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Abstract: In this work the vibrations control and energy 

dissipation of a simply supported beam subjected to 

moving loads is studied. The beam is controlled by a 

moving vibration absorber that acts as energy dissipator. 

The absorber is described as a linear spring-mass-damper 

system. The results show the importance of the position of 

the damper on the energy dissipator. 
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1.   INTRODUCTION 

The study of bridge oscillations and control is a 

problem that has been the object of interest of engineers 

and scientist over the last century [1-3]. For example, Den 

Hartog [4] derived the optimum parameters of the 

absorber for suppressing the dynamic response of a single 

degree-of-freedom spring-mass system. Here, only a few 

investigations will be cited. 

Greco and Santini [2], using an extension of the 

complex mode superposition method, analyzed the 

dynamic problem of a continuous beam with two end 

rotational viscous dampers under a single moving load. 

They concluded that the damper’s effectiveness is 

strongly dependant on the load velocity and proved that, 

in the relevant range of velocities, a considerable 

reduction of the dynamic response of the beam is to be 

expected if the damper’s constants are selected properly. 

Wu [5] proposed the use of helical absorbers to reduce 

the vibrations of beams subjected to moving loads. To 

study the behavior of the beam, the governing equations 

were reduced to the first modal coordinate and, following 

Den Hartog’s approach [4], this simplified model was 

used to obtain optimal values for the stiffness and 

damping ratio of the absorber. The possibility of reduction 

of the resonant vibration of simple beams under moving 

loads by increasing the structural damping with passive 

energy dissipation devices was evaluated by Museros and 

Martinez-Rodrigo [3]. The authors used a linear viscous 

damper (FVDs) to connect the main beam, which carries 

the loads, to an auxiliary beam placed underneath the 

main one. The results show that the resonant response of 

the main beam can be drastically reduced with this type of 

device.  

Moreover, the damper attached to the beam can act as 

passive absorber of vibration energy. Georgiades and 

Vakakis [6] showed numerically that an appropriately 

designed and placed nonlinear mass-spring absorber, 

designated nonlinear energy sink (NES) can passively 

absorb and locally dissipate a major portion of the shock 

energy of the beam, a result that paves the way for the 

implementation of the NES concept to flexible systems. 

Recently, Samani and Pellicano [7] analyzed the 

effectiveness of a dynamic vibration absorber applied to a 

beam excited by moving loads. The performance of the 

dynamic dampers in vibration reduction was estimated 

through the maximum amplitude of vibration and by the 

amount of energy dissipated by the dynamic damper. 

In this work, the Euler-Bernoulli linear beam theory is 

used to study the vibrations control and energy dissipation 

of simply supported beams subjected to moving loads and 

controlled by a fixed or moving absorber. The beam is 

considered as a linear elastic continuous system and the 

absorber is described as a linear spring-mass-damper 

system moving with a specified velocity along the beam. 

A modal expansion with five modes is used to model the 

lateral displacements of the beam and the Galerkin 

method is used to obtain a set of discretized equations of 

motion which are, in turn, solved by the Runge-Kutta 

method. The rate of input energy dissipation is obtained 

by the ratio between the energy absorbed by the damper 

and internal energy of the beam due to loading. The 

obtained results show the importance of position and 

velocity of the damper on the vibration control and in 

energy dissipation of the beam. This can be used for 

engineers to optimize the position of vibration absorbers. 

2.   PROBLEM FORMULATION 

Consider a simply supported elastic beam with length 

L, Young’s modulus E, inertia I, distributed mass m  and 

damping coefficient c subjected to a moving load F(x,t) 

with velocity VL as shown in Figure 1. The beam is 

connected to an absorber represented by a small mass mA, 

a linear spring with stiffness kA and a linear viscous 

damper with damping coefficient λ. It is assumed that the 
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absorber can either be fixed or move along the beam with 

a velocity VA. 

The absorber can passively absorb a major portion of 

the vibration energy of the beam induced by the load, thus 

acting as an energy dissipator. Furthermore, the targeted 

energy transfer from the linear beam to the absorber can 

be optimized by appropriate design and placement of the 

absorber [6]. 
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Figure 1 - The controlled beam model 

In this work the mathematical formulation will follow 

that previously presented by Samani and Pellicano [7]. 

The partial differential equations of motion governing the 

flexural behavior of a simply supported beam using the 

linear Euler-Bernoulli theory and absorber can be found in 

the works Yang, Yau and Hsu [1], Greco and Santini [2]; 

and Muserosa and Martinez-Rodrigo [3] and are written 

as: 
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where y(t) represents the transversal displacement field of 

the beam; v(t) is the absolute position of the mass mA; d is 

the absorber position and u(t) = y(d, t)-v(t). 

In Eq. (1) the term ),( txGtuuAk




 ∂∂+ λ  is the 

force exerted by the absorber and G(x, t) is given by: 
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where x = d represents the location of the damper in the 

beam at time t; VA is the absorber velocity; δ is the Dirac 

delta function which defines the location of the dynamic 

damper while H(t) is the Heaviside function. 

The external force F(x, t) is a moving load given by: 
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The attached mass is small compared to the beam 

mass. In this work, the lumped mass of the absorber is 

taken to be 5% of the total mass of the beam [5]. The 

equations of motion of the system, represented by Eqs. (1) 

and (2), are analyzed after projecting the partial 

differential Eq. (1) into a complete orthonormal basis [7]. 

The eigenfunctions of the simply supported beam with no 

attachments can be used as interpolating functions. They 

are given by: 
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The natural frequency of the beam for the r
th

 mode is 

given by 42)( LmEIrr πω =  and the transverse 

vibration of the beam can be assumed as [3, 7]:  
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where Ar(t) are the unknown functions of time and φr(x) is 

given by Eq. (6). 

Substituting Eq. (7) into Eqs. (1) and (2), applying the 

Galerkin method and using the orthonormality conditions, 

the following system of equations is obtained: 
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where dtdAtA pp /)( =& ; D = d and G(t) =1 for fixed 

absorber; D = VAt and G(t) = H (1/VA – t) for moving 

absorber.  

The portion of the input energy dissipated by the 

viscous damper at time t1 is computed by the expression 

[6, 7]:  
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EED is the energy passively absorbed and locally 

dissipated by the absorber, EIN represents the total energy 

input of the beam due to the load and t0 is the load 

duration in the beam. 

3.   NUMERICAL RESULTS 

For the numerical analysis, consider a beam with 

Young’s modulus E = 206.8 GPa, mass density 

ρ = 7820 Kg/m3, cross-sectional area 0.03 m x 0.03 m and 

Fo = 9.8 N. Three different lengths are considered say 

beam L4, L5 and L6 and are chosen only to extend the 

work by Samani and Pellicano [7]. They are shown in 

Table 1 together with the associated system parameters. 
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The optimal control parameters were found using the Den 

Hartog’s theory [4] where the ratio between the masses of 

absorber and principal system is µ = 0.1, the optimum 

tuned mass is αo = 0.909 and the optimal damping ratio is 

found to be ξ2ot = 0.18464.  

Table 1 – Parameters of the beam and absorber with µµµµ = 0.1; 

ααααo = 0.909 and ξξξξ2ot = 0.18464. 

 L4 L5 L6 

L (m) 4 5 6 

m  (Kg/m) 7.038 7.038 7.038 

ωo (rad/s) 27.471 17.582 12.209 

mA (Kg) 1.4076 1.7595 2.1114 

kA (N/m) 877.92 494.45 286.11 

λ  (Ns/m) 12.98 10.89 9.076 

 

3.1.  Fixed absorber and moving load 

To check the accuracy of the present model, consider 

the system shown in Figure 1 with a fixed absorber 

(VA(t) = 0 and d = 0.5L) and external force with constant 

amplitude (Fo) and constant velocity VL(t) ≠ 0. Figure 2 

shows the maximum displacement at the mid-span of the 

L4 beam with and without damper and increasing values 

of load velocity. As can be observed, for this beam the 

maximum displacement occurs for a velocity 

VL = 21.2 m/s. The inclusion of the absorber reduces the 

maximum displacement of the beam up to 5%. 
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Figure 2 - Maximum displacement at mid-span of the beam 

(x = 0.5L). Beam L4 with and without absorber. 

The optimization of the dynamic damper is focused on 

the minimization of the maximum beam displacement. 

Then, the location of the dynamic absorber can be varied 

to find the optimum absorber position. For each beam, the 

absorber position is varied considering the load velocities 

VL that generates the maximum displacement at the beam. 

The obtained results are displayed in Table 2 where the 

ratio lmáx/L indicates the position at which the maximum 

displacement occurs and d/L indicates the best position of 

absorber. 

Figure 3 shows the fraction of energy dissipated by the 

viscous damper, η, for different absorber positions for 

t1 = 1 s and t1 = 30 s and two different damping ratios of 

the principal system. As can be observed in both Table 2 

and Figure 3, the best absorber position is located close to 

the mid-span of the beam. 

Table 2 – Location of maximum beam displacement and optimal 

absorber position. 

 VL (m/s) lmáx/L d/L 

L4 21.2 0.525 0.540 

L5 16.7 0.520 0.544 

L6 13.9 0.533 0.543 

3.2.  Moving absorber and moving load 

Consider now the system of Figure 1, with a moving 

load and a moving absorber with velocity 

VA(t) = constant. Figure 4 shows the maximum 

displacement at the mid-span of the beam for the three 

adopted cases. Five different absorber velocities VA are 

considered as a function of the load velocity VL. As can be 

observed, all curves are rather similar but the maximum 

displacement depends of both load and absorber 

velocities. The maximum displacement reduction is 

obtained when VA is near VL. 

Figure 5 shows the fraction of energy dissipated, η, by 

the viscous damper for different load and absorber 

velocities. It is possible to observe that the maximum 

dissipated energy is obtained when the load velocity is 

close to the maximum velocities of Table 2 and, for low 

ratios between absorber and load velocities. 

4.   CONCLUSION 

In this work the control vibration of simply supported 

beams subjected to moving loads was studied. Both, fixed 

and moving absorber were considered, for this the linear 

Euler-Bernoulli beam theory was used together with the 

Galerkin method to obtain a set of ordinary differential 

equations of dynamic equilibrium. 

For fixed absorber, the obtained results show the 

influence of load velocity and absorber position on the 

reduction of the maximum beam displacement. Results 

show that, when the absorber position is close to the beam 

mid-span, there is a maximum transversal displacement 

reduction. 

For moving absorber, it is possible to observe that the 

maximum reduction is obtained when the ratio between 

load and absorber velocity is close to one and the 

maximum energy dissipated is obtained for low VA/VL 

ratios which correspond to the load velocity that generates 

maximum displacement. 
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Figure 3 - Input energy dissipated versus absorber position. (a) beam L4, (b) L5 and (c) L6. 
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Figure 4 - Maximum displacement at mid-span of the beams (x = 0.5L) versus load velocity (VL). (a) beam L4, (b) L5 and (c) L6. 
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Figure 5 - Portion of input energy dissipated as a function of Load velocity (VL) and Absorber velocity (VA) (a) beam L4, (b) L5 and (c) L6. 
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