
Feature-based decision aggregation in modular neural network
classi®ers

Nayer Wanas *, Mohamed S. Kamel, Gasser Auda, Fakhreddine Karray

Pattern Analysis and Machine Intelligence Laboratory, Systems Design Engineering Department, University of Waterloo, Waterloo, Ont.,

Canada N2L-3G1

Abstract

In several modular neural network (MNN) architectures, the individual decisions at the module level have to be

integrated together using a voting scheme. All these voting schemes use the outputs of the individual modules to

produce a global output without inferring explicit information from the problem feature space. This makes the choice of

the aggregation procedure very subjective. In this work, a new MNN architecture will be presented. This architecture

integrates learning into the voting scheme. We will be focusing on making the decision fusion a more dynamic process.

In this context, dynamic means the aggregation procedure which has the ¯exibility to adapt to changes in the input.

This approach requires the aggregation procedure to gather information about the input to help better understand how

to dynamically aggregate decisions. Ó 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Classi®cation; Classi®er combination; Dynamic decision fusion; Modular neural networks

1. Introduction

Achieving the best possible classi®cation rate
has always been the quest of designing pattern
recognition systems. Usually, di�erent classi®ca-
tion schemes are developed for the problem in
hand and, using experimental assessment, the best
classi®er is chosen as the ®nal solution to the
problem. However, it has been observed that al-
though one design may outperform the others, the
patterns that are misclassi®ed by the di�erent
classi®ers are not necessarily the same (Kittler
et al., 1998). This observation suggests that the use

of multiple classi®ers can complement the decision
about the patterns under classi®cation, hence,
improves the reliability of the overall classi®cation
process. However, the issue of e�ciently combing
the individual decisions to provide an aggregated
decision is a very crucial issue in making such
systems worthwhile (Auda and Kamel, 1998a).

These observations motivated the relatively re-
cent interest in combining classi®ers. The idea is
not to rely totally on one single decision making
scheme. Instead, all the di�erent classi®ers are used
in the ®nal decision making by combining their
di�erent ``opinions''. The main objective behind
this is to increase the e�ciency and accuracy of the
aggregated decision. To increase the e�ciency, we
can adopt multistage combination rules whereby
objects are classi®ed by simple classi®ers using a
small set of simple features, in combination with a

www.elsevier.nl/locate/patrec

Pattern Recognition Letters 20 (1999) 1353±1359

* Corresponding author.

E-mail addresses: nwanas@pami.uwaterloo.ca (N. Wanas),

mkamel@pami.uwaterloo.ca (M.S. Kamel), gasser@pami.

uwaterloo.ca (G. Auda), karray@pami.uwaterloo.ca (F. Karray)

0167-8655/99/$ - see front matter Ó 1999 Published by Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 6 5 5 (9 9) 0 0 1 0 6 - 3

reject option. For the more di�cult objects, more
complex procedures, possibly based on di�erent
features, are used (El-Shishiny et al., 1989). Clas-
si®er combination strategies may re¯ect the local
competence of individual experts or the training
process may aim to encourage some experts to
achieve local decision making superiority (Auda
and Kamel, 1997).

Neural networks have been used extensively in
the literature in problems of recognition. Di�erent
approaches and techniques were used to approach
di�erent domains. Recently, the interest in com-
bining multiple neural network classi®ers has been
addressed in the literature (Kittler, 1994; Auda
and Kamel, 1998a; Drucker et al., 1993; Cho and
Kim, 1995; Battiti and Colla, 1994).

Modular neural networks (MNNs) are a new
and growing trend in the design of neural-net-
work-based classi®cation systems. The basic idea
of MNN is to reduce the classi®cation task into a
set of smaller sub-tasks that are easily manageable.
Cooperative modular neural networks (CMNNs)
are an interesting line of modular designs (Auda
and Kamel, 1997). In this case, the modules are
decoupled sub-networks that not only learn to
accomplish their own task, but try collectively to
determine the best module that can provide the
correct answer. MNN, generally, proved to be
more e�cient than the non-modular alternatives.

In any MNN architecture, the individual deci-
sions at the module level can be integrated using a
voting scheme (Auda et al., 1995). The individual
modules are modeled as multiple voters, electing
one candidate in a single ballot election, assuming
the availability of votes' preference and intensities.
Some of the voting schemes presented in the lit-
erature are plurality voting, which is the most
popular, Nash voting and Fuzzy voting (Rogova,
1994; Battiti and Colla, 1994). All these voting
schemes start from the local outputs of the indi-
vidual modules to produce a global output, with-
out inferring explicit information from the
problem feature space. This makes the choice of
the aggregation procedure very subjective. Auda
and Kamel (1998b) presented an architecture that
integrates the voting scheme in the learning pro-
cess to help improve the overall performance of
the system. In this case, however, the voting

scheme is still static and does not adapt with the
learning process.

In this work, a new architecture will be pre-
sented. This architecture integrates learning into
the voting scheme. The problem feature space is
divided into two sub-spaces. The ®rst sub-space is
used as an input to the MNN structure used. The
other sub-space is used to learn how to determine
the best candidate from the di�erent modules. In-
tegrating this approach with a voting scheme will
make the ®nal decision-making phase more
adaptable to the problem being addressed. The
organization of this paper is as follows. Section 2
presents the basic idea of feature based decision
aggregation. In Section 3 we will present the dif-
ferent experiments performed. Finally, we present
the conclusion of this work in Section 4.

2. Feature based decision aggregation

Most of the existing aggregation schemes can be
considered as post-combination of decisions. That
is, the decision combining scheme considers each
individual classi®er as a black box. The coopera-
tive modular neural network (CMNN) (Auda and
Kamel, 1997) and the ensembles voting online
(EVOL) (Auda and Kamel, 1998b) have presented
techniques that make the individual classi®ers
more involved in the ®nal decision making process.
However, even in these setups, the aggregation
schemes implemented are totally isolated from the
problem being considered. This fact makes the
aggregation procedure a prede®ned scheme, i.e.,
determined prior to the actual use of the overall
system.

This work will focus on making the decision
fusion a more adaptive process. Local classi®cation
decisions are combined in a way similar to the
parallel suite in decision fusion models (Dasarthy,
1994). This approach requires the aggregation
procedure to gather information about the input
beyond what individual classi®ers provide. The
gathered information (i.e., the extracted additional
features) is used to tune the aggregation proce-
dure.

This strategy will automatically guide the
modules during the development phase, to adapt

1354 N. Wanas et al. / Pattern Recognition Letters 20 (1999) 1353±1359

more to the learning samples that are not correctly
classi®ed by the local modules.

Fig. 1 shows the block diagram of a proposed
architecture that incorporates these requirements.
In the following subsections, we address each
component of this architecture in some detail.

2.1. Classi®ers

Each individual classi®er, Ci, produces some
output representing its interpretation of the input.
In the context of this paper, we are more interested
in using the output of these classi®ers to help in the
aggregation procedure, rather than the methodol-
ogy of classi®cation. Another goal is to utilize sub-
optimal classi®ers in the proposed architecture, to
make the development overhead of such a system
worthwhile. In this work, we use MNNs as clas-
si®ers, however, the scope of this work goes be-
yond MNNs.

2.2. Error analysis

These modules {Ei} use the previously studied
error analysis of the individual output and pro-

duce means to modify the output so as to over-
come possible errors. These modules must be
dynamic as well as comprehensive to adequately
suit their purpose. Only relevant information is
passed to the modifying module.

The accuracy of a pattern recognizer depends
upon the intrinsic overlap of the class distributions
and the estimation error due to the ®nite size of the
set of learning objects. Errors can be classi®ed into
two categories: classi®cation errors and systematic
errors. The classi®cation error, de®ned as the
probability of error in classifying new objects, is
used as a measure for the accuracy. The classi®-
cation error depends on the characteristics of the
features chosen, the number of features, the size of
the learning set, and on the procedure used for the
estimation of the discriminant function. A number
of these items are in¯uenced or determined by a
priori knowledge. Systematic errors may be con-
stant or may vary in a regular way (Topping,
1962). Eliminating those errors would help in
achieving better performance. This is the main role
of this module. The techniques and approaches
used are totally dependent on the nature of the
problem and the classi®cation technique imple-
mented in the classi®cation module.

Fig. 1. Block diagram for the proposed architecture.

N. Wanas et al. / Pattern Recognition Letters 20 (1999) 1353±1359 1355

2.3. Modi®cation modules

These modules fMig use the information from
the error analysis modules and operate on the
classi®er input to produce a modi®ed output that
is normalized to be within a common representa-
tion with all other inputs fed to the aggregation
procedure. Hence, the comparison between the
di�erent inputs then is meaningful. Similar to the
error analysis modules, these modules are depen-
dent on the nature of the problem and the classi®er
used. In these modules, a con®dence index is as-
sociated to each classi®er. This index can be in-
terpreted as the conditional probability that the
classi®er experienced success given a certain input,
or P �xi correct j Input�, where xi is the output
vector of classi®er i. The con®dence in the output
can be interpreted in di�erent ways. In this work,
the di�erence between the two top output values of
each classi®er is used as the con®dence in the
output of that classi®er.

2.4. Detectors

Each detector, Di, takes the input space and
tries to extract useful information for the aggre-
gation procedure, rather than aiming to solve the
classi®cation problem. In other words, it tries to
understand and collect information that might be
helpful in the aggregation procedure. For instance,
in a character recognition problem, the goal is to
identify a given character. While the individual
classi®ers try to determine the character, the de-
tectors try to identify the category of the character.
This helps the aggregation scheme in determining
how to combine the di�erent classi®cation outputs
to achieve a better performance.

2.5. The aggregation procedure

The aggregation procedure represents the fusion
layer of all the di�erent outputs to generate a more
competent output. The aggregation procedure uses
detectors' outputs to guide the means of combining
di�erent classi®cation results. The aggregation
scheme can be divided into two phases: a learning
phase and a decision making phase. The learning
phase assigns a weight factor to each input to

support each decision maker. This weighting factor
represents a con®dence in the output of each
classi®er. These con®dences are then aggregated
using standard classi®er-combining methods.

A neural network approach is selected to per-
form the weighting of the individual classi®er. The
neural network would take the inputs from both
individual classi®ers and detectors and presents a
newly modi®ed probability of success of each
classi®er. Implementation details are given in
Section 3.

3. Test problems and results

3.1. Data sets

3.1.1. Gaussian 20-class problem
This problem is basically a two dimensional

recognition problem introduced by Auda and
Kamel (1997), in which the samples are randomly
generated into 20 di�erent classes. Each class has a
total number of 100 samples. The samples where
randomly generated to follow a Gaussian distri-
bution around a random class mean. The com-
plexity, and in this case what makes the presented
results more general, lies in the ``non-homoge-
neous'' regions in the feature space and the over-
lapping boundaries between them. Fig. 2 shows
the distribution of the data set.

Fig. 2. Classes of the data set.

1356 N. Wanas et al. / Pattern Recognition Letters 20 (1999) 1353±1359

3.1.2. Arabic caps problem
Handwritten Arabic character recognition data

is a reasonably complex classi®cation problem due
to the similarities among many groups of its
characters (Drawish and Auda, 1994). This intro-
duces di�erent levels of overlap among the di�er-
ent characters in the input-space, and hence
complicates the job of the classi®er due to the re-
sulting internal interference. Also, note that solv-
ing the complete Arabic handwritten recognition
problem is not the main focus of this work since
that has many other dimensions of complexity
(Dasarthy, 1994).

The database used consists of 50 images for
each character collected from 5 writers, each wrote
the whole 28-character alphabet ten times. At ®rst
the characters are normalized with respect to
scaling, translation and rotation, using the geo-
metric moments of the image. Translation invari-
ance is achieved by transforming the image into a
new one whose two ®rst-order moments are equal
to zero (translate the centroid of the images to the
origin). Scale invariance is achieved by enlarging
each object such that its zero-order moment, i.e.
the number of object pixels in the image, is set
equal to some predetermined value. Rotation in-
variance is achieved by setting the ``major axis
angle'' to zero.

A 46-element feature vector is calculated for
every character. This means that the job of the
classi®er to ultimately map the characters to 28
regions in the 46-dimension feature space. The
utilized features are simple topological attributes,
yet they carry enough information to discriminate
between the di�erent characters.

3.2. Results

3.2.1. Twenty class problem
The individual classi®ers in this case were six

backpropagation neural networks. For consisten-
cy, the training procedure, though not the training
data, as well as the neural network structure was
the same for all the classi®ers. The data were ini-
tially split into two sets, a training set and an
evaluation set. The evaluation set was further split
into a veri®cation set and a testing set. The train-

ing was done separately on di�erent subsets from
the training set. Six di�erent training subsets were
used, each to train one classi®er. Table 1 shows the
di�erent training subsets. The classi®ers had 2 in-
put, twelve hidden and 20 output nodes. The
learning algorithm was the Extended DBD algo-
rithm with momentum 0.4 and learning coe�cient
0.5. The individual decision was the highest output
of each classi®er.

The subsets were chosen due to the nature of
the data distribution. Two detectors were used,
both were self-organizing maps. One split down
the clusters to twelve groups, which was the de-
composition using the hierarchical task-decompo-
sition technique (Auda, 1996). The other split
down the clusters into three groups. The aggre-
gation procedure was yet another backpropaga-
tion neural network, taking the con®dence output
of each classi®er and the output of the detectors.
The con®dence was evaluated using the confusion
matrix of each classi®er. If classi®er k produces an
output j, the con®dence Ck of that classi®er can be
given by

Ck �
ck

jjPN
i�1 ck

ij

; �1�

where ck
ij represents the number of data belonging

to class i whereas the classi®er recognized them as
being class j. These represent the diagonal elements
in the confusion matrix generated from the train-
ing data for each classi®er.

Table 2 shows the performance of the di�erent
techniques implemented. The performance was
measured using di�erent data sets. The veri®cation

Table 1

Classes within each training subset

Subset Classes included

1 1,2,3,4,5,6,7,8,9

2 8,9,10,11,12,13,14,15,16,17,18,19,20

3 1,2,4,5,6,7,8,9,10

4 2,4,7,10,11,12,13,14,15,16,17,18,19,20

5 Data from all classes, with emphasis from

classes 1 to 7

6 Data from all classes, with emphasis from

classes 10 to 20

N. Wanas et al. / Pattern Recognition Letters 20 (1999) 1353±1359 1357

and testing were the split up of the second half of
the data set (700 entries for testing and 300 for
veri®cation). Groups 1, 2 and 3 were generated
using data from clusters {1,2,3,4,5,6,7}, {8,9} and
{10,11,12,13,14,15,16,17,18,19,20}, respectively.

All the di�erent classi®er combination schemes
did succeed in recognizing data from classes 8 and 9
(group 2) perfectly; therefore it is not included in
the table. It can be noted that the static classi®er
combination procedures did improve on the single
classi®er case; however, the feature based proce-
dure proposed improved the performance further.
Furthermore, it was consistent with all the data
subsets in producing high classi®cation results and
did not su�er from high ¯uctuations in the reported
output. This robustness is due to its adaptability to
the input data through the detectors.

3.2.2. Arabic caps problem
The structure used in this problem was an en-

semble MNN. Two classi®ers, one a backpropa-
gation and the other a learning vector quantizer.
These classi®ers were trained using the same set of
data which represents half of the available data.
The other half was divided between a veri®cation
and a testing set. A self-organizing map dividing
the characters into groups was used in the detector
blocks to assist the aggregation. The ®nal aggre-
gation procedure was a back-propagation neural
network. The training procedure is performed by
running the training data through all the individ-
ual classi®ers and then using the outputs as the
training data for the aggregating neural network.

The proposed architecture shows a higher per-
formance than any of the individual neural net-
works �Cn�; it successfully reduces the number of
classi®cation errors by at least 11%. Moreover, it
also produces better results than other architec-
tures proposed in the literature to solve this

problem (Auda and Kamel, 1997). The results
were also compared to a static combination
scheme, namely, the maximum output criteria. The
static combiner did not perform well due to the
lack of consistency between both classi®ers.
The aggregation NN overcomes this problem.
Table 3 shows the results of applying this ap-
proach to solving this classi®cation problem. Due
to the fact that only two individual classi®ers were
implemented, we used only the maximum vote.
Other voting techniques may not be meaningful
(e.g. majority vote, average vote, etc.) in this case.

4. Conclusion

A new architecture was proposed to allow for
dynamic decision fusion of classi®ers. In this ar-
chitecture, the aggregation procedure has the ¯ex-
ibility to adapt to changes in the input and output in
order to improve on the ®nal output. The main idea
behind this architecture is that it tries to understand
changes in the input, by means of extracting fea-
tures using the detectors, to direct the way it per-
forms the aggregation. The aggregation learns how
to combine the di�erent decisions in order to im-
prove the overall performance of classi®cation.
This approach also aims at reducing the cost and
time of designing individual classi®ers by allow-
ing collaborate work. The empirical results were
satisfactory. Both of the test problems showed im-
provement in the performance over static combin-

Table 3

Comparison of recognition rate between the new approach and

non-modular neural network for Arabic caps problem

Feature based 94.96%

Maximum vote 92.85%

Best NN 90.3%

Table 2

Performance of the Gaussian 20-class problem

Data set Veri®cation (%) Testing (%) Group 1 (%) Group 3 (%)

Best NN 70.33 72.29 78 67.82

Majority vote 78 79.86 87.23 75.27

Average vote 76 77.71 85.71 66.55

Feature based 81.67 82 86.57 82.55

1358 N. Wanas et al. / Pattern Recognition Letters 20 (1999) 1353±1359

ers. The architecture proposed here provides a ro-
bust and adaptive scheme for combining classi®ers.

Discussion

Kuncheva: You propose a rather complex ar-
chitecture. Where do you think does the credit go?
Is the improvement due to the detectors, to mod-
i®ers of the classi®er's output, or to the aggrega-
tion that you choose?

Kamel: Actually, we think it is due to all of
those. We feel that the detectors have more credit
than the others. Many of the existing schemes
perform error analysis and modi®cations in terms
of con®dence levels. So, the credit here goes mainly
to the detectors.

Ghosh: My question is a more speci®c version of
the previous one. When you have an adaptive
decision fusion strategy, as opposed to a ®xed one
like averaging or voting, it has been widely ob-
served that such a system tends to over-train. And
that is the reason, for example, why Wolpert has to
use a complicated leave-one-out procedure for
stacked generalisation. (Note of the editors: see,
e.g., D.H. Wolpert, Stacked Generalization, Neural
Comp. 5, 241±159, 1992.) But in your case, the
validation and testing results are very close, which
indicates no over-training. Do you have an ex-
planation for this?

Kamel: I don't really have an explanation, now,
but I would like to study this architecture and other
combining schemes and how to ®t them in the same
architecture, to be able to make better comparisons
between all of them. I am aware of some other
work on combining classi®ers, which are data-de-
pendent as well. However, I have not seen a general
architecture like the one proposed here.

Ghosh: Perhaps your detectors make the classi-
®ers very decoupled. This makes it more like a
mixture of experts, where you don't have this over-
training problem.

Kamel: This is possible, however, it needs to be
proven. Well, I feel this will keep me going for
another ®ve years, to fully study the properties of
this architecture.

Acknowledgements

This work was supported by the Natural Sci-
ence and Engineering Research Council of Canada
(NSERC).

References

Auda, G., 1996. Cooperative modular neural network classi®-

ers. Ph.D. thesis, University of Waterloo, Canada.

Auda, G., Kamel, M., 1997. CMNN: Cooperative Modular

Neural Networks for pattern recognition. Pattern Recogni-

tion Letters 18, 1391±1398.

Auda, G., Kamel, M., 1998a. Modular neural network classi-

®ers: a compartive study. Journal of Intelligent and Robotic

Systems 21, 117±129.

Auda, G., Kamel, M., 1998b. EVOL: ensemble voting on-line.

In: Proceedings of the 1998 International Conference on

Neural Networks, pp. 1356±1360.

Auda, G., Kamel, M., Raafat, H., 1995. Voting schemes for

cooperative neural network classi®ers. In: Proceedings of

the 1995 International Conference on Neural Networks,

Perth, Australia, pp. 1240±1243.

Battiti, R., Colla, M., 1994. Democracy in neural nets: voting

schemes for classi®cation. Neural Networks 7 (4), 691±

707.

Cho, S., Kim, J., 1995. Combining multiple neural networks by

fuzzy integral for robust classi®cation. IEEE Transactions

on Systems, Man and Cybernetics 25 (2), 380±384.

Dasarthy, B., 1994. Decision Fusion. IEEE Computer Society

Press, Silver Spring, MD.

Drawish, A., Auda, G., 1994. New composite feature vector for

Arabic handwritten signature recognition. In: Proceedings

of the 1994 International Conference on Acoustics, Speech

and Signal Processing, Australia.

Drucker, H., Schapire, R., Simard, P., 1993. Improving

performance in neural networks using a boosting algorithm.

Neural Information Processing Systems 5, 42±49.

El-Shishiny, H., Abdel-Mottaleb, M., El-Raey, M., Shoukry,

A., 1989. A multistage algorithm for fast classi®cation of

patterns. Pattern Recognition Letters 10, 211±215.

Kittler, J., 1994. Cooperative decision making processes

and their neural net implementation. In: Cherkassky,

V., Friedman, J., Wechsler, H. (Eds), From Statistics

to Neural Networks: Theory and Pattern Recognition

Applications. NATO ASI Series, Springer, Berlin, pp.

263±281.

Kittler, J., Hatef, M., Robert, D., Matas, J., 1998. On

combining classi®ers. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 20 (3), 226±239.

Rogova, G., 1994. Combining the results of several neural

network classi®ers. Neural Networks 7 (5), 777±781.

Topping, J., 1962. Errors of Observation and Their Treatment.

Chapman & Hall, London.

N. Wanas et al. / Pattern Recognition Letters 20 (1999) 1353±1359 1359

