yang et al. (2008).

For describing complex services, Barros et al.
(2011) introduced the Unified Service Descrip-
tion Language (USDL). Besides describing service
component interaction, the focus of the USDL is
the holistic depiction of services including the or-
ganisation, responsibilities etc. Contrary to our

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000

18 Stephan Klingner and Michael Becker

presented metamodel the pricing and possible
discounts for services are explicitly supported.
In the PSS metamodel prices could be indirectly
represented using KPI. USDL lacks an extensive
support for the configuration of services.

In addition to defining dependencies between
components, Dong et al. (2011) also focus con-
figuration supported by an ontology. Using the
ontology it is possible to define constraints. For
practical application, they provide interfaces to
the Java Expert System Shell.

In addition to a structural description of services,
Brocke et al. (2010) as well as Emmrich (2005)
analyse necessary adaptations of services in re-
gard to different phases of their life cycle. While
Emmrich (2005) focuses product centred services
as well as the states and state changes of prod-
ucts, Brocke et al. (2010) focus the continuous
need for customer-specific adaptation in the area
of IT-based services.

Contrary to research about services, PSS in gen-
eral and modelling PSS in particular did emerge
in academic literature only in recent years. Es-
pecially in the German-speaking world the term
hybrid service bundles is commonly used (Becker
et al. 2009; Böhmann and Krcmar 2007; Langer
et al. 2009). Early definitions of PSS were es-
tablished by Goedkoop et al. (1999) and Mont
(2002). Both works argue for a view on PSS not
only consisting of products and services but also
of dependencies between these two parts. This
statement is used as a foundation for a couple of
comparable approaches to model PSS.

Becker et al. (2009) present an approach to de-
scribe PSS. They focus ex ante configuration by
providers and customer-individual configuration
based on Entity-Relationship-Diagrams. A dis-
tinctive feature of their approach is assessing
different configurations using financial schemes.
Therefore, they allow for a fine-grained compar-
ison of established configurations. Contrary to
this, our model focuses using KPI dynamically
calculated during configuration.

Originally developed for modelling products, We-
ber et al. (2004) present their so-called Property-
Driven Design/Development model. They dis-
tinguish between characteristics to define the
constituent parts and the structure of a PSS and
properties to describe the product behaviour. Ad-
ditionally, they provide a process model for sys-
tematic PSS development. A process model is
also described by Uhlmann et al. (2008) where
the authors focus consideration of customer re-
quirements. We can reflect parts of both ap-
proaches using external variables (as customer
requirements) and attributes and KPI (as char-
acteristics). General requirements and specific
characteristics of PSS have been established by
Morelli (2002).

Further approaches analyse relations between
products and services (Sun 2010). However, they
focus relations between organisations offering
and using PSS. Immediate practical relevance is
shown by Walter (2009) with defining a PSS in
the domain technical services.

7 Conclusion

In this paper we presented a holistic modelling
method for PSS, including product and service
components as well as interdependencies be-
tween them. Based on the postulation of similar-
ity of structuring products and services, an ex-
isting metamodel for describing services was ex-
tended for the representation of products. There-
fore, various dependency rules were identified,
structured, and formally defined. Together with
the component-based modelling of the structure
these rules define the basis for the configuration
of complex PSS. By the use of these models the
management of a high number of variants be-
comes economically feasible, due to economies
of scale (Anthonysamy et al. 2011; Böttcher and
Klingner 2011b).

To ensure the possibility of reusing existing mod-
els and to validate the expressiveness of the pre-
sented metamodel, approaches for transforming
two common product modelling notations to

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 19

the PSS metamodel were analysed. This was
illustrated using an example of a PV installation,
which was modelled as BOM respectively feature
model.

It was shown that transformation of product
models into the PSS metamodel is feasible. On
this basis, product modelling can be improved
by extending the PSS metamodel with product-
specific details. For example, explicit definition
of quantities makes indirect and extensive mod-
elling of clones obsolete. This also allows for the
integration of quantitative dependency rules, e.g.,
if product component A is chosen more than ten
times, service component B has to be chosen. These
rules are mentioned by Jinsong et al. (2005) under
the term cardinality constraints. Additional nec-
essary extensions for the metamodel can be iden-
tified by analysing more product modelling ap-
proaches. For example, Yang et al. (2008) present
STEP-based methods and Felfernig et al. (2001)
use configuration graphs modelled with UML.

The presented PSS metamodel defines the for-
mal basis for the development of software tools
supporting the modelling and configuration of
PSS. For the subdomain of service modelling a
prototypical tool was already developed, based
on previous scientific findings and industrial re-
quirements (Klingner et al. 2011). The extension
for PSS needs to be implemented in the future.
A first step in that direction is the integration
of dependency rules within the service model.
These rules allow for generation of business pro-
cess models based on customer-specific configu-
rations (Becker and Klingner 2012b).

Using software tools, the increased complexity
of formalised models becomes manageable. Nev-
ertheless, creating models still involves a lot of
effort. The lack of a process model for creat-
ing models corresponding to the PSS metamodel
adds to this fact. Possible negative impacts are
a suboptimal granularity of elements of the PSS.
This might lead to higher efforts in case of adap-
tations or to erroneous implications regarding
KPI. Particular attention needs to be paid on how

to define dependencies between PSS elements.
The methodology presented by Abramovici and
Schulte (2005) and by Thomas et al. (2008) can be
used as a feasible starting point for establishing
this process.

The practical applicability of the proposed PSS
metamodel can be further increased by defining
domain-specific components and common PSS
elements in advance. On-demand usage of these
elements could decrease the necessary effort for
creating new models. Therefore, existing best
practices and reference models of organisations
can be reused.

An additional requirement from the practice is
the representation of changes in the PSS within
a specific period of time. For example, imagine
a webshop with seasonal fluctuations, e.g., peak
load during Christmas time. As of yet, the meta-
model does not give any support for this. To
be able to comprehensively evaluate behaviour
and costs of such a system, the description of
these time-variable effects need to be included
in the model. Brocke et al. (2010) and Emmrich
(2005) present a few approaches in this direc-
tion. However, extensive changes are necessary
to integrate these into the metamodel.

Of particular interest in complex PSS is the inter-
action between participating organisations (Sun
2010). Currently, we only support representing
PSS elements of a single organisation, since ser-
vices provided cooperatively by two or more or-
ganisations are not in the focus. However, col-
laboration of organisations can be facilitated by
sharing PSS models. For example, product mod-
els of a manufacturer can be imported into the
service portfolio of service provider. This allows
for definition of dependencies between portfolio
elements.

8 Acknowledgements

The German Federal Ministry of Education and
Research (Bundesministerium für Bildung und
Forschung, BMBF) partially supported this work
in the context of the DLR projects “Concept and

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000

20 Stephan Klingner and Michael Becker

Implementation of an Information Production
System (IPS) for Precision Farming” (support
code 01IS12013B) and EUMONIS (support code
01IS10033D).

References

Abramovici M., Schulte S. (2005) Lifecycle
Management von Produkt-Service-Systemen
(PSS) für einen maximierten Kundennutzen.
In: Grote K.-H. (ed.) Tagungsband 3. Gemein-
sames Kolloquium Konstruktionstechnik
2005 am 16. und 17.06.2005 im Herrenkrug
Parkhotel Magdeburg. Shaker, pp. 1–11

Anthonysamy P., Rashid A., Rummler A. (2011)
Taming Unbounded Variability in Service En-
gineering. In: Muehlen M., Su J., Aalst W.,
Mylopoulos J., Rosemann M., Shaw M. J.,
Szyperski C. (eds.) Business Process Manage-
ment Workshops vol. 66. Lecture Notes in
Business Information Processing. Springer
Berlin Heidelberg, pp. 615–619 http://dx.doi.
org/10.1007/978-3-642-20511-8_56

Baines T. S., Lightfoot H. W., Evans S, Neely A,
Greenough R, Peppard J, Roy R, Shehab E,
Braganza A, Tiwari A, Alcock J. R., Angus J.
P., Bastl M, Cousens A, Irving P, Johnson M,
Kingston J, Lockett H, Martinez V, Michele P,
Tranfield D, Walton I. M., Wilson H (2007)
State-of-the-art in product-service systems.
In: Proceedings of the Institution of Mechani-
cal Engineers, Part B: Journal of Engineering
Manufacture 221(10), pp. 1543–1552

Barros A., Kylau U., Oberle D. (2011) Unified
Service Description Language 3.0 (USDL)
Overview.. SAP Research. http : / / www .
internet-of-services.de/index.php?id=570

Batory D. (2005) Feature Models, Grammars,
and Propositional Formulas. In: Obbink
H., Pohl K. (eds.) Software Product Lines
vol. 3714. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, Rennes, France,
pp. 7–20

Becker J., Beverungen D., Knackstedt R. (2008)
Reference Models and Modeling Languages
for Product-Service Systems Status-Quo and
Perspectives for Further Research. In: Hawaii
International Conference on System Sci-
ences., pp. 105–105

Becker J., Beverungen D., Knackstedt R.,
Müller O. (2009) Konzeption einer Model-
lierungssprache zur softwarewerkzeugunter-
stützten Modellierung, Konfiguration und
Bewertung hybrider Leistungsbündel. In:
Thomas O., Nüttgens M. (eds.) Dien-
stleistungsmodellierung. Physica-Verlag HD,
Berlin, Germany, pp. 53–70

Becker M., Klingner S. (2012a) Formalisierung
von Regeln zur Darstellung von Abhängig-
keiten zwischen Elementen von Product-
Service-Systems.. Abteilung für Betriebliche
Informationssysteme, Universität Leipzig.
Leipzig, Germany. http : / / koproserv . uni -
leipzig .de/wp- content /uploads/2012/02 /
report.pdf

Becker M., Klingner S. (2012b) Towards
Customer-Individual Configurations of Busi-
ness Process Models. In: Aalst W., Mylopou-
los J., Rosemann M., Shaw M. J., Szyperski
C., Bider I., Halpin T., Krogstie J., Nurcan
S., Proper E., Schmidt R., Soffer P., Wrycza
S. (eds.) Lecture Notes in Business Informa-
tion Processing. Springer Berlin Heidelberg,
Berlin and Heidelberg, pp. 121–135

Becker M., Klingner S., Böttcher M. (2011) Con-
figuring services regarding service environ-
ment and productivity indicators. In: Com-
puter Science and Information Systems (Fed-
CSIS), 2011 Federated Conference on., pp. 505
–512

Böhmann T., Krcmar H. (2007) Hybride Pro-
dukte: Merkmale und Herausforderungen.
In: Bruhn M., Stauss B. (eds.) Wertschöp-
fungsprozesse bei Dienstleistungen. Gabler,
Wiesbaden, Germany, pp. 239–255

Brocke H., Uebernickel F., Brenner W. (2010)
Zwischen Kundenindividualität und Stan-
dardisierung - Konzept und Referenz-
Datenstruktur eines konfigurierbaren IT-

http://dx.doi.org/10.1007/978-3-642-20511-8_56
http://dx.doi.org/10.1007/978-3-642-20511-8_56
http://www.internet-of-services.de/index.php?id=570
http://www.internet-of-services.de/index.php?id=570
http://koproserv.uni-leipzig.de/wp-content/uploads/2012/02/report.pdf
http://koproserv.uni-leipzig.de/wp-content/uploads/2012/02/report.pdf
http://koproserv.uni-leipzig.de/wp-content/uploads/2012/02/report.pdf

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 21

Produktmodells. In: Thomas O., Nüttgens
M. (eds.) Dienstleistungsmodellierung 2010.
Physica-Verlag HD, Klagenfurt, Austria,
pp. 231–253

Böttcher M., Fähnrich K.-P. (2009) Service Sys-
tems Modeling. In: Alt R., Fähnrich K.-P.,
Franczyk B (eds.) Proceedings First Interna-
tional Symposium on Services Science. Logos,
Leipzig, Germany

Böttcher M., Klingner S. (2011a) Komponen-
tisierung zur Steigerung der Dienstleis-
tungsproduktivität. In: Bruhn M., Hadwich K.
(eds.) Dienstleistungsproduktivität. Gabler,
pp. 59–80

Böttcher M., Klingner S. (2011b) Providing
a Method for Composing Modular B2B-
Services. In: Journal of Business & Industrial
Marketing 26(5), pp. 320–331

Böttcher M., Klingner S., Becker M. (2011a)
Komponentenbasiertes Produktivitätscon-
trolling komplexer Dienstleistungsportfolios.
In: Controlling 23(10), pp. 509–513

Böttcher M., Swialkowski R., Fähnrich K.-P.
(2011b) Produktivitätsbetrachtung bei der
Komponentisierung von Dienstleistungen. In:
Gatermann I., Fleck M. (eds.) Mit Dienst-
leistungen die Zukunft gestalten - Impulse
aus Forschung und Praxis.. Campus Verlag,
pp. 207–216

Chase R. B., Hayes R. H. (1991) Beefing Up Op-
erations in Service Firms. In: Sloan Manage-
ment Review 33(1), pp. 15–26

Czarnecki K., Eisenecker U. W. (2000) Genera-
tive programming: methods, tools, and appli-
cations. ACM Press/Addison-Wesley Publish-
ing Co., New York, NY, USA

Czarnecki K., Helsen S., Eisenecker U. (2004)
Staged Configuration Using Feature Mod-
els. In: Nord R. (ed.) Software Product Lines
vol. 3154. Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, Boston,
MA, USA, pp. 162–164

Dietze V. (2008) Festigung zwischenbe-
trieblicher Kollaboration durch den Einsatz
von Group Decision Support Software - ein
strategischer Planungsansatz. Grin Verlag,

Munich, Germany
Diewert W. E., Nakamura A. O. (2005) Concepts

and Measures of Productivity: An Introduc-
tion In: Lipsey R., Nakamura A. (eds.) Univer-
sity of Calgary Press chap. Chapter 2, p. 20

Dong M., Yang D., Su L. (2011) Ontology-based
service product configuration system mod-
eling and development. In: Expert Systems
with Applications 38(9), pp. 11770 –11786

Emmrich A. (2005) Ein Beitrag zur system-
atischen Entwicklung produktorientierter
Dienstleistungen. PhD thesis, Paderborn
: Heinz-Nixdorf-Institut, Univ. Paderborn,
Paderborn, Germany

Faltings B., Weigel R. (1994) Constraint-
based knowledge representation for con-
figuration systems. Technical Report TR-
94/59. Department d’Informatique, Labora-
toire d’Intelligence Artificielle, Ecole Poly-
technique Federale de Lausanne. Lausanne,
Switzerland

Felfernig A., Friedrich G., Jannach D. (2001)
Conceptual modeling for configuration of
mass-customizable products. In: Artificial In-
telligence in Engineering 15(2), pp. 165–176

Gelle E., Weigel R. (1996) Interactive Config-
uration using Constraint Satisfaction Tech-
niques. In: In Second International Confer-
ence on Practical Application of Constraint
Technology, PACT-96. Menlo Park, AAAI
Press, London, U.K., pp. 37–44

Geum Y., Kwak R., Park Y. (2011) Modulariz-
ing services: A modified HoQ approach. In:
Computers & Industrial Engineering 62(2),
pp. 579 –590

Goedkoop M., van Halen C., Riele T. H., Rom-
mens P. (1999) Product Service systems, Eco-
logical and Economic Basics.. Pre. The Hague,
The Netherlands

Guoli J., Daxin G., Tsui F. (2003) Analysis and
implementation of the BOM of a tree-type
structure in MRPII. In: Journal of Materials
Processing Technology 139(1-3), pp. 535–538

Harmon E., Hensel S. C., Lukes T. E. (2006) Mea-
suring Performance in Services. In: The McK-
insey Quarterly

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000

22 Stephan Klingner and Michael Becker

Hegge H., Wortmann J. (1991) Generic bill-of-
material: a new product model. In: Interna-
tional Journal of Production Economics 23(1-
3), pp. 117–128

HildebrandW.-C., Klostermann T. (2007) Dienst-
leistungsverkehr in industriellen Wertschöp-
fungsprozessen. In: Bruhn M., Stauss B. (eds.)
Wertschöpfungsprozesse bei Dienstleistun-
gen. Gabler, Wiesbaden, Germany, pp. 215–
236

Isaksson O., Larsson T. C., Rönnbäck A. h.
(2009) Development of product-service sys-
tems: challenges and opportunities for the
manufacturing firm. In: Journal of Engineer-
ing Design 20(4), pp. 329–348

Jiao J., Tseng M. M., Qinhai Ma, Yi Zou (2000)
Generic Bill-of-Materials-and-Operations for
High-Variety Production Management. In:
Concurrent Engineering 8(4), pp. 297–321

Jinsong Z., Qifu W., Li W., Yifang Z. (2005)
Configuration-oriented product modelling
and knowledge management for made-to-
order manufacturing enterprises. In: The In-
ternational Journal of Advanced Manufactur-
ing Technology 25(1-2), pp. 41–52

Kastner C., Thum T., Saake G., Feigenspan J., Le-
ich T., Wielgorz F., Apel S. (2009) FeatureIDE:
A tool framework for feature-oriented soft-
ware development. In: Proceedings of the
31st International Conference on Software
Engineering.. ICSE ’09 IEEE Computer Soci-
ety, Washington, DC, USA, pp. 611–614

Klingner S., Böttcher M., Becker M., Döhler
A. (2011) Managing complex service port-
folios. In: Ganz W., Kicherer F., Schletz A.
(eds.) RESER 2011 Productivity of Services
NextGen - Beyond Output/Input. Conference
Proceedings..

Knackstedt R., Pöppelbuß J., Winkelmann
A. (2008) Integration von Sach- und
Dienstleistungen - Ausgewählte Inter-
netquellen zur hybriden Wertschöpfung.
In: WIRTSCHAFTSINFORMATIK 50 (3),
pp. 235–247

Langer S., Kreimeyer M., Müller P., Lindemann
U., Blessing L. (2009) Entwicklungsprozesse

hybrider Leistungsbündel - Evaluierung von
Modellierungsmethoden unter Berücksichti-
gung zyklischer Einflussfaktoren. In: Thomas
O., Nüttgens M. (eds.) Dienstleistungsmodel-
lierung. Physica-Verlag HD, Berlin, Germany,
pp. 71–87

Maroto A., Rubalcaba L. (2008) Services pro-
ductivity revisited. In: The Service Industries
Journal 28(3), pp. 337–353

Meier H., Uhlmann E. (2012) Hybride Leistungs-
bündel - ein neues Produktverständnis. In:
Meier H., Uhlmann E. (eds.) Integrierte Indus-
trielle Sach- und Dienstleistungen. Springer
Berlin Heidelberg, pp. 1–21 http://dx.doi.org/
10.1007/978-3-642-25269-3_1

Mendonca M., Wasowski A., Czarnecki K.
(2009) SAT-based analysis of feature mod-
els is easy. In: Proceedings of the 13th Inter-
national Software Product Line Conference..
SPLC ’09 Carnegie Mellon University, Pitts-
burgh, PA, USA, pp. 231–240

Mont O. K. (2002) Clarifying the concept
of product-service system. In: Journal of
Cleaner Production 10(3), pp. 237 –245

Morelli N. (2002) Designing Product/Service
Systems: A Methodological Exploration En-
glish. In: Design Issues 18(3), pp. 3–17

Ojasalo K. (2003) Customer Influence on Ser-
vice Productivity.. In: SAM Advanced Man-
agement Journal (07497075) 68(3), pp. 14 –
19

Pine B. J. (1999) Mass Customization: The Fron-
tier in Business Competition. Harvard Busi-
ness School Press

Stille F. (2003) Produktbegleitende Dienstleis-
tungen gewinnen weiter an Bedeutung. In:
Wochenbericht 70(21), pp. 335–342

Stonebraker P. W. (1996) Restructuring the bill
of material for productivity: A strategic eval-
uation of product configuration. In: Interna-
tional Journal of Production Economics 45(1-
3), pp. 251–260

Sun H. (2010) Product service relationship:
defining, modelling and evaluating. In: Inter-
national Journal of Internet Manufacturing
and Services 2(2), pp. 128–141

http://dx.doi.org/10.1007/978-3-642-25269-3_1
http://dx.doi.org/10.1007/978-3-642-25269-3_1

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0, month 0000
Formal Modelling of Components and Dependencies for Configuring Product-Service-Systems 23

Sundbo J. (1994) Modulization of service pro-
duction and a thesis of convergence between
service and manufacturing organizations. In:
Scandinavian Journal of Management 10(3),
pp. 245 –266

Te’eni M., Shufer I. (2006) Component up-
grading with dependency conflict resolution,
knowledge based and rules pat. 7140013 http:
//www.freepatentsonline.com/7140013.html

Thomas O., Walter P., Loos P. (2008) Product-
Service Systems: Konstruktion und
Anwendung einer Entwicklungsmethodik.
In: WIRTSCHAFTSINFORMATIK 50(3) (3),
pp. 208–219

Uhlmann E., Meier H., Bochnig H., Geisert C.,
Sadek K., Stelzer C. (2008) Customer-driven
development of product-service-systems. In:
Pham D. T., Eldukhri E. E., Soroka A. J. (eds.)
Innovative production machines and systems
: Fourth I*PROMS Virtual International Con-
ference, 1st - 14th July, 2008. Whittles Publ.
[u.a.]

Vazsonyi A. (1954) The Use of Mathematics in
Production and Inventory Control. I. In: Man-
agement Science 1(1), pp. 70–85

van Veen E., Wortmann J. C. (1992) New de-
velopments in generative BOM processing
systems. In: Production Planning & Control
3(3), pp. 327–335

Walter P. (2009) Modellierung technischer Kun-
dendienstprozesse des Maschinen- und Anla-
genbaus als Bestandteil hybrider Produkte.
In: Thomas O., Nüttgens M. (eds.) Dien-
stleistungsmodellierung. Physica-Verlag HD,
Berlin, Germany, pp. 129–145

Weber C., Steinbach M., Botta C., Deubel T.
(2004) Modelling of product-service systems
(PSS) based on the PDD approach. In: D. M.
(ed.) Proceedings of the 8th International De-
sign Conference DESIGN 2004. Dubrovnik,
Croatia, pp. 547–554

Yang W. Z., Xie S. Q., Ai Q. S., Zhou Z. D. (2008)
Recent development on product modelling:
a review. In: International Journal of Produc-
tion Research 46(21), pp. 6055–6085

Zhu S., Cheng D., Xue K., Zhang X. (2007) A

Unified Bill of Material Based on STEP/XML.
In: Shen W., Luo J., Lin Z., Barthès J.-P. A.,
Hao Q. (eds.) Computer Supported Coopera-
tive Work in Design III. Springer Berlin Hei-
delberg, Berlin and Heidelberg, pp. 267–276

Stephan Klingner
University of Leipzig
klingner@informatik.uni-leipzig.de

Michael Becker
University of Leipzig
mbecker@informatik.uni-leipzig.de

http://www.freepatentsonline.com/7140013.html
http://www.freepatentsonline.com/7140013.html

