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Abstract

The world’s population is aging at a phenomenal rate. Certain types of cognitive decline, in particular some forms of
memory impairment, occur much more frequently in the elderly. This paper describes Autominder, a cognitive orthotic
system intended to help older adults adapt to cognitive decline and continue the satisfactory performance of routine activities,
thereby potentially enabling them to remain in their own homes longer. Autominder achieves this goal by providing adaptive,
personalized reminders of (basic, instrumental, and extended) activities of daily living. Cognitive orthotic systems on the market
today mainly provide alarms for prescribed activities at fixed times that are specified in advance. In contrast, Autominder
uses a range of AI techniques to model an individual’s daily plans, observe and reason about the execution of those plans,
and make decisions about whether and when it is most appropriate to issue reminders. Autominder is currently deployed on
a mobile robot, and is being developed as part of the Initiative on Personal Robotic Assistants for the Elderly (the Nursebot
project).
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The world’s population is aging at a phenomenal
rate. According to the United Nations Population Di-
vision, in 2000 about 606 million people, constituting
approximately 10% of the world’s population, were
over 60; by 2050, this percentage is expected to dou-
ble to 2 billion people, or 21.4% of the population.
Even more dramatic will be the increase in the per-
centage of people over 80, often called the “oldest
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old”. Today there are 69 million people in this cat-
egory, constituting 1.1% of the world’s population;
by 2050 the percentage will nearly quadruple to 4%,
with 379 million people over the age of 80 alive[29].

It has been shown that the quality of life for people
remaining in their own homes is generally better than
for those who are institutionalized[23]; moreover,
the cost for institutional care can be much higher
than the cost of care for a patient at home. This pa-
per describes Autominder, a system aimed at helping
older adults with mild to moderate memory impair-
ment remain in their homes longer. Many forms of
memory impairment are strongly correlated with age
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and can make it difficult for someone to organize
and regularly perform their necessary daily activities,
such as taking medicine correctly, eating, drinking
water, toileting, performing routine hygiene, engag-
ing in social and family activities, keeping medical
appointments, and so on.1 Autominder serves as a
cognitive orthotic, providing its users (or “clients”)
with reminders about their daily activities. Most ex-
isting cognitive orthotics mainly issue alarms for
prescribed activities at fixed times that are specified in
advance. In contrast, Autominder is capable of much
more flexible, adaptive behavior. It models its client’s
daily plans, tracks their execution by reasoning about
the client’s observable behavior, and makes decisions
about whether and when it is most appropriate to is-
sue reminders. The current version of Autominder is
deployed on a mobile robot, and is being developed
as part of the Initiative on Personal Robotic Assistants
for the Elderly (the Nursebot project). We are also
exploring alternative platforms for Autominder, such
as distributed sensors and/or wearable devices.

In the next section, we provide a description of
Autominder’s architecture and its current platform.
This is followed by three sections in which we dis-
cuss Autominder’s main components: the Plan Man-
ager, the Client Modeler, and the Personal Cognitive
Orthotic (its reminder generation module). We then
present a brief overview of other cognitive orthotic
systems, and conclude with a description of our on-
going work on the system.

2. Autominder’s architecture

To motivate Autominder’s architecture, it is useful
to provide a simple example of its interaction with a
client. Consider a forgetful, elderly person with uri-
nary incontinence who is supposed to be reminded
to use the toilet every three hours, and whose next
reminder is scheduled for 11:00. Suppose that, using
on-board sensors, the robot on which Autominder is
deployed observes the person enter the bathroom at
10:40 and stay there for a period of a few minutes.

1 The medical community classifies such activities into three
groups: Activities of Daily Living, Intermediate Activities of Daily
Living, and Extended Activities of Daily Living. These distinctions
do not matter for this paper.

Fig. 1. Autominder architecture.

Autominder may conclude that toileting has occurred,
and that, consequently, it should not issue a reminder
at 11:00 as previously planned. Instead, the client’s
plan must be adjusted, so that the next scheduled
toileting is to occur approximately three hours later,
i.e., around 13:40. Flexibility is essential because a
strict three-hour interval may not be optimal. For in-
stance, if the client’s favorite television program is
aired from 13:30 to 14:00, it might be better to issue
a reminder at 13:25, and provide a justification that
mentions the television program: “Mrs. Smith, Why
don’t you use the toilet now? That way I won’t have
to interrupt you during your show.”

To achieve this type of behavior, Autominder must
maintain an accurate model of the client’s daily plan,
monitor its execution, and plan reminders accord-
ingly. Autominder’s architecture, depicted inFig. 1,
has three main components, one dedicated to each of
these tasks. The Plan Manager stores the client’s plan
of daily activities in theClient Plan, and is responsi-
ble for updating it and identifying and resolving any
potential conflicts in it. The Client Modeler uses infor-
mation about the client’s observable activities to track
the execution of the plan, storing beliefs about the ex-
ecution status in theClient Model. A reminder genera-
tion component called the Personal Cognitive Orthotic
reasons about any disparities between what the client
is supposed to do and what she is doing, and makes
decisions about whether and when to issue reminders.

Autominder is currently embedded on a mobile
robot named “Pearl”, designed and built by researchers
at Carnegie Mellon University. Pearl is constructed
on a Nomadic Technologies Scout II robot, with
a custom-designed and manufactured “head”, and
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includes a differential drive system, two on-board Pen-
tium PCs, wireless Ethernet, SICK laser range finders,
sonar sensors, microphones for speech recognition,
speakers for speech synthesis, touch-sensitive graphi-
cal displays, and stereo camera systems. See[18] for
details of Pearl’s hardware and navigation algorithms.

3. The Plan Manager

The first of Autominder’s three main components
is the Plan Manager (PM). The technology in the PM
grew out of our earlier work on plan management, in
particular, the Plan Management Agent (PMA), a pro-
totype intelligent calendar tool[20]. In Autominder,
as in PMA, we found that it was essential that we be
able to represent a rich set of temporal constraints in
the plans: for example, we may need to express that
the client should take a medication within 15 minutes
of waking, and then eat breakfast between 1 and 2
hours later. We thus model plans as disjunctive tem-
poral problems (DTPs)[19,24] and use a highly effi-
cient algorithm that we developed for reasoning about
them[25,28]. DTPs allow for both quantitative (met-
ric) and qualitative (ordering) constraints, as well as
conjunctive and disjunctive combinations of them. We
have also recently developed an approach to handling
conditional constraints[27], but we have not yet im-
plemented these in the PM.

Formally, a DTP is defined to be a pair〈V, C〉, where
V is a set of variables (or nodes) whose domains are
the real numbers, andC is a set of disjunctive con-
straints of the form:Ci :x1−y1 ≤ b1∨· · ·∨xn −yn ≤
bn such thatxi andyi are both members ofV , andbi

is a real number. A solution to a DTP is an assignment
to each variable inV such that all the constraints in
C are satisfied. If a DTP has at least one solution, it
is consistent. Within the PM, we assign a pair of DTP
variables to each activity in the client’s plan: one vari-
able represents the start time of the activity, while the
other represents its end time. We can easily encode
a variety of constraints, including absolute times of
events, relative times of events, and event durations,
and can also express ranges for each of these.Fig. 2
gives some typical plan constraints encoded in the lan-
guage of DTPs. The start (end) of a stepA is denoted
AS (AE). Note that to express a clock-time constraint,
e.g., TV watching beginning at 18:00, we use atempo-

Fig. 2. Examples of the use of DTP constraints.

ral reference(TR) point, a distinguished value repre-
senting some fixed clock time. In the figure, as well as
in the Autominder system itself, the TR corresponds
to midnight; the schedule is updated each day.

3.1. Plan initialization

The PM in Autominder is initialized in advance of
its use with a specification of the client’s daily plan,
constructed by the client’s caregiver, in consultation
with the client. Different daily plans might be con-
structed, e.g., one for weekdays and one for weekends,
with the appropriate plan loaded each morning, but
here we will assume that there is just one daily plan.

We currently have a rather minimal GUI for
specifying a daily plan.2 It allows one to select
pre-constructed plan fragments for routine activities
from a library, and to then input specific temporal con-
straints on the steps in the selected fragments. Thus, a
caregiver might begin construction of a typical daily
plan by performing the following steps:

1. Select a pre-constructed plan fragment for break-
fast. The fragment includes three steps—going
to the kitchen, making breakfast, and eating
breakfast—as well as temporal constraints that
order these, causal links that capture their depen-
dencies, and some default durations, e.g., that the
eating step will take between 20 and 30 minutes.

2 The same GUI can be used for modifying the plan once
execution has begun.
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2. Specify that the first step in the breakfast plan must
begin by 7:00, and that the last step must be done
by 8:30.

3. Select a pre-constructed plan fragment for tak-
ing medicine, which has only one step—take the
medicine—with a default duration of 1 minute.

4. Specify an interstep constraint to ensure that the
medicine taking occurs within one hour of finishing
breakfast.

As each pre-constructed plan fragment or con-
straint is added, the PM performs step merging
[26,30], that is, it checks to ensure the consistency
of the daily plan being constructed and resolves any
conflicts. To do this, it uses the same techniques for
consistency checking that are used during plan ex-
ecution; these techniques are described in the next
subsection.

Although our current interface is sufficient for de-
velopment and testing purposes, further work is re-
quired to develop more user-friendly interfaces to al-
low caregivers to specify plans.

3.2. Plan update

The primary role of the PM is to update the client’s
plan as the day progresses, ensuring its continued con-
sistency. Update occurs in response to four types of
events:

1. The addition of a new activity to the plan. The daily
plan created at initialization provides a starting
point for daily activities, but during the course of
the day the client and/or her caregivers may want to
make additions to the plan: for instance, to attend a
bridge game or a newly scheduled doctor’s appoint-
ment. At this point plan merging must be performed
to ensure that the overall plan remains consistent.
Suppose that the client plan initially specifies tak-
ing medicine sometime between 14:00 and 15:00,
and that the client then adds a bridge game outside
the apartment to begin at 14:30. The PM must
update the plan so that the medicine-taking step
precedes the client leaving for the bridge game.
(We assume that the medicine must be taken at
home.) If, in addition, the medicine-taking must
occur at least two hours after each meal, the added
restriction on when the medicine will be taken
may also further restrict the time of lunch.

2. The modification or deletion of an activity in the
plan. This is similar to the previous case: the bridge
game might be cancelled, or the doctor’s office may
change the time of the appointment.3 The type of
required changes are like those needed when an ac-
tivity is added. Note that the PM will add or tighten
constraints if needed, but will not “roll back” (i.e.,
weaken) any constraints. Continuing the example
above, if the bridge game were cancelled, the con-
straint that the medicine be taken between 14:00
and 14:30 would remain in the plan. More sophis-
ticated plan retraction is an area of future research.

3. The execution of an activity in the plan. When
the Client Modeler, discussed below, infers that
an activity has been performed, it notifies the PM,
which then updates the plan accordingly. Suppose
again that medicine-taking is supposed to occur at
least two hours after the completion of each meal.
Upon learning that breakfast has been completed
at 7:45, the PM can establish an earliest start time
of 9:45 for taking the medicine.

4. The passage of a time boundary in the plan. Just
as the execution of a plan step may necessitate
plan update, so may the non-execution of a plan
step. As a very simple example, suppose that the
client wants to watch the news on television each
day, either from 18:00 to 18:30 or from 23:00 to
23:30 p.m. At 18:00 (or a few minutes after), if
the client has not begun watching the news, then
the PM should update the plan to ensure that the
23:00–23:30 slot is reserved for that purpose. (To
keep the example simple, assume that the client
always wants to watch from the very beginning of
the show.)

To perform plan update in each of these cases, the
PM formulates and solves a DTP that includes the
constraints already in the client plan augmented with
the constraints imposed by the condition triggering the
current update. The details of the problem formula-
tion and the processes used to solve it are outside the
scope of the current paper, but see[22]. Here we note
only that for the problems we have worked with so far
in the Autominder domain, the process of update al-

3 Currently, we allow arbitrary changes to be made to the plan.
In subsequent versions of the system, we will need to implement
security mechanisms that, for instance, allow the user to make
changes to social engagements but not the medicine-taking actions.
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most always takes less than one second, except when
it detects a plan failure.

4. The Client Modeler

The second major component of Autominder is the
Client Modeler (CM). The job of the CM is to mon-
itor the execution of the client plan, using informa-
tion about observable actions of the client, as well
as knowledge of what time it is and whether and
when any reminders were issued. In our current im-
plementation, the observable information is relatively
impoverished—basically, the robot’s on-board sensors
provide the CM only with reports of the current lo-
cation of the client (what room she is presently in).
However, one can imagine enhancing the system in a
variety of ways, e.g., with sensors on pill-bottle caps,
on kitchen drawers and the refrigerator, on the toilet
flusher, etc.

The task performed by the CM is a particularly
challenging one because it involves monitoring a
non-Markovian system. The client plans, recall, may
simultaneously contain qualitative and quantitative
relationships such as “taking medicine must occur
before breakfast”, “the television is usually turned
on 10–15 minutes after finishing lunch”, and “lunch
is eaten 3–4 hours after breakfast”. Thus, inferring
the current state of the client’s plan requires using
information from several different time points.

To infer the state of the client plan, we need to
be able to perform temporal reasoning under uncer-
tainty. Previous approaches tend to fall into two cate-
gories. Those in first category, which derive from Time
Nets [10], augment the nodes and arcs in a standard
Bayesian network to implicitly model time. Time is
encoded in the values of the nodes while temporal re-
lationships are encoded in the conditional probability
tables (CPTs) of the nodes. In this way, the Bayes net
can maintain and infer probability distributions over
when events occur or when properties of the envi-
ronment change values. The chief limitation of for-
malisms in this category, with respect to monitoring,
is their inability to model the fluctuating values of flu-
ents, an ability required by the CM.

The second category, exemplified by Dynamic
Bayes Nets (DBNs)[4] uses a more explicit model of
time. Instead of simply ascribing temporal semantics

to otherwise non-temporal elements in a formalism,
these approaches annotate elements of a model with
time points or intervals. In general, these approaches
take a non-temporal causal structure and instantiate it
once for each time point or interval modeled. Most
authors call each instance of this causal structure a
time slice. Arcs connecting nodes in different time
slices encode the temporal dependencies between
elements.

In some ways, DBNs are ideal for monitoring. They
allow beliefs to continually evolve over a possibly infi-
nite timeline. Also, fluents fit nicely into DBNs, which
allow variables to change their values at each time slice
transition. In domains where the Markov assumption
is easily applied, DBNs prove to be an intuitive, com-
pact, and relatively tractable model. However, because
they rely on the Markov assumption, their ability to
express temporal relationships is limited.

Because the Markov property is violated in Auto-
minder, we use a new reasoning formalism called a
Quantitative Temporal Bayesian Networks (QTBNs)
[3]. A QTBN maintains two Bayes nets: a DBN con-
taining all causal relationships and a standard Bayes
net (similar to a Time Net) that represents all tempo-
ral relationships. Interface functions carry information
between the two networks.

The structure of the QTBN is generated auto-
matically from the client plan, making two initial
assumptions: first, that all activities in the plan will,
with reasonable probability, be executed by the client
within the time range specified in the plan, and second,
that the actual time of an activity can be described by
a uniform probability density function over the range
associated with that activity. This naive initial model
can be refined using information provided by the
caregiver.

The CM updates the client model whenever new
sensor data arrives or a time boundary in the Time Net
component is passed. In the former case, the new ev-
idence is recorded in the DBN component, and then
standard DBN rollup occurs. In the latter case, inter-
face functions first transfer information between the
DBN and the time net, working in both directions, and
then rollup occurs (for details, see[3]). Whenever the
result of CM update changes the value of a node repre-
senting an action so that it rises over a threshold belief
value, the CM notifies the rest of the system. When
the value enters an intermediate range, the system may
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ask for verification from the client, e.g., “Mrs. Smith,
Did you just drink your water?”

We have not yet implemented learning capabilities
in the CM, but hope to do so in the near future so
that the CM can continually update its model of the
client’s expected behavior. Additionally, we are cur-
rently developing a more theoretically sound inference
mechanism for non-Markovian execution monitoring
in general. Although the QTBN framework has so far
worked in practice, the correctness of its inferences
has not been formally demonstrated. We are thus de-
veloping an approach that has the same behavior as
the QTBN, while being provably sound.

5. Reminder generation

The final component in Autominder is called the
Personalized Cognitive Orthotic (PCO), and is respon-
sible for deciding what reminders to issue and when
[15]. In making its decisions, the PCO aims to balance
four criteria: (i) ensuring that the client is aware of
planned activities; (ii) achieving a high level of client
and caregiver satisfaction; (iii) avoiding introducing
inefficiency into the client activities and (iv) avoiding
making the client overly reliant on the reminder sys-
tem, which would have the detrimental effect of de-
creasing, rather than increasing client independence.

It would be straightforward to generate reminders
if only the first criterion were of concern: one could
simply issue a reminder for every activity at its earliest
possible start time, perhaps repeating the reminder at
regular intervals if the activity is not performed. How-
ever, such a policy might do a potentially poor job
of satisfying the other criteria. It might do poorly on
the second criterion because it ignore the preferences
of the caregiver and the client, and so, for instance,
might issue a reminder to use the toilet in the middle
of the client’s favorite television program. It might do
poorly on the third criterion because it fails to reason
about the interactions between activities, and so might
issue a reminder to the client to (get up from her chair
and) go take her medicine, and then just when she has
returned and sat down again, issue a reminder to (get
up from her chair and) go use the toilet. And it might
do poorly on the fourth criterion by never allowing
the client to initiate activities on her own, instead al-
ways pre-emptively issuing reminders. (Arguably, the

third and fourth criteria are special instances of the
second.)

To achieve plans that have high quality with re-
spect to all four of these criteria, the PCO adopts
a local-search approach called Planning-by-Rewriting
(PbR) [1]. It begins by creating an initial reminder
plan that includes a reminder for each activity in the
client plan at its earliest possible start time, and then
performs local search, using a set of plan-rewrite rules
to generate alternative candidate reminding plans. For
example, one rewrite rule deletes reminders for activi-
ties that have low importance and that are seldom for-
gotten by the client. Another rule shifts the time of a
reminder for an activity to its expected time, i.e. the
time by which the client usually performs the activ-
ity. Yet another rule spaces out reminders for activities
for the same type of action: for instance, instead of
issuing eight reminders in a row to drink water, appli-
cation of this rule would result in them being spaced
out through the day.

The rewrite rules do not always result in valid re-
minder plans, i.e., plans that are consistent with re-
spect to the constraints in the underlying client plan.
Invalid reminder plans are detected and deleted, as are
plans that omit reminders for critical activities such
as taking medicine. The remaining newly generated
reminder plans are evaluated using a heuristic func-
tion that takes into account factors such as the number
of reminders, their timing, and their relative spacing.
The reminder plan with the highest ranking is selected,
and the process iterates, with rewrite rules now being
applied to the selected plan. Iteration continues until
either some reminder plan is judged to have quality
exceeding some threshold, or there is an interrupt in-
dicating that there has been a change to the client plan
or to the client model. In the latter case, the entire
reminder-plan generation process is restarted.

The PCO has also been designed to enable the gen-
eration of justifications for reminders, although this
feature has not yet been fully implemented. Justifica-
tions are motivated by the hypothesis that client ad-
herence to plans may be improved when the reasoning
behind the existence and timing of a reminder is pro-
vided. For example, a reminder of the form “If you take
your medicine now, you will not have to do it in the
middle of your show”, may be more compelling than
the simple message “Time for medicine”. In generat-
ing a justification for a reminder, the PCO can make
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use of the underlying client plan, the preferences of
the caregiver and the client, and the particular rewrite
rules used in creating the current reminder plan.

To perform a preliminary evaluation of the PCO,
and in particular, to assess the suitability of the rank-
ing heuristic used during local search, we constructed
a client simulator that could be tuned for a set of
stereotypical client execution patterns. The simulator
could be tuned both for the client’s reliability (how
likely she was to perform activities without prompt-
ing) and her responsiveness (how likely she was
to perform activities after a prompting). In all, we
modeled eight different client behavior patterns. We
considered four different reminder strategies: issuing
reminders for all activities at the earliest possible start
times; at the latest possible start times; making ran-
dom selections of activities and times of reminders;
and using the PCO’s strategy. We conducted an ex-
periment with cross-factorial design, simulating daily
behavior in 32 (8× 4) conditions, running two cases
of each condition. We produced a graphical display
of each outcome, which we provided to faculty from
the School of Nursing at the University of Pittsburgh
who are involved in the Nursebot project, and we
asked them to complete questionnaires ranking the
resulting behavior along various dimensions that cor-
respond to the four evaluation criteria listed at the
beginning of this subsection. Although the results are
mixed for the simpler of the two cases (an extremely
simple case where there are no interactions between
activities), the PCO strategy was clearly superior in
the more interesting and more realistic second case
[16].

6. Related systems

The idea of using computer technology to enhance
the performance of cognitively disabled people dates
back nearly 40 years[6], and a number of systems ex-
ist to help people with cognitive impairment perform
routine activities satisfactorily. Most of these systems
can be classified as either scheduling aids, which help
a person manage a number of distinct activities over
an extended period of time, or as instructional cue-
ing aids, which help a person navigate the generally
consecutive steps of a single activity. Autominder is
an example of a scheduling aid, while COACH[14]

provides an example of an instructional cueing de-
vice. COACH assists a severely demented person with
hand washing, by using a set of sensors to “watch”
each step of the process, issuing a reminder if steps
such as using soap are skipped or performed out of
turn.

Early technology for scheduling aids included talk-
ing clocks, calendar systems, and similar devices,
while more recent systems have provided reminders
using the telephone[7], personal digital assistants
[5,9] and pagers[8]. However, with the exception of
PEAT[13], these systems generally function in a man-
ner similar to alarm clocks: they provide alarms for
prescribed activities at fixed times that are specified
in advance by a client and/or her caregiver. PEAT was
the first, and to the best of our knowledge, the only
marketed cognitive orthotic system that relies on auto-
mated planning technology. PEAT, which is marketed
primarily to patients with traumatic brain injury, is de-
ployed on a handheld device, and provides visible and
audible clues about plan execution. Like Autominder,
PEAT maintains a detailed model of the client’s plan
and tracks its execution, propagating temporal con-
straints when the client inputs information specifying
that an action has been performed. Also, upon the
addition of a new activity, PEAT simulates the plan
to uncover any conflicts, using the PROPEL planning
and execution system[12] for this purpose. However,
PEAT uses a less expressive planning language than
Autominder; it does not attempt to infer the plan exe-
cution status; and it does not perform principled rea-
soning about what reminders to issue when, instead
automatically providing a reminder for each planned
activity.

Within the past year or two, several new projects
aimed at designing intelligent cognitive orthotics have
begun to emerge[2,11,17], and we look forward to
increased activity in this area in the near future.

7. Conclusion

The Autominder system as described has been fully
implemented, except where noted in the text. The sys-
tem is written in Java and Lisp for a Wintel platform;
we also have a Web-based interface for plan initial-
ization and update. The current version of the system
has been tested in the laboratory; an earlier version
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was integrated on the mobile robot Pearl and included
in a preliminary field test conducted at the Longwood
Retirement Community in Oakmont, PA, in June 2001.
The goals of that test were, first, to ensure that the
robot control software and the cognitive orthotic would
work together, and second, to get an initial sense of
the acceptability of such a system to older individ-
uals. On both accounts, the test was successful. Ad-
mittedly, the older adults who enrolled in the studies
were volunteers, and people likely to be intimidated
or put off by this type of technology would not have
volunteered. However, the people who did participate
were uniformly excited about the system, as were the
staff at Longwood, who made a number of sugges-
tions to us about how this type of technology could
also be used to assist them in their caregiving tasks.
In the near future, we hope to conduct much more ex-
tensive field tests to exercise Autominder’s reminding
capabilities.

We have a number of plans for the continued devel-
opment of Autominder, some of which were already
mentioned in this paper. We have planned extensions
to the individual reasoning modules, for example,
adding the ability to handle conditional constraints to
the PM, supplementing the PM with full-fledged plan-
ning capabilities to support replanning, and enabling
the CM to learn the patterns of client activity over
time, in order to better interpret observed behavior.
As mentioned, we are also conducting work to de-
velop more principled foundations for the reasoning
done by the CM. An additional major area of current
work involves the client-system interaction: we are
presently investigating the use of reinforcement learn-
ing techniques to develop adaptive reminder policies.
Additionally, we are actively exploring the implica-
tions of deploying Autominder on alternative hard-
ware platforms. Although there are many advantages
of using a robot, including the ability to piggyback
on other capabilities, there are clearly also reasons
to explore handheld and/or wearable devices as well
as ubiquitous sensors to support cognitive orthotics.
Finally, after our experiences with the staff at Long-
wood, we are interested in exploring the use of sys-
tems like ours within the facility-based setting. In that
context, the system would coordinate the daily plans
not only of a single person, but of multiple people, in-
cluding both the residents and the staff that takes care
of them.
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