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Abstract

In this article, a novel unsupervised neural network combining elements from Adaptive Resonance Theory and topology-learning
neural networks is presented. It enables stable on-line clustering of stationary and non-stationary input data by learning their
inherent topology. Here, two network components representing two different levels of detail are trained simultaneously. By virtue of
several filtering mechanisms, the sensitivity to noise is diminished, which renders the proposed network suitable for the application
to real-world problems. Furthermore, we demonstrate that this network constitutes an excellent basis to learn and recall associations
between real-world associative keys. Its incremental nature ensures that the capacity of the corresponding associative memory fits
the amount of knowledge to be learnt. Moreover, the formed clusters efficiently represent the relations between the keys, even if
noisy data is used for training. In addition, we present an iterative recall mechanism to retrieve stored information based on one of
the associative keys used for training. As different levels of detail are learnt, the recall can be performed with different degrees of
accuracy.

Keywords: topology learning, associative memory, incremental learning, hierarchical representations, Adaptive Resonance
Theory

1. Introduction

For numerous tasks, the traditional off-line learning approach
with separate training, validation, and test phases is not suf-
ficient. The diagnosis of genetic abnormalities (Vigdor &
Lerner, 2006), interactive teaching of a humanoid robot (Go-
erick et al., 2009), and the subcellular localisation of proteins
(Tscherepanow et al., 2008) constitute several examples for
such problems. As a consequence, incremental on-line learning
has become more popular in recent years, since such machine
learning techniques are required to gradually complete know-
ledge or adapt to non-stationary input distributions.

In this article, the TopoART network (Tscherepanow, 2010)
is presented. It combines incremental and fast on-line clustering
with topology learning. As TopoART originates from Adaptive
Resonance Theory (ART) networks, in particular Fuzzy ART
(Carpenter et al., 1991), TopoART creates stable representa-
tions while retaining its ability to learn new data. In order to
render TopoART more suitable for real-world applications, it
was designed in such a way that it becomes insensitive to noise.
Furthermore, it creates a hierarchical representation of the input
distribution reflecting different levels of detail.
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TopoART can be extended to a hierarchical hetero-
associative memory called TopoART-AM. Here, an iterative re-
call mechanism provides missing keys in decreasing order of
confidence. Due to the properties inherited from TopoART,
namely insensitivity to noise as well as the ability of incremen-
tal and fast on-line learning, this associative memory is particu-
larly well-suited to real-world applications.

Related approaches are discussed in Sect. 2. Afterwards, de-
tails of TopoART and its extension TopoART-AM are intro-
duced in Sect. 3. In Sect. 4, the results of TopoART and
TopoART-AM applied to different types of datasets are com-
pared to several state-of-the-art methods. Here, their ability to
cope with noise and to incrementally learn new input data from
non-stationary distributions will be shown. In addition, the iter-
ative recall mechanism of TopoART-AM will be demonstrated.
Finally, Sect. 5 summarises the most important points of this
article.

2. Related Work

As we intend to solve two different types of problems using
TopoART, namely clustering and the learning of associations,
we discuss related work from both research fields.

2.1. Clustering Techniques

The k-means algorithm (MacQueen, 1967), which consti-
tutes a very well-known unsupervised learning technique, de-
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termines a partitioning of an input distribution into k regions
or rather clusters. Each cluster is represented by a reference
vector. The choice of the number of required clusters consti-
tutes a crucial problem. For this reason, the Linde-Buzo-Gray
(LBG) algorithm (Linde et al., 1980) was developed. Based on
a fixed training set, it successively computes sets of reference
vectors of increasing size until a stopping criterion is fulfilled.
The topological structure of the input data is not considered by
this algorithm.

In 1982, the Self-Organising Feature Maps (SOFMs), which
map input data to a lattice of neurons, were introduced by Ko-
honen. Here, the reference vectors are encoded by the weights
of the neurons. The lattice possesses a predefined topological
structure, the dimension of which is usually lower or equal to
the dimension of the input space. If the input distribution is not
completely known in advance, an appropriate lattice structure
is difficult to choose. This problem was solved by the Growing
Neural Gas (GNG) algorithm (Fritzke, 1994). It allows for the
incremental incorporation of new neurons and the learning of
the input distribution’s topology by adding and deleting edges
between different neurons.

The GNG algorithm is contained as a special case in a re-
cently proposed extension, which is called the limited branch-
ing tree Growing Neural Gas (lbTreeGNG) (Kortkamp &
Wachsmuth, 2010). It creates hierarchical codebooks that lo-
cally preserve the topology of the input space, while allowing
a very efficient mapping from input samples to codewords and
avoiding overfitting during training.

However, the above-mentioned methods do not directly em-
ploy mechanisms that deal with the stability-plasticity dilemma
(Grossberg, 1987). A continuing presentation of input data re-
sults in a continuing adaptation of the neurons’ weights, i.e.
the reference vectors, and the network topology. Thus already-
learnt structures may get altered or even lost. This can occur,
for instance, if the input distribution is complex or due to small
changes of the input probabilities. The sequencing of the input
data may cause a similar effect.

Adaptive Resonance Theory (ART) networks have been pro-
posed as a solution to the stability-plasticity dilemma (Gross-
berg, 1987). These networks learn top-down expectations
which are matched with bottom-up input. The expectations,
which are called categories, summarise sets of input data into
clusters. Depending on the type of ART network, the categories
exhibit different shapes such as a hyperspherical shape (Anag-
nostopoulos & Georgiopoulos, 2000), a hyperelliptical shape
(Anagnostopoulos & Georgiopoulos, 2001), or a hyperrectan-
gular shape (Carpenter et al., 1991). Besides enabling ART
networks to create stable and plastic representations, the cat-
egories allow for an easy novelty detection. But in contrast to
SOFMs and GNG, ART networks do not capture the topology
of the input data. Furthermore, their ability of stable learning
leads to an increased sensitivity to noise.

In 2006, the Self-Organising Incremental Neural Network
(SOINN) was introduced by Furao & Hasegawa. Similar
to GNG, SOINN clusters input data by incrementally adding
neurons, the weights of which represent reference vectors, and
the topology is reflected by edges between the nodes. But it has

several additional features: Firstly, SOINN has a two-layered
structure representing the input distribution at different levels
of detail. Additionally, this structure reduces the sensitivity to
noise. The second layer is trained after the training of the first
layer has been finished. Secondly, novelty detection can be per-
formed based on an adaptive threshold. Thirdly, each neuron
has an individual learning rate which decays if the amount of in-
put samples that it represents increases. In this way, a more sta-
ble representation is achieved. But the weights of the neurons
do not stabilise completely. Furthermore, a high number of rel-
evant parameters (8 parameters per layer) has to be set in order
to apply SOINN.

The Enhanced Self-Organising Incremental Neural Network
(ESOINN) (Furao et al., 2007) solves some of the above-
mentioned problems: By removing the second layer and one
condition for the insertion of new neurons, the number of re-
quired parameters is considerably reduced (4 in total). Further-
more, the whole network can be trained on-line. But similar
to SOINN, the weights do not stabilise completely. Moreover,
ESOINN loses the ability to create hierarchical representations.

TopoART combines the advantages of ART and topology-
learning networks (see Sect. 3.1). From its ART ancestors, it
inherits the ability of fast and stable on-line learning using ex-
pectations (categories). These categories are extended by edges
reflecting the topology of the input distribution. Therefore, they
enable the formation of arbitrarily shaped clusters. In addition,
TopoART adopts the ability to represent input data at different
levels of detail from SOINN; but unlike SOINN, it learns both
levels simultaneously.

2.2. Associative Memories
There exist several approaches to associative memories,

which are based on clustering methods. Some examples are
the bidirectional hetero-associative memories of Chartier et al.
(2009) and of Ichiki et al. (1993), which incorporate SOFMs,
as well as SOIAM (Sudo et al., 2009), an associative memory
based on a simplified version of SOINN. In contrast to tradi-
tional approaches such as Hopfield networks (Hopfield, 1982)
and bidirectional associative memories (BAMs) (Kosko, 1988),
they do not have to be trained with noise-free input patterns
and perform information compression: The underlying clus-
terer summarises similar input samples to clusters, which may
be considered as a simple type of categorisation. As a conse-
quence, these approaches reduce the amount of data to be stored
which is a major aspect of the principle of cognitive economy
(Goldstone & Kersten, 2003). This is particularly beneficial
for artificial agents such as robots operating in real-world envi-
ronments, as they have to process large amounts of noisy and
corrupted data.

The capacity of Hopfield networks and BAMs depends on
the size of the associative keys (Hopfield, 1982; Kosko, 1988).
After the maximum capacity has been reached, further training
results in forgetting the previously learnt data. SOFM-based
associative memories suffer from a similar problem, although
they are capable of generalisation, which increases the capac-
ity. Since the application of SOFMs requires the topology and
network size to be chosen in advance (e.g., Chartier et al., 2009;
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Ichiki et al., 1993), the capacity of these methods is limited as
well. Furthermore, SOFMs do not create stable representations.
Hence, catastrophic forgetting might result from training with
non-stationary data. In contrast, the capacity of SOIAM is not
limited, as it is an incremental network. Its capacity rather fits
the learnt knowledge. But similar to SOINN, the knowledge is
not completely stable. Furthermore, since SOIAM is based on
a one-layered version of SOINN, no hierarchical clustering is
performed. This hierarchical clustering might have been bene-
ficial for real-world tasks, as it enables the representation of
further abstraction levels.

Another important aspect, which needs to be considered, is
the type of information which can be processed. While Hop-
field networks require binary input, BAMs allow for the storage
of real-valued data. Associative memory models incorporating
clustering techniques can be applied to real-valued data as well.
But one data type, which typically occurs in real-world scenar-
ios, is often neglected: colour images. Of course, such images
can be transformed into vectors of real-valued data and learnt
with the respective methods, but explicit evaluations are usu-
ally missing (cf. Chartier et al., 2009; Kosko, 1988; Sudo et al.,
2009).

In 2007, Yáñez-Márquez et al. presented an auto-associative
memory dedicated to the learning of RGB images. This model
is a direct extension of binary approaches and does not involve
transformations to real-valued data or clustering. But since the
evaluation was performed using ten different images only, its
suitability to solve real-world problems can barely be estimated.

As TopoART combines features of ART and topology-
learning networks, it constitutes an excellent basis to con-
struct an associative memory for real-world tasks: By virtue of
TopoART’s incremental nature, the capacity of the correspond-
ing associative memory would not be limited and learnt asso-
ciations would be stable. Furthermore, the usage of complex
data, such as colour images, should be possible. Therefore, we
decided to apply TopoART to the task of associative learning
as well. This extension of TopoART is called TopoART-AM.
Similar, to the associative memory introduced by Ichiki et al.
(1993), the learning procedures of the underlying clusterer re-
main untouched. As a result, the properties of TopoART are
directly transferred to TopoART-AM. But in order to realise the
recall process, some additional mechanisms are required (see
Sect. 3.2).

3. TopoART

In this section, the principal functioning of TopoART is de-
scribed. Afterwards, this algorithm is extended in order to allow
for the construction of an associative memory, which is referred
to as TopoART-AM.

3.1. Using TopoART for Clustering

The basic structure and the computational framework of
TopoART are strongly related to Fuzzy Art (Carpenter et al.,
1991), which constitutes a very efficient ART network utilis-
ing hyperrectangular categories. TopoART is composed of two

Figure 1: Structure of TopoART. TopoART consists of two Fuzzy ART-like
components called TopoART a and TopoART b, which share the input layer
F0. The propagation of input vectors to TopoART b depends on the activation
of TopoART a. Furthermore, the F2 nodes of each component are connected
by edges defining a topological structure. In order to reduce the sensitivity to
noise, TopoART evaluates the benefit of neurons (node candidates) before they
are fully incorporated.

Fuzzy ART-like components – TopoART a and TopoART b.
These components possess a three-layered structure with a
shared initial layer F0 (see Fig. 1). They function in an identi-
cal way and are trained in parallel. In order to create represen-
tations at different levels of detail and to reduce the sensitivity
to noise, the propagation of input vectors to TopoART b is con-
trolled by TopoART a. Additionally, the maximum category
size of TopoART b is diminished in comparison to TopoART a.

The input vectors x(t) are presented to the shared initial layer
F0.

x(t) =
[
x1(t), . . . , xd(t)

]T
(1)

At the initial layer, input is encoded using complement cod-
ing, which constitutes a concatenation of x(t) and its comple-
ment xc(t).

xc(t) =
[
1 − x1(t), . . . , 1 − xd(t)

]T
(2)

The complement coded vectors are denoted by xF1(t).

xF1(t) =
[
x(t)T , xc(t)T

]T
(3)

As a consequence of the usage of complement coding, each
component xi(t) of an input vector x(t) has to lie in the interval
[0, 1].

The encoded input vectors xF1(t) are transmitted to the re-
spective comparison layer F1. The activation zF2

i (t) (choice
function) of the F2 nodes is computed as follows:

zF2
i (t) =

∣∣∣xF1(t) ∧ wF2
i (t)

∣∣∣
1

α +
∣∣∣wF2

i (t)
∣∣∣
1

(4)

zF2
i (t) constitutes a measure for the similarity between xF1(t)

and the category represented by neuron i. | · |1 and ∧ denote
the city block norm and a component-wise minimum operation,
respectively. The parameter α must be set slightly higher than
zero. The choice of the actual value is not crucial.1 In general,
zF2

i (t) prefers small categories to large ones.

1α was set to 0.001 for all experiments presented in this article.
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After all F2 neurons have been activated, the best-matching
neuron bm, i.e. the neuron with the highest activation, is se-
lected. But the category represented by its weights wF2

bm(t) is
only allowed to grow and enclose a presented input vector if
resonance occurs, i.e. if the match function (5) is fulfilled.∣∣∣xF1(t) ∧ wF2

bm(t)
∣∣∣
1∣∣∣xF1(t)

∣∣∣
1

≥ ρ (5)

The vigilance parameter ρ limits the maximum size of the
categories and has, therefore, a strong influence on the resulting
clusters. But as the match function has directly been adopted
from Fuzzy ART (Carpenter et al., 1991) and its supervised
counterpart Fuzzy ARTMAP (Carpenter et al., 1992), it is pos-
sible to resort to existing experiences and procedures for finding
adequate values for ρ (e.g., Tscherepanow & Kummert, 2007;
Tscherepanow et al., 2008).

Assuming a neuron was not able to fulfil (5), its activation is
reset. Then a new best-matching node is chosen. If no suitable
best-matching neuron is found, a new neuron representing x(t)
is incorporated and resonance occurs.

In case of resonance, the weights wF2
bm(t) of the chosen neuron

are adapted and the output y(t) of the respective TopoART com-
ponent is set:

wF2
bm(t + 1) =

(
xF1(t) ∧ wF2

bm(t)
)

(6)

yi(t) =

{
0 if i , bm
1 if i = bm (7)

Using (6) the network is trained in fast-learning mode; i.e.,
each learnt input is enclosed by the category that matches
it best. Moreover, shrinking of the categories is impossible.
Hence, the formed representations are stable.

Rather than only determining the best-matching neuron bm
and modifying its weights, the neuron sbm with the second
highest activation that fulfils (5) is adapted as well. Here, the
learning rate βsbm should be chosen smaller than 1, as neuron
sbm – in contrast to neuron bm – is only intended to partly learn
xF1(t). Its weights wF2

sbm(t) are adapted as follows:

wF2
sbm(t + 1) = βsbm

(
xF1(t) ∧ wF2

sbm(t)
)

+(1 − βsbm)wF2
sbm(t) (8)

As a result of this procedure, the insensitivity to noise is in-
creased, since the categories are more likely to grow in relevant
areas of the input space. But in comparison to ρ, βsbm is con-
siderably less influential. Therefore, its purpose consists in the
fine tuning of the clustering results.

Each F2 neuron i of both components has a counter denoted
by na

i and nb
i , respectively, which counts the number of input

samples it has learnt. An encoded input vector is only propa-
gated to TopoART b if resonance of TopoART a occurred and
na

bm≥φ. Every τ learning cycles, all neurons with a counter
smaller than φ are removed. Therefore, such neurons are called

node candidates. Once ni equals or surpasses φ, the correspond-
ing neuron can no longer be removed; i.e., it becomes a per-
manent node. The fraction φ/τ gives the minimum activation
frequency for neurons to become permanent. Due to this rela-
tionship, φ and τ function similar to a single parameter, which
facilitates their choice. In addition, τ specifies the number of
training steps considered for the estimation of the activation
frequencies. Thus, the reliability of the estimates increases for
higher values of τ. Using this mechanism for the removal of
rarely activated nodes, the network is rendered more insensitive
to noise but is still able to learn stable representations.

In order to enable TopoART to learn topologies, a lateral con-
nection or rather edge between the neurons bm and sbm is cre-
ated, if a second-best-matching neuron can be found. These
edges define a topological structure. They are not used for acti-
vating other neurons. If the neurons bm and sbm have already
been connected by an edge, it remains unchanged, since the
edges do not possess an age parameter in contrast to the edges
in ESOINN, SOINN, and GNG networks. They are removed if
one of the adjacent neurons is removed. As a consequence,
edges between permanent nodes are permanent, while edges
from or to node candidates can be eliminated. In addition, it
is always possible to create new edges. This mechanism con-
stitutes an extension of Fuzzy ART’s solution to the stability-
plasticity dilemma, which enables the representation of new in-
put while retaining the already-learnt representations.

The permanent nodes and edges constitute a kind of long-
term memory of the network, as they enable the access to infor-
mation from the past. We consider this property to be impor-
tant for numerous tasks such as the life-long learning of artifi-
cial agents or categorisation processes which require the learnt
categories to remain stable if new data is incorporated into the
network.

The current size S i(t) of a category can be derived from the
weights wF2

i (t) of the corresponding neuron i:

S i(t) =

d∑
j=1

∣∣∣∣(1 − wF2
i,d+ j(t)

)
− wF2

i, j (t)
∣∣∣∣ (9)

In addition to the vigilance parameter ρ, the maximum cat-
egory size S max is determined by the dimension of the input
space d.

S max = d(1 − ρ) (10)

In order to refine the representation of TopoART a by means
of TopoART b, ρb should be higher than ρa. Therefore, ρb is
determined according to (11), which diminishes the maximum
category size S max by 50%.

ρb =
1
2

(ρa + 1) (11)

In this way, TopoART b learns a more detailed representa-
tion which is less influenced by noise. Connections between
categories of TopoART a can be split by TopoART b resulting
in a hierarchical representation of the input data.
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In addition to the output y(t) (7), each component provides
the cluster labels of the F2 nodes as a vector termed c(t). These
labels are determined as follows (cf. Furao & Hasegawa, 2006;
Furao et al., 2007): First, an initial label (integer number) is
chosen. Then, starting from an unlabelled neuron, all connected
neurons receive this label. Afterwards, the label is increased
and a new unlabelled neuron is searched for. The complete
procedure is repeated until no unlabelled neurons remain. As
a result, all sets of interconnected nodes or rather clusters have
received a unique label. For reasons of stability, only permanent
nodes are considered for the computation of c(t). By this, the
clusters can grow and fuse, but they are prevented from shrink-
ing.

In order to map unknown data to learnt clusters, TopoART
determines the permanent node with the highest activation. The
cluster label of this node is then returned as the result.

The original activation (4) depends on the category size. This
might be disadvantageous in situations where a trained network
is applied to unknown test patterns. In such a case, the pre-
sented input samples are not guaranteed to lie in existing cat-
egories. Furthermore, as no learning takes place, the current
category size is irrelevant. Therefore, the alternative activation
proposed by Tscherepanow et al. (2008) could be beneficial.
It constitutes the city block distance between an input sample
and the respective category. In order to render it more suitable
for the application as an activation function, it is inverted and
normalised to values from the interval [0, 1]:

zF2
i (t) = 1 −

∣∣∣∣(xF1(t) ∧ wF2
i (t)

)
− wF2

i (t)
∣∣∣∣
1∣∣∣xF1(t)

∣∣∣
1

(12)

The resulting values of zF2
i (t) reflect the similarity of an input

with a category and are not influenced by the category size.

3.2. Learning and Recalling Associations with TopoART-AM

TopoART can directly be utilised for learning associations
between two keys denoted by the vectors k1(t) and k2(t), re-
spectively. Both vectors have just to be concatenated and fed as
input into the network:

x(t) =
[
k1(t)T , k2(t)T

]T
(13)

As each F1 node receives only input from one F0 node, the
F1 nodes and the F0 nodes as well as their connections cor-
respond either to k1(t) or to k2(t) (see Fig. 2). Furthermore, all
connections between the F2 layer and the F1 layer are assigned
to one of the keys as well. Each F2 node has both types of con-
nections.

This assignment to one of the keys is exploited for recall,
which constitutes the key aspect of TopoART-AM. During re-
call, one key is presented and the corresponding second key is
independently generated by both components of the network
(TopoART-AM a and TopoART-AM b). For reasons of clar-
ity, the indices denoting the respective component of TopoART-
AM are omitted in the following.

Figure 2: Structure of TopoART-AM. TopoART-AM consists of a TopoART
network which is trained by inputs that are a concatenation of two keys k1(t)
and k2(t). For simplicity, scalar keys are used in this figure. The subnets, which
refer to either k1(t) or k2(t), are drawn in red and in blue colour, respectively.
In addition to TopoART, TopoART-AM has a fourth layer (F3), which is used
for recall. During training, the F3 layer is not required.

In order to recall associated keys, the respective known key
is directly used as input vector x(t) leading to:

xF1(t) =


[
k1(t)T , kc

1(t)T
]T

if x(t) = k1(t)[
k2(t)T , kc

2(t)T
]T

if x(t) = k2(t)
(14)

Due to this modification, the activation of the F2 nodes ex-
clusively depends on the presented key and the subnets respon-
sible for processing it (see Fig. 2).

zF2
i (t) =

 zF2,1
i (t) if x(t) = k1(t)

zF2,2
i (t) if x(t) = k2(t)

(15)

The weights corresponding to these subnets are indicated by
wF2,1

i (t) and wF2,2
i (t), respectively. Since no learning takes place

during recall, the alternative activation function (12) is applied.

zF2,1
i (t) = 1 −

∣∣∣∣(xF1(t) ∧ wF2,1
i (t)

)
− wF2,1

i (t)
∣∣∣∣
1∣∣∣xF1(t)

∣∣∣
1

(16)

zF2,2
i (t) = 1 −

∣∣∣∣(xF1(t) ∧ wF2,2
i (t)

)
− wF2,2

i (t)
∣∣∣∣
1∣∣∣xF1(t)

∣∣∣
1

(17)

In contrast to a training cycle, the match function (5) is not
checked during recall. After all F2 nodes have been activated,
the clusters are labelled; then the recall layer F3 is created.
Each F3 node represents an individual cluster and is connected
to all F2 nodes which have received the corresponding label l.
Their activation constitutes the maximum activation of the F2
nodes it is connected to.

zF3
l (t) = max

i,ci(t)=l
zF2

i (t) (18)

After the F3 nodes have been activated, the iterative recall
process starts: First, the F3 neuron with the maximum activa-
tion is determined. If multiple neurons exhibit this activation,
the neuron with the smallest index is selected. This F3 neuron

5



inhibits all connected F2 nodes which are less activated than
itself. By this procedure, the best-matching F2 neuron bm of
the respective cluster is selected. Based on the weights of this
neuron, the output of the network is computed:

y(t, i) =

 CoG
(
wF2,2

bm (t)
)

if x(t) = k1(t)

CoG
(
wF2,1

bm (t)
)

if x(t) = k2(t)
(19)

Here, CoG
(
w(t)

)
denotes the centre of gravity of the category

defined by the weight vector w(t). For n-dimensional weight
vectors, it can be determined as follows:

CoG
(
w(t)

)
=

1
2


w1(t) + 1 − w n

2 +1(t)
...

...
w n

2
(t) + 1 − wn(t)

 (20)

After the output y(t, i) for the current iteration i has been com-
puted, the selected F3 neuron is reset; i.e., its activation is set
to 0. Then, a new iteration starts. If i=1, the output constitutes
the best solution to the reconstruction of the respective miss-
ing key. With each further iteration, the recall error increases.
The recall process can be stopped if the recall error reaches a
certain limit. Otherwise, it will be finished when all F3 nodes
have been reset. After the recall process has been stopped, the
F3 layer is removed.

4. Results

In this section, the clustering capability of TopoART is
demonstrated. Then, we show that after extending TopoART
by the recall mechanism proposed in Sect. 3.2, it is capable of
learning and recalling associations of complex data.

4.1. TopoART
TopoART was evaluated using three different types of data:

stationary artificial data, non-stationary artificial data, and sta-
tionary real-world data.

4.1.1. Stationary Artificial Data
As stationary artificial input distribution, a two-dimensional

data distribution copying the one used for the evaluation of
SOINN (Furao & Hasegawa, 2006) was chosen. It comprises
two Gaussian components (A and B), two ring-shaped compo-
nents (C and D), and a sinusoidal component (E) composed
from three subcomponents (E1, E2, and E3). Each compon-
ent encompasses 18,000 individual samples. Additionally, the
input distribution includes uniformly distributed random noise
amounting to 10% of the total sample number (10,000 sam-
ples). This dataset was used to train four different types of net-
works: Fuzzy ART, lbTreeGNG, SOINN, and TopoART. Fig-
ure 3 depicts the applied data distribution and the respective
clustering results. During training, each input sample was once
presented to the respective network.

As Fuzzy ART constitutes the basis of TopoART, it was ana-
lysed first. For comparison reasons, β was set to 1. There-
fore, the weights of the best-matching neurons are adapted in

the same manner as with TopoART. ρ was selected in such a
way that the edge length of square categories roughly fits the
thickness of the elliptic and sinusoidal components of the in-
put distribution. As this network does not possess any means to
reduce the sensitivity to noise, virtually the whole input space
was covered by categories.

For the analysis of TopoART, the value of the vigilance par-
ameter was transferred from Fuzzy ART (ρa=ρ). Since τ fulfils
a similar task as the SOINN parameters λ and agedead, its value
was adopted from Furao & Hasegawa (2006) where a very simi-
lar dataset was used and both λ and agedead were set to 100.
The remaining parameters φ and βsbm were manually adjusted
in such a way as to copy the results of SOINN published by
Furao & Hasegawa (2006).2

In contrast to Fuzzy ART, both TopoART components cre-
ated representations reflecting the relevant regions of the input
distribution very well. This is remarkable since the value of
ρa was equal to the value of the vigilance parameter ρ of the
Fuzzy ART network. The representation of TopoART was re-
fined from TopoART a to TopoART b: While TopoART a com-
prises one cluster, TopoART b distinguishes five clusters cor-
responding to the five components of the input distribution. By
virtue of the filtering of samples by TopoART a and due to the
fact that ρb is higher than ρa (11), the categories of TopoART b
reflect the input distribution in more detail. This property is
particularly useful if small areas of the input space have to be
clustered with high accuracy. Here, TopoART a could filter in-
put from other regions and TopoART b could create the desired
detailed representation.

The lbTreeGNG network was trained with the default val-
ues for the parameters εb, εn, amax, α, d, and λ as stated in
(Kortkamp & Wachsmuth, 2010). In addition, the parameter
b for the limiting branching factor was set to 90 and the error
threshold m to 0.0001. Here, the branching factor was cho-
sen relatively large in order to produce a two-layered codeword
tree providing results comparable to TopoART and SOINN. As
can be seen in Fig. 3, the levels 1 and 2 of the lbTreeGNG
network, denoted by lbTreeGNG 1 and lbTreeGNG 2 respect-
ively, reasonably captured the topological structure of the input
space. Since noise is a significant part of the input distribu-
tion, the lbTreeGNG system learnt codewords in those noisy
regions as well. However, the trained GNG networks show a
much higher resolution in relevant parts of the input distribu-
tion. Due to the hierarchical space partitioning of the network,
a single GNG network in the second layer only encodes local
topological structures within a single Voronoi cell of the first
layer. In contrast to SOINN and TopoART, lbTreeGNG does
not directly provide a labeling of clusters. Rather the labels are
implicitly represented by the hierarchical taxonomy.

For SOINN, the values of λ, agedead, and c were manually
selected in such a way that results comparable to those pub-
lished by Furao & Hasegawa (2006) were achieved. Although
Furao & Hasegawa used a very similar dataset, it was not possi-

2According to the guidelines mentioned in Sect. 3.1, φ was increased until
those neurons which represent noise were successfully removed based on their
comparably low activation frequencies. Then, βsbm was varied for fine tuning.
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Figure 3: Data distribution and clustering results of several types of neural networks. Due to the noise contained in the data, Fuzzy ART covered virtually the
complete input space with its rectangular categories. In contrast, TopoART learnt a noise-insensitive representation in which the categories were summarised to
arbitrarily shaped clusters. The representation of TopoART a was refined by TopoART b. Here, all categories of an individual cluster are painted with the same
colour. The first level of the lbTreeGNG network represents the input space globally. At the second level, the representations are locally refined and the topological
structure is locally maintained. Noise regions are represented by the lbTreeGNG network as well. But the node density is much lower than in the relevant regions
of the input space. Finally, the data distribution was successfully clustered by SOINN. Here, the representation is refined from SOINN 1 (first layer) to SOINN 2
(second layer). Reference vectors belonging to the same cluster share a common colour and symbol.

ble to obtain such results on our data using their parameter set-
tings. In order to find more appropriate values, individual par-
ameter settings for both layers (SOINN 1 and SOINN 2) were
allowed. In contrast to λ, agedead, and c, the values of α1, α2,
α3, β, and γ could directly be adopted from (Furao & Hasegawa,
2006) for both layers (1/6, 1/4, 1/4, 2/3, 3/4). Figure 3 shows
that SOINN, was able to create a hierarchical representation of
the input distribution: The three clusters of SOINN 1 were re-
fined by SOINN 2 which distinguishes five clusters. Similar to
TopoART b, SOINN 2 exhibits a reduced sensitivity to noise.

4.1.2. Non-stationary Artificial Data
In this experiment, we compared TopoART, lbTreeGNG, and

SOINN regarding their ability to represent changing data dis-
tributions. In doing so, the respective networks were succes-
sively trained with all available samples from the subdistribu-
tions A+E3, B+E2, and C+D+E1 (cf. Fig. 3). Additionally,
the subdistributions include 10% of uniformly distributed ran-
dom noise. As in the previous experiment, the input samples
were only presented once and learned immediately. Each row in
Fig. 4 depicts snapshots of the different networks after training
with the corresponding data. In order to account for the chang-
ing input data distribution, the parameters c (SOINN) and βsbm

(TopoART) were manually modified to achieve results compar-
able to those of Furao & Hasegawa (2006). The remaining par-
ameter settings could be transferred from the previous experi-
ment, which demonstrates some degree of insensitivity of the
considered networks.

Figure 4 shows that the lbTreeGNG system created and
maintained a reasonable codebook over time. Similar to the re-
sults for the stationary data, we can observe that the topological

structure of the input space was locally preserved and that rel-
evant regions were represented with a much higher resolution
than noise regions. Since the data distribution changed over
time, the node density was adapted accordingly. As a result, lb-
TreeGNG could learn novel or modified data distributions and
already-represented structures may have been forgotten. This
effect can be observed by comparing the different representa-
tions of E3 created by lbTreeGNG 2, for example. However, for
deeper lbTreeGNGs the upper levels got more and more stable
since the adaption rule of intermediate winning nodes allows
gradually less plasticity in higher levels of the tree. In compari-
son to the results of the previous experiment, the size of the leaf
GNGs in the regions A and E3 has decreased. The explana-
tion for this is that the network tries to grow in breadth before
it grows in depth. Thus, while learning A+E3 the network cre-
ated a higher resolution in the first layer since it had capacity
left. As a consequence, smaller leaf GNGs were produced at
the second level.

As the second layer of SOINN can only be trained after the
first layer has finished learning, only the first layer (SOINN 1)
could be applied to learn the non-stationary data. The results
resemble the results obtained in the previous experiment (cf.
Fig. 3). But here, the respective clusters were incorporated sub-
sequently, depending on the current data distribution. Learnt
representations remained virtually stable and were only slightly
modified due to noise.

Finally, Fig. 4 shows that both components of TopoART
incrementally learnt the presented input. Similar to SOINN,
already-created representations remained stable when the input
distribution changed. As in the stationary case, TopoART b per-
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Figure 4: Training results for a changing data distribution. In order to simulate non-stationary data, the networks were successively trained with samples from the
subdistributions A+E3, B+E2, and C+D+E1, which are depicted in the leftmost column. Each row shows the formed representations of all considered networks
after finishing the respective training period. Here, each cluster of SOINN and of TopoART as well as each connected component of lbTreeGNG has been drawn
using an individual colour. All networks were able to incrementally incorporate the new data. The representations created by SOINN and by TopoART are stable;
i.e., learnt structures are not forgotten if the input distribution changes. In contrast, representations learnt by lbTreeGNG may be destroyed during the learning
process, for instance, the representation of subdistribution E3 created by lbTreeGNG 2.

formed a refinement of the representation of TopoART a. But
here, the sub-regions E1, E2, and E3 were separated, since the
corresponding input samples were presented independently and
could not be linked. TopoART a was able to compensate for this
effect, as its lower vigilance parameter ρa allowed for larger cat-
egories which could form connections between the sub-regions.

4.1.3. Stationary Real-World Data
Finally, a dataset originally used to investigate methods for

the direct imitation of human facial expressions by the user-
interface robot iCat was applied (Tscherepanow et al., 2009).
From this dataset, the images of all 32 subjects (12 female, 20
male) that were associated with predefined facial expressions
were selected, which resulted in a total of 1783 images. These
images had been acquired using two lighting conditions: day-
light and artificial light. In order to reduce the dimensionality
of the input data, the images were processed according to the
procedure shown in Fig. 5, resulting in 45-dimensional feature
vectors: The recorded face images were cropped, scaled to a
size of 64×64 pixels, and successively processed by principal
component analysis keeping 90% of the total variance.

After training SOINN and TopoART systems with the en-
tire dataset until convergence of the permanent nodes’ weights
and edges (TopoART) or until a maximum number of iterations
(SOINN)3 was reached, the resulting clusters were compared
to the partitionings based on labels reflecting the individual

3Unlike TopoART, SOINN does not differ between permanent nodes and
node candidates. Therefore, the adaptation of the network structure and the
weights does not reach a stable state. In order to solve this problem, the max-
imum number of iterations was set to 10.

Figure 5: Processing of the facial images. First, the original images were
converted to grey-scale images, aligned according to the position of the eyes,
cropped, and scaled to a size of 64×64 pixels. Then, pixels lying in face regions
which are irrelevant for the imitation of facial expression by the iCat were re-
moved. The resulting images were further processed by principal component
analysis keeping 90% of the total variance.

subjects and the two different lighting conditions. Here, two
standard measures were used: the Jaccard coefficient J and the
Rand index R (Xu & Wunsch II, 2009). Both provide values
between 0 and 1, with higher values indicating a higher degree
of similarity. As always more than one criterion for partitioning
these images (subjects, lighting conditions, facial expressions,
gender, usage of glasses, etc.) influences the clustering process,
values considerably lower than 1 may also indicate similarity.
The splitting of clusters caused by these additional criteria, for
example, entails a decrease of the Jaccard coefficient. The re-
sults are shown in Fig. 6.

Here, the alternative activation (12) was used to analyse the
clusters formed by TopoART to be independent from the cat-
egory size. In order to analyse the networks’ capability to create
appropriate representations of the learnt data, the relevant par-

8



Figure 6: Clustering of stationary real-world data. The preprocessed facial images were clustered by a SOINN and a TopoART network. Then, how accurately the
resulting clusters reflected the different subjects and the two lighting conditions was analysed. Here, the Rand index R and the Jaccard coefficient J were applied to
measure the similarity. For both networks, the results were plotted depending on the parameters, which have the strongest influence on the cluster size – namely λ
and agedead (SOINN) as well as ρa (TopoART). The vertical green line in the TopoART graphs marks the value of ρa, which enables an optimal representation of
both partitionings in a single network. In this case, TopoART a would represent the lighting conditions and TopoART b the subjects.

ameters have to be set accordingly. Due to the dimensionality
of the input space, a manual choice is rather difficult. There-
fore, we have decided to apply an automated procedure exploit-
ing the available labels. For both networks, three parameters
were optimised by means of grid search in order to maximise
the Jaccard coefficient for the complete dataset. In particular,
the TopoART parameters βsbm, φ, and ρa as well as the SOINN
parameters c (one for each layer) and λ were iterated over rep-
resentative values from the relevant intervals4 and selected in
such a manner as to maximise the Jaccard coefficient for the
partitioning according to the subjects. For SOINN, agedead was
set equal to λ. While each SOINN layer has its own parameter
c, λ and agedead were applied to the entire network, in order to
simplify the optimisation process. The remaining parameters
were transferred from the previous experiments.

Although the parameter optimisation was performed in such
a way as to maximise the Jaccard coefficient for the partition-
ing according to the subjects, the maximum values reached
by SOINN (Jmax

1 =0.134, Jmax
2 =0.080) are comparatively low.

Moreover, the results of SOINN 2 appear as an impaired ver-
sion of the results of SOINN 1. In contrast, TopoART achieved
results which are more than twice as high (Jmax

a =0.312,
Jmax

b =0.306). Regarding the Rand index, TopoART shows im-
provements as well. Therefore, TopoART is more suitable for
representing this partitioning.

The results with respect to the partitioning according to
the lighting conditions are equally high. Here, the results of
SOINN 2 again resemble an impaired version of the results of
SOINN 1. In contrast, the similarity of the clusterings pro-
vided by TopoART, strongly depends on the vigilance param-
eter ρa. But the results are not impaired from TopoART a to
TopoART b. They are rather shifted along the ρa-axis, which
reflects the different levels of detail represented by both compo-
nents. As a consequence, the representations of both partition-
ings can be combined in a single TopoART network, provided
that ρa is chosen appropriately, e.g., ρa=0.955 (see Fig. 6). In

4βsbm∈[0, 1], step size: 0.05; φ∈{1, 2, 3, 4, 5}; ρa∈[0.75, 0.995], step size:
0.005; c∈[0.05, 1], step size: 0.05; λ∈[25, 500], step size: 12.5

this case, TopoART a represents the coarser partitioning with
respect to the lighting conditions and TopoART b the finer par-
titioning according to the subjects.

In order to solve clustering tasks, the procedure used for par-
ameter optimisation within the scope of our analysis cannot be
applied, as labeling information is usually not available here. It
was only applied so as to show the principal capability of the
networks to represent the respective partitionings. Considering
the difficulty to select appropriate values for the network par-
ameters, the application of TopoART is advantageous as well,
as it only requires 4 parameters to be set in comparison to the
16 parameters of SOINN. Nevertheless, the parameters must be
set using some kind of prior knowledge about the input data
distribution (see Sect. 3.1). This task may be difficult, in par-
ticular, as TopoART is always trained on-line. In order to solve
this problem, the hierarchical structure of TopoART can be ex-
ploited, since it provides alternative clusterings of the input data
distribution. By means of interaction during the learning pro-
cess, these clusterings could be evaluated with respect to the
current task or other criteria.

4.2. TopoART-AM

TopoART-AM does not differ from TopoART during learn-
ing. Therefore, the results of the previous experiments can be
directly transferred to TopoART-AM. The focus of this section
is on the recall procedure, which constitutes the main difference
to the original TopoART. Since we want to show that TopoART-
AM can be applied to real-word tasks, the evaluation is based on
two sets of colour images (RGB), which were recorded in real
experimental setups. The first dataset consists of a subset of the
facial images applied for analysing TopoART (cf. Sect. 4.1.3).
The second dataset comprises images of different objects taken
by a webcam (Logitech Webcam Pro 9000). This setup consti-
tutes the first step in developing a new imitation learning ap-
proach for a humanoid robot. Both datasets are described in the
following. In order to demonstrate the capability of TopoART-
AM to serve as a hetero-associative memory, facial images from
the first dataset were associated with images showing specific
objects.
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Figure 7: Facial images of an exemplary subject. For each subject, 28 images
depicting different facial expressions were available. These 28 images were
randomly divided into 20 training and eight test images.

The facial images were obtained by choosing 16 subjects (8
male, 8 female) from the dataset used to investigate methods
for the direct imitation of human facial expressions by the user-
interface robot iCat (Tscherepanow et al., 2009). From these
subjects, those 28 images that show predefined facial expres-
sions in daylight were selected. These images were aligned ac-
cording to the position of the eyes, cropped, and scaled to a size
of 32×32 pixels. A conversion to grey-scale images did not take
place. The resulting images of one subject are shown in Fig. 7.

In contrast to other approaches (e.g., Chartier et al., 2009;
Sudo et al., 2009; Yáñez-Márquez et al., 2007), the gener-
alisation capability of which is demonstrated using learnt in-
put samples disturbed by artificial noise, we decided to evalu-
ate TopoART-AM using distinct test and training datasets. By
means of this procedure, we want to provide an evaluation more
suited to real-world applications. In order to reach this goal,
20 images of each subject were randomly selected for training,
while the remaining eight images were reserved for the test set.

The object images were automatically recorded using the ex-
perimental setup introduced by Kammer et al. (2011). After
an image of an object had been taken, a region of interest in-
cluding the object was computed. Successively this region was
rotated in such a way that the direction of its longest extension
was aligned with the x-axis. Then it was cropped and scaled to
a size of 45×23 pixels. This size was chosen in such a way that
the areas covered by the object images and the face images are
approximately equal. The automatic rotation results in the gen-
eration of images showing the respective object in two different
orientations differing in a rotational angle of 180◦. In order to
compile a set of object images, 16 different objects that can usu-
ally be found in an office environment were used. From each of
these objects, images were recorded at five different positions.
Two of these positions resulted in one orientation and three in
the other. Furthermore, as the camera is not vertically fixed and
the positions of the placed objects vary, the automatic rotation
can lead to deformed object appearances. Figure 8 shows the
images taken of six exemplary objects.

The objective of TopoART-AM consisted in the learning of
associations between persons and objects. Thus, k1(t) and k2(t)
corresponded to serialised face and object images, respectively.
For computational purposes, the elements of k1(t) and k2(t)
were normed to values between 0 to 1. Each person was as-
signed to exactly one object. But both the persons and the ob-
jects were represented by multiple images. In particular, each

Figure 8: Images of six exemplary objects. Of each object, five images were
taken. The varying orientation and partially deformation of the objects result
from the technical conditions of the experimental setup.

Figure 9: Recall results for an exemplary test image. The recalled images
are shown depending on the iteration i in which they were generated. While
SOIAM iterates over all nodes and returns an image if the distance dx↔i be-
tween the input x(t) and the weights of the respective neuron is smaller than the
threshold δ, the recall results of both TopoART-AM components are ordered
according to the activation zF3(t) of the corresponding F3 nodes. For SOIAM,
the complete recall set is shown. In contrast, the recall of TopoART-AM was
stopped after five iterations. The images of the object corresponding to the
person the test image originates from are marked by a green tick.

face image of the training set was randomly associated with one
of the five images of the corresponding object. As a result, the
training set encompasses 320 associations. The test set consists
of the remaining 128 face images. The object images corres-
ponding to these face images were to be provided by the recall
procedure. Figure 9 depicts exemplary recall results of a trained
TopoART-AM system in comparison to a SOIAM network.

During recall, SOIAM determines the distance dx↔i between
the input x(t) and the weights of all nodes independent of the
cluster the nodes belong to. If dx↔i is smaller than the thresh-
old δ, the second key k2(t) is generated from the weights of
the representative node of the respective cluster and returned.
The images produced for an exemplary test image are shown in
Fig. 9. They are ordered according to the iteration i in which
they were returned. As a consequence of SOIAM’s recall mech-
anism, multiple nodes of the same cluster can fulfil the condi-
tion dx↔i<δ and generate the same image. Furthermore, the
object images are returned in the order of the iterations and not
according to dx↔i.

In contrast to SOIAM, TopoART-AM generates only one
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output for each cluster and its recall results are ordered accord-
ing to the activation of the F3 nodes. Therefore, in the first iter-
ation, the best-fitting recall is produced while with each further
iteration the confidence in the recall result decreases. In prin-
ciple, a threshold similar to the parameter δ of SOIAM could
be applied in order to stop the recall process of TopoART-AM,
if zF3(t) becomes too small. Both TopoART-AM components
perform the recall independently of each other. As TopoART-
AM b creates a more detailed representation of the input data
than TopoART-AM a, here, the association of a person with an
object can be split into different clusters which reflect the dif-
ferent orientations of the object.

In comparison to TopoART-AM, the images recalled by
SOIAM appear considerably more noisy. This is a result of
the training procedure of SOIAM, which introduces artificial
noise sampled from a Gaussian distribution with zero mean and
standard deviation σi.

In order to compare SOIAM and TopoART-AM more thor-
oughly, networks of both types were trained with the training
set.5 Afterwards, the recall error was computed for the test im-
ages. Due to the random assignment of images from an indi-
vidual object to the face images of the corresponding subject,
there exists no unique result. Rather, any image showing the
correct object is appropriate. Therefore, we determined the re-
call error in comparison to the most similar image of the cor-
rect object as a measure for evaluating the recall procedures.
This minimum recall error, which is denoted by Emin, is com-
puted as the mean absolute difference over all pixels and colour
channels. As SOAIM returns the recall result in the form of an
unordered set, Emin was additionally averaged over all gener-
ated images. The corresponding mean recall error is denoted
by Ēmin. If SOIAM replied that the test key is unknown with-
out providing any recalled image, Ēmin was set to its maximum
value 1. In contrast, using TopoART, the recall result of the
first iteration can always be applied, as it constitutes the most
accurate reply for the current test image.

The parameters of both networks were optimised using grid
search in their most relevant intervals.6 For each param-
eter setting, a network was trained and the recall error was
averaged over all test images. The minimum recall error
achieved by SOIAM amounts to Ēmin=0.019. The components
of the TopoART-AM system reached errors of Emin

a =0.001 and
Emin

b =0.002, respectively. Although the errors of both networks
are very small, the recall error of SOIAM is about one order of
magnitude higher in comparison to TopoART-AM.

Finally, we analysed how accurately the 16 underlying asso-
ciations of a person to an object were reflected by the clustering
structure. Similar to the experiment described in Sect. 4.1.3, we

5Similar to the training procedures described in Sect. 4.1.3, the train-
ing was stopped when the permanent nodes’ weights and edges had con-
verged (TopoART-AM) or a maximum number of iterations (SOIAM) had been
reached. Here, the maximum number of iterations for the SOIAM network was
increased to 50 in order to compensate for the smaller number of training sam-
ples.

6βsbm∈[0, 1], step size: 0.05; φ∈{1, 2, 3, 4, 5}; ρa∈[0, 0.99], step size: 0.1 (0
to 0.7), step size: 0.01 (0.75 to 0.99); τ=100; σi, δ∈[0, 0.01], step size: 0.0025;
λ∈[10, 500], step size: 10; λedge=λ

Figure 10: Analysis of the underlying clustering structure. Provided that ρa is
chosen appropriately, TopoART-AM a reflects the 16 basic associations more
accurately than SOIAM. Furthermore, the recall errors of TopoART-AM de-
crease to lower values. Since the clustering of TopoART-AM b exhibits a higher
level of detail, Emin

b is smaller than Emin
a for large ranges of ρa.

applied the Jaccard coefficient J as a similarity measure. The
parameters of both networks were again iterated in their respec-
tive intervals. But now, they were chosen in such a way as to
maximise the Jaccard coefficient for the SOIAM network and
TopoART-AM a, respectively. In Fig. 10, the results depending
on the parameters which have the highest influence on the clus-
ter size are shown. In addition, the mean recall errors for the
test set were plotted into this figure.

Figure 10 demonstrates the advantages of using TopoART-
AM for solving the task at hand. Besides causing smaller recall
errors, it is more suited for reflecting the underlying clustering
structure.

5. Conclusion

TopoART – the neural network presented in this article – suc-
cessfully combines properties from ART and topology learn-
ing approaches: The categories originating from ART systems
are connected by means of edges. In this way, clusters of ar-
bitrary shapes can be formed. In addition, a filtering mecha-
nism reduces the sensitivity to noise. Similar to SOINN, repre-
sentations exhibiting different levels of detail are formed. But
TopoART enables parallel learning at both levels requiring only
4 parameters (βsbm, φ, ρa, τ) to be set, which constitutes a reduc-
tion of 75% compared to SOINN. Moreover, representations
created by TopoART are completely stable.

The capability of TopoART to capture hierarchical relations
and the topology of presented data might be of interest for nu-
merous tasks, e.g., the representation of complex sensory and
semantic information in robots. In principle, TopoART could
even be extended to a multi-level structure that captures hierar-
chical relations more comprehensively.

By means of incorporating an appropriate recall procedure,
TopoART can be extended to the hetero-associative memory
TopoART-AM. TopoART-AM enables the learning of associa-
tions between complex data, such as different colour images.
Nevertheless, it keeps the advantageous features of TopoART,
namely its stability, robustness to noise and the ability of in-
crementally learning and representing different levels of detail.
Therefore, it is preferable to alternative associative memory
models, in particular, if real-world problems are to be solved.
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Yáñez-Márquez, C., Cruz-Meza, M. E., Sánchez-Garfias, F. A., & López-
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