
INV ITED
P A P E R

Language Issues for
Cognitive Radio
Computer languages that may be useful for expressing cognitive radio concepts are

identified and evaluated in this tutorial paper.

By Mieczyslaw M. Kokar, Senior Member IEEE, and Leszek Lechowicz, Member IEEE

ABSTRACT | This paper discusses various aspects of formal

languages in the context of cognitive radio. A bottom up

approach is taken in which an example of a specification of a

feature of cognitive radio in a selected language is shown,

followed by an example of a feature that cannot be expressed

in the language and the identification of a capability that needs

to be added to the language in order to cover the identified gap

in the expressiveness. Following this pattern, we start with a

language based on description logics and add the capability of

expressing rules, then functions, and finally behavioral aspects.

The running example used in this paperVconveying the

description of a component to be synthesized by another

radioVcovers two major aspects of a cognitive radio: an ability

to express own capabilities and an ability to interoperate with

other cognitive radios.

KEYWORDS | Cognitive radio; formal language; formal seman-

tics; radio ontology

I . INTRODUCTION

The notion of cognitive radio was first introduced by

Mitola [1], [2]. His analysis started with a statement of

need for radios to negotiate various aspects of communi-
cation etiquette. Mitola’s conclusion was that a cognitive

radio must be self-aware (know its own structure, both

hardware and software) and have a language in which to

describe requests and replies to/from other radios and

network. He also described a language that could be used

to represent this kind of knowledge (models of radio and

communication environment).

The Software Defined Radio Forum (SDRF) [3] defines

cognitive radio as follows.

a) Radio in which communication systems are

aware of their environment and internal state

and can make decisions about their radio

operating behavior based on that information

and predefined objectives. The environmental

information may or may not include location
information related to communication systems.

b) Cognitive radio [as defined in a)] that utilizes

software defined radio, adaptive radio, and other

technologies to automatically adjust its behavior

or operations to achieve desired objectives.

Kokar et al. in [4] pattern the definition of cognitive

radio upon the definition of a cognitive agent, i.e., a system

that can:
• reason, using substantial amounts of appropriately

represented knowledge;

• learn from its experience so that it performs better

tomorrow than it did today;

• explain itself and be told what to do;

• be aware of its own capabilities and reflect on its

own behavior;

• respond robustly to surprise.
All of these definitions stress the fact that cognitive

radios must be able to express their knowledge of

themselves and of the communication environment.

Thus, either directly or indirectly, they all call for the

need of a language in which these concepts can be

expressed. Thus in this paper we discuss not whether a

language is needed to achieve the cognitive radio

functionality but what kind of language it needs to be.
At least two paths can be taken to specify requirements

for a language. In one approach one would specify some

general requirements for a language, and then such

requirements could be refined. The problem with this

approach is that for this to be possible, one would need to

have pretty good understanding of the expectation for such

a language. The concept of cognitive radio is still under

Manuscript received November 11, 2008. Current version published April 15, 2009. The

work of M. Kokar was supported in part by the Defense Advanced Projects Research

Agency under programs XG, DTN, WANN and WNaN.

The authors are with the Department of Electrical and Computer Engineering,

Northeastern University, Boston, MA 02115 USA (e-mail: mkokar@ece.neu.edu;

llechowi@ece.neu.edu).

Digital Object Identifier: 10.1109/JPROC.2009.2013028

Vol. 97, No. 4, April 2009 | Proceedings of the IEEE 6890018-9219/$25.00 �2009 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

development, and thus it is difficult to put forward
requirements that would capture all the future needs.

In this paper, we are taking a different approach. We

first start with an attempt to satisfy the needs with an

existing languageVWeb Ontology Language (OWL)1Vand

then identify areas that cannot be expressed in this

language. This leads us to consider a more expressive

language (a rule language) that covers some of the gaps that

cannot be covered in OWL. Following the same path of
reasoning, we come to the conclusion that the target

language for cognitive radio must include the ability to

introduce new functions. And finally, we show that in

addition to this, the language must be capable of specifying

dynamics (behaviors) of radio components.

Computer languages can be classified into two

groupsVimperative (or procedural) and declarative. In

Section II, we give a brief overview of the main differences
between these two groups and then argue that the

flexibility of the functionality of cognitive radio requires

the inference power of a formal declarative language with

formal, computer-processable semantics.

The rest of this paper is organized as follows. In

Section III, we discuss the role of ontologies in the

functioning of cognitive radio and show how OWL can be

used for expressing some properties of such radios. Then in
Section IV, we show that structures cannot be expressed in

OWL and that at least the power of a rule language is

necessary to achieve such functionality. We continue our

analysis in Section V, recognizing the need for the ability to

reason about functions. In Section VI, we discuss the

problem of expressing behavioral aspects of radio compo-

nents. In particular, we discuss the problem of specifying

dynamics, e.g., delays. In Section VII, we provide an over-
view of three efforts whose goal is to develop a standard

language for radio/network communications. In Section VIII,

we conclude this paper with a discussion of the language

issues that have and have not been covered here.

II . PROCEDURAL VERSUS DECLARATIVE

Computer languages can be classified in many different
ways. It would be difficult, if not impossible, to come up

with a complete and disjoint classification that would

capture all of the existing languages. Thus in this paper, we

list some of the properties of languages rather than attempt

to provide a classification. The basic distinction in the

properties of computer languages is whether a language is

imperative (also known as procedural) or declarative.

Examples of imperative languages are C, C++, Java, and
Fortran. Examples of declarative languages include Prolog,

SQL, OWL, and SWRL. A program written in an

imperative language can be viewed as a list of statements

(operations) that manipulate the state of the program [5].

The operations then are executed in a sequence according

to the control structure. The control structure is partially
captured by the ordering of operations in the list. The rest

of the control structure is embedded in the program in the

form of control statements like if-then-else, do-while, and

do-until. Thus an imperative program includes the

information on both what needs to be done and how it

needs to be accomplished (in what sequence). An

imperative program is said to provide an algorithm. The

Bwhat[information is explicit, although it is distributed
over all the statements of the program.

A declarative language, on the other hand, represents a

somewhat different paradigm of programming. In this

paradigm, the program expresses what should be accomplished

rather then how. The Bhow[is left to a generic inference
engine. Thus a declarative program is a collection of facts

(referred to as clauses) expressed in a declarative language and

a goal provided by the user. The generic inference engine then
tries to find a solution to the goal (or satisfy the query). Logic

programming, whose example is Prolog, is a representative of

the declarative programming paradigm.

Both imperative and declarative programs take some data

on input and produce some output. One more difference

between the two paradigms shows up in the way modifica-

tion to a program is achieved. In the procedural approach,

modification involves replacement of a program. Typically
this means that a system needs to be taken offline and the

modified piece needs to be recompiled and linked with the

whole system, after which the system can be restarted. In

the declarative paradigm, on the other hand, the only part

that needs to be modified is the fact and rule base (clauses).

A clause can be removed and another clause can be added

during the system operation. This is possible because the

generic algorithm (the inference engine) is not modified.
The clauses can be treated (almost) as input data.

It is important to notice, however, that any modifica-

tion, whether of an imperative program or of the clauses in

a declarative program, carries the risk of inserting errors

into the system; thus in either case, such modification

requires testing. In the procedural case, this is the new

(modified) program that needs to be tested. In the

declarative case, the clauses can be tested with an inference
engine (not necessarily the same one), and thus the testing

procedure can be performed offline before the modification

of clauses in the running program. More discussion on the

advantages of declarative languages can be found in [6].

So now comes the fundamental questionVwhich kind

of computer language is more appropriate for cognitive

radio? Unfortunately, there is no simple answer to this

question. In an attempt to answer this question, let us look
at some of the aspects of the definition of cognitive radio.

In particular, we can see that cognitive radio must have the

following capabilities:

• be aware of its own state and the state of the

environment;

• tell other radios and network of what it knows and

what it wants;1http://www.w3.org/2004/OWL/.

Kokar and Lechowicz: Language Issues for Cognitive Radio

690 Proceedings of the IEEE | Vol. 97, No. 4, April 2009

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

• reflect, i.e., be able to draw conclusions from the
facts that it is aware of;

• react to surprise, i.e., react to the circumstances it

has not seen before.

When we match these requirements with the features

of the two types of computer languages, the first reaction

seems to be that a declarative language should be able to

satisfy all of them. In particular, it is easier for a radio to

express its own knowledge in a declarative language rather
than in a procedural one since it can be accomplished by

stating only the Bwhat[without saying Bhow.[For in-

stance, a radio can tell another radio Bdo this and this.[It

would be much more difficult to actually tell the other

radio how to accomplish this.

In order to satisfy the Bawareness[requirement, it is

important to realize that awareness includes not only the

knowledge of particular facts but also the ability to
understand the implications of the facts to the operation of

the radio. For instance, just knowing that the current

operating frequency is within the 700 MHz band, without

also knowing whether it is currently assigned to analog TV

or for public safety, cannot be considered as a case of full

awareness. On the other hand, if the radio 1) has a

declarative knowledge base that relates various variables,

like frequencies, bands, band allocations, error rates, and
such and 2) has a generic inference engine that can infer

the implications of various operating states and environ-

mental conditions (like the understanding of whether it

can access the TV band), then this will satisfy the

awareness requirement to a much higher degree.

The self-awareness also may need to include the

concept of reflection, which is addressed by most declar-

ative languages and by some procedural languages too. It is
important to point out here that although a program keeps

values of its variables, it does not automatically follow that

the program knows its own variables. We could require

(and this is rather reasonable) that for a program to know

its own variables it should be able to answer such queries

likeVwhat are your variables? And then, what is the type

of that variable, and what is its value?

The ability of reacting to surprise is perhaps the most
prominent feature of cognitive radio that points in the

direction of the declarative paradigm. If all the required

information is available at design time, the programmer

can encode this information into a program using an

imperative language, which would most likely provide a

better performance than one obtained by using an

inference engine. This approach will not be too effective

if (costly) modifications to the program are frequently
required.

In the declarative paradigm, whatever knowledge

(clauses) that is available in the knowledge base can be

utilized for finding answers to unexpected goals (queries).

This is achieved through the searching and matching

algorithm of the inference engine. In the procedural

paradigm, on the other hand, not only the facts but also the

sequence of statements have to be provided by the
programmer. Thus, although in both paradigms some

knowledge must exist in the program, the fact that a

declarative program can find an answer without explicit

control knowledge makes this paradigm more appropriate

to the achievement of the goal of reacting to surprise.

Note, however, that adding new knowledge dynamically to

a running program implies that the program must be able

to (correctly) interpret the added knowledge by itself.
This, in turn, implies that the declarative language in

which the knowledge is expressed must have a computer

processable semantics. In other words, there must be a

logic associated with the language. This leads us to formal
languages (i.e., languages with formal syntax) that also

have formal semantics. Formal syntax means rules for

deciding whether a given string is in the language or not

[strings that are part of a language are also called well-
formed forms (wffs)] and for generating wffs out of other

wffs. Formal semantics, on the other hand, refers to

interpretations, i.e., mappings from the terms of the

language to a mathematical domain (a set of individuals)

and from sentences to truth values.2 Together with a set of

inference rules and an inference engine, this constitutes a

formal system. In this paper, we discuss formal languages

with formal semantics within the context of a formal
system.

An inference engine can take a set of sentences in the

language and apply the inference rules of the formal

system to derive new sentences. A formal system is desired

to be sound, i.e., given a consistent set of true sentences, it

can derive only true sentences, i.e., the sentences that map

to the truth value of Btrue[by the interpretation function

(although researchers in the semantic Web community are
working on ways of handling inconsistencies and un-

soundness, e.g., [7]). This feature is particularly important

when automatic inference is carried out by an inference

engine, without a human in the loop. Without this

characteristic, the system would not have a basis for

deciding which of the inference results should be admitted

and which had to be ignored. Another desirable (but hardly

achievable) feature of a formal system is the completeness
requirement, which refers to the ability to infer all possible

true sentences using the rules of inference.

Lastly, one aspect of computer languages that is very

important is the engineering aspectVthe time and

memory requirements for a given language. The flexibility

of declarative languages comes with a priceVthe high time

complexity. The worst case time complexity of inference in

most of the declarative languages discussed in this paper
falls in the complexity class termed undecidable [8]. The

consequence of this fact is that inference algorithms are

not complete and may return an Bunknown[answer given

the time and/or memory limits are exceeded.

2Note that this is only one of many ways of defining a semantics for a
language.

Kokar and Lechowicz: Language Issues for Cognitive Radio

Vol. 97, No. 4, April 2009 | Proceedings of the IEEE 691

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

III . ONTOLOGIES AND OWL

A formal system is just a system for sound inference. In
order to make it useful to a specific domain, the things of
interest for the domain must be represented in the
language so that inference can be applied to the sentences
about these things. For the domain of cognitive radio,
some knowledge of the wireless communications domain
is necessary. The issue of knowledge representation has
been investigated for many years now by the artificial
intelligence (AI) community. Various competing repre-
sentation formalisms were developed over the years.
Recently, the AI community has converged on an
abstraction for knowledge representation called ontology.
In one sense, ontology is Ba science or study of being[[9]
(onto), i.e., about what exists in reality. Ontology in this
sense is a branch of philosophy. AI, on the other hand, uses
ontology in a different sense (although still somewhat
related to philosophy). According to an AI definition (see
[10]), Ban ontology is an explicit specification of a
conceptualization.[Thus it is just knowledge of a domain
represented in a declarative formalism. These are defini-
tions that associate the names of things in the universe of
discourse (e.g., classes, relations, functions, or individuals)
with human-readable text describing what the names
mean, and formal axioms that constrain the interpretation
and well-formed use of these terms. It is a statement of a
logical theory. In this paper, we use the term Bontology[in
the sense of AI.

Another consensus that the AI community has reached
is that a common language is desirable for representing
ontologies. This trend can be observed in various
communities. For instance, the software engineering
community has settled on one languageVthe Unified
Modeling Language (UML). Although there is no such a
strong agreement on a standard ontology representation
language, the OWL has collected the largest number of
practitioners and supporters so far. It is worthwhile
mentioning that the semantic Web community is working
on various ways of modifying OWL, in the direction of both
weakening and increasing its expressivity.

In this paper, we will present our attempts at using

OWL for cognitive radio. Rather than waiting for a fully
approved standard (which may never happen), for the

purpose of this paper we took OWL as it exists now. In the

rest of this paper, we show what can and what cannot be
achieved with OWL. We also show what kind of

expressiveness extensions are needed to satisfy the
cognitive radio requirements listed in Section I.

To introduce the concept of ontology (as used in this

paper), we use a simple example of an ontology that is

relevant to the cognitive radio (CR) domain shown in Fig. 1.

An ontology for a domain specifies the concepts of the
domain, attributes of the concepts, and relationships

among the concepts. Concepts are specified as classes,
interpreted as sets of individuals. Typically, classes are

represented graphically by rectangles. For instance, in this

example, Component and Port are classes. Relationships

are represented as arrows. For instance, isInputPortOf is a

relation (usually called property).

Classes are organized into a hierarchy of classes by the

subclass relationship. For example, InputPort and Out-

putPort are both subclasses of the Port class. This means

that each individual of InputPort and OutputPort is also an
individual of Port. The subclass relationship in the

notation we use here is represented by an arrow from

the subclass to the superclass with an annotation Bisa.[
Properties are relationships among individuals. There

are two kinds of properties. Data type properties are

attributes that individuals have, e.g., the number of ports

that a component has. A data type property is a

characteristic of a single individual, where that character-
istic is a data value such as a number. An object property is a

relationship among various individuals. For example, a

component can have input ports and output ports. This is

shown in the ontology as arrows from the class Component

to the classes InputPort and OutputPort. The arrows are

annotated with the name of the propertiesVhasInputPort

and hasOutputPort, respectively. The class at the tail of the

arrow is called the domain of the property, while the class
at the head of the arrow is called the range of the property.

An ontology will generally have many different kinds of

data type and object properties. As with classes, one kind

of property may be regarded as a set of elements called

facts. For example, when a particular component c has an

input port p, this fact is represented by the triple

ðc; hasInputPort; pÞ. Properties can be organized in a

hierarchy by the subproperty relationship.
The following fragment of the OWL code represents

the ontology shown in Fig. 1. It is represented here in the

XML syntax. First it states that this is a legal RDF

document and lists the XML namespaces and their

abbreviations. The ontology shows declarations of classes

(delimited by the owl:Class tags). Then it lists the

properties (delimited by the owl:ObjectProperty tags)

Fig 1. A simple ontology: Component and Ports.

Kokar and Lechowicz: Language Issues for Cognitive Radio

692 Proceedings of the IEEE | Vol. 97, No. 4, April 2009

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

with specifications of domains and ranges of all the
properties. It also states that some of the classes satisfy the

owl:disjointWith property, i.e., they have no individuals in

common. All the classes, subclasses, and properties in this

listing can be directly traced to Fig. 1.

G?xml version=B1.0[?>

Grdf:RDF

xmlns=Bhttp://www.llech.com/RadioTest1.owl#[
xmlns:rdf=Bhttp://www.w3.org/1999/02/22-rdf-

syntax-ns#[
xmlns:xsd=Bhttp://www.w3.org/2001/XMLSchema#[
xmlns:rdfs=Bhttp://www.w3.org/2000/01/rdf-

schema#[
xmlns:owl=Bhttp://www.w3.org/2002/07/owl#[
xml:base=Bhttp://www.llech.com/RadioTest1.owl[>

Gowl:Ontology rdf:about=B[/>
Gowl:Class rdf:ID=BPort[>

Gowl:disjointWith>

Gowl:Class rdf:ID=BComponent[/>

G/owl:disjointWith>

G/owl:Class>

Gowl:Class rdf:ID=BOutputPort[>

Grdfs:subClassOf rdf:resource=B#Port[/>

Gowl:disjointWith>
Gowl:Class rdf:ID=BInputPort[/>

G/owl:disjointWith>

G/owl:Class>

Gowl:Class rdf:about=B#InputPort[>

Grdfs:subClassOf rdf:resource=B#Port[/>

Gowl:disjointWith

rdf:resource=B#OutputPort[/>

G/owl:Class>
Gowl:Class rdf:about=B#Component[>

Gowl:disjointWith rdf:resource=B#Port[/>

G/owl:Class>

Gowl:ObjectProperty rdf:ID=BhasPort[>

Grdfs:domain rdf:resource=B#Component[/>

Grdfs:range rdf:resource=B#Port[/>

G/owl:ObjectProperty>

Gowl:ObjectProperty rdf:ID=BisConnectedTo[>
Grdfs:range rdf:resource=B#Port[/>

Grdfs:domain rdf:resource=B#Port[/>

G/owl:ObjectProperty>

Gowl:ObjectProperty rdf:ID=BhasInputPort[>

Grdfs:range rdf:resource=B#InputPort[/>

Grdfs:domain rdf:resource=B#Component[/>

Grdfs:subPropertyOf

rdf:resource=B#hasPort[/>
G/owl:ObjectProperty>

Gowl:ObjectProperty rdf:ID=BhasSubComponent[>

Grdfs:range rdf:resource=B#Component[/>

Grdfs:domain rdf:resource=B#Component[/>

G/owl:ObjectProperty>

Gowl:ObjectProperty rdf:ID=BhasOutputPort[>

Grdfs:subPropertyOf

rdf:resource=B#hasPort[/>
Grdfs:range rdf:resource=B#OutputPort[/>

Grdfs:domain rdf:resource=B#Component[/>

G/owl:ObjectProperty>

G/rdf:RDF>

To illustrate the use of OWL in the software radio

domain, consider a component [quadrature modulator

(QM)] shown in Fig. 2.
QM is one of the most fundamental building blocks

used in radio engineering [11]. QM shifts a carrier by 90�,
multiplies the original carrier by one signal and the shifted

by another, and adds the two signals together. In this way,

QM effectively encodes two different signals in the same

band. Since the two carriers are orthogonal, the encoded

information can be extracted at the receiver by synchro-

nous demodulation. QM is frequently used to implement
various functional modules in modern communication

systems, for example, quadrature amplitude modulator

(QAM), phase-shift keying modulator, and others. Practi-

cal examples of its use are shown in Fig. 3.

The choice of QM in our running example can be

argued as being too simplistic and too disconnected from

the context of its use for a real-life radio engineering

example. Clearly, from the radio engineering perspective,
it would be more convincing to show an example of the

specification of the QAM instead. However, such a

component would be too complex for showing the

fundamental concepts related to ontologies, rules, and

functions, mainly because a formal specification of this

component would require many pages of code. For this

reason, we use QM as our running example throughout

this paper.
In order to describe the QM component, our ontology

needs to have additional concepts. In particular, we need

the notion of BasicComponent specialized to various kinds

of basic components, like Adder, Multiplier, or Phase-

Shifter. For components that are not basic, we introduce

the concept of Module. An extension of the ontology of

Fig. 1 is shown in Fig. 4.

Fig 2. A simple component (quadrature modulator).

Kokar and Lechowicz: Language Issues for Cognitive Radio

Vol. 97, No. 4, April 2009 | Proceedings of the IEEE 693

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

The component shown in Fig. 2 consists of four basic

components: one adder, one phase shifter, and two

multipliers. These components are captured as subclasses

of BasicComponent of the ontology. QuadratureModulator

has three ports for external input and one output port.

Moreover, although this is not shown in the figure, each of

the basic components has at least one input port and an
output port of its own.

In Fig. 5, we show a graphical representation of a

partial description of an individual of the Quadrature-

Modulator class. The arrows annotated with Fio_ stand for

Bindividual of,[i.e., the assertions that a given individual

belongs to a given class. For the sake of readability of the

description, only some of the ports and the connections

among them are shown. As can be seen in this figure, the
ports include six individuals of InputPort and three

individuals of OutputPort. The input port InputPC,

representing the C input, is connected to the input port

Mul1_Pin1 (input port of Multiplier 1) and PhSh1_Pin

(input port of Phase Shifter). The rest of the connections

can be traced in the similar way. A similar scenario,

although in the context of Web services, has been shown

in [12].

The main purpose of this exercise was to show that
individuals of classes of complex components can be

represented in OWL. This means that a CR node can

describe its internal structure, i.e., the composition of

complex components (modules) can be represented. This

kind of capability may be very useful for the operation of the

CR. However, under some circumstances, a more advanced

capability is required. To make this point more concrete,

consider the following interoperability scenario [13].
The synthesis of more advanced concepts from the

facts in the base ontology is the foundation of the

Fig 4. A simple ontology: Subcomponents.

Fig 3. Example uses of QM in radio engineering.

Kokar and Lechowicz: Language Issues for Cognitive Radio

694 Proceedings of the IEEE | Vol. 97, No. 4, April 2009

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

interoperability between cognitive radios. One of the uses

for this idea is achieving interoperability between CR
nodes at the specific protocol level.

For example, one of the nodes (node A) might decide

that switching to a specific modulation scheme might

provide more optimized communication results in partic-

ular circumstances. That node then sends a request to its

peer (node B) to make a switch. If the peer Bknows[the

chosen modulation scheme, it might choose to comply

with the request or might decide to reject it. If it does not
Bknow[the proposed modulation scheme, it might in

return send a query for an explanation of what exactly that

modulation scheme is. If the response to that query

contains concepts that are still not understood by the node,

it can continue querying for concepts all the way down to

those defined in the base ontology. While the scenario in

which a node does not know a communication protocol

might be extreme, the assumption that a node knows
everything would be at the other end of the spectrum. In

other words, assuming that communicating nodes, espe-

cially CR nodes, know all the possible concepts about

which they can exchange information would impose

extremely demanding (if achievable at all) requirements

on the capabilities of cognitive radio.

Continuing with our example, assume that Node A

requests Node B to use a QuadratureModulator but Node B
does not have such a module in its library. If the ontology is

built as an extension to an upper layer ontology (e.g.,

SUMO,3 BFO,4 DOLCE,5 or GFO6) then Node B might be

able to find at least some partial (more general)

information about the requested class since the class

might be a subclass of one of the classes in the upper

ontology. Otherwise, Node A needs to explain to Node B
how to build such a component using the four basic

components. The straightforward way to do this is to send

the definition of class QuadratureModulator to Node B so

that Node B can construct a structure that is an individual

of the class. In other words, Node B, after receiving the

description of the QuadratureModulator class, would have

to formally prove (using its own reasoner) that the

constructed structure (MyComponent) is an individual
(or type) of QuadratureModulator. Putting this in OWL

terms, Node B would have to prove:

GModule rdf:ID=BMyComponent[>

Grdf:type rdf:resource=B#QuadratureModulator[/>

G/Module>

Unfortunately, the expressive capabilities of OWL do not
allow for a representation of QuadratureModulator that

would guarantee the correct decision. In other words, it is

impossible to construct an OWL description that would

capture all components that are considered to be quadrature

modulators and none of the components that are not

considered quadrature modulators. This is due to the fact

that OWL does not have a construct for expressing

composition of properties (relations). In this case, the
quadrature modulator has two multipliers. We can express in

OWL the fact that a particular class (such as Quadrature-

Modulator) is in a relationship with another class (such as

Multiplier) using a property (in our case, hasSubCompo-

nent). Moreover, we can say that there are two individuals of

Multiplier in a quadrature modulator. We cannot, however,

distinguish the relationship with one of the multipliers from

the relationship with the other one, i.e., we can express in
OWL the fact that the quadrature modulator is in the

relationship with InputPort, but it is impossible to

3http://www.ontologyportal.org/.
4http://www.ifomis.org/bfo.
5http://www.loa-cnr.it/DOLCE.html.
6http://www.onto-med.de/en/theories/gfo/index.html.

Fig 5. An individual of QM.

Kokar and Lechowicz: Language Issues for Cognitive Radio

Vol. 97, No. 4, April 2009 | Proceedings of the IEEE 695

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

differentiate between the particular relationships for input
ports I, Q, and C. The implication of this is that the definition

of QuadratureModulator is not restrictive enough, i.e.,

various configurations will satisfy the definition for as long as

they have the necessary components. However, they will be

classified as individuals of this class even if they do not have

the correct connections.

IV. RULES

The limitation of OWL described in the previous section

can be resolved by extending the expressive power of OWL

using other, more expressive languages and more powerful

reasoning mechanisms. The limitation of OWL described

above has been known in the semantic Web community as

the inability to define the Buncle[relationship. In other

words, it is impossible to express in OWL that an uncle is a
person who is the brother of someone’s father. The main

issue here is that OWL does not have a way to capture the

Bwho is[part of the above statement. In order to be able to

do this, we would need the notion of variables that link two

different relations. In this example, we would need a

variable, say, ?X, which would represent the father, who

would then have a child and a brother. This means OWL

lacks the capability of expressing the composition of
relations.

Other languages, e.g., Prolog [14]Vprobably the most

known declarative language (also classified as a logic
programming language)Vallows logical statements that are

Horn clauses. A Horn clause is a disjunction of literals in

which at most one literal is positive. A definite Horn clause

has exactly one positive literal and thus is of the form

:A1 _ :A2 _ . . . _ :An _ B:

This can be rewritten in an equivalent form as an

implication (also often referred to as a rule)

A1 ^A2 ^ . . . : ^ An) B:

The symbols used in these two formulas represent

negation ð:Þ, logical OR operation ð_Þ, logical AND

operation ð^Þ, and logical implication ð)Þ. In operational
terms, this rule states that whenever A1;A2; . . . ;An hold,

so does B. Using Prolog notation, this formula can be

represented as

B :� A1;A2; . . . :;An:

In this notation, the implication arrow is represented as

B:-[while B,[represents the logical AND. The literals can

be either propositional variables or first-order logic atomic

formulas. Since variables are allowed in these formulas, we
can represent the composition of relations, e.g.,

uncleOfð?Z; ?YÞ :� fatherOfð?X; ?YÞ; brotherð?X; ?ZÞ:

Returning to our example, by using rules (with

variables), the description of the QuadratureModulator

class can be made more precise. For instance, we could

reinforce the class definition by adding the predicate

hasQMConnections (F?_ as the first character in a name
indicates that it is the name of a variable):

hasQMConnections(?QM) :-

Module(?QM), hasSubComponent(?QM, ?M1),

type(?M1, Multiplier), hasInputPort(?M1, ?InPortM1),

hasInputPort(?QM, ?I), isConnected(?I, ?InPortM1), . . .,
hasSubComponent(?QM, ?M2), not(?M1=?M2), . . .

This is not a complete rule. The intent here was to

show how the following facts about a quadrature

modulator could be expressed using rules:

1) that a quadrature modulator has two different

multipliers M1 and M2;

2) that the input port I of the quadrature

modulator is connected to the input port of

M1 (but not to M2).
The net result is that once the ontology is extended

with this kind of rule, the inference engine can verify that

all the necessary connections are in place and thus that a

given structure is in fact a quadrature modulator. In our

experiments, we used BaseVISor [15], an engine that can

perform inference both with a subset of OWL axioms (so

called BR-entailment[[16]) and over rules. The need to

extend the expressivity of OWL by adding rules has also
been recognized in [17]–[19], where both OWL and rules

were used to express spectrum access policies. In these

experiments, Jena7 was used as an inference engine for

reasoning over both the ontology and the rules.

A. Negation
While rules can make definitions of classes and

properties more precise, there is yet another aspect that
needs to be understood in order to avoid errors. This is the

issue of various types of negation.

OWL is based on the open world assumption model in

which facts that have not been explicitly asserted to be true

are not presumed to be false; they are simply unknown.

Negative facts, in this approach, have to be explicitly

proven. In other words, both the positive and the negative

facts are treated in the same fashion (symmetrically). In
this approach, facts that have already been proven to be

true (or false) remain true (or false, respectively)

7http://jena.sourceforge.net/.

Kokar and Lechowicz: Language Issues for Cognitive Radio

696 Proceedings of the IEEE | Vol. 97, No. 4, April 2009

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

independently of new facts that might become part of an
existing base of facts. Only the facts whose truth values

were unknown can be modified to either true or false. Due

to this incremental nature of inference, the reasoning in

this kind of systems is called monotonic. Negation in this

approach is referred to as logical negation.

Some of the rule languages, on the other hand, take a

different approach called the closed world assumption (CWA).

In this approach, if a fact cannot be proven to be true, it is
taken to be false. In case new facts arrive, the inference

system must modify its conclusions, i.e., modify the truth

values of some of the facts. Reasoning in this kind of systems

is called nonmonotonic. Perhaps the most known example of

this kind of reasoning is seen in databases, where if a fact is

not in the database, it is assumed to be false. For example, if a

flight is not listed in an airline’s database, it is inferred that it

does not exist. This is consistent with the nameVthe world
is assumed to be closed, i.e., all that is relevant about it is in

the database. Negation in this approach is referred to as

negation as failure (NAF).

Both kinds of negationVNAF and logicalVare useful

in modeling real-life problems [20]. If we admit only one

type of negation in a formal language, we can have

difficulty modeling various situations and reasoning about

them using automatic inference engines. For instance, if
we accept only logical negation, we will not be able to infer

many of the negative facts that, by default, are known to

hold. For instance, if a CR has policies that tell it under

what circumstances it can transmit, it will not be able to

infer that it cannot transmit in case any of these

circumstances do not hold. But, on the other hand, if we

accept the CWA, then all the facts that are not currently in

the database of the CR’s facts will be inferred to be false.
For instance, under CWA, the CR will infer that the node it

is communicating with does not have a quadrature

modulator component (unless it has an explicit statement

in its knowledge base that it doesVand it is rather unlikely

that a node would have complete knowledge about all the

nodes it communicates with).

So what is a way out of this impasse? Since both logical

negation and NAF are needed and since the combination
of OWL and rules are necessary to provide more expressive

power for modeling real-life problems, there is a need for a

language that combines the features of both OWL and

rules with a semantics that provides the meaning to both

types of negation. Such a necessity has been recognized by

the semantic Web community, and research efforts are

under way to achieve such a goal (see [21]). In the

meantime, the burden of avoiding logical inconsistencies
while modeling real-life problems is put on the developers

of ontologies, rules, and inference engines.

An example of this problem in the CR domain is the

description of structure of radio components. A complete

knowledge of a component must include both what

subcomponents it has and how they are connected with

each other, as well as that there are no other connections

except those explicitly stated. For example, consider one of
the input ports (port I) on the quadrature modulator

shown in Fig. 2. The description of the QuadratureModu-

lator component must express the fact that an individual of

InputPort is connected to exactly one multiplier. We can

capture this by two rules that define the isExclusive-

InputPortOf(?P,?C) and isNonExclusiveInputPortOf(?P,?C)

predicates

isExclusiveInputPortOf(?P,?C) :� inputPortOf(?P,?C);

not(isNonExclusiveInputPortOf(?P,?C)).

isNonExclusiveInputPortOf(?P,?C) :�
inputPortOf(?P,?C); inputPortOf(?P,?D); not(?C¼?D):

The predicate isNonExclusiveInputPortOf is asserted

when a given input port is in the inputPortOf relationship

with more than one individual. The complementary

predicate isExclusiveInputPortOf can evaluate to true if

isNonExclusiveInputPortOf is false. In the open world

model, we could not make such a deduction because failure

to prove something does not imply the opposite. In the open

world, the failure to prove this might be the consequence of
the lack of complete knowledge about the connections

within this particular component. Thus, in this example, we

had to assume the closed world model. Consequently, the

Bnot[predicate in the body of the rule is a case of NAF. If

more information about this port becomes available at a later

time, the derived fact (that the port is an exclusive port) may

be negated, leading to an inconsistency (both the fact that

the port is exclusive and is not exclusive in the same
knowledge base). The reasoner must ensure that such a

situation does not take place. One way to avoid this is to

monitor for such nonmonotonic changes and remove the

facts that have been derived through the use of NAF.

It is also worth noting that OWL provides the capability

to state that a given class is Bclosed,[i.e., that a class includes

only a given collection of individuals. This is termed as the

Bclosed domain reasoning[[21], which is not the same as the
closed world reasoning. In the closed domain reasoning we

make assumptions about the domain and in the closed world

reasoning we make assumptions about our knowledge about

the domain. In the above example, we assumed that we knew

everything about the connections within that component,

i.e., we were making an assumption about the complete-

ness of our knowledge about the domain.

V. FUNCTIONS

Augmenting OWL with a rule language enables cognitive

radio nodes to exchange information, for instance, about

the structure of their components (class descriptions). In

general, nodes can exchange information about concepts

that are not explicitly defined in an ontology but can be

Kokar and Lechowicz: Language Issues for Cognitive Radio

Vol. 97, No. 4, April 2009 | Proceedings of the IEEE 697

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

expressed using OWL and terms from the ontology. For
instance, a node can query other nodes about the structure

of unknown components and then use this knowledge for

reconstructing components locally. Moreover, nodes can

use an automatic reasoner to prove that the component it

created locally is indeed the individual of the class

described in the recipe received from the remote node.

The knowledge of the structure of components,

however, is insufficient for some reasoning tasks that
involve components [22].

• Software components that are structurally differ-

ent may be equivalent in terms of their func-

tionality. For example, a software component

implementing the function fða; b; c; dÞ according

to the scheme fða; b; c; dÞ ¼ ðaþ bÞðcþ dÞ is func-

tionally equivalent to the module implementing

the function f 0 according to the scheme
f 0ðx; y; v; uÞ ¼ ðxvþ xuþ yvþ yuÞ, in spite of the

fact that their respective internal structures are

different. An example of such a situation was

shown in Fig. 3, where the classical QAM modu-

lator followed by a power amplifier is equivalent to

the polar-loop QAM modulator. Obviously, since

those two circuits work using different principles,

their structures and functional subcomponents are
different.

• The same functionality using two different data

types is seen as two different structures, as the

structure-based approach does not allow for

easy abstraction of the functionality from the

data type.

• The structure-based approach does not allow for

an easy Bunderstanding[of the functionality,
which might lead to implementation inefficien-

cies. For example, a CR node receiving the de-

scription of the quadrature modulator (Fig. 2)

expressed in terms of a base ontology and rules

might not be able to realize that an alternative,

more efficient implementation of such structure

might exist, e.g., one that uses a specialized

Multiply-Add hardware unit that is available for
the node (see Fig. 6).

All of these shortcomings support the requirement that

the modeling language for cognitive radio should be

capable of describing the Bfunctionality[of components.

In formal terms, this means that the language should

support functions. Unfortunately, OWL has a very limited

capability in this respect. While it is possible to declare

properties that are functional, it is not possible to quantify
over functions. It is possible to state that two or more

properties are equivalent properties, but OWL does not

provide any mechanism that would enable inferring that

two functions, like those listed in the examples above, are

equivalent. Although rule languages can provide defini-

tions of functions, they still do not resolve the above issues.

Although rules can provide definitions of particular

functions, they do not provide quantification over func-

tions and do not provide capabilities of expressing

equivalence of functions. In order to address those issues,

a more expressive language has to be selected.

Quantification over functions takes us into the realm

of second-order logic [23], which in turn is extended by

higher order logic [24]. It is interesting to notice that higher

order logic has been used in hardware verification (see
[25]). While functions are at least partially covered by a

number of declarative languages, for our discussion we

choose a higher order logic language Metaslang, the

language supported by the Specware tool [26]. The main

reason for the selection of this language was that it

supports composition, using constructs of category theory

like morphism and colimit [27]. Specware also integrates

two theorem provers (Snark [28] and Isabelle [29]) that
can be used to prove conjectures on functional equiva-

lency of components. Since Metaslang is based on the

principles of category theory, it seems to be a good

candidate for linking multiple languages and multiple

inference engines into a formal hybrid inference system.

The category theory concept of colimit is applied to the

category of specifications (also referred to as Spec) to

compose specifications that are related through specifica-
tion morphisms [30]. Pavlovic and Smith [30] define spe-

cification as a finite presentation of a theory. The signature
of a specification defines concepts that describe indivi-

duals, operations, and properties in some domain. The

axioms included in the specification put constraints on the

meaning of symbols.

In order to show how functionality can be expressed in

Metaslang and then reasoned about within the Specware
framework, we first need to introduce some basic elements

and concepts of the language. Additionally, we show how

the composition of specifications works in Metaslang.

Moreover, we show how the same abstract specification

can be easily refined to concrete specifications, i.e., how

the specification of Samples can be refined to either real or

complex samples.

Fig 6. A composite module functionality equivalent to QM in Fig. 2.

Kokar and Lechowicz: Language Issues for Cognitive Radio

698 Proceedings of the IEEE | Vol. 97, No. 4, April 2009

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

The following code presents an example of two simple
specifications.

BinRel = spec

type E

op le: E�E -> Boolean

endspec

PreOrder = spec
import BinRel

axiom reflexivity is

fa(x) x le x

axiom transitivity is

fa(x,y,z)

(x le y) && (y le z) = > (x le z)
endspec

BinRel is an abstract specification defining an abstract

type E and a binary operation le.

Those two elements are specified but not defined.

PreOrder is a refinement of the first specification and it

adds two axioms that constrain the functionality of the

op le. Specification morphisms map one specification into
another in such a way that all theorems from the source

specification are preserved in the target.

Antisymmetry = spec

type X

op binOp: X�X -> Boolean

axiom antisymmetry is fa(x,y)

binOp(x,y) && binOp(y,x) = > x = y
endspec

m_BinRel_Antisymmetry =

morphism BinRel-> Antisymmetry

{E +-> X, le +-> binOp}

In the above example, the morphism m_BinRel_Anti-
symmetry maps BinRel into Antisymmetry. It maps type E
of BinRel into type X of Antisymmetry and the op le into

binOp.

A directed graph formed from specifications (nodes)

and morphisms (edges) is called a specification diagram.

The three example specifications create the following

diagram.

BinRelDiag = diagram {
n1 +->

BinRel,

n2 +->

PreOrder,

n3 +->

Antisymmetry,

e1: n1->n2 +->

morphism BinRel -> PreOrder {},
e2: n1->n3 +->

m_BinRel_Antisymmetry

}

This diagram has three nodes ðn1; n2; n3Þ representing

three specs (BinRel, PreOrder, and Antisymmetry, respec-

tively) and two edges e1 and e2. Note that since PreOrder
imports BinRel (in other words, BinRel is a part of
PreOrder), the morphism from BinRel to PreOrder is a

trivial one.

Specware can produce the colimit of the specifications

on the diagram. For example, PartialOrder can be defined

as a colimit of BinRelDiag.

PartialOrder = colimit BinRelDiag

An inspection of the resulting specification is shown

below. As we can see, the PartialOreder spec Bproduced[by

the colimit operation includes all of the axioms of the specs

used in this composition.

spec PartialOrder

type {X, E}

op {binOp, le}: X � X -> Boolean
import translate (BinRel) by

{type E +-> {X, E, E}, op le +-> le}

axiom reflexivity is fa(x:E) x le x = true

axiom transitivity is fa(x:E, y:E, z:E)

x le y && y le z = > x le z

axiom antisymmetry is fa(x:X, y:X) binOp(x, y) &&

binOp(y, x) = > x = y

endspec

One of the shortcomings of the structure-based

interoperability scenarioVthe difficulty of separating the

functionality from the underlying data typeVcan easily be

solved in Specware through the use of specification

refinements. For example, a Multiply-Add unit processing

real samples represented by single precision floating-point

numbers will be composed quite differently than a unit
processing pairs of integers representing complex samples.

There is, however, some commonality between those two

functional units that could and should be captured at some

abstract functionality level. There are two benefits related

to thatVfirst, the common functionality is represented

only once, so we avoid the inefficiency related to

representing and maintaining the same functionality

twice. The second, even bigger benefit is that Specware
is aware of the fact that those two different modules at

some abstract level are the same and that this knowledge

can be used in refinements and proofs of theorems.

In the example shown below, an abstract specification

Samples is refined into two concrete specifications

IntSamples and CplxIntSamples (for real and complex

samples, respectively). Any software module using Samples

Kokar and Lechowicz: Language Issues for Cognitive Radio

Vol. 97, No. 4, April 2009 | Proceedings of the IEEE 699

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

can easily be refined into a module using real samples or
complex samples. First we show the specification Samples.

It first introduces the type Sample and NonZeroSample,
including the constants zero and one. Then it shows the

signatures of the operations add, multiply, and minus.

Lastly, it presents some of the axioms that define these

three operations.

Samples = spec
type Sample

type NonZeroSample = (Sample j nonzero?)

op Sample.zero: Sample

op Sample.one: Sample

op Sample.nonzero?: Sample->Boolean

def Sample.nonzero?(x) = x �¼ Sample:zero

op Sample.multiply: Sample�Sample->Sample

op Sample.add: Sample�Sample->Sample

op Sample.minus: Sample->Sample

axiom Sample_mul_ax is

fa(a:Sample, b:Sample)

Sample.multiply(a,b) =
Sample.multiply(b,a)

axiom Sample.add_ax is

fa(a:Sample, b:Sample)

Sample.add(a,b) = Sample.add(b,a)

axiom Sample.mul_add_ax is

fa(a:Sample, b:Sample, c:Sample)

Sample.multiply(a, Sample.add(b,c)) =

Sample.add(Sample.multiply(a,b),
Sample.multiply(a,c))

endspec

Below, we show the specification of samples that take

integer values. It imports the Samples spec and then

defines the constants zero and one as integer values of 0

and 1, respectively. Moreover, it identifies the operations

of add, multiply, and minus with their counterparts in the
Integer type.

IntSamples = spec

import Samples

type Sample = Integer

def Sample.zero = 0

def Sample.one = 1
def Sample.multiply(x,y) = x � y
def Sample.add(x,y) = x+y

def Sample.minus(x) = -x

endspec

The CplxIntSamples spec shown below defines the

meaning of the constants and operations for the type of

complex-valued samples. It also expands the Samples spec
by the operation conj standing for Bcomplex conjugate,[

CplxIntSamples = spec

import Samples

type Sample = {re:Integer, im:Integer}

def Sample.zero = {re ¼ 0, im ¼ 0}

def Sample.one = {re ¼ 1, im ¼ 0}

def Sample.multiply(x,y) =
{re ¼ ðx:re � y:re� x:im � y:imÞ
im ¼ ðx:re � y:imþ x:im � y:reÞ}

def Sample.add(x,y) =

{re ¼ ðx:reþ y:reÞ, im ¼ ðx:imþ y:imÞ}
def Sample.minus(x) =

{re ¼ �x:re, im ¼ �x:im}

op Sample.conj: Sample -> Sample
def Sample.conj(x) =

{re ¼ x:re, im ¼ �x:im}

endspec

In the code fragment below Adder_Int and Adder_
CplxInt are refinements of Adder with concrete data

types IntSamples and CplxIntSamples, respectively. Those

specs are the result of specification substitution oper-
ation (square brackets), which is a simplified form of

colimit.

MorphInt =

morphism Samples -> IntSamples { }

MorphCplxInt =

morphism Samples -> CplxIntSamples { }

Adder = spec

import SampleSpec#Samples

op Adder.Func: Sample�Sample -> Sample

def Adder.Func(x,y) = Sample.add(x,y)

endspec

Adder_Int = Adder[MorphInt]
Adder_CplxInt = Adder[MorphCplxInt]

The use of a theorem prover in Specware, together

with the fact that all transformations between specifica-

tions are formalized in Metaslang, makes it possible to

prove the equivalence of the functionality of two software

modules. In the following example, the specification

QuadratureMod is expressed with elements from the base
ontology. The receiving CR node composes the specifi-

cation Quad2, which uses a composite module MAC, not

present in the base ontology. The reasoner is able to

prove (see conjecture Quad2_conj below) that the func-

tion Quad2.Func used by the receiving CR node is equiv-

alent to function QuadratureMod.Func in the original

specification.

Kokar and Lechowicz: Language Issues for Cognitive Radio

700 Proceedings of the IEEE | Vol. 97, No. 4, April 2009

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

QuadratureMod = spec
import CplxIntSamples

op QuadratureMod.Func:

Sample�Sample�Sample -> Sample

def QuadratureMod.Func(I,Q,C) =

Sample.add(Sample.multiply(I, C),

Sample.multiply(Sample.conj(C),Q))

endspec

MAC = spec

import CplxIntSamples

import Adder_CplxInt

import Multiplier_CplxInt

op MAC.Func: Sample�Sample�Sample -> Sample

def MAC.Func(m1,m2,a) =

Adder.Func(Multiplier.Func(m1,m2),a)
endspec

Quad2 = spec

import CplxIntSamples

import Adder_CplxInt

import Multiplier_CplxInt

import PhShifter90Deg

import MAC
import QuadratureMod

op Quad2.Func: Sample�Sample�Sample -> Sample

def Quad2.Func(I,Q,C) =

MAC.Func(I, C, Multiplier.Func(

PhShifter90Deg.Func(C), Q))

conjecture Quad2_conj is
fa(I:Sample, Q:Sample, C:Sample)

Quad2.Func(I,Q,C) =

QuadratureMod.Func(I,Q,C)

endspec

Quad2_p0 = prove Quad2_conj in Quad2 options

B(use-resolution t) (use-paramodulation t)[

The main point of the above discussion was to show an

example of the capability of reasoning about functions.

While we chose to use Meataslang, this goal could be

achieved in a number of different declarative languages.

One of the possible candidates is Common Logic (CL),

which recently has become a standard of ISO/IEC [31].

According to [31], CL is a first-order language that

Bpermits Fhigher order_ constructions such as quantifica-
tion over classes or relations while preserving a first-order

model theory, and a semantics which allows theories to

describe intensional things such as classes or properties.[
Thus CL is not a higher order language like Metaslang is,

since its de facto expressivity is limited to first order; it is

referred to sometimes as a Breified first-order logic[[32],

[33]. While it is a known fact in mathematics that second-

order logic cannot be reduced to first order, the practical
implications of this fact on the use of CL in cognitive radio

could be posed as an experimental question. In this paper,

we do not delve into this issue but instead use a higher

order language. The most important reason for this

selection is Metaslang’s ability to represent in a very

compact and elegant way the composition of logical

theories (specs), as was shown in this section.

VI. BEHAVIORAL ASPECTS

Metaslang is a functional language and, like other

functional languages (e.g., Haskell), does not easily

support the so-called side effects. In the functional

programming paradigm, the result of application of a

function always depends only on the input parameters. It

cannot depend on the previous results of that or any other
function(s). This is a serious limitation in case it is to be

used to model behavioral aspects of systems, where the

results of computation depend on the state of the system,

like in dynamical systems [34]. This limitation long has

been recognized and, as a result the concept of monads
[35], has been used to address this problem. The main idea

here is to use the monad concept to capture and pass some

state information of a computation among functions. Even
though monads can be useful for dealing with a limited set

of states within a context of a functional program, their use

to simulate memory elements and/or globally scoped

variables, as is required in the context of software defined

radio, introduces additional overhead that normally does

not exist in imperative languages.

Functional languages also do not provide any obvious

way to express and reason about time-dependent informa-
tion. In logical terms, this refers to relating the truth of

formulas at distinct time points. The simplest example of

this kind of a need in the domain of cognitive radio is the

need to reason about delays introduced by the various

processing components. For instance, in the discrete time

domain, we can say that a unit delay means that if the value

of a signal for the time index t is sðtÞ ¼ a, the value of

another signal s0 related to s by the delay operation, for the
(next) time index tþ 1, will be exactly a, i.e., s0ðtþ 1Þ ¼ a.

We can say that delay means if the sentence sðtÞ ¼ a is

true, then the sentence s0ðtþ 1Þ ¼ a is also true. Note that

the intent here is to say that such a relationship between

two time-dependent sentences should hold for all time

instants t 2 T. Thus we want to express such facts without

explicitly referring to the time index.

Other examples of descriptions involving temporal
information are: signal should be held at a given level until
some event happens; signal should have a given value after
an event happens; a given combination of values should

never happen; a given event should happen before or after
another event; a given relationship should always be

satisfied (here Balways[refers to time); the signal should

have a given value within a given interval of time.

Kokar and Lechowicz: Language Issues for Cognitive Radio

Vol. 97, No. 4, April 2009 | Proceedings of the IEEE 701

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

Note that by chaining the various predicates indicated
above (marked by italics), the descriptions of temporal

relations can be arbitrarily complex. For instance, we can

state that the signal never drops to 0 before it stays at 1

within a given time interval. We might also need to com-

bine such sentences using the logical connectives, like logi-

cal OR, logical AND, negation, implication, or equivalence.

Moreover, the special predicates listed above may be

logically related, e.g., a sentence involving some combina-
tion of the predicates may be logically equivalent to another

sentence involving another combination. For instance, the

sentence Bthe signal will eventually drop to zero[is

equivalent to the sentence Bnot always the signal will be

one.[This suggests that one can define a logic that involves

a collection of special (temporal) predicates. For this, a

formal language should be defined and formal semantics

should be established. The semantics would have to
incorporate a specific model of time. Then inference can

be carried out within such logic by the means of automatic

inference engines, like in any similar formal system.

The logics that deal with time-dependent inference are

called temporal logics. The most popular logic in this group

is called linear temporal logic (LTL) [36]. As the name

indicates, the structure of time in this logic is assumed to

be linear (a linearly ordered set). LTL uses discrete time,
i.e., it assumes that events in the system can happen only at

the discrete moments in time. LTL is particularly useful for

modeling behaviors of clock-driven systems, i.e., systems

in which progression of events is controlled by a clock

signal (either explicitlyVas in case of hardwareVor

implicitlyVas in case of a computer program running on

a processor clocked with certain frequency). Thus LTL may

be useful for the domain of cognitive radio.
The predicates in this logic include X’ (’ must hold at

the neXt time instant); G’ (’ must hold on the entire

subsequent time); F’ (’ will hold eventually, in the

future); U’ (’ holds at the current or a future position

and has to hold until that position; at that position does

not have to hold any more); R’ (’ is true until the first

position in which is true, or forever if such a position

does not exist, i.e., releases ’). Only three of these
predicates are necessary. The rest can be expressed in

terms of the other three.

LTL has found applications in the area of verification of

distributed and reactive systems [37], where properties of

systems such as reachability, safety, and deadlock are proven

in a formal way. Two approaches used in this process are

deduction (theorem proving) and model checking. Since

deductive inference for this domain is undecidable, model
checking is used more often to verify that a property holds in

a given model [38]. But some use a combination of the two

approaches; see, e.g., [39]. In this paper, we are not

discussing the verification scenario but instead assume that

verification would be done offline and only the resulting

properties (in terms of an underlying, shared ontology)

would be communicated among the participating radios.

The automatic inference task would involve reasoning about
composition specific to the communications domain.

To exemplify this kind of domain-specific reasoning, in

this paper we focus only on one aspect of temporal

reasoning: the one that is captured by the X operator of

LTL. However, instead of implementing a temporal logic,

we follow the approach that is typical in engineering.

Towards this aim, we formalize the concept of unit delay
and then prove properties of systems composed of
components that include delays. In particular, unit delay
allows us to model the temporal behavior of a system in

terms of clock intervals, which removes explicit time

values from the system description.

In the example specs below, we first define the

function UnitDelay.Func whose domain and range is the

type Sample. Then we state two commutativity axioms

for this operation for functions of one and two arguments,
respectively. It means that the composition of a function f
with the unit delay is equal to the unit delay composed with

f . Note that in this spec, we quantify over all functions with

domain Sample and range SampleVthe feature that re-

quires that functions be covered by the language (as

discussed in Section V). This specification of unit delay is

not complete; it captures only the properties of this concept

that are necessary to prove the conjectures shown later.

UnitDelaySpec = spec

import Samples

op UnitDelay.Func: Sample -> Sample

axiom UnitDelay_commutativity is

fa(f:(Sample->Sample), x:Sample)
UnitDelay.Func(f(x)) =

f(UnitDelay.Func(x))

axiom UnitDelay_commutativity2 is

fa(f:(Sample�Sample->Sample),

x:Sample, y:Sample)

UnitDelay.Func(f(x,y)) =

f(UnitDelay.Func(x),
UnitDelay.Func(y))

endspec

In Section V, we specified the Bideal[Adder and

Multiplier components, i.e., components without any

delay. Now we specify delays introduced by these two

components. As we can see in the specs below, we state

that they introduce a one-step delay.

AdderDelay = spec

import UnitDelaySpec

op Adder.Func: Sample�Sample -> Sample

def Adder.Func(x,y) =

UnitDelay.Func(Sample.add(x, y))

Kokar and Lechowicz: Language Issues for Cognitive Radio

702 Proceedings of the IEEE | Vol. 97, No. 4, April 2009

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

endspec

MultiplierDelay = spec

import UnitDelaySpec

op Multiplier.Func: Sample�Sample -> Sample

def Multiplier.Func(x,y) =

UnitDelay.Func(Sample.multiply(x,y))

endspec

The specification MACSpec shown below describes the

behavior of a component that implements the multiply-add

functionality with a two-clock-cycle delay for each input

set (it is a typical behavior for a MAC unit implemented in

field-programmable gate array). The second spec in the

exampleVCompositeMACSpecVdescribes a module being

a composition of three other modulesVAdder, Multiplier,
and UnitDelay. That spec contains a conjecture (Composite-
MAC_conj) that is used by the theorem prover [28] to

prove that functionalities of MACSpec and CompositeMAC-
Spec are equivalent.

MACSpec = spec

import UnitDelaySpec

op MAC.Func: Sample�Sample�Sample -> Sample

def MAC.Func(m1, m2, a) =

UnitDelay.Func(

Sample.add(

UnitDelay.Func(

Sample.multiply(m1, m2)),

UnitDelay.Func(a)))

endspec

CompositeMACSpec = spec

import AdderDelay

import MultiplierDelay

import MACSpec

op CompositeMAC.Func:

Sample�Sample�Sample -> Sample
def CompositeMAC.Func(m1, m2, a) =

Adder.Func(Multiplier.Func(m1,m2),

UnitDelay.Func(a))

conjecture CompositeMAC_conj is

fa(m1:Sample, m2:Sample, a:Sample)

CompositeMAC.Func(m1, m2, a) =

MAC.Func(m1, m2, a)
endspec

p0 = prove CompositeMAC_conj in CompositeMACSpec

options B(use-resolution t) (use-paramodulation t)[

The above example shows two things. First, by using an

abstract specification with a set of axioms, we are able to

express time dependencies between different components
of the system without introducing time explicitly. Sec-

ondly, it also proves that one can use automatic inference

engines to reason about abstract specifications, i.e., speci-

fications of concepts, like classes. However, Metaslang

cannot be used to reason about individuals of such classes.

For this purpose, some additional capabilities are needed.

One of the efforts in this direction is the development of the

system called Accord [40]. Accord is an extension of Spec-
ware currently being developed by the Kesterel Institute.

The motivation for extending Specware was the observa-

tion that the modeling of state becomes very important as

the system architectures move towards distributed and

embedded systems. Additional motivations were increased

computational efficiency that can sometimes be achieved

through imperative programming as well as more direct

connection to common programming languages [40].
In Accord, the behavior is encapsulated in a module,

which is an extension of Metaslang’s spec. Accord is

backwards compatible with Metaslang, and so every

Metaslang spec can be directly embedded into an Accord

module. Accord is built on ideas of evolving specifications

(e-specs). Since a state can be seen as a data structure and a

state transition as a finite change to that structure, the

states and their transitions can be seen as specs and
conditional spec morphisms, respectively. In Accord, the

behavioral aspect of a module is encoded in one or more

procedures (proc). Each proc contains modes, which

encode abstract states. For each procedure, there is an

implicit entry mode (initial state) and an implicit exit

mode (final state). Steps specify abstract transitions and are

usually guarded by logic expressions. Accord implicitly

defines steps to the initial mode and from the final mode to
the exit. Other imperative elements introduced in Accord

include global variables and signals (exceptions). Accord is

still in a very early stage of development at this point.

However, when it matures, it might become an attractive

option for implementing inference about declarative

programs that capture some aspects that are normally

best addressed in imperative programming.

To close this section, we should mention the efforts to
capture state information in languages like UML8 or SDL.

However, we do not devote much attention to these lan-

guages since they do not have formal semantics. Conse-

quently, formal inference cannot be carried out over the

specifications of systems expressed in these languages.

VII. LANGUAGE STANDARDIZATION
EFFORTS FOR THE COGNITIVE RADIO
DOMAIN

A call for the development of a language for wireless

systems was presented in [41], emphasizing the need to

8http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/change-
barred/.

Kokar and Lechowicz: Language Issues for Cognitive Radio

Vol. 97, No. 4, April 2009 | Proceedings of the IEEE 703

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

exchange information among various stakeholders, such as
network operators, enterprise networks, system and

component vendors, software vendors, regulatory agen-

cies, and end users, and to provide means for the end-to-

end reconfigurability. The paper states:

In an end-to-end reconfigurable system, there are

various tasks that require interactions with different

components in the network, and that require such
components to communicate with each other. Exam-

ple tasks relate to network configuration, device re-

configuration (involving download of applications/

firmware), and network operation (provisioning new

services, upgrades, roll out of new AIS’s, etc.). De-

pending on the nature of the specific task, network

elements need to be queried, controlled, modified

and managed, at varying levels of detail.

To achieve such interoperability goals, a standardized

language that allows for exchange of information is

needed. Two nodes can efficiently exchange information

if they have a common language.

The need for a standard declarative language for the

domain of CR has been recognized by a number of

organizations. Below we mention three organizations and
their efforts: Functional Description Language (FDL) from

the End-To-End-Reconfigurability ðE2RÞ organization,

Modeling Language for Mobility (MLM) from the

Software Defined Radio Forum (SDRF), and Policy

Language and Policy Architectures for Managing Cognitive

Radio for Dynamic Spectrum Access Applications from

SCC 41 1900.5, an IEEE standards organization.

FDL [42] is envisioned to be the language software
defined radios would use to communicate functional

description data among themselves. FDL is based on

XML and defines the functionality of the system as a

collection of processes linked together by communication

channels. The descriptions in that language are platform-

independent and are interpreted by the Configuration

Control Module (CCM) in terms of specific software and/

or hardware solutions available locally. It is envisioned
that when a CCM encounters a description that is not

locally available, the node would be able to access a

centralized database and download the missing software

module.

FDL enables SDR software modules to be defined as

hierarchical flow of signals between processes communi-

cating via one-to-one and one-to-many channels. The top

level of the functional description is the algorithm element,
which might include one or more processes. It also defines

how those processes communicate by defining sets of input

and output ports per process and then linking them to the

channels. FDL supports hierarchy so processes can contain

subprocesses and subprocess ports can communicate with

ports of the higher level. That provides the potential for

describing the functionality at an arbitrary level of

granularity enabling structure-based composition similar
to what was demonstrated in our experiments with OWL

and BaseVISor rules described in Section IV. FDL’s

capabilities go beyond simple composition, as it incorpo-

rates some time constraints such as time baseline (clock),

latency, time deadlines (max delay), bandwidth, etc.

However FDL (as it stands now) is not a formal system.

FDL is defined in terms of XML, where the domain-

specific XML tags need to be interpreted by the
programmers. Since FDL does not have a formal seman-

tics, it cannot be used by an inference engine for automatic

derivation of facts about FDL descriptions.

The SDRF has a working group (MLM Working

Group) whose charge is to develop the MLM [43]. The

group has developed a number of use cases that explicate

and justify the need for a formal language in which various

aspects of the life cycle of communication nodes, in-
cluding mobile, could be described and shared among the

nodes and the stakeholders. The next step after the use

cases will be the development of ontologies relevant to the

communication domain. The developed ontologies will be

captured in various formalisms. The classes and the pro-

perties will be formalized in OWL, and rules will supple-

ment the OWL descriptions. Other formalisms, including

other formal languages and mathematics, will also be
considered.

The SDRF approach to the development of its language

is somewhat different from the E2R effort in the sense

that from the very beginning, the stress is on expressing

everything in a formal declarative language with formal

semantics so that automatic inference can be carried out

by inference engines.

The third effort that is directly relevant to the CR
domain is the effort by SCC 41 to develop a standard for a

collection of languages for the dynamic spectrum access

domain. At the time of this writing, SSC 41 has created the

IEEE 1900.5 Study Group on Policy Language for

Managing Cognitive Radio and Dynamic Spectrum Access

Applications. The charge of this group is to define a family

of interrelated languages that would serve the needs of the

domain described above.
While it is not possible to predict, with a high degree of

confidence, whether these three efforts will converge and

will produce a unified language and a unified set of

ontologies for the CR domain, it is encouraging that the

three organizations behind these efforts have working

relationships and have already started interacting with the

intent of unification and the integration of both the

ontologies and the languages.

VIII . CONCLUSION

The main motivation for this paper was to identify various

formal, declarative languages and their expressivity fea-

tures that may be relevant and useful to the implemen-

tation of the concept of cognitive radio. A running

Kokar and Lechowicz: Language Issues for Cognitive Radio

704 Proceedings of the IEEE | Vol. 97, No. 4, April 2009

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

example was selected, and then various features were dis-

cussed in a progressive manner. The languages discussed

in this paper and their expressivity features are summa-
rized in Table 1.

First, we discussed the useful role ontologies expressed

in a formal language can play in cognitive radio. Then we

showed that some of the aspects that may be needed for

cognitive radio are missing in OWL, and that a more

expressive language would be needed to fill the need. In

particular, we showed that rules complement OWL and

allow us to describe architectures of types of components.
This was followed by the discussion of negation, a logical

concept that seems to be very simple in principle but is

very difficult to implement within one language that

includes both OWL and rules. The main issue is that the

negation in OWL is the logical negation, while in rules it is

negation as failure. Since this problem has not been solved

as yet, the best we could do in this paper is to provide the

background information and then indicate some directions
of possible partial solutions. The next step was to show that

reasoning about the functionality of various components

requires functions to be first-class objects in the formal

language. We showed an example of proof that structurally

different components can be functionally equivalent. We

discussed the problems of representing and reasoning

about behavioral aspects of components. The issue is that

most formal languages are functional, i.e., each func-
tion’s value depends only on the inputs, while represen-

tation of behavior requires memoryVresults of previous

computationsVand dealing with temporal aspects. Dyna-

mical systems are one class of behavioral systems. We

provided a brief overview of the use of linear temporal

logic to represent behaviors. Then we focused on one as-

pect of temporal behaviorVthe delay. We showed that

automatic inference about behavioral aspects can be
carried out using inference engines.

The range of issues related to the use of formal

languages for cognitive radio is probably unbounded.

Consequently, we were not able to cover all of them, and

it is not even possible to provide a complete list of the

issues that have not been covered. Here we mention only
some of them.

1) OWL can express only binary predicates (proper-

ties). However, in practice, we need to use n-ary

predicates, too. We did not discuss how to deal

with these.

2) Although we discussed the distinction between

closed-world reasoning and open-world reason-

ing, we have not discussed the distinction
between closed-world querying of open-world

knowledge bases versus closed-world reasoning.

3) We have not discussed the issue of expressing

integrity constrains. This relates to the distinction

between constraints on the modeled world (e.g.,

as expressed in OWL) versus constraints on the

knowledge base.

4) We only barely touched upon the issue of
nonmonotonic reasoning.

5) We have not discussed query languages.

6) We have not discussed in any detail a very

important aspectVthe computational complexity

of inference within particular languages. In

particular, we have not discussed the issue of

running an inference engine on limited comput-

ing resources of a CR.
In the last section of this paper, we provided references

to three ongoing efforts to the standardization of languages

relevant to the cognitive radio domain. We believe these

efforts will address the problems we identified in this

paper and identify solutions to some of them. h

Acknowledgment

Interactions with P. Marshall, D. Hillman and

G. Denker have provided valuable input to this work.

Moreover, collaboration with the Software Defined Radio

Table 1 Summary of Languages and Features

Kokar and Lechowicz: Language Issues for Cognitive Radio

Vol. 97, No. 4, April 2009 | Proceedings of the IEEE 705

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

Forum, especially with M. Cummings and B. Fette,
provided valuable information on the understanding of

the applicability of formal declarative languages in the

cognitive radio domain. The authors would like to express

their deep gratitude to the anonymous reviewers who have
provided many very insightful comments that have

improved the completeness, consistency, and readability

of the presentation.

REF ERENCE S

[1] J. Mitola, III, BCognitive radio: An integrated
agent architecture for software defined radi,[
Ph.D. dissertation, Royal Institute of
Technology (KTH), Stockholm, Sweden,
2000.

[2] J. Mitola, III and G. Q. Maguire, Jr.,
BCognitive radio: Making software radios
more personal,[IEEE Wireless Commun.,
vol. 6, pp. 13–18, Aug. 1999.

[3] Software Defined Radio Forum, BCognitive
radio definitions,[Working Doc.
SDRF-06-R-0011-V1.0.0, Nov. 8, 2007.

[4] M. M. Kokar, D. Brady, and K. Baclawski,
BChapter 13: Roles of ontologies in cognitive
radios,[in Cognitive Radio Technology,
B. Fette, Ed. Oxford, U.K.: Newnes, 2006,
pp. 401–433.

[5] T. W. Pratt and M. V. Zelkowitz, Programming
Languages: Design and Implementation, 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

[6] J. W. Lloyd, BPractical advantages of
declarative programming,[in Proc. 1994 Joint
Conf. Declarative Program (GULP-PRODE’94),
Peñiscola, Spain, 1994.

[7] P. Haase, F. van Harmelen, Z. Huang,
H. Stuckenschmidt, and Y. Sure, BA
framework for handling inconsistency
in changing ontologies,[in Proc. 4th
Int. Semantic Web Conf., 2005. [Online].
Available: http://www.cs.vu.nl/~frankh/
abstracts/ISWC05.html.

[8] H. Enderton, A Mathematical Introduction to
Logic, 2nd ed. Boston, MA: Academic, 2001.

[9] R. Corazzon. (2008). Ontology: A resource
guide for philosophers. [Online]. Available:
http://www.formalontology.it/.

[10] T. Gruber, What is an ontology? [Online].
Available: http://www-ksl.stanford.edu/kst/
what-is-an-ontology.html.

[11] J. G. Proakis, Digital Communications, 3rd ed.
New York: McGraw-Hill, 1995.

[12] D. Preuveneers and Y. Berbers, BAutomated
context-driven composition of pervasive
services to alleviate non-functional concerns,[
Int. J. Comput. Inf. Sci., vol. 3, no. 2,
pp. 19–28, Aug. 2005.

[13] L. Lechowicz and M. Kokar, BAchieving
dynamic interoperability of communication:
Transfer of ontology and rules between
nodes,[in Proc. Software Defined Radio Tech.
Conf. (SDR’06), 2006.

[14] A. Colmerauer and P. Roussel, BThe birth of
prolog,[in Proc. 2nd ACM Conf. History
Program. Lang. (SIGPLAN), 1992, pp. 37–52.

[15] C. Matheus, K. Baclawski, and M. M. Kokar,
BBaseVISor: A triples-based inference engine
outfitted to process RuleML and R-entailment
rules,[in Proc. 2nd Int. Conf. Rules Rule Lang.
Semantic Web, Athens, GA, Nov. 2006.

[16] H. ter Horst, BCombining RDF and part of
OWL with rules: Semantics, decidability,

complexity,[in Proc. 4th Int. Semantic Web
Conf. (ISWC 2005), 2005, vol. 3729,
pp. 668–684.

[17] J. D. Poston, W. D. Horne, M. G. Taylor, and
F. Z. Zhu, BOntology-based reasoning for
context-aware radios: Insights and findings
from prototype development,[in Proc. 1st
IEEE Int. Symp. New Frontiers Dyn. Spectrum
Access Netw. (DySPAN), 2005, pp. 634–637.

[18] A. Ginsberg, J. D. Poston, and W. D. Horne,
BExperiments in cognitive radio and dynamic
spectrum access using an ontology-rule hybrid
architecture,[in Proc. 2nd Int. Conf. Rules Rule
Markup Lang. Semantic Web (RuleML),
Athens, GA, 2006. [Online]. Available: http://
2006.ruleml.org/group3.html#3.

[19] A. Ginsberg, W. Horne, and J. Poston,
BCommunity-based cognitive radio
architecture: Policy-compliant innovation via
the semantic web,[in Proc. 2nd IEEE Int.
Symp. New Frontiers Dyn. Spectrum Access
Netw. (DySPAN), 2007.

[20] M. Kifer, Negation in knowledge representation,
unpublished notes, Jun. 9, 2007

[21] B. Motik, I. Horrocks, R. Rosati, and
U. Sattler, BCan OWL and logic programming
live together happily ever after?[in Proc. 5th
Int. Semantic Web Conf., 2006, vol. 4273,
pp. 501–514.

[22] L. Lechowicz and M. M. Kokar,
BComposition, equivalence and
interoperability: An example,[in Proc.
Software Defined Radio Tech. Conf. (SDR’07),
2007.

[23] S. Shapiro, Foundations Without
Foundationalism: A Case for Second-Order
Logic. Oxford, U.K.: Oxford Univ. Press,
2000.

[24] C. E. Brown, Automated Reasoning in
Higher-Order Logic: Set Comprehension and
Extensionality in Church’s Type Theory.
Oxford, U.K.: College Publications, 2007.

[25] T. F. Melham, Higher-Order Logic and
Hardware Verification. Cambridge, U.K.:
Cambridge Univ. Press, 1993.

[26] J. McDonald and J. Anton,
‘‘SPECWAREVProducing software correct by
construction,’’ Kestrel Inst., Tech. Rep. KES.
U.01.3., Mar. 2001.

[27] D. R. Smith, BComposition by colimit and
formal software development,[in Algebra,
Meaning, and Computation: A Festschrift in
Honor of Prof. Joseph Goguen,
K. Futatsugi, J.-P. Jouannaud, and
J. Meseguer, Eds. Berlin, Germany:
Springer-Verlag, 2006, vol. 4060,
pp. 317–332.

[28] M. E. Stickel, R. J. Waldinger, M. Lowry,
T. Pressburger, and I. Underwood,
BDeductive composition of astronomical
software from subroutine libraries,[in Proc.
12th Int. Conf. Autom. Deduct. (CADE-12),
Nancy, France, Jun. 1994, pp. 341–355.

[29] T. Nipkow, L. C. Paulson, and M. Wenzel,
Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. New York: Springer, 2002, vol. 2283.

[30] D. Pavlovic and D. R. Smith, BSoftware
development by refinement,[in Proc. 10th
Anniv. Colloq. Formal Methods Crossroads: From
Panacea to Foundational Support (UNU/IIST),
2003.

[31] Information TechnologyVCommon Logic
(CL): A Framework for a Family of
Logic-Based Languages, ISO/IEC Standard
24707, 2007.

[32] C. Bock, M. Gruninger, D. Libes, J. Lubell,
and E. Subrahmanian, BEvaluating reasoning
systems,[National Inst. of Standards and
Technology, Tech. Rep. NISTIR 7310, 2006.

[33] P. Hayes and C. Menzel, BSimple common
logic,[in Proc. Workshop Rule Lang. Interop.
(W3C), Washington, D.C., 2005. [Online].
Available: http://www.w3.org/2004/12/rules-
ws/paper/103/.

[34] L. Padulo and M. A. Arbib, System Theory:
A Unified State-Space Approach to Continuous
and Discrete Systems. Philadelphia, PA:
Saunders, 1974.

[35] P. Wadler, BComprehending monads,’’
in Proc. 1990 ACM Conf. LISP Funct. Program.,
Nice, 1990.

[36] Z. Manna and A. Pnueli, The Temporal Logic
of Reactive and Concurrent Systems:
Specification. Berlin, Germany:
Springer-Verlag, 1991.

[37] Z. Manna and A. Pnueli, Temporal Verification
of Reactive Systems: Safety. Berlin, Germany:
Springer-Verlag, 1995.

[38] G. J. Holzmann, The Spin Model Checker:
Primer and Reference Manual. Reading, MA:
Addison-Wesley, 2004.

[39] N. S. Bjørner, A. Browne, M. A. Colón,
B. Finkbeiner, Z. Manna, H. B. Sipma, and
T. E. Uribe, BVerifying temporal properties of
reactive systems: A STeP tutorial,[Formal
Methods Syst. Design, vol. 16, no. 3,
pp. 227–270, 2000.

[40] J. McDonald and D. R. Smith, Accord
Language Manual Version 4.2. Palo Alto, CA:
Kestrel Institute, 2007.

[41] M. Cummings and P. A. Subrahmanyam,
BPerspectives of a metalanguage for
configurable wireless systems,[in Proc.
Software Defined Radio Tech. Conf. (SDR’04),
2004.

[42] C. Dolwin, R. Burgess, and B. Steinke,
BPower efficient and real-time configuration
of resources in an end-to-end reconfigurable
system,[in Proc. Software Defined Radio
Technical Conf. (SDR’05), Anaheim, CA,
2005.

[43] B. Fette, M. M. Kokar, and M. Cummings,
BNext-generation design issues in
communications,[Portable Design Mag.,
no. 3, pp. 20–24, 2008.

Kokar and Lechowicz: Language Issues for Cognitive Radio

706 Proceedings of the IEEE | Vol. 97, No. 4, April 2009

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

ABOUT T HE AUTHO RS

Mieczyslaw M. Kokar (Senior Member, IEEE)

received the M.S. and Ph.D. degrees in computer

and system engineering from Wroclaw University

of Technology, Wroclaw, Poland, in 1969 and 1973,

respectively.

He is an Associate Professor in the Depart-

ment of Electrical and Computer Engineering,

Northeastern University, Boston, MA. His technical

research interests include information fusion,

ontology-based information processing, software

defined radio, self-controlling software, modeling languages, and formal

methods. He teaches various graduate courses in software engineering,

formal methods, and artificial intelligence. He is the author of numerous

publications in his areas of interest. He is a Cochair of the Software

Defined Radio Forum Work Group on Modeling Language for Mobility.

Dr. Kokar is a member of ACM. He is a member of the IEEE 1900.5

Working Group on Policy Language and Policy Architectures for

Managing Cognitive Radio for Dynamic Spectrum Access Applications.

Leszek Lechowicz (Member, IEEE) received the

M.S. degree in electrical engineering and in com-

puter science from Gdansk University of Technol-

ogy, Poland, in 1994 and 1996, respectively. He is a

doctoral candidate in the Department of Electrical

and Computer Engineering, Northeastern Univer-

sity, Boston, MA.

His research interests include software defined

radio, self-controlling software, and the applica-

tion of formal methods in software engineering.

He is a System Architect with Asterion Inc., Marlboro, MA. His previous

professional experience includes variety of technical positions with

automated test equipment and networking companies.

Mr. Lechowicz is a member of the IEEE Computer Society and ACM.

Kokar and Lechowicz: Language Issues for Cognitive Radio

Vol. 97, No. 4, April 2009 | Proceedings of the IEEE 707

Authorized licensed use limited to: Northeastern University. Downloaded on July 26, 2009 at 11:49 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

