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Abstract

Interest in robust system design has increased in recent years. One reason
is the increase of vulnerability to soft-errors. A novel way to deal with such
threats is by designing a system to be self-stabilizing. The self-stabilization
property captures the desire to recover automatically from any (unexpected)
state. A self-stabilizing system converges to a legal execution once faults stop
occurring.

This work presents new concepts and directions for building a self stabi-
lizing operating system kernel. A self-stabilizing algorithm/system makes
the obvious assumption that it is executed. This assumption is not simple to
achieve since both the microprocessor and the operating system should be self-
stabilizing, ensuring that eventually the (self-stabilizing) applications/ pro-
grams are executed. An elegant composition technique of self-stabilizing algo-
rithms is used to show that once the underlying microprocessor stabilizes the
self-stabilizing operating system (which can be started in any arbitrary state)
stabilizes, then the self-stabilizing applications that implement the algorithms
stabilize. This work considers the important layer of the operating system.

The work presents several design solutions on a scale ranging from a black-
box solution to several tailored solutions. The proofs and prototypes show that
it is possible to design a self-stabilizing operating system kernel. A provable
self-stabilizing operating system kernel can also form the basis for a protected
host system against possible malicious programs. Thus, this work provides
concepts for building a system that can automatically recover from an arbi-
trary state including even one in which a Byzantine execution of one or more
programs repeatedly attempts to corrupt the system state.



x Abstract



Chapter 1

Introduction

This work presents several approaches for designing self-stabilizing oper-
ating systems. The first approach is based on periodical automatic reinstalling
of the operating system and restart. A variation of this approach, reinstalls the
executable portion of the operating system and uses predicates on the operat-
ing system state (content of variables) to ensure that the operating system does
not diverge from its specifications. Then the work details the building blocks
of a tailored micro self-stabilizing operating system. Lastly, the study demon-
strates the way a provable self-stabilizing operating system kernel can form
the basis for a protected host system against possible malicious programs. Pro-
totypes using the Intel Pentium processor were composed.

In his pioneering work on the “The” system [40], Edgar W. Dijkstra devel-
oped what might be considered the first operating system. He also introduced
the concept of self-stabilization in [38]. This current work is a small step to-
wards uniting these two concepts by implementing a self-stabilizing operating
system. This effort should lead to robust systems and hence better service for
us all.

1.1 Motivation

The robustness of an operating system is, in some cases, more important
than its performance [27, 52, 58, 69, 78, 79, 99, 112]. The experience with exist-
ing operating systems, and in fact with every large on-going software package,
is that it almost has its own independent behavior. The behavior is tuned up
and modified by system administrators who constantly and continuously try
to monitor it. The system is usually too complicated to monitor. The system
administrators use human behavior and character terms, as if the system is an
entity with its own will, to refer to its input output scenarios. The importance
of a design that is based on well understood theoretical paradigms, and give
us control over the resulting system cannot be exaggerated. In particular in
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the case of the operating system, robustness is a must, as the operating sys-
tem forms a basic infrastructure in almost every computing system (Here we
concentrate on robustness in regard to operating systems since correctness is
seldom a requirement for the common operating systems. Later on the in this
work, we actually require both).

Designing a robust operating system is a complicated and challenging task.
The system designer makes several probabilistic assumptions that may not
hold if an execution is long enough. For example, soft errors [81, 97, 105] may
cause an arbitrary change in memory bits that the error correcting schemes
used will not identify. Another example, is that the communication between
the system components can be made reliable, say by the use of error correcting
codes. However, this assumption is also based on probability (where the life
length of the system is a parameter). Once the probabilistic assumptions do
not hold the designer can no longer guarantee much.

This work proposes several approaches for designing an automatic recov-
ering operating system that are based on the well defined and well under-
stood self-stabilization paradigm [38, 41, 124]. Roughly speaking, a system is
self-stabilizing if it can be started in any possible state and converge to a de-
sired behavior. A state of a system is an assignment of arbitrary values to the
system’s variables.

A self-stabilizing algorithm/system makes the obvious assumption that
it is executed. This assumption is not simple to achieve since both the mi-
croprocessor and the operating system should be self-stabilizing, ensuring
that eventually the (self-stabilizing) application programs are executed. An
elegant composition technique of self-stabilizing algorithms [41, 42] is used
here to show that once the underlying microprocessor stabilizes [43] the self-
stabilizing operating system (which can be started in an arbitrary state) stabi-
lizes, and then the self-stabilizing algorithms that implement the applications,
stabilize. This work is part of an effort to create a stack of tools that provide
a software platform for executing self-stabilizing programs [22, 23]. Here we
consider the important layer of the operating system. Operating systems are
essential parts of most computer systems [130, 138]. The operating system
manages the hardware resources, and forms an abstract (virtual) machine that
is convenient to program by higher level applications developers.

An operating system kernel usually contains the basic mechanisms for man-
aging hardware resources. The classical von-Neumann machine architecture
includes a processor, a memory device and external I/O devices. Thus, the
core building blocks of an operating system kernel are addressed.

Operating systems are not self-stabilizing. The operating system is typi-
cally a large software constantly executed by a processor. Fault free software
is a hard task to achieve (see, e.g., [24]). When the operating system is designed
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for a specialized restricted task, such as (minimal configuration of) the TinyOS
[67], formal methods of verification may assist in achieving fault free software.
Still, the resulting system may fail due to a transient fault (e.g., a soft-error).
Therefore a self-stabilizing approach is a must in such basic and on-going com-
ponents as an operating systems. Apparently the current design of operating
systems does not take into account the automatic recovery property of the sys-
tem as a basic requirement. For example, there are processors (e.g., Intel’s Pen-
tium) which cannot support an implementation of a self-stabilizing operating
system. For example, these processors are designed to support external inter-
rupts. One class of these interrupts are the Non-Maskable Interrupts (NMI).
While the operating system is handling an NMI, the processor is not reacting
to additional interrupts. To enable additional interrupts the iret machine
command must be executed [75]. Self-stabilizing systems must be able to start
from any initial state in particular, a state in which interrupts are masked, and
therefore should either repeatedly execute iret s or should not use interrupts.
It turned out that the Non-Maskable Interrupt is in fact maskable. The NMI may
be masked by I/O memory instructions (e.g., [111]). Also when the system
changes mode to the system management mode (say, due to transient faults)
the NMIs are actually disabled [75] (Vol. 3, Sec. 13.8).

The self-stabilizing approach for modeling faults is orthogonal to the Byzan-
tine faults model [34, 46, 83], both approaches can in fact be combined [46].
While in the Byzantine model faulty processors (nodes) may exhibit malicious
behavior (representing a worst case change in the program the processor exe-
cutes) the fault model used for self-stabilizing system assumes that (at least a
portion of) the processes in the system execute a correct code (e.g., [46]). The
requirement for code correctness (of at least two thirds, or so, of the processes)
is obvious, even in the case of Byzantine faults [83]. If all the processes are
Byzantine then the system can exhibit any behavior. The requirement con-
cerning the fault-free programs can be achieved by designing the system to
repeatedly access a fixed read only memory device that reloads the executable
code from, say, a compact disk.

The NMI example is not based on corrupting the code of the algorithm but
only on changing its (soft) state, namely altering the content of the variables.
An additional prominent example of the lack of stabilization with regard to
the processor/operating system interaction design, is related to interrupt han-
dling. Usually, an operating system maintains an interrupt descriptor table
(IDT). The IDT contains pointers to the different operating system routines
called upon interrupts, such as the timer/clock interrupt. The Pentium pro-
cessor has a register pointing to this table (IDTR). A transient fault that causes
a value change of this register may disable the entire interrupt capability, and
even cause the processor to execute a useless infinite loop. A similar scenario
is possible when the interrupt table itself is corrupted.
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1.2 Thesis and Contribution

Approaches for self-stabilizing operating systems. One approach in design-
ing a self-stabilizing operating system is to consider an existing operating sys-
tem (e.g., Microsoft Windows, Linux) as a black-box and add components to
monitor its activity and take actions accordingly, such that automatic recov-
ery is achieved. We will call this approach the black-box based approach. The
other extreme approach is to write a self-stabilizing operating system from
scratch. We will call this approach the tailored solution approach. The work
presents several design solutions in the scale of the black-box to the tailored
solutions.

Blackbox. The first simplest technique proposed here for the automatic re-
covery of an operating system is based on repeatedly reinstalling the operating
system and then re-executing. The second technique is to repeatedly reinstall
only the executable portion, monitoring the state of the operating system and
assigning a legitimate state whenever required. In the blackbox approach we
assume that an operating system code is correct, but it may reach a state that
was not expected, namely corrupted variables values (due to memory leaks,
unexpected IO sequence from the environment, etc.). A primitive solution for
achieving fault-free programs is to design the system to repeatedly access a
fixed read only memory device (e.g., compact disk) and reload the executable
code from it. The reloading procedure is hardwired in ROM and is operated
using watchdog and NMI (Non-Maskable Interrupt) mechanisms (which are
described in Chapter 3). The black-box approach is discussed in Chapter 4.

Tailored Approach. An operating system kernel usually contains basic mech-
anisms for managing hardware resources. The classical von-Neumann ma-
chine includes a processor, a memory device and external I/O devices. The
tailored operating system is built (like many other systems) as a kernel that
manages these three main resources. The usual efficiency concerns which op-
erating systems must address, are augmented with stabilization requirements.
In Chapter 5 scheduling issues are investigated. In Chapter 6 memory man-
agement schemes are addressed, and in Chapter 7 device drivers are handled.

• Process Scheduling. The system is composed of various processes which
are executing each in turn. The process loading, executing and scheduling part
of the operating system usually forms the lowest and the most basic level. Two
main requirements of the scheduler are fairness and stabilization preservation.
Fairness means that in every infinite execution every running process is guar-
anteed to get a chance to run. Stabilization preservation means ensuring that
the scheduler preserves the self-stabilization property of a process in spite of
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the fact that other processes are executed as well (e.g., the scheduler ensures
that one process will not corrupt the variables of another process).

The scheduler is the key to executing all other processes, therefore, its
correct starting and execution must be guaranteed. The watchdog and non-
maskable interrupts mechanisms ensure periodically executing the scheduler.
Additionally, the state of the scheduler must be validated for correctness. The
scheduler uses a process table for scheduling management. This information
must be correct in an on-going execution, and must adapt to different scenar-
ios, e.g., starting applications to handle external inputs. Stabilization preserva-
tion is achieved by means of monitoring processes and program code restric-
tions.

• Memory Management. We deal with two important requirements to
the tasks of memory management. The first requirement is the eventual memory
hierarchy consistency. Memory hierarchies and caching are key ideas in mem-
ory management. The memory manger must provide eventual consistency of
the various memory levels. The second requirement is the stabilization preser-
vation requirement. It means that stabilization proof for a single process p is
automatically carried to the case of multiprocessing in spite the fact that con-
text switches occur and the fact that the memory is actually shared. Namely,
the actions of other processes will not damage the stabilization property of the
process p.

The work suggests three basic design solutions that follow the evolution
of memory management techniques. The first approach allocates the entire
available memory to the running process, thus, ensuring exclusion of mem-
ory access. Since each process switch requires expensive disk operations, this
method is inefficient. The second solution partitions the memory among sev-
eral running processes and exclusive access is achieved through segmentation
and stabilization preservation of the segment partitioning algorithm. Both so-
lutions constrain program to reference addresses in the physical memory only
(or even in the partition size) and allow static use of memory only. The last
solution uses lease-based dynamic schemes, in which the application must re-
new memory leases in order to ensure the correct operation of a self-stabilizing
garbage collector. The dynamic memory manager repeatedly checks for mem-
ory portions allocated to a process for which the lease expired, and returns
every such memory portion to the available memory pool for reallocation.

• I/O Device Drivers. Device drivers are programs which are practically
an essential part of any operating system. They serve as an adaptation layer
by managing the various operation and communication details of I/O devices.
They also serve as a translation layer providing consistent and more abstract
interface for other programs and the hardware device resources (and some-
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times they also add extra services not provided by the hardware devices). De-
vice drivers are known to be a major cause of operating system failures [136].

Here we define two requirements which should be satisfied in order for the
protocol between the operating system and an I/O device to be self-stabilizing.
The first requirement (the ping-pong requirement) states that in an infinite sys-
tem execution, in which there are infinitely many I/O requests, the OS driver
and the device controller are infinitely often exchanging requests and replies.
The second requirement is about progress and it states that eventually every
I/O request is executed completely and correctly according to some protocol
specification (e.g., the ATA protocol for storage devices). A device driver and
device controller can be viewed as a master and a slave working together ac-
cording to some protocol to achieve their mission. Thus, the device driver
acting as a master can check that the slave is following, e.g. the ATA protocol,
correctly.

Two solutions are suggested. In the first solution the device controller is
not required to be self-stabilizing, and the device driver leases some (usually
enough) time to the device controller to complete its tasks. The second solution
relaxes the timing constraints by assuming that the device controller itself is
also self-stabilizing. Therefore, we only need to guarantee that the execution
is carried out by both parties according to the protocol. This is achieved by the
device driver performing consistency checks according to its current state.

These tailored approaches are then augmented from a security point of
view by introducing stabilizing hosts.

• Stabilizing Trust and reputation for Self-Stabilizing Efficient Hosts in
Spite of Byzantine Guests. A provable self-stabilizing operating system ker-
nel can be leveraged to protect a host system against possible malicious pro-
grams. The work provides concepts for building a system that can automati-
cally recover from an arbitrary state including even one in which a Byzantine
execution of one or more programs repeatedly attempts to corrupt the system
state. Preservation of a guest execution is guaranteed as long as the guest re-
spects a predefined contract, while efficiency is improved by using stabilizing
reputation. The provable self-stabilizing host operating system implementa-
tion is augmented with a contract-enforcement framework example. These
ideas are presented in Chapter 8.

Tailored OS Implementations [132]. Prototype implementations for the var-
ious parts presented above, using the Intel Pentium processor architecture
(also known as IA32)[75] were composed. Each part mentioned above is demon-
strated with an implementation of the mechanisms for satisfying the needed
requirements. Detailed proofs of each mechanism’s correctness is provided.
The implementation is written directly in Assembly language, using the pro-
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cessor opcodes (we have used the NASM open-source assembler [107]). The
methodology used here for building such critical systems is to examine, with
extra care, every instruction while assuming an arbitrary initial state. This
is achieved by writing the code directly according to the machine semantics
(not relying on current compilers to preserve our requirements), together with
line by line examination. This style is sometimes tedious, but is essential to
demonstrate the way one should ensure the correctness of a program from
any arbitrary initial state. Such a method is especially important when dealing
with such a basic component as an operating system kernel. Higher level com-
ponents and applications can then be composed in ways discussed in [24]. The
Pentium was chosen as a specific example, since it is a widely used and avail-
able processor/architecture. Thus, similar methods can be applied to other
processors as well. This work’s proofs and prototypes show that it is possible
to design a self-stabilizing operating system kernel.

Main Contributions. This thesis describes a self-contained suit for achieving
practical self-stabilizing systems. In particular:

• Delivering the first self-stabilizing operating system.

• Demonstrating the non-stability of current widely used systems and con-
tributing to the ongoing research on system robustness.

• Stating the additional requirements that various parts of an operating
system kernel should satisfy.

• Presenting new self-stabilizing mechanisms, including resource leasing
and contact enforcement by trust and reputation.

• Providing provable implementations, which form a basis infrastructure
for practical self-stabilizing systems, by which robust and dependable
systems can be achieved.

1.3 Work Organization.

The rest of this work is organized as follows. Chapter 2 provides back-
ground materials and related work. Chapter 3 details the models and settings
for the rest of the work. We starts with the blackbox solutions in Chapter 4.
Then Chapters 5, 6 and 7 describe the tailored solution according to the main
kernel components. Demonstration implementations appear in the appendix
of these chapters (6.7, 7.6). In Chapter 8 protection against Byzantine programs
is discussed. Finally, we summarize the thesis and note concluding remarks
including performance considerations in Chapter 9.
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The blackbox and scheduling parts appeared in the proceedings of the
15th International Conference on Database and Expert Systems Applications
(DEXA), the 2nd International Workshop on Self-Adaptive and Autonomic Com-
puting Systems (SAACS’04) [47]. The work on memory management appeared
in the proceedings of the 7th Symposium on Self Stabilizing Systems (SSS’05),
and also in the Journal of Aerospace Computing, Information, and Communi-
cation (JACIC 2006) [48]. Work on I/O device drivers appeared in the proceed-
ings of 8th International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS’06) [49] , and the stabilizing host against Byzantine
will appear in SSS’07 [50]. The work was also presented as part of a stack of
self-stabilizing enabling tools at the Second International Conference on Avail-
ability, Reliability and Security, Workshop on Foundations of Fault-tolerant
Distributed Computing (FOFDC 2007) [23] and also published at the EAT-CS
journal [22]. Additionally, this work was presented as a poster in the Sympo-
sium on Operating Systems (SOSP) 2005, and in a PhD track of several confer-
ences. Three of the papers are to date in a journal review process.



Chapter 2

Related Work

2.1 Historical Brief Review

Operating systems evolved through continuous effort to solve basic prob-
lems of computer science like parallelism and synchronization (e.g., [37]). Group-
ing those solution into packages together with computer architecture develop-
ment gradually formed today’s operating systems. For example, see one of
Dijkstra’s late manuscripts [40] which describes in retrospect the designing of
what by now would be called an operating system and its interrupt mecha-
nism.

While there might not be general agreement about the range of problems
that operating systems deal with (e.g., [130] vs. [139]). Some researches are try-
ing to give a definition of an operating system which is consistent with their
work. In [54] it is suggested to define an operating system as any piece of
software that an application can neither change nor circumvent. “What the
operating system should do is what no other piece of software can do, i.e.,
safely multiplex physical resources”. During an operating system develop-
ment project [86], the developers failed to realize that a kernel is not the same
thing as an operating system, and gave other examples too. Others, predict
that operating systems will be tailored to specific needs (no “one size fits all”),
and in order to adapt to many applications, an operating system should fo-
cus only on resource management [147]. Some claim that operating systems
should provide fault-tolerance abstraction and mask failures for users [95].

Building an operating system is usually a complex procedure and some-
times requires compromising between contradicting objectives [129]. For ex-
ample, referring to the Minix operating system, [139] states that in some situ-
ations, “the operating system may have no choice but to print an error mes-
sage and terminate.” or “just to ignore the (deadlock) problem. We are faced
with an unpleasant trade-off between convenience and correctness”. Thus, a
lot of research is focused towards robust, dependable and flexible operating
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systems.

2.2 Robust System Efforts

As noted already in the abstract, computer system robustness remains an
important and un-solved problem, e.g. [112]. Since early days of modern com-
puting it was clear that these systems should be built to cope with errors. For
example, in 1956 von-Neumann introduced handling faults and the notion of
gates that may fail to compute correct output [145]. Robustness is defined by
[103] as the ability of (software) systems to react appropriately to abnormal
conditions. It is a complementary property to correctness, and it characterizes
what happens outside of the system specification. Recently, hardware manu-
facturers are classifying robustness features around reliability, availability and
serviceability (RAS) [74]. In the presence of faults, a reliable system takes cor-
recting actions and does not produce wrong output. Availability is the per-
centage of total operating time, that a system spends in providing a service. It
is common to be measured in MTBF (Mean Time Between Failures). Service-
ability tries to ease system diagnostics in order to detect faults early. In [8]
there are definitions for a fault which is a flow in software or hardware. When
a fault is activated, it may corrupt the system, leading to an error. If an error
causes an incorrect behavior, a failure occurs. Here we are mostly concerned
with transient faults which occur irregularly, e.g. by unexpected interleaving
of inputs, by soft-errors, temporal unavailability of resources and alike. These
faults are very difficult to avoid and tolerate, however their existence forces
us to consider them in any combination with other faults such as component
crashes or Byzantine faults.

2.3 Hardware Support

As mentioned, computer architecture was developed hand in hand with
operating system needs. Examples are interrupts [40] and mechanisms like
protection [84, 120, 121], TLB and MMU [75]. Some operating systems used
capabilities supported by hardware [106], while other restrict the machine in-
struction set [55].
The basis for a self-stabilizing processor which is a must for a self-stabilizing
operating system is presented in [43] and [44].
The use of a watchdog device is found in previous operating systems, e.g., for
tiny operating system stability [141]. Detailed discussion about watchdog use
for error detection appears in [96]. Usage of ROM residing procedures for mon-
itors can be found in [27] and [117]. A combination of a watchdog and non-
maskable-interrupts for saving the system state, analyzing problems and re-
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setting the machine in case of severe situations is suggested in [7]. A commod-
ity machine and operating system (MS-Windows) and supporting hardware
architecture is suggested in [103], where interrupts are translated into non-
maskable-interrupts. When an interrupt occurs, a small realtime operating
system (VxWorks) is activated which responds to the interrupt, thus adding
realtime capabilities to the operating system. The use of the Harvard model
([144]) for an operating system that keeps all the code in flash memory is men-
tioned in [67] and [91]. Many approached were introduced in order to prevent
and tolerate faults. Here we mainly review works which targeted operating
systems.

2.4 Minimalistic Approaches

There are a few operating systems, like TinyOS [67], which were designed
to be small, usually due to small memory considerations. However, due to
their small size, they can provide a framework for correctness proof (At least
in their minimal configuration). In fact, the following is stated in [54]: “As
a result, the operating system can be small and readily understood: both of
these properties aid correctness”. Another example is [117] which suggests
an operating system that can be configured to occupy only a few hundred
bytes of memory. The importance of a small size operating system is also ad-
dressed in [86] and [123] where it is argued that systems, including operating
systems, should be minimal since “for any function you can think of, at least
some applications will find that by necessity they must implement the function
themselves in order to meet correctly their own requirements” ( - “End-to-end
argument”).
Micro-kernel architectures are popular in some operating systems as means
for increasing fault-tolerance [61]. This architecture is based on supplying a
minimal kernel while moving most operating system services to run as user
processes. Minix simplification [139] is gained through a kernel which mainly
transfers messages between other modules. Another similar architecture is
Exokernel which removes everything from the operating system except for
resource multiplexing [55].
Operating systems such as Linux and Microsoft Windows support user inter-
face in hundreds of different languages, have many drivers and other facilities.
The need for such a variety, does not enable minimalism in order to achieve
robustness [143].
The monitor primitive [68] was developed in the early days of operating sys-
tems, as a means for simplifying the operating system task of resource allo-
cation. Some interesting indications why current system fail, mainly due to
complexity appear in [32]. In [32] it is concluded that there is a need for sim-
plicity and elegance in order to achieve reliable systems.
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2.5 Fault Tolerance Mechanisms

Some operating systems incorporate mechanisms like checkpointing and
replication, found in databases and distributed systems, others add monitor-
ing layers and automatic restart options. Motivation for checkpointing in op-
erating systems that is based on the fact that checkpointing is done anyhow
during process switching in the most efficient way, appears in [4].
Microsoft Windows[101] (starting from the XP version) and EROS (Extremely
Reliable Operating System)[87] use checkpointing to gain fault-tolerance. Some
systems [7, 103] supply a monitoring layer for common operating systems like
Linux and Windows. The ChorousOS operating system and its successor C5,
monitor all (kernel and user) activity through logging in special buffers and
include an API for that purpose [7, 65]. They also contain rich restart options
(more for availability than reliability) and the notion of restart group for a set
of components that are assumed to fail together. There is also a kernel restart
group, which is the root of the dependency graph [1, 77].
An architecture with tools for monitoring legacy applications, collecting crash
data and detecting abnormal behavior is suggested in [78]. Suggestion to add
monitoring layer with Bayesian techniques appear in [98]. Replication and
checkpointing techniques for achieving transparent fault tolerance in Unix is
suggested in [21]. Similarly, [70] adds fault-tolerant services to Windows NT
through replication and checkpointing. Tandem computer systems (now HP
non-stop) were built as a combination of hardware with replication and a fault-
tolerant kernel, built around isolated processes and messages [15].

2.6 Fault Avoidance

By using separation techniques and even design methods of software en-
gineering, e.g. [99, 100], a system can be constructed in ways that eliminate
bugs or contain them in their own modules. Dijkstra initially influenced this
area (as well) by formulating design principles like the layered approach or
his famous “Goto considered harmful” sentence. Another direction is using
type safety and model checking. In Coyotos [126], the whole kernel, is written
in a typed language as a stage towards achieving formal correctness. Static
analysis of device drivers’ code appears in [11, 12]. Recently these methods
were augmented with a general tool for termination checking [31]. In [12] it
is claimed that kernel APIs are usually too complex, so there is a great chance
for coding bugs. They categorize bugs in order to find them automatically.
Many others (e.g., [30]) use code analysis to find kernel bugs in general. The
Singularity project [72, 73] emphasizes system dependability. Among other
mechanisms they rely on a verification process during compilation and load-
ing. They also use software separation between processes to minimize pos-
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sible harm, and rely on a typed language to restrict program’s abilities [71].
To prevent malicious code behavior, runtime code changes are restricted by
eliminating language features such as reflection. In Chapter 8 we expand the
review on separation techniques.

2.7 Other Related Research

The widely acceptable separation of kernel from user modules enhances
operating system robustness. Simplifying construction of research operating
systems through extensive modularity of different operating system compo-
nents is the goal of [57]. Likewise, Choices is an experimental research oper-
ating system built around an object-oriented framework for rapid prototyping
[28].
Realtime operating systems were developed over the years with various fault
tolerance mechanisms as mentioned above. Qnx [115] is one of the leaders
with a micro-kernel architecture and restart mechanisms. Other academic
projects are eCOS [117] and ChorusOS [7]. In [122] Minix is enhanced with
additional scheduling algorithms, but no details for the techniques that make
it “realtime” are given.
An architecture that isolates the operating system from driver failures by re-
stricting driver access to kernel data structures, and monitors them for relia-
bility purposes is described in [136]. An operating system which uses statistics
tools to watch for various errors is suggested in [125]. In [125] compiler sup-
port for eliminating buggy program paths is presented. The system adapts
through activity analysis and simulation of various competing policies. K42
was an IBM open source operating system project (part of the autonomic com-
puting initiative) that had strong monitoring and tracing capabilities together
with hot-swapping [5]. A general algorithm/mechanism that affects the sys-
tem based on continuous feedback is described in [51]. In KeyKOS [87] all
resources are given through persistent capabilities (see also [36] and [92]).
They claim that capabilities may serve not only for external security, but also
against buggy programs [87]. A self-stabilizing distributed file system for
Linux, based on replication is presented in [45]. The use of a sandbox is sug-
gested in [146]. The design of the sandbox has similarities with ours, for exam-
ple, the address validation procedure and the use of read-only code (in [146] a
RISC architecture is used).

2.8 Summary

Extensive theoretical research has been done towards self-stabilizing sys-
tems [41] and recovery-oriented /autonomic-computing/ self-repair/disaster-



14 Related Work

recovery /reliability- availability- serviceability, see [24, 27, 35, 43, 58, 79, 112]
and the references therein. Some systems are built to cope with severe fault
combinations such as [27, 45].

However, none of the above suggests a design for the core of an operating
system that is self-stabilizing and can withstand any combination of transient-
faults, which is the goal of this work.



Chapter 3

System Models and Assumptions

3.1 The System Model

This chapter defines an abstract model for the operating system and its
interaction with the microprocessor/hardware on one hand and with the ap-
plications/users on the other hand. We start in defining the model for a pro-
cessor.
The processor. The Intel Pentium processor [75] was chosen as a specific ex-
ample to refer to when presenting our requirements and design approaches
for self-stabilizing operating systems. In the sequel the notation [75] {volume/
chapter.paragraph} is used to refer to a particular item of the Pentium man-
ual. For simplicity we only consider the real-addressing mode of operation of
the Pentium processor which omits protection mechanisms [75]{1/3.3} (the re-
sults presented here can be applied, with a few modifications, to the protected
mode as well).

The processor (or microprocessor) is defined by an operation manual, e.g.,
[75]. The microprocessor state is defined by the contents of its internal memory
and the values of its input/output pins, 〈registers, i/o pins〉.

The registers (see [75]{1/3.2, 1/3.4}) include the program counter (pc ) or in-
struction pointer (ip ) register. In [75] this register is actually a combination of
several registers according to the processor addressing mode. To simplify the
discussion we assume there is a single register containing the physical address
of the next operation to be performed. The registers also include the processor
status word (psw) or flag register, which determines the current mode of op-
eration. In particular, the psw contains a bit indicating whether interrupts are
enabled.

The general purpose registers are used for arithmetic-logic operations, mem-
ory addressing and indexing operations. The stack registers mark the base and
head of a stack in the memory. For this model we omit other registers which
typical processors have, such as the special arithmetic registers. Also we do not
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deal with internal control and microcode registers that cannot be controlled by
the operating system programmer.

A clock tick (or pulse) triggers the microprocessor to execute a processor step,
where the inputs and the current state of the processor are used to define the
next processor state and the outputs. The inputs and outputs of the processor are
the values of its I/O pins whenever a clock tick occur. The processor uses the
I/O pins values to communicate with other devices, mainly with the memory
via its data lines [75]{1/13}. The interrupt pin which is connected to external
I/O devices, is used to signal the processor for (urgent) service requests. When
the pin is set and the interrupt flag bit (if ) is cleared in the PSW, the processor
saves the program counter and PSW register values in the memory address
pointed to by the stack registers. Then the processor loads the program counter
with a value of an appropriate interrupt handling procedure memory address,
causing the processor to leave the currently executed code [75]{1/6.4, 3/5}.
The NMI pin acts as an interrupt pin, except that the NMI request is not masked
by the interrupt flag. When the processor handles one NMI, other NMI’s are
ignored until an iret operation is executed [75]{3/5.7}.

A processor step psj = (s, i, s′, o) is a transition (triggered by a clock tick)
from the processor state s to another state s′, where s′ and the values of the
output pins of the processor, o, are determined by the current state of the pro-
cessor, s, and the current inputs, i. In fact the processor can be viewed as
a transition function defined by, e.g., [75]{2/3.2, 4.1}. A processor execution
PE = ps1, ps2, · · · is a sequence of processor steps such that for every two suc-
cessive steps in PE, psj = (s, i, s′, o) and psj+1 = (s, i, s′, o) it holds that s′ = s.

Next we move to describe the model for the entire system.
The system. The system is modeled by a tuple
〈processor,memory, I/O connectors〉. The memory is the direct storage device
connected to the processor. It has a linear address space which is used for
accessing ROM and RAM components. The memory contains code and data
of the operating system as well as of other applications. The memory also
contains a place for the stack and an interrupt descriptor table (IDT) which
holds addresses of interrupt handling routines which also reside in memory.
The ROM part of the memory is non volatile and its content is guaranteed to
remain unchanged. I/O state is the value of the pins connecting to peripheral
devices. We assume that any information stored in the interface cards for these
devices, is part of the memory.

We assume that in every infinite processor execution, PE, the processor ex-
ecutes fetch-decode-execute infinitely often. Moreover, the processor executes
a fetched command according to its specification [75]{2/3.2, 4.1}, where the
state of the processor when the first fetch starts is arbitrary. The assumption
concerning the repeated execution of fetch-decode-execute can be achieved by
techniques presented in [43] and [44].

A system configuration is a processor state together with the content of the
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system memory. A system execution E = (c1, a1, c2, a2, ...) is a sequence of al-
ternating system configurations and system steps. A system step consists of
a processor step together with the effect of the step on the (external) memory
(and other non stateless devices, if they exist). Note that the entire execution
can be defined by the first (for achieving self-stabilization usually assumed
arbitrary) configuration and the external inputs at the clock ticks.
Self-stabilization. roughly speaking we would like the system to converge to
a desired behavior following the occurrence of transient faults. We define the
desired behavior by a set of system execution called legal executions. The legal
execution can be syntactically defined (which is some times tedious), by defin-
ing the allowed combination of variable values in a configuration, called a safe
configuration. The set of safe configurations is closed under system step execu-
tions and the infinite executions that starts in a safe configuration are proven to
be legal executions. Once safe configurations are defined and proven safe, the
system designer should prove stabilization by proving that any infinite sys-
tem execution includes a safe configuration. Here we give a different implicit
definition of the set of legal executions.

We define a legal execution to be any execution that starts in a system config-
uration in which the operating system is loaded properly into the memory and
the program counter points to the memory location of the first operating sys-
tem machine command, and during the execution the operating system carries
its job exactly according to the operating system specifications (defined by e.g.,
a manufacturer manual). We also allow every suffix of a legal execution to be
in the set of legal executions.

A weak legal execution is an infinite concatenation of non empty prefixes of
legal executions, thereby allowing repeated restarts of the system.

We conclude the definition of a self-stabilizing operating system as follows:
• An operating system is a self-stabilizing operating system iff every infinite

execution of the system has a suffix in the legal executions set.
• An operating system is a weak self-stabilizing operating system iff every in-

finite execution of the system has a suffix in the weak legal executions set.

3.2 Additional Necessary and Sufficient Hardware
Support

We suggest augmenting the system with several devices/components to
enable the system to be self-stabilizing. In particular, we suggest adding (1)
a watchdog device, (2) a mechanism causing the microprocessor to leave the
NMI state automatically after a predefined number of clock ticks, and (3) a
read-only memory for the code of the program and the interrupt table.

A watchdog is a device connected to the NMI pin which is guaranteed to pe-
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riodically generate a (reset) signal in a predefined time interval. Watchdog de-
vices are standard devices used in fault-tolerant systems e.g., [27, 43]. We have
to design the watchdog to be self-stabilizing as well. The watchdog state is in
fact a countdown register with a maximal value equal to the desired interval
time. Starting from any state of the watchdog, a signal will be triggered within
the desired interval time and no premature signal will be triggered thereafter.
The watchdog signals the processor through the NMI pin (in the first presented
scheme of Chapter 4, it may trigger the RESET pin instead).

In order to guarantee that the processor will react to an NMI we suggest
the addition of an internal countdown register or NMI counter as part of the
microprocessor architecture (maybe part of the PSW). This NMI counter will be
decremented in every clock tick until it reaches zero. Whenever an NMI is exe-
cuted the NMI counter is raised to its maximal value (chosen to be a fixed value
greater than the expected execution length of the NMI handler). The processor
does not react to NMIs when the NMI counter does not contain zero. In addi-
tion, the iret operation assigns zero to the NMI counter. Thus, we guarantee
that from any processor state NMI’s will eventually be handled, and in addi-
tion, masking other NMI’s during the period in which one NMI is handled. We
say that a processor is in an NMI state whenever the NMI pin is set and the NMI
counter contains 0, which means that the next operation that will be executed
is the first operation of the NMI handler procedure1.

A read only memory (ROM) device which is assumed to be non-volatile
should be used. Specifically, the ROM will contain at least the interrupt table
entry for the NMI and the NMI handler routine (which in some of our designs
is an operating system stabilizer procedure).

As demonstrated in Chapter 1 the IDT which contains the NMI handler ad-
dress is pointed to by the IDTR register. We assume that the IDTR register value
can not be changed.

As previously mentioned, we assume that the processor is always in real
mode (hardwired flag value ensure that it does not change state to protected
mode). Otherwise we would have more complications to ensure that the NMI
is executed as desired since in protected mode the value in the IDTR points to
a descriptor and not to a plain address.

Figure 5.1(a) of Chapter 5 illustrates the legal execution of the system. The
system is composed of various processes all of which execute in there turn.
Additionally, there is a scheduler which is part of the NMI handler (details
concerning the scheduler appear on Chapter 5). The scheduler repeatedly es-
tablishes its own consistency and also carries the process switch operation. It
then validates the next process’ state and sets the program counter so that the
next chosen process will be executed. Due to a fault, the system may reach

1 Note that the Pentium design has a similar mechanism that ensures that no NMI is exe-
cuted immediately after an sti instruction [75]{2/4.1-STI}, see also [75]{2/4.1-POP}.
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any possible state, as seen in Figure 5.1(b). However, due to the NMI trigger
design, eventually the scheduler code will be called and will establish the re-
quired behavior.

Note that some of the required hardware is widely used in embedded solu-
tions (e.g., platforms for the systems mentioned in Section 2.4). However, the
ubiquitousness of the IA32 platform allows us to: a) easily find simple needed
peripheral implementations. b) establishing a solution based on a vastly de-
ployed platform.

3.3 The Error Model

We assume that every bit of the system’s variables might change following
some transient fault (e.g. soft-error). We also assume that some code portions
are kept in read-only nonvolatile memories which can not be corrupted (say,
by means of hardwired ROM chip) and, thus, are not part of the system’s state.
We remark that a corruption of the code may lead to an arbitrary (Byzantine)
behavior!
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Chapter 4

Blackbox Techniques

Chapter Organization. Section 4.1 describes the first simplest technique we
propose for the automatic recovery of an operating system, where the operat-
ing system is reinstalled and then is re-executed. Section 4.2 adds details for
reinstall of the executable portion, monitoring the state of the operating system
and assigning a legitimate state whenever required.

4.1 Periodical Reinstall and Restart

In this section we present two design options for augmenting existing op-
erating systems with an additional self-stabilizing layer that will periodically
reinstall the executable code of the given operating system, and then either
start executing from the predefined initial command statement, or from the
position of the program counter prior to the reinstall. Both approaches have
the flavor of a software rejuvenation technique [69], but do not result in a purely
self-stabilizing operating system. In the first design scheme the system is (pe-
riodically) reinitialized even when it is operating well. In the second design,
even though the execution continues from the same executable position using
the (soft) state prior to the executable rejuvenation, the soft state variables may
be inconsistent, and therefore the system as a whole will not be in a consistent
state. Still, both schemes lead to more sophisticated solutions.

Periodic re-install and start execute. The additional watchdog device (see
Section 3.2) periodically (when the period is long enough for the system to op-
erate, say every few days) resets the processor and causes it to enter a state
from which the processor reinstalls the entire operating system and starts exe-
cuting it from the beginning.

Periodic re-install and continue execute. Similar to the former options, only
this time we use the interrupt semantics of the processor to ensure that after
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re-installation the system continues it’s execution from where it stopped.

Implementation issues. Right after a computer is booted, the core of an op-
erating system is loaded to the computer’s Random Access Memory (RAM)
which we will simply call memory. This is done by procedures residing in non-
volatile Read-Only-Memory (ROM) such as EPROM (Erasable Programmable
ROM) which is also called Basic-Input-Output-System (BIOS) or more broadly
firmware. We would like to guarantee that the code of the operating system
is correctly loaded. Assuming that the operating system code itself is self-
stabilizing, it might happen that the memory holding the operating system
code will be corrupted, (e.g., due to soft errors) leading to a situation in which
the operating system does not function as desired and obviously will not con-
verge to a valid state (will not stabilize). In order to cope with code corruptions
we use a BIOS flavor procedure which will reside in ROM. This procedure will
periodically reinstall the operating system from a (CD) ROM image (for exam-
ple) and then restart the execution of the operating system.

; copy OS image
1 mov ax, OS ROMSEGMENT
2 mov ds, ax
3 mov si, 0x00
4 mov ax, OS SEGMENT
5 mov es, ax
6 mov di, 0x00
7 mov cx, IMAGE SIZE
8 cld
9 rep movsb

; prepare for journey
10 mov ax, OS SEGMENT
11 mov ss, ax
12 mov sp, 0xFFFF
13 push word DEF FLAG;0002H
14 push word OS SEGMENT;cs
15 push word 0x0 ;ip
16 iret

Figure 4.1: Operating System Watchdog/Reinstall Procedure

As mentioned, Intel’s Pentium 4 processor was chosen for demonstrating
the self-stabilizing watchdog/reinstall technique. The procedure, called the
watchdog/reinstall procedure, is presented in Figure 4.1. It is written in as-
sembly language, which is directly assembled into the processor’s opcode (us-
ing the NASM open-source assembler [107]). This procedure resides in the ROM
and is reached following the NMI trigger. Note that any invocation of the NMI
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will be followed by executing the watchdog/reinstall procedure. A descrip-
tion of this procedure follows.

In lines 1-9 of Figure 4.1 the whole operating system code and data are
loaded from the ROM into the RAM. This is done by assigning an index register
(ds+si ) with the fixed memory address of the source bytes in the ROM (Lines
1-3) and another index register (es+di ) with the fixed destination RAM (Lines
4-6). In line 7 the cx register is assigned by the operating system code length
and in line 8 the direction of the copy operation is set. Line 9 performs the
actual copy process while decreasing cx from the fixed code length (bounded
by cx and NMI counter size) down to 0. Lines 10-15 prepare the system con-
figuration with the address of the operating systems first command. This in-
cludes setting the stack registers to point to the stack in memory (lines 10-12)
and pushing to the stack the fixed values which form the program counter
(cs+ip ) and the flag register to the initial values (e.g., for the flag it is “2”
according to [75]{1/3.4.3}) for running the operating system in memory (lines
13-15). Line 16 performs two assignments in one step: the assignment of the
program counter by the value of the beginning of the operating system code,
and secondly the assignment of the flag register value by popping the value
from the created stack. Lastly, this iret command of Line 16 enables NMIs.

Correctness proof. We will now prove that the watchdog/reinstall procedure
combined with a given operating system forms a weakly self-stabilizing oper-
ating system. Recall that a processor is in an NMI state whenever the NMI pin
is set and the NMI counter contains 0, which means that the next operation that
will be executed is the first operation of the NMI handler procedure.

Lemma 4.1.1. In every infinite execution E, the program counter contains the
address of the watchdog/reinstall procedures first instruction, infinitely often.

Proof. Since the execution is infinite, it suffices to show that beginning from
any state, the address of the watchdog/reinstall procedure will be put into
the program counter after finitely many steps. The design of the NMI counter
ensures that in each clock tick the value of the NMI counter is reduced by one
until it reaches zero unless the NMI procedure is started to be executed. Thus,
if no NMI procedure is started to be executed then there is an infinite suffix
of the execution in which in every configuration the NMI counter is zero. The
watchdog triggers NMI’s infinitely often so NMI state is reached and in the next
step the processor will insert the address of the watchdog/reinstall procedure
into the program counter.

Lemma 4.1.2. In every execution E of a self-stabilizing microprocessor it holds
that immediately following the starting of the execution of the watchdog/reinstall
procedure, it is completely executed.
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Proof. Since we assume that the microprocessor is self-stabilizing there is a
suffix of E, E ′, in which the microprocessor will repeatedly fetch-decode-(and
properly)-execute the assembly code.

Consider the configuration c in E ′ following which the execution of the NMI
procedure starts (in c the program counter points to the first instruction of Fig-
ure 4.1 and the NMI is set to its maximal value). Note that in the system step
that is triggered by NMI, the processor is reading the watchdog/reinstall pro-
cedure address using a (hardwired internal) predefined address. The watch-
dog/reinstall procedure resides also in ROM.

The step that follows c starts with an NMI counter value larger than the
number of operations in the NMI procedure. Thus, until the procedure com-
pletion the processor is not stopped by other NMIs or any other interrupt.

The NMI procedure has a sequential code with no loops and with only
finitely many operations. Since the microprocessor meets its specifications
during E ′ it holds that the microprocessor will execute the machine commands
one after an other until completion.

Note that line 9 of Figure 4.1 should be examined further. Although written
as a single operation rep movsb the processor is actually performing a (hard-
ware) loop instruction for byte coping, but as mentioned in [75]{2/4.1-REP}
when there are no interrupts this loop is controlled by the value of the cx reg-
ister. The loop is executed until the register cx becomes zero, the value of cx is
reduced in every loop cycle, thus the cx register will eventually become zero
and the processor will continue to complete executing the code. Alternatively
we could replace the single operation in line 9 with the required number of
movsb operations, at the cost of lengthening the code. See also in the coming
Section 5.1 for further discussion concerning the execution of loops.

Lemma 4.1.3. In every execution E of a self-stabilizing microprocessor it holds
that the NMI procedure repeatedly reinstalls and restarts the operating system.

Proof. In the code of Figure 4.1 all the registers appear for the first time as a left
operand of the mov instruction, thus assigning the register a new value.

The watchdog/reinstall procedure reinstalls the operating system using a
(non-volatile) copy that resides in ROM. The copy is performed by the fol-
lowing machine command sequence: (1) setting the appropriate values in the
registers ds, es, si, di and cx (lines 1-7) and, (2) setting the direction
flag (line 8). (3) performing the actual copy (line 9).

Since the processor is self-stabilizing there is a suffix of E in which all the
above machine command are executed as described in [75]{2/3.2, 4.1}.

Finally, the watchdog/reinstall procedure uses the iret machine instruc-
tion to go to the beginning of the operating system code and to reset the NMI
counter and the interrupt flag. The iret instruction enables NMIs [75]{3/5.7.1}
and assigns the program counter a value from the stack. The value in the stack
is set, in lines 10-15, without counting on any previous register value.
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Thus the reinstall does not depend on any previous state and the system,
reinstalls the operating system and starts its execution from the beginning as
required.

Theorem 4.1.4. The system is a weakly self-stabilizing operating system.

Proof. Lemma 4.1.1 implies that in every execution E of a self-stabilizing mi-
croprocessor, eventually the processor starts executing the NMI procedure. We
claim that the configuration c in which the NMI procedure is started to be exe-
cuted, is a safe configuration. By Lemma 4.1.2 a complete execution of the NMI
procedure is performed following c, and by Lemma 4.1.3 the operating system
is reinstalled and restarted. Thus, E has a suffix following c that belongs to the
weakly legal execution set, and therefore c is safe and the system is a weakly
self-stabilizing operating system.

4.2 Reinstall Executable and Monitor State

In this section we present approaches that couple the reinstall/repair pro-
cedure with an on-line consistency check that does not trigger an execution of
the reinstall/repair procedure as long as the operating system is in a consistent
state.

In order to have a fully self-stabilizing operating system, we can use the
operating system watchdog/reinstall procedure of Figure 4.1 with the follow-
ing modifications. (1) load from ROM only the operating system code and not
the data, thus refreshing the code but not resetting the operating system data
structures, (2) examine whether the operating system is in a consistent state by
various consistency checks, and (3) check that the return address is within the
operating system code boundaries and jump over there, otherwise jump to the
operating system first command.

A more sophisticated approach will use correcting actions that are less se-
vere than reinstall and start execute. Namely, we suggest performing con-
tinuous reinstall of a monitor/restarter (see [24]) and establish consistency.
In this option the stabilization procedure is more sophisticated, it periodi-
cally performs various consistency checks to the system. When inconsistencies
are found automatic repair actions are taken according to the problem which
arose. This approach fits more when the operating system is small, such as
(minimal configuration of) the TinyOS [67], and formal predicates covering all
possible inconsistencies can be developed.

4.3 Concluding Remarks

In this chapter we presented the first building blocks for self-stabilizing op-
erating systems. The performance of an operating system running as a black-
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box can be tuned according to the time period required and chosen for recov-
ery.

We have used the above procedure (Figure 4.1, using the BOCHS [20] simu-
lator) and changed the contents of the RAM during execution of the code, and
observed that the procedure ensure stabilization, namely, the processor even-
tually continues to execute the correct code of the operating system.

The first two approaches presented here resemble rejuvenation techniques,
which do not meet the self-stabilization requirements, and are mainly used
as an introduction for the later presented fully self-stabilizing solutions. The
main drawback of these methods is that the system keeps restarting (hiccups)
even when the system is operating as it should, which is not always acceptable.
Additionally, these techniques do not take into account corruptions to the re-
juvenation system itself (thus, “not guarding the guard”). In order to achieve
the goal of composing self-stabilizing operating systems, one must consider
the entire state space of the systems. Thus, system fundamentals need to be
carefully designed and proved. The line-by-line examination style used here,
is essential for demonstrating the way one should ensure the correctness of a
program from any arbitrary initial state.

Alternatively to the black-box approach, the operating system code can be
“tailored” to be self-stabilizing. In this case the operating system takes care of
its own consistency. This approach may obviously lead to more efficient self-
stabilizing operating systems, since it allows the use of more involved tech-
niques. The next three chapters detail this tailored approach.



Chapter 5

Process Scheduling

5.1 Introduction, Settings and Requirements

One major task of the operating system is processes scheduling. The part of
the operating system which is responsible for process scheduling is the sched-
uler. For example, in Minix [139] the scheduler forms the lowest and basic level
of the operating system kernel. The scheduler is responsible for switching the
execution of the processor from one process to another. A process is modeled by
a series of machine instructions and data that reside in a particular part of the
memory. The scheduler uses a process table for scheduling management. The
table consists of the state of the processor (internal register values) including
the value of the current program counter. Whenever the scheduler is executed
by the processor it may load the state of one of the processes from the table
and change the value of the program counter to continue the execution of this
process. The rest of the settings for this chapter are based on Chapter 3.

Requirements. There are several possible requirements that the scheduler
should satisfy. Here we require:
(r1) Fairness. In every infinite execution E, (1) for every process there are in-
finite number of configurations in which the program counter contains an ad-
dress of one of the process’ instructions in memory, (2) the execution formed
from taking only the configurations belonging to this process forms an execu-
tion according to the instruction specifications.

Note that fairness does not guarantee stabilization of several processes.
Processes may have mutual influence through memory due to undesired as-
signment of values to variables read by other processes. Thus, we state the
next requirement.
(r2) Stabilization preservation. In addition, we would like to ensure that the
scheduler preserves the self-stabilization property of a process, namely a self-
stabilizing process will be executed and reach a safe state.
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Next we describe a very simple scheduler in which we require that the pro-
gram of a process uses predefined (hardwired in the code) memory addresses
for data and branches. Then we present a scheduler that relaxes these assump-
tions.

5.2 A Primitive Scheduler

The scheduler restricts the set of machine code instructions that we allow.
Here we assume the Harvard model in which the code of each process is in
ROM and the data is in a separate RAM area. We assume that there are no inter-
rupts, and only branch commands (e.g. jmp and jbe ) to a fixed ROM location
that is within the same process commands location, and follows the current
command location, are allowed. For obvious reasons, we do not allow the
use of the halt command (and a like). Similarly, we assume that the refer-
ences to RAM addresses are fixed in the code (rather than indirect addresses).
To furthur simplify our claims, we also require that the code of the processes
does not contain loops. This way the advancement of the program counter,
clearly results in switching between processes.

The above assumptions are used to prove that eventually every self-stabilizing
process eventually stabilizes (see [42] for observations concerning parallel com-
position).

The code of an independent self-stabilizing process is a do forever loop.
We remove the loop from the code and replace it with a scheduler designed to
repeatedly execute the internal commands of the do forever loop.

The idea is to write the code of N processes in the ROM one after an other
and to add a jmp command to the first line of the ROM in every unused ROM
location. This way we view the execution as an execution of a single program
that consists of several sub-program that are executed infinitely in a fixed pre-
defined order. We do not allow (global) stack operations (a separate stack for
each process may be carefully used). We also assume that the program counter
always holds an instruction starting address (see details in Section 5.3).

Note that the restrictions concerning the machine code are necessary since
the program counter may point (due to a soft error) to some data area. The
data maybe interpreted as, say, a self-loop (jmp machine code) or even as a
halt instruction.

Theorem 5.2.1. The primitive scheduler is a self-stabilizing scheduler.

Proof. Given any self-stabilizing processor state the processor will eventually
fetch one of the commands in the ROM. This command is either a command
of one of the processes or a jmp to the first command in the ROM. By our
restrictions of the choice of allowed machine instructions, the processor will
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continue executing machine instructions and will reach the first instruction
infinitely often.

The first process will be executed from the first instruction infinitely of-
ten. Whenever the processor reaches the last instruction of the first process’
original do forever loop, the processor will execute the first instruction of the
second process. Thus, the second process’ first command will be executed in-
finitely often. Similarly, the next processes will be executed infinitely often.
Therefore, the fairness requirement holds.

Each process is assumed to be self-stabilizing when executed by itself. Since
every process is executing infinitely often and does not change the state of
other processes (does not have access to the variables of other processes) every
process eventually stabilizes, and the stabilization preservation requirement
holds as well.

5.3 A Self-Stabilizing Scheduler

In this section we further enhance the capabilities of the scheduler, allowing
the scheduler to switch processes in any line of their code. In contrast to our
primitive scheduler we allow fine tuned fairness among processes that have
different numbers of steps. For example, a process with a thousand sequential
machine code lines will not cause a delay in executing a process with only ten
machine code lines. Another issue is the possibility to change the code of the
processes that resides in RAM as opposed to code hardwired in ROM which we
assumed in the case of the primitive scheduler.

In order to allow a (semi) dynamic set of processes we cannot assume the
Harvard model. We do assume that the programmer of the processes makes
sure that the branches (e.g., jmp , jbe ) are always to an address within the
process code location (which is in fact part of the process code correctness)
and the data of each process resides in a distinct separate RAM area. When
there is a mixture of data space it is possible that stabilization of each process
when executed separately, may not imply stabilization when scheduled by our
scheduler. The reason is mutual unplanned updates of variables.

We also restrict the set of allowed machine code instructions. We do not al-
low stack operations (processes may implement a stack in their own data area
and access it with general registers). We assume that the processes do not gen-
erate interrupts nor exceptions. For obvious reasons, we do not allow the use
of the halt command. Note that the Intel architecture allows variable instruc-
tion length [75]{2/3.3.1}. This may cause interpreting partial instruction as a
different instruction which can lead to say, mutual jumps between such partial
instructions. A solution to this problem may be achieved by padding each in-
struction with nop s up to a fixed length (an assembler post processing might
be relevant here) and the restriction of the scheduler that the ip value holds
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an address of an instruction start, before the execution of iret . (Section 4.1
did not have to address this issue, since the NMI procedure sets the program
counter to a fixed correct value).

The main idea used by our scheduler is to maintain a record for each pro-
cess of the N possible processes in a fixed location in the RAM. The record
includes register values from the last state of the processor, when the process
stopped being executed, namely, the values of the general purpose registers,
the flag register and the program counter. The code of each process will be
(repeatedly) read by the scheduler form a secondary memory device (e.g., CD-
ROM) with additional information such as the length of the code. The code for
reloading the processes’ code can be similar to the one presented in Section 4.1,
alternately, one may assume that a special process among the N processes, that
resides in ROM, is responsible to refresh the code of the remaining processes.

The scheduler code itself resides in ROM and is activated by the NMI as
in Section 4.1. When an NMI occurs, the processor first pushes the program
counter and the flag register values to the stack. The scheduler has a variable
in the RAM (a part of its own state) that keeps the index of the process that is
currently executed. We choose the number of bits used for the above variable
to be lg(N), which implies a correct scheduler state with any arbitrary content
of the variable (assuming N to be a power of 2, which can be achieved by
adding some ”dummy” processes).

Figure 5.1(a) illustrated the legal execution of the system. The system is
composed of various processes all of which execute in there turn. Additionally,
there is a scheduler which is part of the NMI handler. The scheduler repeatedly
establishes its own consistency and also carries the process switch operation. It
then validates the next process’ state and sets the program counter so that the
next chosen process will be executed. Due to a fault, the system may reach any
possible state, as seen in Figure 5.1(b). However, due to the NMI trigger design,
eventually the scheduler code will be called and will establish the required
behavior.

Interrupts that are not NMI interrupts and exceptions (for example division
by zero, caused by transient fault) are handled by default handlers that reside
in the appropriate addresses in ROM (which is correctly linked by the interrupt-
descriptor-table). One possibility to cope with exceptions is to use a procedure
that reloads the operating system similar to the scheme presented in Section
4.1. The code of the scheduler appears in Figures 5.2 to 5.5. Roughly, the
scheduler performs the following: (1) refreshes fixed addresses stored in ss,
sp, ds and stores ax,bx,ds values towards sequel use (Figure 5.2 Lines 1-
8), (2) saves interrupted process state in a process table (Figure 5.3 Lines 9-33),
(3) increments current process variable (Figure 5.4 Lines 34-37). The (4)th and
last portion deals with loading the state of the next process into the processor
registers, verifying that the program counter of the loaded process is within
the process RAM limits and switch to execute the next process (Figure 5.5 Lines
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Figure 5.1: System Transitions

38-68). Details for each code portion follows. the reader may choose to skip
the implementation details and continue with the correctness proof ahead.

The code for the refresh/store portion appears in Figure 5.2. The code starts
by storing the value of ax in the stack to allow further execution of machine
codes (in which ax almost always appears). The value of ax is stored as the
immediate successor (both in terms of time and address) of the values of the
program counter and flags register, that are stored during the NMI execution
(line 1 of Figure 5.2). Note that the value of ss may be corrupted, so line 1 will
result in storing the value of ax in an arbitrary place in memory. Fortunately,
once ss is assigned by the fixed value STACKSEGMENT(in lines 2 and 3) then
it contains this fixed value throughout the execution. As mentioned above,
we handle exceptions due to abnormal values of ss , say, during the execution
of the mov instruction of line 1, by complete reinstallation of the operating
system. Namely, the exception handler points to a fixed address in ROM in
which a procedure similar to the one in Section 4.1. Lines 2 and 3 of Figure 5.2
use, the now “released”, ax to assign ss with the fixed value STACKSEGMENT.
Line 4 assigns the fixed value STACKTOPinto sp , this is done as a preparation
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;Verify segment and stack registers
;First save infected registers
1 mov word [ss:STACK TOP-2], ax
2 mov ax, STACK SEGMENT
3 mov ss, ax
4 mov sp, STACK TOP
5 mov word [ss:STACK TOP-4], ds
6 mov word [ss:STACK TOP-6], bx
7 mov ax, DATA SEGMENT
8 mov ds, ax

Figure 5.2: Refresh Fixed Addresses and Store ax,bx,ds Values Towards Se-
quel Use

for the iret instruction in Line 63 (note that this is the only use of sp in the
code). In Lines 5 and 6 we “release” ds and bx for use in sequel instructions,
we store their values in a fixed location that is related to ss (note that the sp
value is not involved/changed in these instructions). In Lines 7 and 8 ds is
assigned by a fixed value in which the index of the interrupted process and
the records for each process are stored.

Figure 5.3 contains the code for storing register values of the interrupted
process in memory (in the process record location). Lines 9-14 assign the in-
terrupted process record address to the bx register. First the index of the in-
terrupted process (Line 9) is copied to the ax register, then the value of ax is
masked to include only lg(N) bits (Line 10) (note that for simplicity, we as-
sume here that N = 2i for some integer i) which will be part of al , the least
significant part of ax . In line 11 the address of the beginning of the memory
portion in which the records of the processes are maintained is loaded into bx .
Lines 12-14 consists of the instructions in which the address of the record of
the interrupted process is calculated using the bx (that has been computed in
line 11), the fixed size of a record that is assigned to ah in line 12. In line 13
the index of the interrupted process (stored in al ) is multiplied by the value
in ah and stored in ax . Note that the value of processes N and the size of the
record for each process are small enough to eventually avoid overflow when
multiplied (in line 13) and added (in line 14) to the value in bx . In lines 16-
26 the values of flag, cs, ip, ax, ds and bx registers that were placed
in memory (near the stack) following the NMI are copied to the record of the
interrupted process. Each copy is performed using two instructions, the first
copies the value from the fixed place in memory to ax and the second copies
from ax to the record of the process, where bx points to the record. Lines 27-33
complete the record of the interrupted process copying the values of the other
registers that form the processor state, when interrupted, to the record of the
interrupted process. Note that, the register values stored in line 27-33 were not
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9 mov word ax, [processIndex]
10 and ax, N MASK
11 lea bx, [processTable]
12 mov ah, PROCESSENTRYSIZE
13 mul ah
14 add bx, ax ;point to current process’ state
15 mov ax, [ss:STACK TOP+4] ;save flag
16 mov word [bx], ax
17 mov ax, [ss:STACK TOP+2] ;save cs
18 mov word [bx+2], ax
19 mov ax, [ss:STACK TOP] ;save ip
20 mov word [bx+4], ax
21 mov ax, [ss:STACK TOP-2] ;save ax
22 mov word [bx+6], ax
23 mov ax, [ss:STACK TOP-4] ;save ds
24 mov word [bx+8], ax
25 mov ax, [ss:STACK TOP-6] ;save bx
26 mov word [bx+10], ax
27 mov word [bx+12], cx ;save cx
28 mov word [bx+14], dx ;save dx
29 mov word [bx+16], si ;save si
30 mov word [bx+18], di ;save di
31 mov word [bx+20], es ;save es
32 mov word [bx+22], fs ;save fs
33 mov word [bx+24], gs ;save gs

Figure 5.3: Save Process State

affected by the NMI nor by the scheduler activity up to this point.

34 mov word ax, [processIndex]
35 inc ax
36 and ax, N MASK
37 mov word [processIndex], ax

Figure 5.4: Increment Process

In Figure 5.4 the scheduler increments the process index by 1 modulo N ,
and in this way achieves fairness among the processes (round robin). In line
34 the scheduler copies the index value of the interrupted process from a fixed
place in memory. Then in line 35, the scheduler increments the process index
by 1 and in line 36, performs the modulo operation by masking the result of
the increment. The new calculated index is stored back to memory in line 37.

The code for loading the new process appears in Figure 5.5. In lines 38-41
the bx register gets the address of the record of the next process (similar to the
instructions in lines 9-14). Lines 42-68 restore the next process state by copying
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38 lea bx, [processTable]
39 mov ah, PROCESSENTRYSIZE
40 mul ah
41 add bx, ax ;bx points to next process state
42 mov ax, [bx] ;restore flag
43 and ax, IP FLAG
44 mov word [ss:STACK TOP+4], ax
45 mov ax, [bx+2] ;restore cs
;check cs validity
46 lea si, [processLimits]
47 add si, word [processIndex]
48 add si, word [processIndex]
49 cmp ax, [si]
50 jb CS OK
51 mov ax, [si] ;init cs
CS OK:
52 mov word [ss:STACK TOP+2], ax
53 mov ax, [bx+4] ;restore ip
54 and ax, IP MASK;validate ip
55 mov word [ss:STACK TOP], ax
56 mov cx, word [bx+12] ;restore cx
57 mov dx, word [bx+14] ;restore dx
58 mov si, word [bx+16] ;restore si
59 mov di, word [bx+18] ;restore di
60 mov es, word [bx+20] ;restore es
61 mov fs, word [bx+22] ;restore fs
62 mov gs, word [bx+24] ;restore gs
63 mov ax, word [bx+8] ;restore ds
64 mov word [ss:STACK TOP-2], ax
65 mov ax, word [bx+6] ;restore ax
66 mov bx, word [bx+10] ;restore bx
;finally ds
67 mov ds, word [ss:STACK TOP-2]
;Jump to next process
68 iret

Figure 5.5: Load Process State

register values from the record of the process. Lines 42-44 start by copying the
flag register value which is copied to the fixed place in stack where it will
be restored by the iret instruction. Line 42 verifies that the loaded value is a
legitimate one (although for application status bits, this is only an optimization
since the application should stabilize from any state). Lines 45-52 prepare the
restore of cs , the first half of the program counter. For simplicity, we assume
that each process has a single distinct cs which is the most significant part of
the program counter.

The value of cs is first copied from memory in line 45. Lines 46-51 ver-
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ify that the program counter value is within the program of the process. The
register si is assigned by the address in ROM of the table in which the fixed
values of cs for each process are stored (adding the first address of the table
processLimits plus twice the processIndex, since each address occupies 2
bytes in memory). In case the value of cs is not equal to the value pointed
to by si (line 50), cs is assigned by the value pointed to by si , (lines 51, 52,
and 68). Lines 53-55 copy the value of ip , the least significant part of the pro-
gram counter, mask it to yield an address divisible by 16 so that it will point
to the start address of the next instruction, and then copy this value to the
stack. Later it is loaded to the program counter during the iret . We allow
any value of ip (divisible by 16) assuming that the program of the i’th process
occupies the entire memory segment that is defined by the value of si . (One
may pad the program with nop instructions so that in case ip will hold the
address of these instructions the processor will execute all the following nop s
and eventually will reach the address defined by the i’th si and ip =0). Other
techniques that verify the range of ip in a fashion similar to cs validation in
lines 46-51 are optional.

Lines 56-62 restore directly the values of cx, dx, si, di, es, fs and
gs registers. Lines 63-66 restore the values of ds, ax and bx . Extra care is
taken since ds, ax and bx registers are used for the copy process itself: ax
as a temporary storage, ds and bx as the base and the offset to the record of a
process. We first use ax to copy ds into memory lines 63-64. Then in line 64
ax is restored and in line 66 bx is restored. Finally ds is restored by a direct
copy form the memory in line 67. At last in line 68 iret is performed using
registers ss and ip in which we stored the (fixed) address of the stack (lines
2-4). Then the values of the program counter (stored in lines 52 and 55) and the
flags register (stored in line 44) are restored. Thus, the next process is ready to
be executed.

Correctness proof.

Lemma 5.3.1. In every execution E, the code of the scheduler is started to be
executed and is executed from the first instruction (line 1) to the last instruction
(line 68) infinitely often.

Proof. Since the microprocessor is assumed to be self-stabilizing there exists a
suffix E ′ of E, in which it holds that the microprocessor will execute the ma-
chine instructions according to their defined specifications. The argument for
the scheduler code being started infinitely often is exactly like the one pre-
sented previously in Lemma 4.1.1 and is based on the NMI design. The watch-
dog is generating a pulse infinitely often. The pulse causes the processor to
load the first instruction of the fixed (in ROM) scheduler code. Also the NMI
counter mechanism eventually guarantees that for some period of time after
each pulse there will be no interrupts, allowing the processor to perform at
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least the 68 instructions of the scheduler code. The scheduler code is sequen-
tial with no loops (the only jump address is to a fixed greater address).

Lemma 5.3.2. In every execution E of the scheduler each process is executed
infinitely often.

Proof. Each NMI activation causes an execution of lines 34-37 in which the pro-
cess index is incremented by 1 modulo N . Then in lines 38-41 the proces-
sor state of the correspondent process is fetched from the record in RAM and
copied to the actual registers in lines 42-68. The program counter is verified
(lines 46-51, 54) and finally line 68 causes re-execution of that process. Based on
Lemma 5.3.1 this switch will occur infinitely often thus achieving fairness.

In case the code of the processes resides in the RAM, we may use one of the
processes (maybe the first) to repeatedly reload the code of all the processes
from ROM/CD-ROM. In this case, The code of the copying process itself should
be in ROM. Therefore the next Lemma assumes that in every infinite execution
of the system the code of each process is refreshed from ROM infinitely often.

Lemma 5.3.3. The self-stabilizing scheduler preservers stabilization of pro-
cesses.

Proof. Each process is assumed to be self-stabilizing and has its own data area,
so stabilization depends only on the correct execution of the process. Every
time a process is interrupted by the scheduler the processor state is saved in
lines 9-33 to RAM. When the process is rescheduled this state is reloaded in
lines 38-68 to the same previous values. Thus eventually each process execu-
tion achieves the effect of a continuous execution one instruction after another,
so stabilization is preserved.

Theorem 5.3.4. The algorithm presented in Figures 5.2, 5.3, 5.4 and 5.5 is a self
stabilizing scheduler algorithm.

Proof. From 5.3.2 fairness holds. By 5.3.3 stabilization holds, so the scheduler
is self-stabilizing.

5.4 Concluding Remarks

The scheduler component forms the lowest and most basic level of the op-
erating system kernel. The scheduler is the key to executing all other processes,
therefore its correct starting and execution must be guaranteed. This chapter
demonstrated how self-stabilization methods can contribute to the robustness
of this essential component.



Chapter 6

Memory Management

6.1 Introduction

This chapter presents new directions for building self-stabilizing memory
managers as a component of a self-stabilizing operating system kernel. As
mentioned, the classical von-Neumann machine includes a processor, a mem-
ory device and external i/o devices. In this architecture, memory management
is an important task of the operating system’s kernel. Our memory manage-
ment components use the primitive building blocks from Chapter 5 where sim-
ple self-stabilizing process schedulers are presented.

Memory management has influenced the development of computer archi-
tecture and operating systems [16]. Various memory organization schemes
and appropriate requirements have been suggested throughout the years. Here,
we are adding two important requirements, named the eventual memory hierar-
chy consistency requirement and the stabilization preservation requirement. Since
memory hierarchies and caching are key ideas in memory management, the
memory manager must eventually provide consistency of the various mem-
ory levels. Additionally, once stabilization for a process is established, the fact
that process and scope switching occurs and that memory is actually shared
with other processes, will not damage the stabilization property of the process.
These requirements are an addition to the usual efficiency concerns which op-
erating systems must address. Usually, memory management in operating
systems is handled with the assistance of quite a complex state, for example
page tables. A minor fault in such a state can lead to writing wrong data onto
the disk (violation of consistency) or even to corruption of some process’ state
(violation of preservation). Unless the system is self-stabilizing, the corruption
of the tables may never be corrected and the tables’ internal consistency may
never be re-established.
We present three basic design solutions that, roughly speaking, follow the evo-
lution of memory management techniques. The first approach allocates the en-
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tire available memory to the running process, thus ensuring exclusion of mem-
ory access. Since each process switch requires expensive disk operations, this
method is inefficient, . The second solution partitions the memory between
several running processes and exclusive access is achieved through segmen-
tation and stabilization of the segment partitioning algorithm. Both solutions
constrain program referencing to addresses in the physical memory only (or
even in the partition size) and allow only static use of memory.

Following this, we present lease based dynamic schemes, in which the appli-
cation must renew memory leases in order to ensure the correct operation of a
self-stabilizing garbage collector.

Demonstration implementations (which appear in 6.7, the appendix for this
chapter) using the Intel Pentium processor architecture [75] were composed.
The implementations are written in assembly language and are directly as-
sembled into the processor’s opcode (using the NASM open-source assembler
[107]). The reader may choose to skip the implementation details. The Intel
Pentium processor contains various mechanisms which support the robust de-
sign of memory management like segmentation, paging and ring protection.
However, the complexity of the processor (partially due to previous proces-
sors’ compatibility requirements) carries a risk of entering into undesirable
states, and thereby causing undesirable execution. Our proof and prototype
show that it is possible to design a self-stabilizing memory manager that pre-
serves the stabilization of the running processes which is an important build-
ing block of an infrastructure for industrial self-stabilizing systems.

Previous Work. Fault tolerance properties of operating systems (e.g., [136]),
including the memory management layer, were extensively studied as well.
For example, in [10], important operating system memory regions are copied
into a special area for fast recovery. The design of the Multics operating sys-
tem pioneered issues of data protection and sharing, see [33] and [120]. The
algorithms presented here enforce consistency of the data structures used for
memory management. In order to use more complex data structures, the work
of [66] is relevant for achieving general stabilization of data structures. [35]
addresses the issue of automatic detection and error correction in common
high-level operating system data structures (although, not in a self-stabilizing
way). Leases, which are used here, are commonly used as a general fault-
tolerant locking mechanism (see [62, 85]). In [104], leases are used to automat-
ically remove subscriptions in publish-subscribe systems. However, none of
the above suggest a design for n operating system, or, in particular, memory
management that can automatically recover from an arbitrary state (that may
be reached due to a combination of unexpected faults).
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Figure 6.1: A Common Memory Hierarchy

Chapter Organization. In the next section we define the system settings and
requirements. The three solutions: total swapping, fixed partition and dy-
namic memory allocation, are presented in Section 6.3, Section 6.4 and Section
6.5, respectively. Concluding remarks appear in Section 6.6. Code snippets
with explanations appear in the appendix, Section 6.7.

6.2 System Settings, Assumptions and Requirements

We use the same settings as appeared in Chapter 3. Here we only empha-
size memory related settings.

The memory is composed of various devices (Figure 6.1 presents some com-
mon memory hierarchy). Here we consider main memory and secondary storage.
The main memory is composed of ROM and RAM components. Read-only parts
are assumed non-volatile. The secondary storage is also organized as a com-
bination of read-only parts, such as CD-ROM and other disks. The read-only
requirement is compulsory for ensuring correctness of the code. Otherwise,
the Byzantine fault model [83] must be assumed. Processor caches, at least
in the current Pentium design can not be controlled directly by the operating
system, and are not, therefore, considered here.

Requirements. The memory manager requirements include both the consis-
tency and the stabilization preservation requirements:
(r1) Consistency: as the system executes, the memory manager keeps the
memory hierarchy consistent (analogously to the consistency requirement for
non-stabilizing operating systems). Namely we have to show that the contents
of say, the main memory and the disk are kept mutually consistent.
(r2) Stabilization preservation: the fact that process and scope switching oc-
curs, and that the memory is actually shared with other processes, will not
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falsify the stabilization property of each of the processes in the system.
A self-stabilizing memory manager is one that ensures that every infinite execu-
tion of the system has a suffix in which both the consistency and the stabiliza-
tion preservation requirements hold.

6.3 Total Swapping — One Process at a Time

In the first solution, the memory management is done by means of allocat-
ing (almost) all the available memory (RAM) to every process.

The settings for this solution are: N code portions, one for each process in
the system, reside in a persistent read only secondary storage. The soft state of
each process is repeatedly saved on the disk. The operating system includes
a self-stabilizing scheduler (discussed in Chapter 5), which activates processes
in a round robin fashion. Whenever a process is activated, the process has all
the memory for its operation (except the portion used by the scheduler). The
scheduler actions include saving the state of the interrupted process in the disk
and loading the state of the new process whenever a process switch occurs.

The scheduler executes a process switch at fixed time intervals1. The pro-
cessor state (register values) is saved in the stack. Note that we ensure that
for every processor state, stack operations will not prevent the execution of
the NMI handler and that the scheduler code will be started. This is needed
since, according to the processor architecture, part of the processor state is au-
tomatically saved to the stack (during a context switch). These automatic stack
operations carry the risk of unplanned exceptions. Thus, we ensure that what-
ever the stack state is, the handling procedure can be eventually called.

Like previous chapters, the implementation uses the Pentium processor
in its real (16 bit) operation mode, thus paging and protection mechanisms
that are not being used. This configuration may not be acceptable for modern
desktop operating systems. Yet, it is more common in embedded systems and
also serves as a simplified model for investigating the application of the self-
stabilization paradigm to operating systems. The protected mode mechanisms
might be used in satisfying the stabilization requirement, but once the proces-
sor exits this mode, there is no guarantee. Thus, we assume the processor’s
mode is hardwired during the system execution so the mode flag is not part
of the system’s (soft) state. For now, the disk driver operations are assumed
to be atomic and stateless (achieving this abstraction is handled in Chapter 7).
The obvious drawback of this solution is the need to switch the whole process
state in every context switch. This might not be acceptable for all systems.

1Note that a clock interrupt counter may form a self-stabilizing mechanism for triggering a
process switch, and that the counter upper bound is achieved regardless of what the counter
value is when counting begins.
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SWAP-PROCESS(PT, i)
1 MEMORY-SAVE-PROCESSOR-STATE(PT, i)
2 DISK-SAVE-PROCESS-STATE(i)
3 i ← (i + 1) modulo N
4 CD-ROM-LOAD-PROCESS-CODE(i)
5 DISK-LOAD-PROCESS-STATE(i)
6 MEMORY-LOAD-PROCESSOR-STATE(PT, i)

Figure 6.2: Total Swapping Algorithm

The scheduler algorithm which appears in Figure 6.2 carries the memory
management task. The algorithm uses in its memory an array that is used
for the process table denoted by PT . PT keeps the entire processor state (the
register values of the processor) for each running process pi, while i acts as a
process pointer. Recall that N is the (fixed) number of processes in the system.
The scheduler saves the state of the running process to the process table (line
1), and to the disk (line 2), and then increments the process counter (line 3),
and loads the next process to be activated. The loading is carried by fething
the process code from the read-only storage (line 4), process state from disk
(line 5) and the processor state from PT in memory (line 6). The correctness
of the algorithm is based on the fact that the various procedures that save and
load data depend only on the value of i (that represents pi), which by itself
is bounded by the number of processes in the system. Next, we prove the
algorithm correctness and then show that the implementation which follows
the algorithm fulfills the requirements.

Correctness proof:

Lemma 6.3.1. In every infinite system execution E, the program counter regis-
ter contains the address of the swapping procedure’s first instruction infinitely
often. Additionally, the code is executed completely and every process is exe-
cuted infinitely often.

Proof. Exactly like presented previously in Lemmas 4.1.1 and 4.1.2, the pro-
cessor eventually reaches an NMI state in which the NMI connector is set and
the NMI counter contains 0. This means that the next operation that will be
executed is the first operation of the NMI handler procedure. The system is
configured to execute the scheduler as part of the NMI handler. Since the code
of the scheduler is fixed in ROM, it remains unchanged. During the NMI han-
dler execution, interrupts are not served. Additionally, the algorithm contains
no loops, which enables the code to be executed completely. Since the value
of i is incremented in every execution, all processes are executed infinitely of-
ten.
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Lemma 6.3.2. In every infinite execution E, memory consistency requirement
holds.

Proof. In every context switch, the whole data portion of a process is saved
to the disk and is reloaded when needed again. The addresses used for these
transfers are calculated every time and are based solely on the process number.
The state of the scheduler is actually only the process pointer value which is
incremented in every execution and is validated to be in the range 1 to N (the
process table entries are, in effect, part of each process’ state). Thus, even a cor-
rupted value of a process pointer that may cause loading or saving the wrong
data for a process, will not falsify the execution of the scheduler. Consequently,
next time the effected process is loaded, the process will have the correct code
(thereafter, a self-stabilizing process will converge). Based on Lemma 6.3.1, the
above is true in every infinite execution.

Lemma 6.3.3. In every infinite execution E, stabilization preservation eventu-
ally holds.

Proof. Since the entire available main memory is allocated to each running pro-
cess, the processes are effectively separated from one another. Thus, the exe-
cution of one process cannot alter the state of another process.

Corollary 6.3.4. The total swapping memory manager is self-stabilizing.

Details of the implementation for this solution appear in Section 6.7.1.
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6.4 Fixed Partition — Multiple Residing Processes

In this section we follow a better memory utilization which allows the par-
titioning of memory between several processes. This reduces the number of
accesses to disk, thereby improving system performance. Still, when one par-
tition is free, the processes in other partitions can not use this free memory. So,
although the second design does not require the system to repeatedly transfer
the entire data between memory levels, the second design still constrains the
size of the applications.

The decision concerning the set of processes that should be activated de-
pends on external environmental inputs. This is needed since the main advan-
tage of this solution is rescheduling processes without costly disk operations.
However, since a priority mechanism is not used, all memory frames are occu-
pied if N > M (M is the number of partitions), so every context switch causes
costly disk operations and the main advantage is lost. The process table is a
natural candidate for holding the additional activity status for each process.
The entity which generates this information as input to the memory manager
is responsible for the correctness and stability of this value.

The setting for this solution is that the code of N programs resides in a per-
sistent read only secondary storage. The operating system consists of (memory
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hardwired) resident NMI handler and a scheduler process. The memory for the
applications is partitioned into M fixed equal length memory segments which
are called frames. Thus, programs are constrained to using the size of a frame.
The operating system uses a frame table FT which describes the currently re-
siding process in each memory frame. In addition, there is a process table PT .
The i’th entry of PT consists of: (a) the last processor state of pi for upload-
ing in case the process should be scheduled, (b) the frame number (address in
RAM) used by pi (NIL if not present), (c) refresh down counter. When the value
of the counter is zero and pi is rescheduled, the code of pi is reloaded from
the CD-ROM in order to make sure it is not corrupted. (d) An active bit that is
externally defined and flags the operating system whether pi should be active
or not. The remaining state of the processes is kept on a disk. The locations on
disk and CD-ROM are calculated from the process identifier i.

Upon the periodic NMI trigger, the processor execution context (register
values) is saved to the stack and the execution of the scheduler code is initi-
ated. The scheduler saves the processor state of the interrupted process to PT ,
selects the next ready process, and then carries out the memory management
actions necessary for executing this process. The pseudo code for the algo-
rithm appears in Figure 6.4. In case the next process is not present in memory
or if there is an inconsistency between the process and the frame tables (line
1), a new frame is chosen (line 2) and the currently residing process is saved
to the disk (line 3). The refresh counter is decreased for every activation of a
process (line 4). In case this value equals zero (line 5), the new process’ code is
loaded from the CD-ROM (line 6).

The algorithm Find-Frame searches the frame table for a free frame. In
case all frames are used, a particular frame is chosen for replacement. First the
frame currently pointed to by this process’ entry is validated to be in range
(line 1). Next a search over FT starts from the pointed frame’s successor (line
2-5) until an empty frame or a frame containing a non-active process is found.
The search continues until the whole table is looked up. Even if due to a fault,
say an error occurs in the program counter which causes bypassing of lines 1
and 2 - lines that calculate the loop limit value, the execution will eventually
bypass this loop. First, the size of the field used for storing the frame number
in PT can be bounded by M. Thus, increments of nf (line 5), must reach the
loop limit value. Secondly, the system is designed so that eventually an NMI
will be triggered and the code will be re-executed from the first line.

The Swap-Process algorithm checks if there is a swapped out process
due to the loading of the new one (line 1). If this is the case, it saves to disk the
state of this process (line 2) and marks its frame entry in PT as NIL (line 3). The
entries of FT and PT are updated with the new assignment (lines 4-5) and the
state of the new process is loaded to main memory (line 6). Finally, the code
refresh bit is set to one (line 7), a step which will cause the main procedure to
decrement it further to zero and, thereafter, to load the new process’ code.
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SELECT-NEXT-PROCESS-AND-FRAME(PT, FT, i)
1 if frame[PT [i]] = NIL or FT [frame[PT [i]]] 6= i
2 then nf ← FIND-FRAME(PT, FT, i)
3 SWAP-PROCESS(PT, FT, i, nf)
4 decrease refresh[PT [i]]
5 if refresh[PT [i]] = 0
6 then CD-ROM-LOAD-PROCESS-CODE(i, PT )

FIND-FRAME(PT, FT, i)
1 frame[PT [i]] ← frame[PT [i]] modulo M
2 nf ← (frame[PT [i]] + 1) modulo M
3 while nf 6= frame[PT [i]] and FT [nf ] 6= NIL

4 and active[PT [FT [nf ]]] = true
5 do nf ← (nf + 1) modulo M
6 return nf

SWAP-PROCESS(PT, FT, i, nf)
1 if FT [nf ] 6= NIL

2 then DISK-SAVE-PROCESS-STATE(FT [nf ], nf)
3 frame[PT [FT [nf ]]] ← NIL

4 FT [nf ] ← i
5 frame[PT [i]] ← nf
6 DISK-LOAD-PROCESS-STATE(i, nf)
7 refresh[PT [i]] ← 1 . Causes code to be loaded.

Figure 6.4: Fixed Partition Algorithm

After the execution of the above algorithm, the scheduler continues with
the swap by loading the processor state of the new process from PT .

The correctness of the algorithm is based on the ongoing consistency checks
of FT and PT . Figure 6.3 demonstrates the consistency check made when as-
signing a frame to a process. Frame 1 is assigned to p2. Thus 1 is entered in
the 2nd entry of FT . Additionally, the frame field in the entry of p2 in PT (col-
umn marked with F) is marked with the new frame number. The arrow lines
demonstrate the exclusive ownership of the selected frame for every sched-
uled process. Additionally, the refresh field (column marked with R) shows
the refresh counter which ensures the periodical refreshing of the code for the
processes. (The S column represents the processor state for each process).

Correctness proof:

Lemma 6.4.1. In every infinite system execution E, the program counter regis-
ter contains the address of the memory management procedure’s first instruc-
tion infinitely often. Additionally, the code is executed from the first instruc-
tion (line 1 of Figure 6.9(a)) to the last instruction (line 42) infinitely often.
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Proof. The arguments for reaching the first instruction are essentially the same
as in Lemma 6.3.1 (and 4.1.1). The procedure Find-Frame (of Figure 6.4)
for finding a new frame for the running process is the only one containing
a loop. This loop is bounded to run no more than M times, which happens
when the whole frame table is scanned for a NIL value. If the code is executed
without validation of the limit parameter (line 1 of Find-Frame ) and without
the advancing of nf , the new frame pointer, which limits the loop execution
(line 2), the NMI mechanism will enforce an execution from the first line. This
in turn, will be followed by the examination of the loop conditions and will
ensure correct execution.

Lemma 6.4.2. In every infinite execution E, the memory consistency require-
ment holds.

Proof. Based on Lemma 6.4.1 every process will be executed infinitely often
and the memory management algorithm will be executed prior to the exe-
cution of the process. The memory manager will cause the correct code for
such a process to be loaded infinitely often from the stable storage since the
refresh counter is decremented infinitely often. Therefor, the refresh counter
will reach the value zero, which will cause code reloading. The correctness of
the reloaded code is based on the direct mapping between the process pointer
i and a disk location (as in Lemma 6.3.2). Secondly, the target address in the
main memory (frame) is validated each time to be exclusively owned by the
running process. Suppose that due to a fault, two processes pi and pj are
marked in the process table PT as residing in the same frame number f in
the main memory. Whenever the scheduler activates the first process, say pi,
it first validates (in line 1 of Figure 6.4) that the f entry in the frame table FT
is i. If not, a new frame will be selected for pi and both PT and FT will be
updated accordingly (line 4-5 of Swap-Process ). Even if the new selected
frame is still f , the frame table entry for f will now contain i. Thus, when pj

will be scheduled, the memory manager will detect that a new frame should
be chosen for pj .

Note that if, due to a fault, a frame is occupied by a non-active process, this
frame will be considered as an empty frame, by the Find-Frame procedure
(by the check made in line 4) and will be assigned to new requesting processes.

Lemma 6.4.3. Stabilization preservation eventually holds.

Proof. Each process eventually resides in the correct frame by Lemma 6.4.2. In
addition, the applications must refer to main memory addresses in the frame
size only (the implementation relies on the segmentation mechanism of the
processor). Also, the code is fixed and does not change the content of the
segment registers (note that such a restriction can be imposed by a compiler).
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Additionally, the correctness of the segment register assignment is repeatedly
checked by the memory manager. Thus, the processes are effectively separated
one from another, and the execution of one process can not alter the state of
another process.

Corollary 6.4.4. The fixed partition memory manager is self-stabilizing.

Details of the implementation for this solution appear in Section 6.7.2.
We remark that the fixed partition restriction of the above solution can be

relaxed. Applications can be of variable sizes The partition of the main mem-
ory is not fixed and a record of occupied space is maintained. Whenever a
process is about to be scheduled, the record is searched for a big enough space
and the application is loaded there. To ensure fulfillment of our requirements
this record must be kept consistent with the process table. Additional care,
using standard techniques, must be taken in order to address fragmentation
of the main memory and in order avoid process starvation. The next section
addresses variable memory sizes by means of dynamic allocations.

6.5 Dynamic Allocation

Further enhancement of memory usage would be to remove the static al-
location nature of the programs and to allow them to allocate memory in a
malloc/free style. Obviously, the operating system must keep track of mem-
ory usage based on some policy. To ensure that there is no memory which,
due to some fault, is marked as used, when it is in fact unused, a leasing
mechanism is suggested. In this mechanism applications must extend their
lease from time to time. This way, memory that is not in use will eventually
become free (assuming no malicious Byzantine behavior of processes). To be
more precise, we would like to support a dynamic memory allocation scheme
where additional memory beyond the fixed memory required for the code and
the static variables may be allocated on-demand. To support the management
of the additional memory allocations in a self-stabilizing fashion, a lease mech-
anism which limits the allocation of a new memory portion for the use of a
process either by time, or the number of steps the process performed since the
allocation, is used.

A memory manager process is responsible for allocating and for memory
garbage collection. The dynamic memory manager uses bookkeeping for man-
aging the dynamic memory allocations. Allocations are tracked using a table
that holds the number of the owner process and the remaining lease period
for each allocation unit. The dynamic memory manager repeatedly checks
for memory portions allocated to a process for which the lease expired, and
returns every such memory portion to the available memory pool for realloca-
tion. The lease policy leaves the responsibility for refreshing the leases to the
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programmer of the processes, and at the same time allows simple and stabiliz-
ing dynamic memory management. We can argue that starting in an arbitrary
configuration, where the dynamic memory is allocated randomly to processes,
eventually no memory will be allocated to a process which did not request
memory (recently). Moreover, assuming no malicious process behavior in ev-
ery infinite execution, repeated allocation requests will be infinitely often re-
spected. Up until this solution, programs were totally ignorant of operating
system services. Here the operating system exposes an application program-
ming interface for memory requests. Thus, programs should now also deal
with temporary rejections of requests while the operating system makes sure
that eventually all legal requests will be respected. The algorithms described
below address the issue of dynamic allocations. Other needed mechanisms,
like the automatic refreshing of code, are taken from the previous solutions.

Figure 6.5 presents the algorithms which implement the interface which
programs can call in order to use dynamic memory. The MM-Alloc proce-
dure is used for requesting memory allocation. With MM-ExtendLease a lease
extension is possible. The applications are restricted to using the allocated
memory through a special segment selector register and the procedure MM-
NextSegment is the only way of accessing the different segments allocated to
an application. At last, applications can release their allocations with MM-Free.
The operating system contains a specialized process called MM-Validator 2

that validates the system’s state concerning dynamic allocation. The algorithm
is presented in Figure 6.6. Additionally, we use several service procedures
which are presented in Figure 6.7.

Next, we describe how the algorithms work and consequently argue con-
cerning their correctness. The MM-Alloc algorithm inputs are the number of
allocation units (segments) required by the process and the expiration period
needed. The expiration is the number of activations of the process for which
the allocation will be valid. This number is bounded (at least) by the param-
eter length. After this period, the validator will reclaim those segments and
mark them as free. In line 1 of the algorithm, the dynamic selector (which in the
implementation is realized in a specific processor segment register) is checked
for holding an empty address. If this is not the case, the meaning is that this
process is already using dynamic memory and that the request is rejected in
line 2 (for simplicity reasons we allow only one allocation at a time). In line 3
we check whether there are sufficient allocation units for this request through
a global variable that holds this count. We assign the requested quantity to the
requesting process with the MM-Assign procedure which simply goes over all
the segments in the segment table ST and marks the needed quantity as occu-
pied. This procedure also updates the free segment variable (line 5), and sets
the dynamic selector value with the address of one of the allocated segments

2The leading underscore marks a procedure internally called by the operating system
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MM-ALLOC(quantity, expiration)
1 if seg(PT [currentProcess]) 6= NIL

2 then return
3 if quantity <= freeSegments
4 then MM-ASSIGN(currentProcess, quantity, expiration)
5 MM-ENQUEUE(currentProcess, quantity, expiration)

MM-EXTENDLEASE(newExpiration)
1 s ← seg(PT [currentProcess])
2 if owner(ST [s]) = currentProcess
3 then lease(ST [s]) ← newExpiration

MM-NEXTSEGMENT()
1 currentSegment ← seg(PT [currentProcess])
2 if currentSegment 6= NIL

3 then for each s in {(currentSegment + 1) modulo NUM SEG..
4 (currentSegment− 1) modulo NUM SEG}
5 do if owner(ST [s]) = currentProcess
6 then seg(PT [currentProcess]) ← s
7 break

MM-FREE()
1 currentSegment ← seg(PT [currentProcess])
2 MM-NEXTSEGEMNT(currentProcess)
3 if currentSegment 6= NIL

4 then if currentSegment = seg(PT [currentProcess])
5 then seg(PT [currentProcess]) ← NIL

6 if owner(ST [currentSegment]) = currentProcess
7 then owner(ST [currentSegment]) ← NIL
8 freeSegments ← freeSegments + 1

Figure 6.5: Dynamic Allocation Services

(line 9). In case insufficient amount of segments is available, the request is
queued through the procedure MM-Enqueue which first checks that there is
not already a queue entry for this process and consequently finds an empty
slot to enqueue the request. The queue size is equal to the process number.
Thus, exactly one slot for each process is reserved.

The MM-ExtendLease procedure carries out its task by validating that the
requested segment is owned by the requesting process and enlarges the lease
counter value. Again, this operation is allowed assuming there is no a ma-
licious behavior of processes. A different approach can enable the extension
just in cases when the queue is empty, thus preventing a repeated extension
of a lease by a particular process. As mentioned before, a process can access
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the allocated segments through a selector which it cannot change. In order to
move between allocated segments, the process calls MM-NextSegment which
looks in the segment table for all other segments and if another segment is also
occupied by the calling process, its number is returned by the selector (line 6).
The MM-Free procedure carries out its task by first updating the selector with
another segment address (lines 1-2). It then checks if this selector is the only
one owned by this process, which means that the selector should be cleared
too (line 5). In lines 6-8, the released segment is checked for being owned by
the process and is consequently marked as free. The global counter of free
segments is updated respectively.

MM-VALIDATION()
1 for each p in {0..NUM PROC − 1}
2 do usingDynamic[p] ← false
3 freeSegments ← 0
4 for each s in {0..NUM SEG− 1}
5 do p ← owner(ST [s])
6 if p 6= NIL

7 then lease(ST [s]) ← lease(ST [s])− 1
8 if lease(ST [s]) = 0
9 then owner(ST [s]) ← NIL

10 else usingDynamic[p] ← true
11 if owner(ST [s]) = NIL

12 then freeSegments ← freeSegments + 1
13 for each p in {0..NUM PROC − 1}
14 do if usingDynamic[p] = false
15 then seg(PT [p]) ← NIL

16 q ← top(Q)
17 if q 6= NIL and quantity(q) <= freeSegments
18 then MM-DEQUEUE()
19 MM-ASSIGN(process(q), quantity(q), expiration(q))

Figure 6.6: Dynamic Allocation Validation

The validation and garbage collection algorithm ( MM-Validation) works
as follows. In lines 1-2 it marks all processes as not using dynamic memory.
This will allow the initialization of the dynamic selector for processes that are
incorrectly marked as already using dynamic memory. Thus, subsequently
such a process will be able to request (and get!) allocations. In line 3, the global
counter for free segments is reset. Thus, only used segments will be counted
(lines 11-12). The loop of lines 4-12 iterates over all segments in the segment
table ST and decreases the lease for each of them. In case a lease reaches zero,
the segment is marked as free (line 9). Otherwise, we mark the process as using
dynamic memory (line 10). Lines 13-15 reset the dynamic selector (saved in the
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process table PT) for processes that do not currently use dynamic memory.
Then, we check the queue top and in case the first waiting process can be
satisfied with the current free segments, it is deleted from the queue (line 18)
and assigned with the free segments (line 19). The MM-Dequeue procedure
merely moves all the entries in the array having the queue progress one cell
towards the queue top. It also marks the last entry as free.

MM-ASSIGN(process, quantity, expiration)
1 for each s in {0..NUM SEGMENTS − 1}
2 do if owner(ST [s]) = NIL

3 then owner(ST [s]) ← process
4 lease(ST [s]) ← expiration
5 freeSegments ← freeSegments− 1
6 quantity ← quantity − 1
7 if quantity = 0
8 then break
9 seg(PT [process]) ← s

MM-ENQUEUE(process, quantity, expiration)
1 for each p in {0..NUM PROC − 1}
2 do if process(Q[p]) = process
3 then return
4 for each p in {0..NUM PROC − 1}
5 do if process(Q[p]) = NIL

6 then process(Q[p]) ← process
7 quantity(Q[p]) ← quantity
8 expiration(Q[p]) ← expiration
9 break

MM-DEQUEUE()
1 for each p in {0..NUM PROC − 2}
2 do Q[p] ← Q[p + 1]
3 q[NUM PROC − 1] ← NIL

Figure 6.7: Dynamic Allocation Service Procedures

Correctness proof:

Lemma 6.5.1. In every infinite system execution E, the program counter regis-
ter contains the address of the validator procedure’s first instruction, infinitely
often. Additionally, the validator code is executed entirely.

Proof. Based on Lemma 6.3.1 the scheduler schedules every process of the sys-
tem infinitely often. and specifically the validator process. Note that the sched-
uler also checks that the program counter value is within the fixed limits of the
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program size. The code of the validator process does not contain branches out
of the the procedure limits. All the contained loops are for-loops with advanc-
ing index which is checked each time for being inside fixed limits. Since this
index advances each time, every loop is guaranteed to reach the end criteria
and have the program counter advance towards the procedure end.

Lemma 6.5.2. In every infinite system execution E, eventually no memory will
be allocated to a process which did not (recently) requested it.

Proof. The validator keeps decreasing the leases for all segments towards zero
infinitely often. When reaching zero, the segment is marked as free i.e. not al-
located to any process. The only way to increase the lease value is by a process
requesting (or extending) memory. Thus, eventually every memory segment
that is used by a process must have been recently allocated (or extended) by
this process, or otherwise released.

Lemma 6.5.3. In every infinite system execution E, repeated allocation re-
quests will be respected infinitely often.

Proof. The processes themselves are self-stabilizing and do not behave in an
unfair way. Thus, every process that holds dynamic memory will release it
infinitely often, allowing other processes to allocate this memory. Since the
queue can contain at most one request for each process and since no process
can bypass another waiting process in the queue, each request placed in the
queue will eventually be respected.

Lemma 6.5.4. In every infinite execution E, the memory consistency require-
ment holds.

Proof. The segment table ST records the owning process for each segment.
Even if the table is transiently corrupted, based on Lemma 6.5.2, eventually
only requesting processes will be marked as using a segment. Thus, no other
process is using this memory. The access to each segment is only via a segment
register The value of which we assume cannot be changed by the process. This
mechanism enforces the usage of this segment only by the marked process,
achieving memory consistency.

Lemma 6.5.5. In every infinite execution E, stabilization preservation eventu-
ally holds.

Proof. In this case as well there is a full separation of memory accesses of pro-
cesses. The static areas are separated by means of the segment selectors from
the previous solution while the dynamic areas are separated based on Lemma
6.5.4. Thus, every stabilizing process will stabilize in spite of the actual sharing
of memory with other processes.



6.6 Concluding Remarks 53

Corollary 6.5.6. The dynamic allocation memory manager is self-stabilizing.

Note that the memory manager can protect itself from a greedy process
by designing the MM-ExtendLease procedure such that extensions are allowed
only when the queue is empty. This way, when there is a pending request,
a process that holds memory will eventually loosen it. Thus, from any sys-
tem state, eventually enough segments will be freed for the top queue process
and it will, thereafter, be granted with its request. The meaning of this is that
eventually every request will be respected.
Details of the implementation for this solution appear in Section 6.7.3.

6.6 Concluding Remarks

We have presented three classes of self-stabilizing memory management
schemes: total swapping, fixed partition and dynamic memory allocation.

We note that the IBM OS/360 [16] used analogous versions for memory
management. The PCP version loaded only one program at a time, the MFT
used a fixed partition and the MVT allowed somewhat dynamic memory par-
tition. Virtual address hardware were then built and used, e.g., in the MVS
operating system.

In order to also support virtual addressing, the page tables have to be kept
consistent. This will allow correct address translation made by the MMU (mem-
ory management unit). The page tables are also usually cached in a special
memory (TLB). Consistency, therefor must also be examined for this memory
structure. (To date, the Pentium’s TLB is not accessible by the operating sys-
tem).
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6.7 Appendix. Implementations

6.7.1 Total Swapping Implementation

The implementation for the total swap solution appears in Figure 6.8. The
code resides in ROM and is executed following an NMI trigger. The code for
saving and loading the processor state and for incrementing the process pointer
is an extension of the one presented in Chapter 5. Therefore equivalent parts
are omitted here.

The code contains no loops, and all address calculations are based solely
on the value of i which points to the relevant process. Note that all values
are also recalculated for every execution. Namely, every variable’s first ap-

..
1 mov word ax, [i]
2 and ax, N MASK
;// over here processor state is saved
3 mov ax, PROCESSSEGMENT
4 mov es, ax
5 mov bx, DATA OFFSET
6 mov word ax, [i]
7 shl ax, PROCESS DATASIZE-1
8 add ax, DISK DATABASE
9 mov cx, PROCESSDATASIZE
10 call DiskWriteSectors
;// over here i is incremented.
..
11 mov ax, PROCESSSEGMENT
12 mov es, ax
13 mov bx, CODE OFFSET
14 mov word ax, [i]
15 shl ax, PROCESS CODESIZE-1
16 add ax, DISK CODEBASE
17 mov cx, PROCESSCODESIZE
18 call CDRomReadSectors

19 mov ax, PROCESSSEGMENT
20 mov es, ax
21 mov bx, DATA OFFSET
22 mov word ax, [i]
23 shl ax, PROCESS DATASIZE-1
24 add ax, DISK DATABASE
25 mov cx, PROCESSDATASIZE
26 call DiskReadSectors
;// over here processor state is loaded

Figure 6.8: Total Swapping Implementation
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pearance following line 1 is associated with a command that loads a value.
The only exception is the variable i, which is verified to be in the range 1-N
in lines 1-2. The rest of the code contains three stages for calculating the re-
quired parameters for the disk routines. Lines 3-10 save the process state to
disk. Immediately after these lines the process number i is incremented and
following that, lines 11-18 load the code for the next process from the read-
only stable storage, while in lines 19-26 the state of the process is loaded from
disk. Afterwards, the processor state for the process is also loaded and the
process is finally activated. In more details, lines 3-4 load the register ex with
a fixed main memory address, pointing to where the running process is resid-
ing. Line 5 loads register bx with another fixed address which is the offset to
the location of the process state.

Lines 6-8 load register ax with the disk sector number (address) to write
to. First, we copy the value of i to the register. Following that we multiply it
by the size of the state block for each process. This size is fixed and assumed
here to be a power of 2. Thus the multiplication is carried out by bit shifting.
The design is such that the result of multiplying this size by N (the maximum
value of i) cannot exceed the register capacity. Finally, the fixed base address
on disk where all the states are kept is added. Again contains a value such that
the summation will not result in an overflow. Line 9 stores the fixed number
of sectors to save to the disk in register cx . The actual writing to the disk is
performed by the procedure DiskWriteSectors (line 10) which is assumed to be
atomic in this case. Lines 11-18 and 19-26 load the next process code and state
from CD-ROM and disk. The arguments for correctness are exactly like those
for lines 3-10.

All addresses in the code are calculated each time. As previously men-
tioned, except for one variable with checked limits, namely i, the calculations
are based on constants. Thus, all the possible addresses are easily verified
for containing the correct values. This code is guaranteed to be executed in-
finitely often. Moreover, the instructions are fixed, thus in the first run (say
after a fault), in which the code will be run entirely from the first line, the sav-
ing and loading of any process state will be correct. From that time onwards,
the processes can stabilize and since they are mutually separated by this full
swapping algorithm, the whole system will eventually stabilize too.

6.7.2 Fixed Partition Implementation

The relevant code sections appear in Figure 6.9(a). The code uses proce-
dures for accessing the disk (e.g.,
MMDiskLoadProcessCode ). These procedures calculate arguments for the
disk access routings and are omitted here since they are analogous to the ones
presented in Section 6.7.1. Lines 1-15 implement the main memory manage-
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ment algorithm. Lines 16-29 implement the section of selecting a frame. Swap-
ping is performed in lines 30-41. In line 1, the value of the frame pointed to
by the ith entry of PT (which belongs to pi) is moved to register ax . This en-
try’s address is kept in register bx . However, this value is repeatedly assigned
by the scheduler just before calling the presented code. The frame number is
compared first to the NIL value (line 2). If the frame number is NIL, then the
process switch can be initiated (line 3). There is also a check for whether the
FT entry for this frame number contains i (lines 6-8). This is done first by
pointing register si to the FT base address (line 4) and then by adding the
value of i already kept in ax (line 5). According to the conditions above, the
procedures for locating a new frame and for swapping the residing process are
executed (lines 9-10). In any case, the refresh counter of pi is decremented (line
11) again based on the correct value of bx , which is preserved during the algo-
rithm operation. In case the refresh counter value becomes zero (lines 12-13),
the code of the process is reloaded by calling the relevant procedure (line 14).
The inputs to this procedure are i, which resides in memory and is periodi-
cally checked for pointing to some process, and the selected frame, which was
saved in PT and which was validated beforehand (line 7) or was updated by
the Find-Frame procedure. Line 15 contains the return instruction from the
memory manager.

Finding a new frame for the new process involves validating the current
frame value of pi (line 16) and then increasing this value modulo M (lines 17-
18) in order to start the search. Yet, these operations are only based on the
correct assignment to register bx made by the scheduler. Lines 19-20 check if
the search ended by moving across the whole of the frame table, while lines
21-25 check in FT whether an empty frame is reached. Note that the check con-
cerning the occupation of a frame by a non-active frame (line 4 of the pseudo-
code in Figure 6.4) is omitted here. This does not violate the correctness of
the algorithm, but might cause unnecessary swapping of frames. Lines 26-28
increment the new frame counter modulo M and jump back for checking the
loop end conditions, as mentioned above. Upon exiting (line 29), the register
al contains the value of a new frame for the scheduled process.

In order to actually swap out a residing process pj , we first check that the
relevant new frame nf is not marked empty. This is done in lines 30-34 in the
same way as before by accessing FT . If nf is not empty, then pj’s state is saved
to disk in line 35. The procedure that writes to disk uses the values of nf and
j. In case the latter value is corrupted in FT (j is taken from FT ), the state of
pj will be corrupted, since the state of the process residing in frame nf will be
saved instead of the state of pj . The process pj will be scheduled again later,
will be loaded with its correct code and will stabilize. For better bookkeeping,
the frame field for pj in PT should be marked NIL (line 3 of pseudo code in
Figure 6.4). This is not necessary for correctness, since when rescheduling pj

a contradiction between PT and FT will be found and resolved. Thus, it was
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omitted from the current implementation. Lines 36-37 update the nf entry of
FT with the new residing process number i (addresses based on the values
of i which are maintained by the scheduler and register si , calculated in line
30). Line 38 updates the ith entry of PT with the correct frame nf and conse-
quently the state of pi is finally loaded from disk (line 39). The parameters for
this procedure are only i (maintained by the scheduler) and nf , both of which
were calculated before. Line 40, implements the decrement of the refresh code
countdown, and is also based only on the bx value. Line 41 returns from the
swap algorithm.

6.7.3 Dynamic Allocation Implementation

Figure 6.9(b) presents the implementation of the garbage collection algo-
rithm of Figure 6.6. Lines 1-3 enforce correct values of segment registers (ds,
es ) for correct transfer of data. Lines 4-8 carry the task of zeroing the array in
memory which marks the processes that are actively using dynamic memory.
This is done by loading the memory address in register di , preparing a zero
in register ax for copying (actually only the lower half is used), and loading
the size of the array into register cx . Line 7 assures the correct increment of
the destination address pointer, by setting the direction flag of the processor.
Thus, the whole state is validated towards the actual copy performed in line 8.
The rep instruction causes the processor’s microcode to perform a loop which
decrements register cx towards zero. In line 9 we assign the variable counter
of free segments with zero, It will later be incremented for each segment which
will be found free. The final value will be used for deciding whether to assign
the free memory to the next waiting process.

Lines 10 to 27 implement the loop which goes over the segment table and
decreases the lease for each segment and mark as free a segment the lease of
which has reached zero. In line 10 register cx is loaded with the size (number
of entries) of the segment table. This value will be decremented by the loop
instruction of line 27 towards zero, and thereafter the operation will move for-
ward. In line 11 the address of the segment table is calculated and stored in
register si . This register is used in each loop iteration for pointing towards
the examined segment. In lines 12-14 we check whether the current segment is
owned by some process, In case it is we continue with a lease action. In line 15
the lease for the segment is decreased and is checked in lines 16-17 for a zero
value. Note that even if, due to some fault, a process gets an arbitrary lease
value. Since the size of the lease entry in memory is bounded, and as long
as the segment is occupied, the lease is decremented infinitely often, thus the
lease is guaranteed to eventually expire. In case the lease is still valid, lines
18-21 mark the process as using dynamic memory. This is done by taking the
base address of this array and adding the value stored in register al which was
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assigned in line 12 to the holding process number. In case the lease expired,
the segment is marked free by assigning a special NIL value at the owner field
(line 22). Then, in lines 23-25 we check for such a NIL value (whether achieved
by the lease reduction or by a process explicitly releasing a segment), and up-
dating the free segment counter accordingly. Lines 26-27 increment the pointer
to the segment table and the loop counter, and as long as it is not zero, jump
back to line 12.

In order to complete the garbage collection operation, lines 28-37 traverse
the array which is holding for each process the information whether it uses
dynamic memory. Lines 28-29 load register si with the address of the array.
They also load register di which serves as an index to zero. Line 30 stores the
size of the array in register cx . This value will be decremented towards zero
by line 37. In lines 31-32 we check for zero value in the array for each process.
In case of a zero value, we mark in the process table entry for each process
the fact that dynamic memory is not being used. Thereafter, this process will
not be able to use this segment, unless allocated again. Line 33 loads the base
address of the process table in memory and line 34 updates the relevant field
by adding an index and an offset to the process’ row. By advancing the indices,
the next iteration is prepared in lines 35-36.

The procedure ends with an attempt to allocate the available dynamic mem-
ory to a waiting process. Line 38 points register si to the memory holding the
queue. This area contains requests for memory allocation containing the re-
questing process id, the requested quantity and a lease period. In lines 39-41
we check whether the queue is empty and if it is, there is no more work to
be done. Lines 42-45 check whether the top request size is larger than the
available segments. If that is the case there will be no further action (until ad-
ditional space is freed). Note that line 43 validates that the request size is not
larger than the whole dynamic memory size. Otherwise, an error in that value
might prevent all future allocations (this argument does not hold for the lease
parameter which is designed to take care of any possible value. This value
is bounded only by the size of the containing variable). Finally in lines 46-48
we are in a state in which a new allocation can be made. The lease expiration
value is prepared in register ch and we call the two utility procedures which
pop the request from the queue and assign the necessary free memory.

Figure 6.10(a) presents the implementation for the MM-Alloc procedure,
called by the processes in order to obtain dynamic memory, and also the in-
ternal MM-Assign procedure. (The other routines e.g., MM-Free , that are
mentioned in the pseudo code, are simpler to implement and are mainly used
for performance optimizations, therefore were omitted from the current im-
plementation version). Figure 6.10(b) completes the implementation with the
queue handling procedures. The code corresponds directly to the pseudo code
algorithms presented in Section 6.5. Lines 1-3 of MM-Alloc insure that the re-
questing process does not hold any dynamic memory already any more. This
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is ensured by checking the fs register which only points to a dynamic segment
address for granted processes. Lines 4-6 prepare the required parameters for
calling the MM- Assign procedure (line 9) and check if substantial memory
is available. Otherwise, the enqueue procedure is called for in line 7. The
assignment procedure sets up a loop (lines 11-13) for traversing the memory
segment list. Then, each list entry is checked for emptiness (lines 14-19). In
case an empty entry is found, it is marked as owned by the requesting pro-
cess and the lease is recorded too (lines 20-21). Line 22 decrements the global
counter for free segments. Then, in lines 23-25 a check is carried out in order
to see whether enough allocations had already been made. Otherwise the loop
continues through lines 26-27. Lines 28-30 update the segment register pointer
with the new allocation. Since this procedure can also be called independently
by the validator process (lines 31-36), this update is carried to the process’ state
in the process table too.

The MM-Enqueue operation of Figure 6.10(b) works as follows. In lines
1-10 the queue is searched for the requesting process. If found, the operation
stops in line 7. In lines 11-23 an empty slot is searched for placing the request.
The MM-Deque operation is carried out by traversing the queue (lines 25-37)
and by advancing each slot by one location. In order to mark it as free, line 38
places a NIL value at the end of the queue.
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MMSelectNextProcessAndFrame:
1 movzx ax, byte [bx+FRAME COL]
2 cmp al, NULL FRAME
3 jz StartProcessSwitch
4 lea si, [FT]
5 add si, ax
6 mov al, byte [si]
7 cmp al, byte [i]
8 jz BypassProcessSwitch
StartProcessSwitch:
9 call MM FindFrame
10 call MM SwapProcess
BypassProcessSwitch:
11 dec byte [bx+RELOAD COL]
12 cmp byte [bx+RELOAD COL], 0x0
13 jnz BypassLoadProcessCode
14 call MM DiskLoadProcessCode
BypassLoadProcessCode:
15 ret
MMFindFrame:
16 and byte [bx+FRAME COL], FRAME MASK
17 inc al
18 and al, FRAME MASK
while1:
19 cmp al, [bx+FRAME COL]
20 jz endwhile1
21 lea si, [FT]
22 add si, ax
23 mov dl, [si]
24 cmp dl, NULL TASK
25 jz endwhile1
;missing: and active[PT[FT[nf]]] = true
26 inc al
27 and al, FRAME MASK
28 jmp while1
endwhile1:
29 ret
MMSwapProcess:
30 lea si, [FT]
31 add si, ax
32 mov dl, [si]
33 cmp dl, NULL TASK
34 jz NoDiskSave
35 call MM DiskSaveProcessData
;missing: frame[PT[FT[nf]]] := nil
NoDiskSave:
36 mov cx, word [i]
37 mov byte [si], cl
38 mov byte [bx+FRAME COL], al
39 call MM DiskLoadProcessData
40 mov byte [bx+RELOAD COL], 1
41 ret

(a) Fixed Partition Implementation

1 mov ax, DATA SEGMENT
2 mov ds, ax
3 mov es, ax
4 lea di, [usingDynamicArray]
5 mov ax, 0
6 mov cx, NUM PROCESSES
7 cld
8 rep stosb
9 mov byte [freeSegments], 0
10 mov cx, NUM SEGMENTS
11 lea si, [SegmentTable]
FOR1:
12 mov al, byte [si+OWNER COL]
13 cmp al, NIL PROCESS
14 je ENDIF1
15 dec byte [si+LEASE COL]
16 cmp byte [si+LEASE COL], 0
17 je IF2
18 lea bx, [usingDynamicArray]
19 add bx, ax
20 mov byte [bx], 1
21 jmp ENDIF2
IF2:
22 mov byte [si+OWNER COL],NIL PROCESS
ENDIF1: ENDIF2:
23 cmp byte [si+OWNER COL],NIL PROCESS
24 jne ENDIF3
25 inc byte [freeSegments]
ENDIF3:
26 add si, SEGMENT TABLE ENRTYSIZE
27 loop FOR1
28 lea si, [usingDynamicArray]
29 mov di, 0
30 mov cx, NUM PROCESSES
FOR2:
31 cmp byte [si], 0
32 jne ENDIF4
33 lea bx, [processTable]
34 mov word [bx + di + SEG COL], NIL SEG
ENDIF4:
35 inc si
36 add di, PROCESS ENTRYSIZE
37 loop FOR2
38 lea si, [queue]
39 mov al, byte [si + PROCESS COL]
40 cmp al, NIL PROCESS
41 je ENDIF5
42 mov cl, byte [si + QUANTITY COL]
43 and cl, NUM SEGMENTSMASK
44 cmp cl, [freeSegments]
45 ja ENDIF5
46 mov ch, byte [si + EXPIRATION COL]
47 call MMDeuque
48 call MMAssign
ENDIF5:

(b) Dynamic Memory Validator Implementation

Figure 6.9: Fixed and Dynamic Validator Implementations
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MM Alloc:
1 mov dx, fs
2 cmp dx, 0
3 jne ENDIF1
4 mov al, byte [processIndex]
5 cmp cl, [freeSegments]
6 jbe ASSIGN
7 call MMEnqueue
8 jmp ENDIF1
ASSIGN:
9 call MMAssign
ENDIF1:
10 ret

MM Assign:
11 mov dx, 0
FOR1:
12 cmp dx, NUM SEGMENTS
13 jae ENDFOR1
14 lea si, [SegmentTable]
15 mov bx, dx
16 shl bx, SEGMENT TABLE ENRTYSIZE EXP
17 add si, bx
18 cmp byte [si+OWNER COL], NIL PROCESS
19 jne ENDIF2
20 mov byte [si+OWNER COL], al
21 mov byte [si+LEASE COL], ch
22 dec byte [freeSegments]
23 dec cl
24 cmp cl, 0
25 je ENDFOR1
ENDIF2:
26 inc dx
27 jmp FOR1
ENDFOR1:
28 shl dx, SEGMENT WIDTH
29 add dx, SEGMENT BASE
30 mov fs, dx
31 lea bx, [processTable]
32 movzx dx, al
33 shl dx, PROCESS ENTRYSIZE EXP
34 add bx, dx
35 mov dx, fs
36 mov word [bx + SEG COL], dx
37 ret

(a) Dynamic Memory API Implementation

MM Enqueue:
1 mov dx, 0
2 lea si, [queue]
FOR5:
3 cmp dx, NUM PROCESSES
4 jae ENDFOR5
5 cmp byte [si+PROCESS COL], al
6 jne ENDIF8
7 ret
ENDIF8:
8 add si, QUEUE ENTRYSIZE
9 inc dx
10 jmp FOR5
ENDFOR5:
11 mov dx, 0
12 lea si, [queue]
FOR6:
13 cmp dx, NUM PROCESSES
14 jae ENDFOR6
15 cmp byte [si], NIL PROCESS
16 jne ENDIF9
17 mov byte [si + PROCESS COL], al
18 mov byte [si + QUANTITY COL], cl
19 mov byte [si + EXPIRATION COL], ch
20 jmp ENDFOR6
ENDIF9:
21 add si, QUEUE ENTRYSIZE
22 inc dx
23 jmp FOR6
ENDFOR6:
24 ret

MM Deuque:
25 lea si, [queue]
26 mov dx, 0
FOR7:
27 cmp dx, NUM PROCESSES-2
28 ja ENDFOR7
29 mov ah, byte [si+

QUEUEENTRYSIZE+PROCESSCOL]
30 mov byte [si+PROCESS COL], ah
31 mov ah, byte [si+QUEUE ENTRYSIZE+QUANTITY COL]
32 mov byte [si+QUANTITY COL], ah
33 mov ah, byte [si+QUEUE ENTRYSIZE+EXPIRATION COL]
34 mov byte [si+EXPIRATION COL], ah
35 add si, QUEUE ENTRYSIZE
36 inc dx
37 jmp FOR7
ENDFOR7:
38 mov byte [si+QUEUE ENTRYSIZE],

NIL PROCESS
39 ret

(b) Dynamic Memory Helper Procedures

Figure 6.10: Dynamic Memory Implementation
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Chapter 7

I/O Device Drivers

7.1 Introduction

Device drivers are known to be a major cause of operating system failures
[30, 136] for a variety of reasons. First, drivers are usually loaded into the
operating system kernel’s address space and are running in privileged pro-
cessor modes where an error has a greater effect on the total system behavior.
Additionally, usually essential system parts are designed, built, verified, and
tested with extra care while many times drivers are brought from the outside.
The following techniques are used to deal with these failures: (a) reducing
the driver’s access to system resources [73, 139], (b) containment of errors in
realtime through kinds of virtualization [13, 136], (c) using typed languages
[73, 126], and (d) static analysis of the drivers’ code, and of their resource use
[12, 133]. Applying such techniques helps improve the system’s robustness,
but the bottom line is that in systems running for a long period of time, er-
rors (e.g., soft errors [105]) in device drivers accumulate and lead to undesired
behavior.

Device drivers (or simply drivers) are programs which are practically an
essential part of any operating system. They serve as an adaptation layer by
managing the various operation and communication details of I/O devices.
They also serve as a translation layer providing a consistent and more abstract
interface between other programs and the hardware device resources (some-
times they also add extra services not provided by the hardware devices). I/O
devices usually contain a controller which is the electronic part with which
drivers communicate. The communication is carried out via the system bus,
and is usually done through some standard protocols and interfaces e.g., ATA
and SCSI for disk drives. In [114] it is stated that “a modern Seagate drive
contains roughly 400,000 lines of code.” In [139] it is noted that “modern
disk controllers often have many megabytes of memory inside the controller.”
The complexity of today’s I/O devices emphasizes the need for robust device
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drivers.
Here, we suggest enhancing the robustness of device drivers by designing

them to be self-stabilizing. Building a system, and specifically device drivers,
in a self-stabilizing way, ensures that errors will be contained autonomously
by each driver, leading eventually to correct behavior of the whole system.

Implementation issues. A demonstration implementation using the Intel
Pentium processor architecture [75] was composed. This implementation is
written in assembly language and is directly assembled into the processor’s
opcode. The reader may choose to skip the implementation details. Our
proofs and prototype show that it is possible to design and implement self-
stabilizing device drivers that preserve the stabilization of the running pro-
grams — an important building block of an infrastructure for industrial self-
stabilizing systems.

Related work. As explained earlier, robustness of device drivers is of great
importance in system design. It is stated in [30] and [90] that about 70% of
operating system code is devoted to device drivers. It is stated in [136] that
“In Windows XP, for example, device drivers cause 85% of reported failures.”
Moreover, in [30] it is claimed that for some cases in Linux, “the error rate
for drivers is almost seven times higher than the error rate for the rest of the
kernel.” Here we briefly survey various efforts in this field.

• Device driver isolation and monitoring. The micro-kernel system ar-
chitecture (pioneered in the Mach system [2]) suggests achieving a minimal
trusted computing base (TCB) by removing as much as possible from the ker-
nel. For example, in the last version (3) of Minix [139], the drivers’ access to
system resources is restricted. This was achieved by factoring the common
low level and privileged commands, such as access to I/O ports and inter-
rupts, and moving most driver parts to user space, where they communicate
with the kernel through a simple message mechanism (see [142] for another
version).

• Virtualization. A variation of this approach, lately suggested by many,
is to run the original drivers of common operating systems, but to monitor
their activity and contain errors by different kinds of virtualization [13, 89, 90,
136]. This method counts heavily on the robustness of the core kernel (also
known as Virtual Machine Monitor), which we actually address in this work.
In [88, 94] and [89] this is combined with an IO-MMU which adds hardware
protection to I/O access. In [13] it is claimed that this method is not enough,
and “in the case of more ‘sophisticated’ statefull devices it may be in addition
necessary to reset the device to a known state.” In [135], a monitor which
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records the inputs sent to a driver by an application is added. In case of a
failure a restart of the driver is carried out together with replaying the inputs.

• Type safety and model checking. In Coyotos [126], the whole kernel,
including drivers, is written in a typed language as a stage towards achiev-
ing formal correctness. Static analysis of the drivers’ code appears in [11, 12].
Recently those methods were augmented with a general tool for termination
checking [31] that is used mainly to check device drivers. In [12] it is claimed
that kernel APIs are usually too complex so there is a great chance for coding
bugs. They categorize bugs in order to find them automatically. This empha-
sizes the need for a good understanding of the protocols between drivers and
the rest of the system. Many others (e.g., [30]) use code analysis to find kernel
bugs in general.

• Singularity is a recent ongoing research project [72, 73] which combines
many of the past system research advances in order to achieve greater system
dependability. In Singularity, drivers are also treated as user programs so their
state is separated from the rest of the system. Hardware resources are accessed
only through messages, and when the system is compiled or started, there is a
verification process carried out according to meta-data resource declarations.
In [133], details concerning device drivers are provided. This project also relies
on a typed language to restrict drivers abilities. To prevent malicious code be-
havior, runtime code changes are restricted by eliminating language features
such as reflection. On the other hand, all programs in Singularity run in priv-
ileged mode. These settings do not prevent a transient error from corrupting
system execution (to quote [73], a “malicious driver can program a DMA capa-
ble device to overwrite any part of memory.”)

None of the above suggest device driver design and implementation that
can automatically recover from an arbitrary state (that may be reached due to
a combination of unexpected faults and sequence of unexpected inputs).

Chapter Organization. In this chapter we demonstrate how device drivers
can be designed to be self-stabilizing. We start, in Section 7.2, by demonstrat-
ing how the current ATA specification for storage devices (such as hard disks)
requires a behavior which can lead a system into undesirable combined states.
Based on the definitions and settings presented in Section 7.3, we demonstrate
in Section 7.4 how the design can be augmented to behave in a self-stabilizing
way. Proofs for the correctness of the suggested solutions are provided. Con-
cluding remarks are given in Section 7.5. An explained implementation which
fulfills the self-stabilization requirement appears in the appendix, Section 7.6.
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Figure 7.2: ATA Device State Transitions.

7.2 A Non-Self-Stabilizing Driver Specification

The AT-Attachment protocol (standard draft version 8, also historically known
as IDE) defines a parallel transport protocol between host systems and devices
[137]. In the following we will first describe this protocol. Then we will show
that the protocol defines interactions which can lead to non-stabilizing execu-
tions. Note that the standard defines only the interface between a host and a
device. Therefore, an implementation can add states and transitions in order
to achieve stability, and still conform to this standard.

Communication between the host and the device is by means of input/output
registers (the shared memory model). There are control, command, status, and
data registers through which the host and the device communicate. Addition-
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ally, the device might signal the host through an interrupt line. The required
behavior is defined with state diagrams describing states and transitions of
both protocol parties. For the purpose of demonstrating the non-stability, we
follow diagrams describing the execution of a read command. In order to carry
out such a command, the two parties move from an idle state to the executing
command states and upon completion back to the idle state. The idle states
of the host and the device, respectively are described in Figures 41 and 43 in
the current specification [137]. The PIO (Programmed I/O) data-in command
states, which transfer blocks of data from the device to the host, without using
DMA (Direct Memory Access) are described in Figures 47 and 48. We com-
bine these four diagrams into two state machine diagrams each describing the
possible executions of the host and the device, respectively. In general, upon a
read request, the host checks whether the device is ready (state 1 of Figure 7.1);
it then configures the device, writes the command parameters, and waits for
response through an interrupt (state 2) or by repeatedly checking status (state
3). The device fills its transfer buffer with part of the requested data (state 1 of
Figure 7.2) and signals the host for availability (states 2 and 3) by asserting the
interrupt line or setting the data request (DRQ) status bit. The host then reads
this data (host state 4) and the interaction continues until completion (buffer
count reaches zero), when they both return to their idle state (state 0). For this
demonstration we omit many technical details, e.g., selection of devices and
media error handling. We show that even if we make the model simpler and
also assume perfect operation of the device mechanics, the execution can still
become erroneous.

7.2.1 Non-stability

The model above does not assume a behavior in which progress is achieved
infinitely often. Even assuming correct behavior of each party, the combined
execution can enter states in which progress is not achieved infinitely often.
The various combinations of states that the system can reach are presented in
Figure 7.3. The arrowed path demonstrates a possible correct execution which
is cyclic and includes the combined idle state (marked “h0d0”). Possible non-
stabilizing executions are described next: Deadlock. Due to a transient error,
the combined state of the system can change to a state which is not part of
the path described above — a state from which there is no defined progress.
Such a scenario, for example, is one in which execution reaches the combined
host state 2 with device state 3. In host state 2, the host waits for an interrupt
in order to transfer data. In the meantime, the device (say, due to a transient
error) assumes that interrupts are disabled and waits in its state 3 for the host
to read data from its buffer. From such a combination of states there is no
defined progress.
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Figure 7.3: Union State Transitions (h=host, d=device).

Livelock. Another case is demonstrated in Figure 7.3 where the dot-headed
path causes the execution to circle back to state “h2d1” without ever bringing
to an end the current command execution. This happens when the host is
cycling between states 2 and 4, reading the device’s buffer content, but the
buffer counter never goes down to zero.

Another example is when the host waits falsely for the device (e.g., in state
“h1d3”). It reads in the state register that it is busy, while the device is really
non-busy and actually ready to proceed.

Corollary 7.2.1. The ATA protocol is not self-stabilizing.

The standard also addresses some other scenarios. For example, if a com-
mand is issued by the host while the device is busy with a previous command,
the device should immediately start executing the new command. However,
we require a design in which the system converges from any combined state.

7.3 System Model and Requirements

Settings. We divide the system into four parts: (a) The operating system,
which contains processes (or programs) which can request I/O operations. The
operating system contains a special program which schedules all the various
processes, including part b. (b) The operating system device driver (or OS driver)
is the special program which handles the I/O requests and communicates with
the device. (c) The device controller is the program executed by a specialized
micro-processor (it usually resides inside the I/O device itself) which com-
mands the I/O device to perform its task. (d) The (I/O) device is the actual
peripheral machinery that carries out the commands, e.g., rotating the disk
media under one of its reading heads.

(a) and (b) together map to the host in the ATA specification while (c) and
(d) are mapped to the device.
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Assumptions. We concentrate on the correct behavior and interactions of one
OS driver (b) and the corresponding device controller (c). Thus the state dia-
grams presented in Figures 7.1 and 7.2 are considered transitions made by the
OS driver and the device controller, respectively. Concerning the operating
system (a), using methods described in Chapters 5 and 6, we assume that the
operating system is self-stabilizing. It is particularly guaranteed that, during
the system execution, whenever there are pending I/O requests, the sched-
uler will eventually execute the driver program, thus allowing it to operate
as required. Fair access between processes with regard to the ability to queue
I/O requests is achieved either by assuming eventual correct behavior of the
processes (we do not assume the Byzantine model) or by leasing the right to
queue messages in ways that will guarantee fairness as done by the memory
manager of Chapter 6.

It is also assumed that the I/O device’s micro-processor is self-stabilizing,
which means that it keeps fetching and executing the device controller pro-
gram. Methods to achieve such behavior are described in [43]. Additionally,
the device mechanics (or other equivalences in other devices) always eventu-
ally respond to the device controller commands either by carrying them out or
by reporting an error in case of, say, physical disabilities, e.g., bad sectors on
the disk media.

The OS driver and the device controller communicate by writing in each
others registers. It is assumed that every read/write operation is performed
atomically and without errors.

Definitions. We describe briefly a set of definitions related to states and state
transitions (again, see Chapter 3 for details concerning processor executions,
interrupt and register settings, and additional requirements). A state of the op-
erating system driver or the device controller is an assignment to its registers
including the program counter resister. Each party is modeled by a program
which specifies its behavior. It has a clock which triggers a step which is a state
transition. The transition is done according to the current state (including in-
put registers and the program counter). A configuration is a pair of states, the
first of which is of the OS driver and the second to the device controller. An ex-
ample of such a configuration is “h0d0” which appears in Figure 7.3 in which
both parties are in their idle state. An execution is a sequence of alternating
configurations and steps E = (c1, s1, c2, s2, ...), such that configuration ci+1 is
reached from configuration ci by one step si taken by one of the parties. A
configuration like “h0d0” is called a safe configuration since an execution that
starts from this configuration carries out the task of executing I/O commands
correctly.

The various register roles used in the described read command are listed
for each protocol party in Table 7.1.
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Owner Register I/O Role
OS driver OsCommand I Command parameters written by OS

OsINT I Interrupt configuration written by OS

INT Line I Interrupt line∗ asserted by device controller
(∗Not a register)

Device controller Command I Command parameters written by OS driver
INT I Interrupt status written by OS driver
BSY O Controller working status read by OS driver
DRQ O Data ready status read by OS driver
Buffer Count I/O Data read status written by OS driver and

decremented by device controller

Table 7.1: ATA Registers.

The Error Model. The OS driver and the device controller states, includ-
ing their program counters, might become corrupted (assigned any possible
value).

Requirements. We now define the requirements which should be satisfied
for the described system to be self-stabilizing.
(r1) Ping-pong. Assuming that there is an infinite system execution, in which
there are infinitely many I/O requests, the OS driver and the device controller
are infinitely often exchanging requests and replies.
(r2) Progress. Eventually every I/O request is executed completely and cor-
rectly according to the ATA specification. As explained, the result can be a
success, e.g., data moved according to the command’s parameters, or a failure
due to bad parameters, some transient error (such as dust on the disk surface),
or even non-transient device errors such as bad sectors.

A self-stabilizing OS driver and device controller combination ensures that every
infinite execution of a system has a suffix in which both requirements hold.

7.4 A Self-Stabilizing Driver

The OS driver and the device controller can be viewed as a master and a
slave working together according to a protocol to achieve their mission. Thus,
the driver acting as a master can check that the slave is following, say the
ATA protocol, correctly. We suggest two solutions. In the first solution the
device controller is not required to be self-stabilizing, and the OS driver leases
the device controller some (usually enough) time to complete its tasks. Then
we relax the timing constraints by assuming that the device controller itself is
also self-stabilizing. Therefore we only need to guarantee that the execution is
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Figure 7.4: A Leasing Host (OS Driver).

carried out by both parties according to the protocol. This is achieved by the
OS driver performing consistency checks according to its current state. Note
that the device controller itself is working against the underlying device so an
implementation of the driver-controller protocol can use either the leasing or
the consistency check solutions for this level as well.

7.4.1 Leasing

In order to satisfy our requirements we suggest that the device controller
should be augmented by a counter register which is used to implement a
watchdog. The OS driver is able to write some value to this register, while
the device hardware is lowering the register value towards zero, say in every
clock tick. Additionally, the OS driver is augmented with additional transi-
tions which guarantee that in case the lease expires, which means that there is
no progress from the device controller side, the OS driver resets the device con-
troller’s state and also moves to the idle state. The new OS driver transitions
are described in Figure 7.4.
Next we prove the correctness of the leasing solution.

Lemma 7.4.1. The OS driver reaches its idle state infinitely often.
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Proof. The OS driver always converges towards the idle state. This can be ob-
served by examining the possible state transitions. We can see that in every
state the OS driver can either move to a higher numbered state (modulo the
number of states) or stay in the current state. The only exception to this rule is
the move from state 4 back to states 2 or 3 (depending on the interrupt status),
but the number of such possible backward moves is bounded by the count-
down of buffer reads, which is decreased towards zero every time such a back
move is taken. So the OS driver is guaranteed either to proceed through the
protocol stages and eventually reach the idle state, or else to get stuck in some
state. In the latter case, since the OS driver stopped leaving the idle state, the
only state where it updates the device leasing counter, this register will even-
tually reach zero causing the OS driver to perform a move to the idle state.

Lemma 7.4.2. From any configuration a safe configuration is eventually reached.

Proof. From Lemma 7.4.1, the OS driver reaches the idle state infinitely often.
Usually according to the protocol design, the device controller will reach the
idle state following the OS driver. Whenever the OS driver starts a new com-
mand it advances along the protocol stages waiting for the device controller to
follow it as they carry out the I/O request together. Whenever a command is
completed both parties proceed to the idle state, which is a safe configuration.
Otherwise, the OS driver will eventually reset the device controller to its idle
state, and also will move to its own idle state, thus again reaching a safe config-
uration (“h0d0”). Note that in case of successive I/O commands the OS driver
might wait in state 1 for the controller to finish the last command and join
it. Therefore, the configurations “h1d3” and “h1d0” are safe configurations as
well.

Corollary 7.4.3. Since a safe configuration is reached from any state, ping-pong
holds.

Lemma 7.4.4. Eventually progress holds.

Proof. From Lemma 7.4.2, a safe configuration is eventually reached. From this
configuration, the OS driver and the device controller fulfill requests according
to the protocol specification.

Corollary 7.4.5. Since in every infinite system execution the ping-pong and
progress requirements hold infinitely often, the OS driver and device controller
combination is self-stabilizing.

7.4.2 Consistency Checking

Alternatively, if we can assume stabilization of the device controller, then it
suffices to guaranty that the device follows the OS driver while executing com-
mands. The OS driver will be augmented with a consistency checker routine
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that checks the consistency of both parties. The timing of the execution of this
routine can be tuned to occur before each driver code execution, or periodically
by means of a watchdog timer and a non-maskable interrupt as described in
Chapter 3. The routine freezes the OS driver and reads its program counter reg-
ister. It also interrupts the device controller, which stops all activity and then
reads a snapshot of the device controller’s state. The routine then ensures that
the controller is in a proper state according to the driver stage of the protocol.
In case of consistency violation, actions are taken e.g., resetting the controller.

For each (abstract) state of the diagrams presented in Figures 7.1 and 7.2,
there can actually be a set of program counter values which fits that state.
The programs of the OS driver and the device controller can be assembled in
such a way that there is a simple function which maps every program counter
value to its corresponding diagram state. We say that every diagram state is
represented by a Program Counter Segment (PCS). This can be implemented,
for example in the Intel IA32 architecture [75], by allocating a full code segment
for each PCS (more details appeared in Chapter 3).

OS Driver PCS Device Controller Snapshots
0,1 PCS=0

PCS=3
2 PCS=1, INT=1

PCS=2, INT=1
3 PCS=1

PCS=2, INT=1
PCS=3, INT=0

4 PCS=3

Table 7.2: Consistency Check Rules.

The legal device controller PCS and other register values for every such
OS driver PCS are included in Table 7.2. For example, when the OS driver is
waiting for an interrupt (state 2), the device controller must be in states 1 or
2 but not in state 3, where it could wait for the driver forever. The interrupt
status of the device controller must also be checked to ensure that the device
controller will inform the OS driver upon completion. As to other registers,
such as DRQ, there is no need to check consistency since the self-stabilization of
the device controller guarantees that it will eventually (and in bounded time)
set the required values needed for the execution to progress according to the
protocol.

Lemma 7.4.6. Eventually ping-pong holds.

Proof. Similarly to Lemma 7.4.1, the OS driver advances along the protocol
stages. In every state it can either advance to the next stage or wait for the
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device controller. Since we have the consistency checker assuring that the de-
vice controller is in a proper matching state, and since the device controller is
self-stabilizing, eventually the device controller will perform the current stage
and the OS driver will advance to the next stage.

Lemma 7.4.7. Eventually progress holds.

Proof. Similar to the proof of Lemma 7.4.4.

Corollary 7.4.8. Since in every infinite system execution the ping-pong and
progress requirements hold infinitely often, the OS driver and the device con-
troller combination is self-stabilizing.

7.5 Concluding Remarks

Self-stabilization methods enhance the robustness of device drivers, and
consequently of their included systems. We demonstrated the lack of such
properties in one of the well-known standard protocols. The two solutions that
were proposed can be practically combined according to the level of stabiliza-
tion that can be expected from various I/O devices. If not all the device pro-
ducers can be relied upon, then one can rely on leases and restarts to achieve
self-stabilization. In the other case, the snapshot of the I/O device, taken dur-
ing a consistency check, can be reduced if its stabilization ability is enhanced.
A demonstrating implementation of a hard-disk driver is presented. We have
tested it using the BOCHS [20] simulator, and observed that even when com-
pletely changing the contents of the RAM, stabilization is achieved. The full
implementation can be found in [132].
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7.6 Appendix. Hard-Disk Driver Implementation

An example of implementation of a hard-disk driver is presented here. For
better readability the code is divided into Figures 7.5(a) through 7.13. Each
code portion is briefly explained and arguments for its stability are given. This
driver implements the lease-based solution of Section 7.4.1. We mark with
the notion “ATA X=>Y” the places where the code implements a transition
from state X to state Y according to the augmented ATA host state diagram
which appeared in Figure 7.4. Note that some “C” language line comments in
this source, which start with the pattern “;//”, are added for extra explana-
tion. This is from the source of the ROM-BIOS of Mandrake-Linux which was
adopted to PC emulators such as Bochs [20].

The hard-disk functionality is accessible to the other programs through
calling API functions such as HDDReadSectors and supplying arguments
through the processor’s registers. Those functions act as entry points for the
driver functionality.

Each such function converts the logical addresses given in its arguments
to disk sector and track addressing and then calls the disk services through
soft interrupts (ATA 0=>1). In case of an error, such as a busy disk, it tries
again several times, up to some predefined value (ATA 1=>1) and if it does not
succeed, it reboots the device, thus bringing it to the “idle” state from where
it is assumed to behave correctly (ATA 1=>0). We now go into details of the
presented code that forms the stabilizing device driver.

7.6.1 Verifying Stack Memory Coherence

In lines 1-17 of Figure 7.5(a) we ensure that the stack memory area is within
its correct limits and then move on to the rest of the code. This is necessary
since the stack is used heavily for storing parameters and intermediate results.
The rest of the code uses this memory within the checked limits only, thus we
guarantee that the code will be executed fully without memory access excep-
tions. In cases where a transient error, say in the stack pointer value, causes
such an invalid access, the exception mechanism of the system is designed to
fully recover into a legal state. Whenever the execution of the issued com-
mand is finished (successfully or stopped due to an error), the state of the stack
is preserved at its original value. Then all register values are preserved and
the iret instruction transfers control back to the calling program.

7.6.2 Parameter Calculations and Validations

The code in Figure 7.5(b) calculates the base memory address of the Ex-
tended Bios Data Area (EBDA) which holds hard disk parameters (these pa-
rameters are usually copied from CMOS during startup, but here we assume
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1 test sp, STACK LIMIT
2 jae continue0
3 mov sp, STACK LIMIT
continue0:
4 mov word [ss:STACK LIMIT], ax
5 mov ax, STACK SEGMENT
6 mov ss, ax
7 mov ax, word [ss:STACK LIMIT]
; pass all parameters on stack
8 pusha
9 push es
10 push ds
11 push ss
12 pop ds
13 call int13 harddisk
14 pop ds
15 pop es
16 popa
17 iret

(a) Verifying Stack Memory.

int13 harddisk:
19 push bp
20 mov bp, sp
21 add sp, 0xfffa ; sp-=6
; read ebda segment
22 mov ax, 0xe
23 push ax
24 mov ax, 0x40
25 push ax
26 call read word
27 add sp, 0x4
; save result on stack
28 mov word [ss:bp+0xfffa], ax
29 add sp, 0xffe4
;// clear completion flag
;// basic check : device has to be defined
;// basic check : device has to be valid

(b) Getting base BIOS address and skipping
basic checks.

Figure 7.5: HD Driver Impl. 1-2

they are fixed). In lines 19-29 we use a recurring pattern for reading (or writ-
ing) a value elsewhere in memory, by pushing the target address to the stack
and calling a routine in a set of family of routines for reading\writing bytes
and words from\to memory (line 26). The last remark lines show that in
this implementation we can skip some checks, e.g., checking that the drive is
present and valid, since it is assumed to be enforced by external means.

The code in lines 30-45 (Figure 7.6(a)) validates that the disk command code
is in the range of available commands and jumps to the fixed address of the
appropriate command (e.g., reset or read/write). Here we are not supporting
the dozens of commands usually available, so instead of the computed goto
we could check for each possible command code and branch to the appropri-
ate fixed address. Even in the unlikely event in which the operation value is
being corrupted right after the check is made and before the branch in line 42
(thus causing the processor to jump to unpredicted address) still the NMI archi-
tecture (see Chapter 3), which the system is based on, will eventually recover
the system state to a correct state.

In Figure 7.6(b) the various operation parameters are just copied inside the
stack within the limits mentioned above.

The code in Figure 7.7(a) (lines 72-78) verifies that the number of requested
sectors to read/write is legal, i.e., between 0 to 127. If this is not the case,
there is a branch to a failure routine (appears in Figure 7.13) which currently
resets the system. The “C” code returns an error value which is much less
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;//switch (GET AH())
30 mov ax, word [ss:bp+0x16]
31 mov al, ah
32 xor ah, ah
33 add sp, 0xfff2
34 sub ax, 0x0
35 jge continue4
36 jmp failure
continue4:
37 cmp ax, 3
38 jbe continue5
39 jmp failure
continue5:
40 shl ax, 1
41 mov bx, ax
42 jmp word [cs:bx+$+5]
43 dw reset
44 dw failure
45 dw read write

(a) Validate Operation Code and Branch.

read write:
46 mov al, byte [ss:bp+0x16] ; al-sector#
47 xor ah, ah
48 mov word [ss:bp+0xffe0], ax
49 mov ax, word [ss:bp+0x14] ; ch-track
50 mov al, ah
51 xor ah, ah
52 mov word [ss:bp+0xfff8], ax
53 mov al, byte [ss:bp+0x14] ; cl-sector
54 xor ah, ah
55 shl ax, 1
56 shl ax, 1
57 and ax, 0x300
58 or ax, word [ss:bp+0xfff8]
59 mov word [ss:bp+0xfff8], ax
60 mov al, byte [ss:bp+0x14] ; cx
61 and al, 0x3f
62 xor ah, ah
63 mov word [ss:bp+0xfff4], ax
64 mov ax, word [ss:bp+012] ; dh-head
65 mov al, ah
66 xor ah, ah
67 mov word [ss:bp+0xfff6], ax
68 mov ax, word [ss:bp+0x6] ; bp
69 mov word [ss:bp+0xfff2], ax
70 mov ax, word [ss:bp+0x10] ; bx
71 mov word [ss:bp+0xfff0], ax

(b) Copying of Operation Arguments.

Figure 7.6: HD Driver Impl. 3-4

severe and might be acceptable in most cases. In our model we assume that
eventually applications will also behave correctly and provide legal values,
without causing repeated restarts.

The code in Figure 7.7(b) (lines 79-123) validates that disk address argu-
ments do not exceed the actual disk parameters. These parameters are read
from the Bios memory. We assume they are hard-coded and thus can not be
corrupted (this code actually can be shortened and simplified by comparing to
fixed disk addresses.

In Figure 7.8(a) (lines 124-148), a call to the routine that actually carries the
I/O instructions appears. The needed parameters are pushed (onto the verified
stack). When the call returns, the reported status is checked and in case of an
error we execute the failure steps as before. If successful, we continue towards
return from the driver code (ATA 4=>0).



78 I/O Device Drivers

7.6.3 Checking Controller State

The code in Figure 7.8(b) (lines 125-199) starts the procedure that executes
I/O transfer instructions by first saving (again, the assumed fixed) Bios mem-
ory area and calculating needed parameters such as the IDE channel, salving
status, and controller memory mapped addresses (all these parameters are
hardwired as well).

In Figure 7.9(a) (lines 200-212), the disk block size is taken as a constant and
not read from the Bios memory (as appears also in the “C” code). There is also
a validation for the needed operation mode of the controller. We can not allow
this mode to change during the disk operation, so we actually assume this
mode is fixed for the given disk (otherwise we need to repeatedly check and
set the mode). Likewise the original code contained checks of the addressing
mode used, which we assume to be fixed.

The code in Figure 7.9(b) (lines 213-230) resets the count of already trans-
ferred data by writing zero in the disk controller mapped area. An internal
driver counter is reset as well and used later to match the transfer status with
the controller (this has a notion of the second solution, i.e., making sure the
controller is following the driver, and for this solution can be omitted).

In Figure 7.10(a) (lines 231-241) the disk is checked for busy status (ATA
1=>1 ); if the busy status is on we stop and return with an error. After several
such errors the disk controller will get a reset which inevitably stops the busy
status (ATA 1=>0).

7.6.4 Writing Command Parameters and Waiting for Comple-
tion

The code in Figure 7.10(b) (lines 242-283) writes to the device all command
parameters (ATA 1=>3). Some parameter calculations which depend on the
slaving status can be eliminated if no slaved disk is present.

The code in Figure 7.11(a) (lines 284-308) waits for the disk controller prepar-
ing to carry out the command (ATA 3=>3). Here we see the use of leases by
calling the set lease procedure (line 284, implementation may be found in
Figure 7.13) that sets the lease in the controller to its upper limit. In every exe-
cution of the loop that appears here there is a test for the value of the lease. In a
case where the lease expires the disk is reset (ATA 3=>0). When the controller
finally returns, we check for error status and continue execution accordingly.
In our model there is the assumption that eventually the disk will succeed car-
rying out the command. Finally, we also make sure that the device controller
turned on the DRQbit, which means that data can be now transferred to/from
memory (ATA 3=>4).
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7.6.5 Read/Write Buffer from Disk

The code in Figure 7.11(b) (lines 309-346) clears the interrupt flag (masked
by calling the soft interrupt to start the disk command) so other interrupts
(e.g. the timer) can be handled from now on. We need to guarantee that other
applications would not interfere before the transfer has finished. Ways for
ordering access to a shared resource are discussed in Chapter 6 on memory
management. A lease is used here again to wait for the disk controller before
every subsequent data transfer (ATA 4=>4).

Line 316 branches (to fixed addresses) according to the type of operation.
After this line we see the read scenario, while the write instructions appear in
Figure 7.12(a) the actual data transfer into main memory is done by setting the
proper register values and performing the copy (line 332).

After each read there is a check whether there are more buffers to transfer,
and looping again if necessary (ATA 4=>3).

The code in Figure 7.12(a) (lines 347-378) performs the same steps needed
for the output scenario.

The code in Figure 7.12(b) (lines 379-394) makes sure that the controller
interrupts are enabled for the next I/O command, before executing a return
with success indication.

7.6.6 Failure and Lease Procedures

The code in Figure 7.13 (lines 395-416) contains the mentioned severe fault
handler that raises general protection error to restart the system and the code
of the lease procedures. This is followed b] the general procedures used to
read and write arbitrary memory values, which were omitted here.
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; check sector counter:
;// (count > 128) || (count == 0)
72 mov ax, word [ss:bp+0xffe0]
73 cmp ax, 0x80
74 jbe continue6
75 jmp failure
continue6:
76 test ax, ax
77 jnz continue7
78 jmp failure
continue7:

(a) Validate Sector Count Request.

; read disk parameters
79 mov al, byte [ss:bp+0xffdf]
80 xor ah, ah
81 mov cx, 0x1a
82 imul ax, cx
83 mov bx, ax
84 add bx, 0x14e
85 push bx
86 push word [ss:bp+0xfffa]
87 call read word
88 add sp, 0x4
89 mov word [ss:bp+0xffe8], ax
90 mov al, byte [ss:bp+0xffdf]
91 xor ah, ah
92 mov cx, 0x1a
93 imul ax, cx
94 mov bx, ax
95 add bx, 0x14c
96 push bx
97 push word [ss:bp+0xfffa]
98 call read word
99 add sp, 0x4
100 mov word [ss:bp+0xffe6], ax

101 mov al, byte [ss:bp+0xffdf]
102 xor ah, ah
102 mov cx, 0x1a
104 imul ax, cx
105 mov bx, ax
106 add bx, 0x150
107 push bx
108 push word [ss:bp+0xfffa]
109 call read word
110 add sp, 0x4
111 mov word [ss:bp+0xffe4], ax

;// sanity check on cyl heads, sec
112 mov ax, word [ss:bp+0xfff8]
113 cmp ax, word [ss:bp+0xffe8]
114 jb continue8
115 jmp failure
continue8:
116 mov ax, word [ss:bp+0xfff6]
117 cmp ax, word [ss:bp+0xffe6]
118 jb continue9
119 jmp failure
continue9:
120 mov ax, word [ss:bp+0xfff4]
121 cmp ax, word [ss:bp+0xffe4]
122 jbe continue10
123 jmp failure
continue10:

(b) Validate Request Against Disk Parameters.
Figure 7.7: HD Driver Impl. 5-6
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124 push word [ss:bp+0xfff0]
125 push word [ss:bp+0xfff2]
126 push word [ss:bp+0xfffe]
127 push word [ss:bp+0xfffc]
128 push word [ss:bp+0xfff4]
129 push word [ss:bp+0xfff6]
130 push word [ss:bp+0xfff8]
131 push word [ss:bp+0xffe0]
132 mov ax, word [ss:bp+0x16] ; ah
133 mov al, ah
134 xor ah, ah
135 shl ax, 0x4
136 push ax
137 mov al, byte [ss:bp+0xffdf]
138 push ax
139 call ata cmd data in out
140 add sp, 0x22
141 mov byte [ss:bp+0xffde], al

;// Set nb of sector transferred
;// if (status != 0)
142 mov al, byte [ss:bp+0xffde]
143 test al, al
144 jz continue12
145 jmp failure
continue12:
146 mov sp, bp
147 pop bp
148 retn

(a) Call to the I/O routine and return status.

ata cmd data in out:
149 push bp
150 mov bp, sp
151 dec sp
152 dec sp ; get ebda seg
153 mov ax, 0xe
154 push ax
155 mov ax, 0x40
156 push ax
157 call read word
158 add sp, 0x4
159 mov word [ss:bp+0xfffe], ax
160 add sp, 0xfff4

161 mov ax, word [ss:bp+0x4]
162 shr ax, 1
163 mov [ss:bp+0xfff7],al
164 mov ax, word [ss:bp+0x4]
165 and al, 0x1
166 mov byte [ss:bp+0xfff6], al
167 mov al, byte [ss:bp+0xfff7]
168 xor ah, ah
169 mov cl, 0x3
170 shl ax, cl
171 mov bx, ax
172 add bx, 0x124
173 push bx
174 push word [ss:bp+0xfffe]
175 call read word
176 add sp, 0x4
177 mov word [ss:bp+0xfffc], ax

179 mov al, byte [ss:bp+0xfff7]
180 xor ah, ah
181 mov cl, 0x3
182 shl ax, cl
183 mov bx, ax
184 add bx, 0x126
185 push bx
186 push word [ss:bp+0xfffe]
187 call read word
188 add sp, 0x4
189 mov word [ss:bp+0xfffa], ax

190 mov ax, word [ss:bp+0x4]
191 mov cx, 0x1a
192 imul ax, cx
193 mov bx, ax
194 add bx, 0x146
195 push bx
196 push word [ss:bp+0xfffe]
197 call read byte
198 add sp, 0x4
199 mov byte [ss:bp+0xfff3], al

(b) Calculate Disk Parameters.

Figure 7.8: HD Driver Impl. 7-8
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200 mov ax, 0x200
201 mov word [ss:bp+0xfff8], ax
202 mov al, byte [ss:bp+0xfff3]
203 cmp al, 0x1
204 jnz NO ATA MODEPIO32
205 mov ax, word [ss:bp+0xfff8]
206 shr ax, 1
207 shr ax, 1
208 mov word [ss:bp+0xfff8], ax
209 jmp AFTER ATA MODEPIO32
NOATA MODEPIO32 :
210 mov ax, word [ss:bp+0xfff8]
211 shr ax, 1
212 mov word [ss:bp+0xfff8], ax
AFTERATA MODEPIO32 :

;// sector will be 0 only on lba access.
(a) Some More Disk Parameters.

;// Reset count of transferred data
213 xor ax, ax
214 push ax
215 mov ax, 0x234
216 push ax
217 push word [ss:bp+0xfffe]
218 call write word
219 add sp, 0x6

220 xor ax, ax
221 xor bx, bx
222 push bx
223 push ax
224 mov ax, 0x236
225 push ax
226 push word [ss:bp+0xfffe]
227 call write dword
228 add sp, 0x8

;//current = 0;
229 xor al, al
230 mov byte [ss:bp+0xfff4], al

(b) Reset Counters of Transferred Sectors.

Figure 7.9: HD Driver Impl. 9-10
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;//status=inb(iobase1+ATA CB STAT);
;//if (status&ATA CB STAT BSY)return 1;
231 mov dx, word [ss:bp+0xfffc]
232 add dx, 0x7
233 in al, dx
234 mov byte [ss:bp+0xfff5],al
235 and al, 0x80
236 test al, al
237 jz DEVICE NOTBUSY
238 mov ax, 0x1
239 mov sp, bp
240 pop bp
241 retn

(a) Check Disk Busy Status (ATA 1=>1).

DEVICE NOTBUSY:
242 mov al, 0xa
243 mov dx, word [ss:bp+0xfffa]
244 add dx, 0x6
245 out dx, al

246 xor al, al
247 mov dx, word [ss:bp+0xfffc]
248 inc dx
249 out dx, al

250 mov ax, word [ss:bp+0x8]
251 mov dx, word [ss:bp+0xfffc]
252 inc dx
253 inc dx
254 out dx, al

255 mov ax, word [ss:bp+0xe]
256 mov dx, word [ss:bp+0xfffc]
257 add dx, 0x3
258 out dx, al

259 mov al, byte [ss:bp+0xa]
260 mov dx, word [ss:bp+0xfffc]
261 add dx, 0x4
262 out dx, al

263 mov ax, word [ss:bp+0xa]
264 mov al, ah
265 xor ah, ah
266 mov dx, word [ss:bp+0xfffc]
267 add dx, 0x5
268 out dx, al

269 mov al, byte [ss:bp+0xfff6]
270 test al, al
271 jz NO SLAVE
272 mov al, 0xb0
273 jmp AFTER NOSLAVE
NOSLAVE:
274 mov al, 0xa0
AFTERNOSLAVE:
275 or al, byte [ss:bp+0xc]
276 xor ah, ah
277 mov dx, word [ss:bp+0xfffc]
278 add dx, 0x6
279 out dx, al

280 mov ax, word [ss:bp+0x6]
281 mov dx, word [ss:bp+0xfffc]
282 add dx, 0x7
283 out dx, al

(b) Write Command Parameters to Disk Con-
troller (ATA 1=>3).

Figure 7.10: HD Driver Impl. 11-12
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284 call set lease
WHILE WAIT FORDEVICE :
285 call test lease
;// status=inb(iobase1+ATA CB STAT);
;// if ( !(status & ATA CB STAT BSY) )

break;
286 mov dx, word [ss:bp+0xfffc]
287 add dx, 0x7
288 in al, dx
289 mov byte [ss:bp+0xfff5], al
290 and al, 0x80
291 test al, al
292 jnz WHILE WAIT FORDEVICE

;check for read errors ;
293 mov al, byte [ss:bp+0xfff5]
294 and al, 0x1
295 test al, al
296 jz NO READERROR
297 mov ax, 0x2 ; error return value
298 mov sp, bp
299 pop bp
300 retn
NOREADERROR:
301 mov al, byte [ss:bp+0xfff5]
302 and al, 0x8
303 test al, al
304 jnz NO DRQNOTSET ERROR
305 mov ax, 0x3 ; error return value
306 mov sp, bp
307 pop bp
308 retn
NODRQNOTSET ERROR:

(a) Wait for Disk Controller and Check Con-
troller (ATA 3=>3, 3=>4, 3=>0 ).

309 sti

310 call set lease
while:
311 call test lease
312 push bp
313 mov bp, sp

; check if read or write command
314 mov ax, word [ss:bp+0x16]
315 cmp al, 0x20
316 jnz write command

317 mov di, word [ss:bp+0x26]
318 mov ax, word [ss:bp+0x24]
319 mov cx, word [ss:bp+0x8]
320 mov es, ax
321 mov dx, word [ss:bp+0xc]
; Transfer to main memory
322 rep insd
323 mov word [ss:bp+0x26], di
324 mov word [ss:bp+0x24], es
325 pop bp
326 ;//current++;

;// count–;
327 mov ax, word [ss:bp+0x8]
328 dec ax
329 mov word [ss:bp+0x8], ax
;// status=inb(iobase1+ATA CB STAT);
330 mov dx, word [ss:bp+0xfffc]
331 add dx, 0x7
332 in al, dx
333 mov byte [ss:bp+0xfff5], al
;// if (count == 0)
334 mov ax, word [ss:bp+0x8]
335 test ax, ax
336 jnz DIDNT FINISH READING
337 mov al, byte [ss:bp+0xfff5]
338 and al, 0xc9
339 cmp al, 0x40
340 jz FINISH READING
341 jmp error no sector left

DIDNT FINISH READING:
342 mov al, byte [ss:bp+0xfff5]
343 and al, 0xc9
344 jz after write command

345 jmp error more sector left
FINISH READING:
346 jmp FINISH READING

(b) Read Transfer Loop (ATA 4=>4, 4=>3 ).
Figure 7.11: HD Driver Impl. 13-14
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write command:
347 mov si, word [ss:bp+0x26]
348 mov ax, word [ss:bp+0x24]
349 mov cx, word [ss:bp+0x8]
350 cmp si, 0xf800
351 mov es, ax
352 mov dx, word [ss:bp+0xc]
; Transfer from main memory
353 es rep outsd
354 mov word [ss:bp+0x26], si
;after write command:
355 mov word [ss:bp+0x24], es
356 pop bp
;//current++;
357 mov al, byte [ss:bp+0xfff4]
358 inc ax
359 mov byte [ss:bp+0xfff4], al

;// count–;
360 mov ax, word [ss:bp+0x8]
361 dec ax
362 mov word [ss:bp+0x8], ax
;// status=inb(iobase1+ATA CB STAT);
363 mov dx, word [ss:bp+0xfffc]
364 add dx, 0x7
365 in al, dx
366 mov byte [ss:bp+0xfff5], al
;// if (count == 0) {
367 mov ax, word [ss:bp+0x8]
368 test ax, ax
369 jnz DIDNT FINISH READING
370 mov al, byte [ss:bp+0xfff5]
371 and al, 0xe9
372 cmp al, 0x40
373 jz FINISH READING

DIDNT FINISH READING:
374 mov al, byte [ss:bp+0xfff5]
375 and al, 0xc9

after write command:
376 cmp al, 0x48
377 jz while

378 jmp error more sector left
FINISH READING:

(a) Write Transfer Loop (ATA 4=>4).

; // Enable interrupts ;
// outb(iobase2+ATA CB DC,
ATA CB DC HD15);
379 mov al, 0x8
380 mov dx, word [ss:bp+0xfffa]
381 add dx, 0x6
382 out dx, al
383 xor ax, ax
384 mov sp, bp
385 pop bp
386 retn

error no sector left:
387 mov ax, 0x6
388 mov sp, bp
389 pop bp
390 retn

error more sector left:
391 mov ax, 0x7
392 mov sp, bp
393 pop bp
394 retn

(b) Enable Controller Interrupts Towards Re-
turn (ATA 4=>0).

Figure 7.12: HD Driver Impl. 15-16
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failure:
395 int 0xd ; general error

396 set lease:
397 mov ax, LEASE MAXVAL
398 push ax
399 mov ax, LEASE REGISTER
400 push ax
401 push word [ss:bp+0xfffe]
402 call write word
403 add sp, 0x6
404 retn

405 test lease:
406 mov ax, LEASE REGISTER
407 push ax
408 push word [ss:bp+0xfffe]
409 call read word
410 add sp, 0x4
411 test ax, ax
412 ja LEASE OK
413 xor ax, ax ; reset disk command
414 int 0x13
415 call failure
LEASEOK:
416 retn

Figure 7.13: HD Driver Impl. 17 - Failure Handler and Lease Procedures.



Chapter 8

Stabilizing Hosts

8.1 Introduction

“Guests, like fish, begin to smell after three days” (Benjamin Franklin). A
typical computer system today is composed of several self-contained compo-
nents which in many cases should be isolated from one another, while sharing
some of the system’s resources. Some examples are processes in operating sys-
tems, Java applets executing in browsers, and several guest operating systems
above virtual machine monitors (VMM). Apart from performance challenges,
those settings pose security considerations. The host should protect not only
its various guests from other possibly Byzantine guests [34, 46, 83], e.g. viruses,
but also must protect it’s own integrity in order to allow correct and continu-
ous operation of the system [119]. Many infrastructures today are constructed
with self-healing properties, or even built to be self-stabilizing.

Recovery with no utility. The fact that the system regains consistency auto-
matically, does not guarantee that a Byzantine guest will not repeatedly drive
the system to an inconsistent state from which the recovery process should be
restarted. This work expands earlier self-stabilizing efforts for guaranteeing
that eventually, some of the host’s critical code will be executed. This ensures
that eventually the host has the opportunity to execute a monitor which can
enforce it’s correctness in spite of the possibly existing Byzantine guests. In
particular the host forces the Byzantine code not to influence the other pro-
grams’ state. Finally, non-Byzantine programs will be able to get executed by
the operating system, and provide their services.

Soft errors and eventual Byzantine programs. Even if we run a closed sys-
tem in which all applications are examined in advance (and during runtime),
still problems like soft-errors [97] or bugs that are revealed in rare cases (due to
rare i/o sequence of the environment that was not tested/considered), might
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lead to a situation in which a program enters an unplanned state. The execu-
tion that starts from such an unplanned state may cause corruption to other
programs or to the host system itself. This emphasizes the importance of the
self-stabilization property that recovers in the presence of (temporarily or con-
stantly) Byzantine guests. Otherwise, a single temporal violation may stop the
host or the guests from functioning as required.

Host-guest enforced contract. The host guarantees preservation of the guest
execution as long as the guest respects the predefined rules of a contract. The
host cannot thoroughly check the guest for possible Byzantine behaviors (this
is equivalent to checking whether the guest halts or not). Therefor the host will
force a contract, that is sufficient for achieving useful processing for itself and
the guests. The rules enforced by the host can be restrictive, e.g., never write
to code segments, and allocate resources only through leases.

Stabilizing trust and reputation. Upon detecting a Byzantine behavior of a
guest during run time (namely, sanity checks detect a contract violation) we
can not prevent the guest from being executed, since the Byzantine behavior
might be caused by a transient fault. Does this mean that we must execute
all guests, including the Byzantine ones, with the same amount of resources?
Furthermore, when we accumulate behavior history to conclude that a guest
is Byzantine, the accumulated data maybe corrupted due to a single transient
fault, thus we can not totally count on the data used to accumulate the his-
tory. Instead we continuously refresh our impression on the behavior of a
guest while continuing executing all guests with different amount of resources.
Details of violations are continuously gathered, and the impression depends
more on recent behavior history. Such a trust and reputation function rates the
guests with a suspicious level, and determines the amount of resources a guest
will be granted. In this calculation, recent events are given higher weight, as
past event are slowly forgotten. This approach copes with corruptions in the
reputation data itself, since wrong reputation fades over time.

8.1.1 Byzantine guest examples

We review here some systems with their protection mechanisms and pos-
sible ways for Byzantine guests to attack. Commodity operating systems use
standard protection mechanisms [121] such as several privilege levels and ad-
dress space separation enforced by hardware, e.g., an MMU. A Byzantine guest
can be executed with high privilege (by an unaware user), and corrupt the sys-
tem’s state. Additionally the lack of hardware i/o addresses separation in to-
day’s common processor architectures enables even kernel data corruption by,
say, a faulty device driver. Managed environments like Java or the .NET CLR
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Mechanism Examples Byzantine Threats
Privileges, Address Commodity (i/o) Resources tampering,
Space separation(MMU) OSes Separation algo. corruption
Type checking JVM Resource sharing

Self modifying code
Emulation and Bochs, Compiled code corruption
Dynamic translator Qemu
Hypervisor Xen, Rootkits,

VmWare Privileged guest corruption

Table 8.1: Byzantine Threats.

[53] use various methods of type checking, resource access control and also
sandboxing [146]. These mechanisms rely on the correctness of the runtime
loaders and interpreters and are also sensitive to self modifying code (see e.g.,
[26, 56]).

Recently, there is a growing interest in virtualization techniques through
virtual machine monitors. VMMs may form full emulators like Bochs [20] and
Qemu [17] which interpret (almost) all of the guest’s instructions (and thus can
even ensure correct memory addressing). Other VMMs, like Xen [13], let the
guest perform directly most of the processor instructions, especially the non-
privileged ones (in [3, 56, 113, 118, 131] there is a classification of the various
VMMs types). Many VMMs rely on one of the guests for performing complex
operations such as i/o, and thus are vulnerable to Byzantine behavior of this
special guest. Some studies, e.g., [118], show other problems in implement-
ing virtualization above the x86 architecture [75], including some privileged
instructions which are not trappable in user mode, and direct physical mem-
ory access through DMA. Recently, vendors augmented this architecture with
partial corrections [108], but still not completely [59].

“Guests” that become super-hosts. Virtualized rootkits [80, 119] were re-
cently discussed. They load the original operating system as a virtual ma-
chine, thereby enabling the rootkit to even intercept all hardware calls that are
made by the guest OS. They demonstrate the relative simplicity of a Byzantine
program to take full control of the host. Table 8.1 summarizes some different
mechanisms and their weaknesses.

Related research towards robust hosts. Various protection mechanisms were
mentioned in the previous section. Some which emphasize separation and
protection are detailed in the following. In [9], a Java virtual machine is en-
hanced with operating system and garbage collection mechanisms (type safety
and write barriers) in order to prevent, cases like, “a Java applet can generate
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excessive amounts of garbage and cause a Web browser to spend all of its time
collecting it”. Virtual machine emulators have become tools to analyze mali-
cious code [56]. Lately, several studies detailed ways of preventing malicious
code from recognizing that it is executing as a guest [56, 59, 80, 108, 118, 119]
(see also [60] for VMM usage for security, and [119] which argues against re-
lying on a full operating system kernel as a protection and monitoring base).
In addition, well known hardware manufacturers intend to introduce soon IO-
MMUs with isolation capability [3, 18]. Operating system based emulators or
hypervisors such as UML [39] or KVM [82] are used also to analyze suspected
programs. [136] uses virtualization techniques to contain errors, especially in
drivers, in realtime. Methods that are based on secure boot (e.g., [6, 116, 140])
are important in order to make sure that the host gets the chance to load first,
and prevent rootkits from fooling it by actually running the host as a guest
[80]. In [127], cryptography techniques are used in order to ensure that only
authorized code can be executed.

Sandboxing techniques were presented in [146] (see also [63]). Sandboxing
techniques make sure that code branches are in segment (a distinct memory
section which exclusively belongs to a process), and also rely on different seg-
ments for code and data. For every computed address they add validation
code that traps the system, or just masks addresses to be in the segment (this
is actually a sandbox). They count on dedicated registers which hold correct
addresses. Overview of trust and reputation can be found, e.g., in [64, 102]. In
[25] a Bayesian based approach with exponential decay is proposed.

The need for address space separation, the use of capabilities, minimal
trusted base and other protection mechanisms were introduced in well known
works [19, 29, 84, 109, 121]. Singularity [71, 72] achieves process isolation in
software by relying on type safety, and also prevents dynamic code. Self-
modifying code certification is presented in [26].

Generally, extensive theoretical research has been done towards self-stabilizing
systems [38, 41, 124] and autonomic - computing/ disaster - recovery/ relia-
bility - availability - serviceability [74, 79, 134]. However, none of the above
suggest a design for a host system that can automatically recover from an ar-
bitrary state, even in the presence of Byzantine guests that repeatedly try to
corrupt the system state.

Thesis contribution. (a) Identifying the need of combined self-stabilization,
and techniques for enforcing a contract over the operations of a guest. We
show that only such a combination will allow (useful) recovery. (b) The in-
troduction of stabilizing trust and reputation and the use of the level of trust
as a criteria for granting resources while continuing to evaluate the trust of
the guests. (c) Concepts and a proof for designing hosts and contracts. (d) A
proofed running example.
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Chapter Organization. Section 8.2 details the system settings and require-
ments. This is followed by Section 8.3 which presents a general framework for
protecting against Byzantine programs. Section 8.4 presents an example of a
simple Byzantine guest followed by the way a provable host implementation
copes with such a Byzantine guest.

8.2 Settings and the Requirements

Error model – arbitrary transient and Byzantine faults. The system state,
including the program counter, system data structures and also the program
code and data in RAM, may become arbitrarily corrupted, namely, assigned
any possible value. This model is an extension of a the model from Chapter 3
used till now. The main feature of the extension is the removal of the assump-
tion that all programs are self-stabilizing (or restartable [13]) so they might
exhibit Byzantine behavior forever.

Requirements. We now define the requirements which should be satisfied
for a host system to be self-stabilizing in spite of a Byzantine behavior.
(r1) Guest stabilization preservation. The fact that the host system may start
in an arbitrary state, and execute code of Byzantine guests, will not falsify the
stabilization property of each of the non-Byzantine guests in the system.
(r2) Efficiency guarantee. Non-Byzantine guests will eventually get the needed
resources in order to supply their intended services.

Note that both (r1) and (r2) implicity require that a program that shares re-
sources with others, will not block or will be blocked, outside of acceptable
limits, due to this sharing (although in the worst case, due to the use of leases
combined with a reputation system, resource will eventually be granted).

8.3 Concepts for Fighting the Byzantines

By combining techniques like secure booting, contract verification and en-
forcement together with self-stabilization we can protect a system against Byzan-
tine guests in a provable way.

• Secure booting ensures that there is a minimal trusted computing base
which runs programs and monitors.

• Offline Byzantine behavior detectors use code verification techniques,
analyzing a program offline and looking for possible breaks of contracts.
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• Runtime anti-Byzantine enforcers insert additional instructions in the
executable for online sanity checks to enforce contract properties during
a program execution.

• Stabilizing trust and reputation for determining the amount of resources
a guest will be granted.

• Self-stabilization of these mechanisms and their composition [23, 41, 42]
ensures that the system is eventually protected and functioning.

Secure booting is achieved through standard hardware based mechanisms
(e.g., [6, 116, 140]). These are essential in order to guarantee that a Byzantine
guest is not loaded first.

The system should be augmented with a detector framework which ex-
ecutes one or more upfront offline Byzantine detector plug-ins. A detector is
built to enforce some aspect of a contract with a guest, and must be provable to
perform its action completely and within acceptable time limits. These detec-
tors scan the program code in advance for particular violations of the contract
that are easy to check, and in case the scan reveals a Byzantine guest, this guest
will not be loaded at all.

A program that passes the first check is augmented with sanity checks and
access restrictions in sensitive code parts, where execution might do harm. The
augmented code does not change the program semantics (up to stuttering) as
long as the guest respect the contract. Upon detection of a violation in runtime,
an enforcer can reload the program code and also update the trust and reputa-
tion level. An example for such an enforcer is one that enforces that segments
used by the program are not changeable (meaning that self-modifying code is
forbidden according to a contract). Runtime sanity checks, look for possible
instruction sequences to make sure they do not violate the contract. Note that
due to transient faults (that are rare by nature), a target address may change
right after a sanity check, causing the system later to start a convergence stage
as a self-stabilizing system should. In the case of a Byzantine program, the
harm is prevented, although the detection and reloading will occur again and
again (the trust and reputation record of a guest will limit the amount of pro-
cessing used for this particular guest). In case the program is not Byzantine,
the reload-of-code procedure will ensure correct behavior after which the trust
and reputation will reach the maximal possible level.

Stabilizing trust and reputation can be achieved by using methods which
favor recent events over past events. One example is [25] which combines a
Bayesian approach with exponential decay. In such ways, trusted guests get
more resources overtime, while suspected guests are not totally blocked and
get chance to “shun evil and do good”. Such approaches also cope with tran-
sient (fault) corruptions in the reputation data, since wrong reputation fades
over time.
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Theorem 8.3.1. There exists a self-stabilizing host that can fulfill (r1) stabiliza-
tion preservation and (r2) efficiency guarantees for guests.

Proof. We list the mechanisms we use and the properties we establish by them.
(a) The host is built above a self-stabilizing hardware ([44]) which guaran-
tees eventually correct operation of the hardware from any state. (b) A self-
stabilizing host operating system which is guaranteed to periodically run
some boot-code loaded in a secure way [6, 116, 140], without being subverted
([119]) (c) This trusted operating system guarantees eventual execution of all
runnable processes including the contract offline detectors. (d) Code is being
refreshed periodically (like in Chapters 5 and 6), so Byzantine or wrong be-
havior caused by transient faults to code segments are eventually fixed. (e)
Contract properties are asserted by online enforcers. (f) Self-stabilizing pro-
grams might be supplied with a list of “initial” safe states. In such a case when
recognizing Byzantine behavior, apart from preventing this behavior and re-
freshing the code, the closest state (using Hamming distance or some other
metric) can be applied to the program. (g) All resource allocations are granted
using leases with a self-stabilizing manager, as demonstrated in Section 6.5
about dynamic memory, ensuring that resource allocations are eventually fair.
The contract detectors and enforcers check also for behavior which violates the
leasing rules. Resource are leased to a guest according to its trust and reputa-
tion level. (h) System calls and traps are also leased (again, according to the
trust and reputation level), so a Byzantine guest is limited in the number of
times it can cause long delay due to system calls. (i) Non-Byzantine programs
are stabilizing in spite of faults and Byzantine behavior. (j) The interaction be-
tween those programs and other programs or devices is stabilizing too (Chap-
ter 7). (k) The stabilization process of one program only affects the state of this
program and does not affect other programs. Thus, stabilization preservation
and efficiency guarantee is achieved for guests.

The implementations presented next, add sanity checks to branches and
memory accesses, ensure correct use of leased resources, and enforce allowed
patterns of out of memory accesses.

8.4 Host Implementation Example

Till this Chapter, guest separation was achieved by using the segmentation
mechanism of the Pentium processor [75], without MMU hardware protection.
Additionally, we assumed that the code of the programs is hardwired and cor-
rect, thus a program does not contain instructions which affect the state of the
other programs (including the system). When we introduce programs with
arbitrary code, other programs, even the host/operating system itself, may be
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1 mov ax, 0x8010
2 mov ds, ax
3 mov word [0x292], 3

Figure 8.1: Byzantine Code.

corrupted. In the current work we have implemented a prototype of a simple
host that satisfies requirements (r1) and (r2) above the mentioned system.

To demonstrate the possible corruption of the system designed, we show an
example of a threat in a program that accesses the operating system’s segment
and changes the scheduler state. The scheduler state is changed so that this
program will be scheduled (again and again) instead of other guests. Figure
8.1 shows an example of such a 16-bit x86 assembly code. Lines 1-2 change the
data segment pointer to the system’s segment. Then, line 3 changes the process
pointer contents to a value which will cause re-scheduling of this program.

One can argue that address-space separation, like found in commodity op-
erating system kernels, can prevent this behavior. But if a Byzantine program
manages to operate in a privileged mode, even once due to a transient fault,
the separation algorithm itself might be subverted, followed by the above ma-
licious behavior. Next we will describe our settings in order to show a provable
solution.

To demonstrate these ideas we show: (a) an example containing added
code that enforces memory access within a program’s data segments (sand-
boxing). (b) Accessing shared resources through leases. (c) A prototype of a
detector that performs offline verification that out of segment accesses are ac-
cording to a list of known patterns allowed by a contract. (d) An example of
stabilizing trust and reputation evaluation according to online sanity checks.

The suggested solution uses an architecture in which some code is read-
only (Harvard model). A non-maskable interrupt (NMI) is generated by a sim-
ple self-stabilizing watchdog. Thus, the hardware triggers a periodic execution
of the host monitoring (detectors) code. This architecture also guarantees that
the monitoring code gets enough time to complete. A detector searches the
code of every program to make sure it does not contain code that changes seg-
ments outside the scope of the program. Computed addresses are enforced to
be within limits, by inserting sanity checks. The correct use of leased resources
is also enforced during runtime. Additionally, from time to time the host re-
freshes the code of all guests (including sanity checks insertions), say from a
CD-ROM, to allow self-stabilization of programs following a code refresh.

(a) Figure 8.2 lines 1-2 demonstrates calculation of a segment selector value,
as opposed to Figure 8.1 in which the address is fixed. Then, lines 3-6 are a san-
ity check added by the runtime anti-Byzantine enforcer. First the calculated
address is validated to be in range (in this example it must have some fixed
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1 mov ax, bx ;computed address
2 mov ds, ax
// added sanity check
3 xor ax, SEGMENT MASK
4 jz AfterSanityCheck
5 call Increase-Bad-Reputation
6 mov ax, FIXED SEGMENT
AfterSanityCheck:
...

Figure 8.2: Memory Access Enforcer.

1 call MM Alloc
After MMAlloc:
2 cmp fs, 0
3 jz TryLater
...

Figure 8.3: Shared Resource Access.

value), in case of a violation detection (line 3) the Increase-Bad-Reputation
procedure is called to record the violation (see (d) below). Then in line 6,
the correct address is enforced. Alternatively, a monitor could start actions
of reloading code and data in case of detecting such a wrong access.

(b) Figure 8.3 presents the way a program uses a shared resource, in this
case the dynamic memory heap. The contract is that all accesses to segments
in this memory area must happen only through the segment selector register
fs. Additionally, in order for this access to be leased, a program is not allowed
to load a value in this register, but instead asks the system for a leased alloca-
tion (line 1). After this allocation request, and before every dynamic memory
access, the program must check that the lease is still in effect, by checking the
value in fs (lines 2-3). In case the allocation failed or expired, the value will
be 0. Detectors and enforcers check that the use of shared resources is done
according to this contract (Chapter 6) and penalize the program in case of ir-
regular use detection.

(c) The Pentium’s operation code for moving a value into one of the 16-bit
segment selector registers, is 8e. Thus, the offline detector searches for com-
mands starting with this code (assuming for simplicity that this is the only
possible way). Note that the Pentium has variable length operations so in or-
der to detect beginnings of operations we need to use disassembly techniques.
Additionally, the mentioned operation code is sometimes used in legitimate
ways, e.g. for accessing dynamic data segments. A possible solution is allow-
ing known fixed patterns of access to other segments. An example pattern ap-
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1 mov ax, VIDEO SEGMENT
2 mov es, ax

Figure 8.4: An Allowed Pattern.

BYZANTINE-DETECTOR(process entry, legal patterns)
1 for each instruction code(ic) in process entry.code segment
2 do if ic starts with ′′8e′′

3 then for each pattern in leagal patterns
4 do if pattern precedes ic
5 then continue main loop
6 process entry.byzantine ← true
7 return

Figure 8.5: Out of Segment Access Detector

pears in Figure 8.4, where the program is accessing the video segment, which
is needed for screen output. The es segment register is loaded in line 2 by the
allowed value that is computed in line 1. In this case the 8e op-code is pre-
ceded by the sequence b8 00 b8 which is considered valid. Figure 8.5 presents
the algorithm of the segment access detector. This detector is executed before
loading the guest program. It scans a program’s code segment for the 8e code.
When found, it verifies that it is preceded by one of the allowed patterns, oth-
erwise the program is considered as one that does not respect the contract and
therefore an upfront Byzantine program.

(d) Upon finding an online contract violation through performing the en-
forced sanity checks, the violation is recorded in the reputation history record
(Figure 8.6). This record maybe kept as part of a process entry in the system’s
process table. Every predefine period of time (or steps) the system updates
this record, as seen in in the Decay-Reputation procedure in Figure 8.6. The
entries in the record are shifted in a way that the oldest entry is removed, thus
implementing the needed decay and stabilization. This updated record is used
for evaluating the trust and reputation level of the relevant guest and granting
resources in accordance.

Correctness proof. We will now prove that the system augmented with the
above added detector and enforcers is self-stabilizing and fulfills our require-
ments in spite of possible Byzantine programs.

Lemma 8.4.1. In every infinite system execution E, the program counter regis-
ter contains the address of the detector procedure’s first instruction infinitely
often. Additionally, the detector code is executed completely.

Proof. The processor eventually reaches an NMI state in which the NMI connec-
tor is set and the NMI counter contains 0. This means that the next operation
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INCREASE-BAD-REPUTATION(process entry)
1 process entry.reputation[0] &= BAD REPUTATION BIT
2 process entry.reputation[0] ¿ 1 . Shift left.
3 return

DECAY-REPUTATION(process entry)
1 for i in (MAX HISTORY − 1) .. 1
2 do process entry.reputation[i] ← process entry.reputation[i− 1]
3 return process entry.reputation

Figure 8.6: Update Trust and Reputation – Increase and Decay

that will be executed is the first operation of the NMI handler procedure. The
system is configured to execute the scheduler and the detector as part of the
NMI handler. Since the code of the detector is fixed in ROM, it remains un-
changed. During the NMI handler execution, interrupts are not served, thus
this detector can not be interrupted. Additionally, the algorithm complexity
is linear in the program code size (verifying code and adding sanity checks),
which enables the code to be executed completely. In case of corruption that
leads to self looping, the bounded time for executing the NMI handler will
cause refreshing of the code and restarting.

Lemma 8.4.2. A Byzantine guest will be either detected and be confined offline
by the out-of-segment access detector or be prevented from unauthorized seg-
ment accesses and lease violations by the sanity checks.

Proof. A Byzantine program, in our settings, is one which accesses unautho-
rized segments or leased resources. By Lemma 8.4.1 the detector is guaran-
teed to run completely. Since all program code is repeatedly augmented with
sanity checks, any unauthorized access or use will be detected and prevented
through decreasing allocation of the different system resource to a misbehav-
ing guest.

Lemma 8.4.3. In every infinite execution E, stabilization preservation eventu-
ally holds.

Proof. Stabilization preservation is achieved for a non-Byzantine guest by the
design of the system (stabilization of the scheduler, program loading and re-
freshing and resource managers). The only threat left is a Byzantine process.
By Lemma 8.4.1 all code will eventually be verified. By Lemma 8.4.2, Byzan-
tine execution of a program, which corrupts the state of another program, will
be eventually detected, restricted and granted less resources.

Lemma 8.4.4. In every infinite execution E, efficiency guarantee is achieved.
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Proof. Similar to Lemma 8.4.3 and by the design of the self-stabilizing sched-
uler, which keeps incrementing its process pointer, thus all non-Byzantine
processes which are marked for running, are executed infinitely often. Ad-
ditionally, other shared resources like dynamic memory, are lease based and
are given by the self-stabilizing resource manager. The trust and reputation
function is also stabilizing, and enables resource usage in spite of transient
faults. The added sanity checks are implemented using simple masking and
comparison operations, thus they do not have critical impact on program run-
ning times. The offline detector procedure is dependent only on program size
and the fixed number of allowed instruction patterns.

Corollary 8.4.5. The system augmented with the out-of-segment access detec-
tor and online enforcers satisfies (r1) guest stabilization preservation and (r2)
efficiency guarantee in spite of Byzantine programs.

Performance issues. The timing of the execution of code refreshing (and of-
fline detectors) can be tuned according to the expected rate of soft-error cor-
ruptions to code. This processes do not have a great impact on the program
execution performance, since the frequency of the checks may be balanced
against the desired recovery speed.

One could suggest a performance gain by having an auxiliary processor
(one core of a multi-core) for performing a repeated contract verification on
the loaded code. However, a Byzantine guest might fool the auxiliary proces-
sor, say, by changing the sanity checks to be correct whenever the auxiliary
processor is checking them. Still we can use such a processor for most of the
cases to speed the indication on soft errors and to trigger code refreshing.

8.5 Concluding Remarks

In this chapter we presented an approach to use self-stabilizing reputation
in order to gain efficient performance. We believe that self-stabilizing host sys-
tems that use stabilizing reputation are a key technology which can cope with
Byzantine behavior in critical computing system. The source code examples
can also be found in [132].
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Concluding Remarks

This thesis presented building blocks towards the vision of implementing
self-stabilization in practical (and critical) systems. In particular, the first im-
plementation of a self-stabilizing operating system is presented.

Performance issues. The performance of such an operating system can be
tuned according to the time period required and chosen for recovery. The tim-
ing of the execution of code refreshing can be tuned according to the expected
rate of soft-error corruptions to code. The various consistency checks also do
not have a great impact on the program execution performance, since the fre-
quency of the checks may be balanced against the desired recovery speed.

For example, in the implementation of Section 5.3, the scheduler code con-
tains 68 lines of code of which only 6 lines (less than 10%) are directly con-
cerned with consistency checks. In other parts of the implementation the ratio
is even smaller. As mentioned, the execution frequency can also be tuned. Ad-
ditionally, some of the checks are only optimization since the applications are
self-stabilizing too. In our example, two out of three checks can be ignored
assuming the applications are given enough time to stabilize.

Tests comparing the presented code against the same code excluding checks
required for self-stabilization, were performed. The tests included the same
task (output of text to the screen, as in [132]) being run by increased number
of processes. There was an almost fixed and negligible time difference in the
executable between the two cases (around 0.25%). Test results are available at
[132], as well.

One could suggest a performance gain by having an auxiliary processor
(one core of a multi-core) for performing code refreshes or executing the sched-
uler task with its sanity checks. Although in some rare scenarios the auxiliary
processor might be “fooled”, say, by a program accidently changing values to
be correct whenever the auxiliary processor is checking them. Still we can use
such a processor for most of the cases to speed state corrections and to trigger
code refreshing.
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We have run the presented systems using the BOCHS [20] simulator. During
some of the executions we completely changed the contents of the RAM and
observed that stabilization was achieved. Namely, the processor eventually
continues to execute the correct code of the operating system and applications.

Application to real-time systems: since the implementation is written in
assembly without relying on other execution environments, we can compute
deadlines for the system operations. Once the system stabilizes those deadline
will be respected.

We started with the black-box solutions in Chapter 4. Then Chapters 5, 6
and 7 described the tailored solution according to main kernel components. In
Chapter 8 protection against Byzantine programs was added.

The usage and usefulness of such a system in critical and remote systems
cannot be over emphasized. For example entire years of work maybe lost
when the operating system of an expensive complicated device (e.g., an au-
tonomous spaceship) may reach an arbitrary state (say, due to soft errors) and
be lost forever (say, on Mars). The controllers of a critical facility (e.g., a nuclear
reactor or even a car) may experience an unexpected fault (e.g., an electrical
spike) that will cause it to reach an unexpected state, from which the system
will never recover, therein leading to harmful results.

We make a step to use the well founded self-stabilization paradigm as part
of the design of on-going critical systems. This effort should lead to robust
systems and hence better service for us all.
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