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Abstract

Traditional definitions of the security of encryption schemes assume that the messages en-
crypted are chosen independently of the randomness used by the encryption scheme. Recent
works, implicitly by Myers and Shelat (FOCS’09) and Bellare et al (AsiaCrypt’09), and ex-
plicitly by Hemmenway and Ostrovsky (ECCC’10), consider randomness-dependent message
(RDM) security of encryption schemes, where the message to be encrypted may be selected as a
function—referred to as the RDM function—of the randomness used to encrypt this particular
message, or other messages, but in a circular way. We carry out a systematic study of this
notion.

Our main results demonstrate the following:

o Full RDM security—where the RDM function may be an arbitrary polynomial-size circuit—
is not possible.

e Any secure encryption scheme can be slightly modified, by just performing some pre-
processing to the randomness, to satisfy bounded-RDM security, where the RDM function
is restricted to be a circuit of a priori bounded polynomial size. The scheme, however,
requires the randomness r needed to encrypt a message m to be slightly longer than the
length of m (i.e., |r| > |m| + w(log k) where k is the security parameter).

e We present a black-box provability barriers to compilations of arbitrary public-key en-
cryption into RDM-secure ones using just pre-processing of the randommness whenever
|m| > |r| + w(log k). On the other hand, under the DDH assumption, we demonstrate the
existence of bounded-RDM secure schemes that can encrypt arbitrarily “long” messages
using “short” randomness.

We finally note that the existence of public-key encryption schemes imply the existence of a fully
RDM-secure encryption scheme in an “ultra-weak” Random-Oracle Model—where the security
reduction need not “program” the oracle, or see the queries made by the adversary to the oracle;
combined with our impossibility result, this yields the first example of a cryptographic task that
has a secure implementation in such a weak Random-Oracle Model, but does not have a secure
implementation without random oracles.

Our constructions of RDM secure encryption scheme borrow techniques from Hemmenway
and Ostrovksy, and Bellare et al, but our analyses are different. In particular, to analyze our
schemes, we develop several new tools regarding t-wise independent hash function, mirroring
deterministic extraction lemmas for computationally bounded sources by Trevisan and Vadhan
(STOC’00), that may be of independent interest.



1 Introduction

Traditional definitions of secure encryption, including semantic (or CPA) security and CCA security,
address the problem of how to securely communicate a message in the presence of a polynomially-
bounded adversary that observes encrypted messages. In the standard approach, it is assumed that
the message, the keys, and the randomness used to encrypt the message, are all chosen indepen-
dently.

More recently, new definitions have emerged that relax some of these independence assump-
tions. Most notably, a line of work initiated independently by Camenisch and Lysyanskaya [20]
and by Black, Rogaway, and Shrimpton [13] addresses the problem of “key-dependent” messages
(KDM): namely, they consider the security of a public-key encryption scheme in a setting where
the message to be encrypted may (adversarially) depend on the secret-key. A variant of this notion
instead considers “circular” security: here, the adversary may observe a “cycle” of ¢ messages m
encrypted using different keys (}%, %), but where m; may depend on the depends on the secret-
key sk(i41 mod q)- One motivation for studying key-dependence arises in the context of hard-drive
encryption: you want to encrypt your hard-drive, on which your secret-key is also found. Circular
security arises naturally in a situation when two parties want to share their secret keys with each
other (but not with the rest of the world): a natural solution to the problem would be for player
1 to send an encrypted version of his secret key using player 2’s public key, and vice versa. For
this protocol to be secure, circular security is needed. More recently, circular security has found
important applications in the context of fully-homomorphic encryptions (indeed, to date, all known
FHE schemes rely on the assumption that some underlying encryption scheme is circularly secure).

We here focus on an alternative relaxation of the classic independence assumptions, first implic-
itly considered by Myers and Shelat [38] and Bellare et al [10], and explicitly by Hemmenway and
Ostrovsky [33]: We study of the security of encryption schemes in a scenario where the message to
be encrypted may be selected as a function—referred to as the RDM function—of the randomness
used to encrypt this particular message, or other messages, but in a circular way. More precisely, in
analogy with KDM security and circular security, we consider two notions of randomness dependent
message security.

e Randomness-dependent message (RDM) security: roughly speaking, a public-key encryption
scheme is said to be RDM-secure if indistinguishability of ciphertexts holds even if the en-
crypted messages are chosen as a function of the randomness used to encrypt this particular
message.

e Clircular randomness-dependent (circular-RDM) security: roughly speaking, a public-key en-
cryption scheme is said to be circular RDM-secure if indistinguishability of ciphertexts holds
even if the encrypted messages are chosen as a function of the randommness used to en-
crypt other messages, but in a circular way. More precisely, we consider a scenario where
¢ messages m are encrypted using randomness 7, where my is chosen as a function of Tq
and each other message m; is chosen as a function of r;_1 and the “previous” ciphertext
ci—1 = Encpp(mi—1,7i-1).

Why care about Randomness-Dependent Message Security We consider two reasons to
study RDM security:

1. involuntary RDM attacks: Implementations of secure protocols are prone to programming
mistakes; attacks exploiting such programming mistakes (e.g., buffer overflow attacks) have



been demonstrated on secure protocols. Attacks of this type may allow an attacker to see
encryptions of randomness dependent messages, even if the original protocol chooses mes-
sages independently of the randomness used to encrypt it. RDM security would block such
“involuntary” RDM attacks.

To prevent against these we need to be able to handle sufficiently general classes of RDM
functions that may be produced by the attackers.

2. wvoluntary RDM attacks As shown in the beautiful work by Myers and Shelat [38], the pos-
sibility of encrypting the randomness used in other encryptions, in a circular way, leads to
new powerful techniques in the design of encryption schemes. This techniques was further
refined in a recent work by Hohenberger, Lewko and Waters [35]. Another application is
found in the work of Hemmenway and Ostrovsky [33], that explicitly considers a notion of
circular randomness dependent “one-wayness” and show its usefulness for constructing in-
jective trapdoor functions. In this context, the protocol designer is “voluntarily” creating a
(circular-)RDM attack. The above-mentioned works either implicitly (as in [38] and [35]), or
explicitly (as in [33]) consider and design encryption schemes that are circular-RDM secure
for the specific randomness-dependent messages selected by their protocols. Although for this
particular application it suffices to consider specific RDM functions, having general-purpose
RDM-secure encryption schemes simplifies the design and the security analysis of protocols.

Another motivation stems from non-black-box simulation techniques pioneered in the work
by Barak [5]; in a variant of Barak’s simulation technique due to [43], the simulator commits
to its own code (that, in particular, contains the randomness used for the commitment, and
thus circularity arises). In this particular application, the circularity could be broken, but
having general techniques for dealing with RDM security may simplify future applications.

Before explaining our result, let us also point out that RDM secure encryption is very related
to hedged encryption schemes introduced by Bellare et al [10]—encryption schemes that remain
secure as long as the joint message-randomness distribution comes from a high-entropy source,
that is independent of the public-key of the encryption scheme (which in turn are very related
to deterministic encryption [8, 11, 14]; see [10] for more details). Hedged encryption schemes are
RDM-secure if restricting the attacker to using RDM functions that do not depend on the public-
key.! Our focus here is on notions of RDM security where the RDM function may depend also on
the public-key.

1.1 Our results

Full RDM security Our first result shows that if the RDM function may be an arbitrary
polynomial-size circuit (chosen by the adversary), then RDM security, as defined by Hemmenway
and Ostrovsky [33], is impossible to achieve.

Theorem 1.1 (Informal Statement). There does not exist an encryption scheme that is (fully)
RDM-secure.

We next show that if there exists some polynomial ¢ such that an encryption scheme is g-circular
RDM secure, then the encryption scheme is also RDM secure; thus g-circular RDM security is
impossible for all polynomials q.

"However, it is not clear in general whether hedged encryption schemes are circular RDM secure, even if we restrict
to RDM functions that do not depend on the public-key.



Theorem 1.2 (Informal Statement). There does not exist an encryption scheme that is (fully)
q-circular RDM-secure for any polynomial q.

Bounded RDM security Since “unbounded” RDM security is impossible, we consider RDM
security with respect to restricted classes of RDM functions.

Our first positive result demonstrates that if the RDM function is restricted to be a circuit of
a priori polynomially bounded size, then any secure encryption scheme can be modified to satisfy
both RDM and circular-RDM security.

Theorem 1.3 (Informal Statement). Assume the existence of a secure public key encryption
scheme. Then, for every polynomial s, there exists an encryption scheme 11 that is RDM se-
cure when restricting the RDM function to be computed by a circuit of size at most s(k) where k is
the security parameter. Additionally 11 is q-circular RDM secure for every polynomial q under the
same restrictions on the RDM function.

Theorem 1.3 is proven by modifying any secure encryption scheme to first “hash” the random-
ness using a t-wise independent hash-function. The same transformation was previously used by
Hemmenway and Ostrovsky [33] to transform “lossy encryption schemes” [44], that can encrypt
messages longer than the randomness, into schemes that satisfy a notion of circular-RDM “one-
wayness”? (as opposed to semantic security) with respect to a particular circular-RDM function
(the identity function).

In order to encrypt a message m, our encryption scheme requires using |m| + w(logk) bits;
that is, the randomness used to encrypt a message needs to be sufficiently longer than the message
being encrypted (as such, the encryption scheme of Theorem 1.3 does not handle “the identity
function” as an RDM function.) Our next positive result strictly strengthens the conclusion of
Theorem 1.3 (but under a stronger assumption) and the results of [33]: the existence of lossy
trapdoor functions [45] implies the existence of both bounded RDM-secure and bounded circular-
RDM secure encryption schemes that can encrypt also “long” messages using “short” randomness—
the ratio between the message-length and the randomness length is proportional to the lossiness of
the trapdoor function. Our construction mirrors a construction of hedged encryption of Bellare et
al [10]; roughly, the encryption is done by first “hashing” the message-randomness pair and then
applying a lossy trapdoor function to the hashed value. The key difference is that we replace the
use of univeral hashing (in the construction of [10]) with t-wise independent hashing.?

Theorem 1.4 (Informal Statement). Assume the existence of “sufficiently” lossy trapdoor functions
(the ezistence of which are implied e.g., by the DDH assumption). Then, for every polynomials s, 1,
there exists a l(k)-bit encryption scheme Il using only k-bits of randomness that is RDM secure (and
q-circular RDM secure for every polynomial q), when restricting the RDM function to be computed
by a circuit of size at most s(k) where k is the security parameter.

To prove the above two theorems we develop several new information-theoretic tools regarding
t-wise independent hash functions, that may be of independent interests. For instance, with very
high probability, a t-wise independent hash functions is a “good” randomness extractor for any min-
entropy source with with computationally-bounded leakage (mirroring a lemma of Trevisan-Vadhan

2The notion of g-circular RDM one-wayness of Hemmenway and Ostrovsky requires that no polynomial-time
attacker can recover ri,72,...7rq given Encpr(rq;71), Encpr(r1;72), - . ., Encpr(rq—1;r) except with negligible proba-
bility, over the choice of pk and uniform ry,...rq.

3The construction of [10] actually requires universal hash permutations. As far as we know, constructions of t-wise
independent permutations are not known, which requires us to further modify the scheme to guarantee correctness.



[46]). We also present “crooked” versions of such deterministic extraction lemmas (mirroring the
“crooked left-over-hash lemma of [24]).

An interesting question is whether any encryption schemes can be modified by simply performing
some pre-processing to the randomness (as in Theorem 1.3) to become bounded RDM secure, but
still handle long messages using short randomness. At first sight, it may seem like we could use
a pseudorandom generator to “stretch” a small seed into the required long random string for the
construction in Theorem 1.3. We have no attack against this construction. However, we show that
security reductions that only use the attacker and the RDM function as a black-box—following [29],
we refer to such reductions as strongly black-bor—cannot be used to demonstrate RDM security
of encryption schemes with perfect correctness and efficiently recognizable public-keys that can
encrypt long messages using short randomness, based on a falsifiable intractability assumption
[39]; for instance, this means that the El-Gamal crypto system cannot be modified (by performing
pre-processing to the randomness) to become bounded RDM secure for long messages.

Theorem 1.5 (Informal statement). Assume the existence of one-way functions secure against
subexponential-sized circuits. For every polynomials m and r such that m(k) > r(k)+w(logk), there
exists a polynomial s such that for every m(-)-bit encryption scheme 11 with perfect correctness and
efficiently recognizable public-keys that uses r(-) bits of randomness to encrypt a message, s-bounded
security of II cannot be based on any falsifiable assumption using a strongly black-box reduction,
unless the assumption is false.

Let us point out that the reason Theorem 1.5 does not contradict Theorem 1.4 is that in the
construction used to prove Theorem 1.4, valid (“injective”) public-keys are indistinguisbale from
invalid (“lossy”) public-keys, and thus the schemes does not have efficiently recognizable public-
keys.

RDM security beyond encryption We note that the notion of RDM security applies not
only to encryption but makes sense also in the context of more general cryptographic protocols.
For instance, the notion of RDM security directly extends to commitments—just as in the case of
encryption, we here let the RDM function select the messages to be committed to as a function of
the committer’s randomness. We remark that Theorem 1.1 readily extends also to rule out (even
computationally binding and computationally-hiding) RDM-secure commitments. Additionally,
Theorem 1.3 extends to show that any commitment scheme in the CRS model can be turned into
a bounded RDM secure commitment scheme in the CRS model. However, Theorem 1.5 does not
extend to the setting to commitments—using a collision-resistant hash function, any RDM secure
commitment for short messages can be turned into a RDM-secure commitment for long messages.
The above results for commitment schemes can be found in the full version of this work.

We leave an exploration of RDM security for other tasks (e.g., zero-knowledge and witness
indistinguishability—where the RDM function may select the statement and witness to the proved
as a function of the prover’s randomness, or secure computation—where the RDM function may
select a player’s input as a function of his randomness) for future work.

On the Soundness of the Random-Oracle Methodology Starting with the work of Canetti,
Goldreich and Halevi [21, 22|, there are several “uninstantiability results” for the random oracle
model [7], showing schemes that are secure in the random oracle model, but where every instanti-
ation of random oracle with a concrete (efficient) function leads to an insecure protocol (see e.g.,
[5, 28, 36]). Another vein of work shows tasks (as opposed to schemes) that can be securely im-
plemented in the random oracle model, but for which there are no secure implementations in the



standard model (see e.g., [41, 42, 9]). As far as we know, all these separations for tasks, however,
make a relatively strong use of the random oracle model; [41, 9] rely on the security reduction
“programming the random oracle”, and [42] relies on the security reduction “seeing all the queries
to the random oracle”. Thus, it is conceivable that a weaker usage of random oracles may circum-
vent these uninstantiability results. For instance, Unruh [47] introduced a weaker random oracle
model where the adversary may get an (inefficient) non-uniform advice about the random oracle,
and suggested that proofs of security in this weaker random oracle model may still be “sound”. We
here address this question using RDM-secure encryption as a task.

We show that in the random-oracle model the existence of public-key encryption schemes imply
the existence of “fully” RDM secure encryption schemes (i.e., without restricting the RDM func-
tion); our scheme is essentially identical to the hedged encryption scheme of [10] (but the analysis is
quite different given the different security goals).* Our use of the random oracle model is extremely
weak: we do not need to “program it”, or “see queries to it”, and security holds even the attacker
may get any inefficient non-uniform advice about it (as in the model of [47]). (The only property
we need of the random oracle is that it acts as a k'°2F-wise indepedent hash function.) We refer to
such a model as the “ultra-weak” Random Oracle Model.

Theorem 1.6 (Informal Statement). Assume the existence of a secure public key encryption
scheme. Then, there exists a encryption scheme 11 that is “fully” RDM secure in the “ultra-weak”
Random Oracle Model.

Theorem 1.6, combined with our impossibility result (Theorem 1.1), thus yields an example of
an arguably natural task (i.e., RDM-secure encryption) that can be securely implemented in the
ultra-weak random-oracle model, but not in the standard model. Let us point out that a cruicial
aspect of the security proof of our RO-based scheme is that the RDM function is not allowed to
query the random oracle; in case we allow it to query the random oracle, our impossibility result
still holds.

1.2 Related Work

As mentioned in the introduction, (circular) RDM security was first implicitly considered by Myers
and Shelat [38] and explicitly by Hemmenway and Ostrovsky [33]. [38] [35] demonstrate semantic
security of encryption schemes of a specific type of circular RDM attack, but do not formally
introduce a notion of RDM security. Hemmenway and Ostrovsky [33] provide the first formal
definition of RDM-secure encryption schemes, but only investigate, and provide constructions of,
schemes satisfying the weaker notion of “circular-RDM one-wayness”. As far as we know, we
are the first to explicitely study the feasibility of satisfying (circular-)RDM semantic security (as
opposed to one-wayness). As mentioned above, Bellare et al [10] study hedged encryption schemes
that are closely related to RDM-secure encryption schemes; such encryption schemes are RDM
secure if restricting the attacker to using RDM functions that do not depend on the public-key.
Nevertheless, as mentioned, the constructions of both Bellare et al and Hemmenway and Ostrovsky
are very useful to us.

As mentioned in the introduction, the related notion of key-dependent message (KDM) secu-
rity was first introduced by Black, Rogaway, and Shrimpton in 2002 [13], who demonstrated the
possibility of achieving their definition in the random-oracle model. The related notion of circular
security (in which there exists a cycle of ciphertexts where each message depends on the previous

“Hedged encryption exists also in the plain model so we cannot hope to get a separation by directly appealing to
the results of [10].



secret key) was independently and concurrently introduced by Camenisch and Lysyanskaya [20],
who also showed constructions in the random-oracle model. Follow-up work considered message-
dependent PRFs [31] and symmetric encryption [34, 4] in the standard model. In [30] barriers to
constructing KDM secure schemes for general classes of key-dependencies. In 2008, Boneh, Halevi,
Hamburg, and Ostrovsky presented the first KDM-secure public-key encryption scheme [15]; their
construction was based on the DDH assumption. Subsequent work developed schemes that were
KDM secure and CCA2 secure [19], KDM secure and resilient to leakage on the secret key [6],
circular secure under alternative assumptions [16], and circular secure against larger classes of
functions [17]. Recent work has also shown that there exist schemes that are secure under standard
definitions but which are not 2-circular secure [1, 23].

A separate, but related line of related work focuses on leakage-resilient encryption (see e.g.,
[37, 25, 2, 3, 40, 18]). In a sense, RDM security can be viewed as a CPA security game where
the attacker gets to see some leakage on the encryptor’s randomness before selecting the messages;
indeed, in our positive results, this view will be instrumental.

2 Preliminaries

For a distribution S, s < S means that s is chosen according to distribution S. For a set S, s + S
means that s is chosen uniformly from the set S. U, denotes the uniform distribution over n-bit
strings. For a probabilistic algorithm A, A(x;r) denotes the output of A running on input = with
randomness 7; A(z) denotes the output of A on input = with uniformly chosen randomness. All
logarithms are base 2 unless otherwise specified. We say that a function € : N — [0, 1] is negligible
if for every constant ¢ € N, e(n) < k¢ for sufficiently large k.

2.1 Statistical Distance and Computational Indistinguishability

Definition 2.1 (Statistical Difference). The statistical difference between two probability distri-
butions X,Y is defined by A(X,Y) = (1/2)->, | Prjz <~ X] —Pr[z «+ Y]|. X and Y are e-close if
AX,)Y) <e.

The statistical difference between two ensembles { X} and {Y;}x is a function § defined by
d(k) = A(Xk, Yr). Two probability ensembles are said to be statistically close if their statistical
difference is negligible. We also say X and Y} are statistically close if A(Xy,Ys) < e(k) for some
negligible function e.

Definition 2.2 (Computational Indistinguishability). Two ensembles { X}, {Y} are computation-
ally indistinguishable if for every PPT distinguisher D, there exists a negligible function p such
that for every k € N,

| Pr[D(1%, X;) = 1] - Pr[D(1%, ¥i) = 1]| < p(k).

2.2 Entropy

Definition 2.3. [Min-Entropy] The min-entropy of a random variable X, denoted Ho(X) is
defined by Hoo(X) = —log(max, Pr[z + X]).

Definition 2.4 (k-source). A random variable X is a k-source if Hoo(X) > k.



2.3 Hash Functions and Extractors
We use the standard t-wise independent hash functions and randomness extractors.

Definition 2.5 (t-wise Independent Hash Functions). A family of hash functions H = {h : S1 —
Sa} is t-wise independent if the following two conditions hold:

1. Vz € S, the random variable h(z) is uniformly distributed over S, where h < H.

2. V1 # -+ # x; € S1, the random variables h(z1),...,h(z;) are independent, where h < H.

Definition 2.6 (Strong Randomness Extractor). A function Ext{0,1}" x {0,1}¢ — {0,1}™ is a
strong (k, e)-extractor if for every k-source X over {0,1}", (Ug, Ext(X,Uy)) is e-close to (Ug, Up,).

2.4 Public-key Encryption Schemes
We now recall the formal definitions of public-key encryption schemes and its standard CPA security.

Definition 2.7 (Public-Key Encryption). An [-bit public-key encryption scheme consists of a triple
II = (Gen, Enc, Dec) of PPT algorithms where (i) Gen takes a security parameter 1* as input and
generates a pair of public and secret key (pk, sk) « Gen(1%), (ii) Enc takes a public key pk and
a message m in a message space {0, 1}(*) as input and generates a ciphertext ¢ + Enc,x(m), (ii)
Dec is a deterministic algorithm that takes a secret key sk and a ciphertext ¢ as input and outputs
m’ = Decg(c), and (iv) there exists a negligible function p such that for every k € N, for random
(pk, sk) + Gen(1%),

Pr [Elm € {0,1}'®s.t.Decgy (Encyp,(m)) # m] < u(k),

where the probability is taken over the randomness of Gen and the randomness of the encryption.
We say that II has perfect correctness if the above condition holds for u(k) = 0.

We recall the standard definitions of CPA and CCA security.

Definition 2.8 (CPA and CCA Security). An [-bit public-key encryption scheme IT = (Gen, Enc, Dec)
is CPA-secure if for every probabilistic polynomial time adversary A = (Aj, As), the ensembles
{IND{!(A, k)}1, and {INDY(A, k)} are computationally indistinguishable, where

INDJY(A, k) :=  (pk, sk) < Gen(1%)
(mg, mq, state) < Al(lk,pk)
c < Encpi(my)
0 + As(c, state)
Output o

We say 1l is CCA-secure if the above holds when Ay has access to a decryption oracle but is not
allowed to query the decryption oracle with the challenge ciphertext c.

Remark. In the above definition and for essentially all the results in this paper, we consider a
uniform polynomial-time attacker A. In case security holds against also non-uniform polynomial-
time attackers, we refer to the scheme as being non-uniformly CPA/CCA secure. As is often the
case, all our constructions in uniform setting directly extend also to the case of non-uniform security
(if assuming that the underlying schemes are non-uniformly secure).

Note that the above definition assumes that messages encrypted are chosen independently of
the randomness used by the encryption algorithm.



3 Definitions

In this section, we formally define two notions of randomness-dependent message security for en-
cryption schemes.

Our first definition is essentially equivalent to the definition of RDM security due to Hemmenway
and Ostrovsky [33]. In this definition, messages are adversarially chosen functions (after seeing the
public key) of the randomness used for encryption: we say the encryption scheme is secure if the
adversary cannot distinguish between encryptions of different functions of the randomness.

Definition 3.1. [RDM-Security] An [-bit public-key encryption scheme II = (Gen, Enc, Dec) is
randomness-dependent message secure (RDM-secure) if for every PPT adversary A = (A;, A2), the
ensembles {RDM{ (A, k) }ren and {RDMI (A, k)}ren are computationally indistinguishable where

RDM}Y(A, k) := (pk, sk) + Gen(1F)
(fo, f1,state) « Ay (1%, pk)
< UR
¢ < Encpi(fo(r);r)
0 < As(c, state)
Output o

and R is the encryption randomness length of II. The RDM functions f;, are represented as circuits
from {0, 1}l to {0,1}'*) We say II is RDM-CCA-secure if the above holds when A has access to
a decryption oracle but is not allowed to query the decryption oracle with the challenge ciphertext
c.

We remark that by a standard hybrid argument, we can assume without loss of generality that
the adversary A; always choose f; to be a constant function f; = 0. As mentioned, Definition 3.1
is essentially identical to the notion of RDM security defined by Hemmenway and Ostrovsky [33]:
the definition of [33] is a multi-message version of Definition 3.1 where the attacker gets to see a
sequence of encrypted messages (that may depend in a correlated way on the randomness used to
encrypt them), and thus the definition of [33] implies Definition 3.1. (Looking forward, since we
are proving an impossibility result regarding Definition 3.1, considering a weaker definition makes
our results stronger.)

Consider a sequence of encryptions where messages are functions of the previous (but most
recent) encryption randomness and ciphertext. Security in this setting is guaranteed by CPA secu-
rity, since encryption randomness is still independent of the messages. However if this dependency
is circular, it is unclear whether or not we have security. We now formally introduce this notion of
circular randomness dependent message security.

Definition 3.2 (g-circular RDM Security). Let ¢ : N — N be efficiently computable. An I-bit
public-key encryption scheme II = (Gen, Enc, Dec) is g-circular RDM secure if for every PPT
adversary A = (A, Ay), the following two ensembles {CIR{ (A, k)}reny and {CIRY (A, k)}ren are
computationally indistinguishable, where



CIRIN(A,k) := (pk,sk) < Gen(1F)
(12, f® pt p2 o 1) state) « Ay (15, pk)
L2 k) U]%(k)
el Encpk(fbl(rq); rl)
fori=2,...,q
¢ Bncp (i, ) )
0 + As(c, state)
Output o

and R is the encryption randomness length of II. The RDM functions flf are represented as circuits
as defined in Definition 3.1. & denotes the vector (c!,c?,...c"). Furthermore, II is circular RDM
secure if I1 is k°-circular RDM secure for every constant c. g-circular-CCA and circular-CCA RDM
security are defined in analogous way.

Remark. Note that by a hybrid argument, we can assume without loss of generality that A always
choose f{ = 0 for every i € [¢]. We will use this observation later in the proof of Theorem 5.6.

We also define relaxations of RDM security and circular RDM security where we restrict the
RDM function to be computable by circuits of a priori bounded size.

Definition 3.3. Let s : N — N be efficiently computable. An [-bit public key encryption scheme
IT is s-bounded RDM secure (resp., s-bounded (q-)circular RDM secure) if II is RDM secure (resp.,
(g-)circular RDM secure) under the additional restriction that in the corresponding security game,
the adversary A; can only output RDM functions computable by circuits of size bounded by s(k).
CCA security is defined analogously.

4 RDM Security and Our Impossibility Results

In this section we prove that both RDM-security and g-circular security are impossible to achieve.
Throughout this section, we focus on bit-encryption schemes; this only makes our results stronger.
We first establish the impossibility result on the RDM-secure encryption schemes; our techniques
(of using pairwise independent hashfunctions to signal a message) are similar to those used by
Bellare and Keelveedhi [12] in a different context.

Theorem 4.1. For every 1-bit encryption scheme II = (Gen, Enc, Dec), II is not RDM-secure.

Proof. Let II = (Gen, Enc,Dec) be a 1-bit encryption scheme. We construct a PPT adversary
A = (A, Ag) that breaks the RDM security of II. The idea is to use f, to signal the bit b in the
RDM%I experiment by pairwise independent hash functions.

Fix a security parameter k € N. Let C' denotes the ciphertext space of II for the corresponding
security parameter k, and let H = {h : C — {0,1}} be a pairwise independent hash function
family that hashes ciphertexts to a bit. Our adversary A uses h <— H to construct functions f
for b € {0,1} that signals the bit b as follows.

o A;(1% pk): Ay samples h < H and outputs (fon, fi.n, k), where for b € {0,1}, f,, on input
r, outputs a message m € {0,1} such that h(Enc,,(m,r)) = b if such an m exists; otherwise
fo,n outputs m = 0.

o As(c,h): Ay simply outputs one bit h(c).



To show that A breaks the RDM security of II, it suffices to show the following claim, which
clearly implies RDM{ (A, k) and RDM! (A, k) are distinguishable.

Claim 4.2. Pr[RDMY(A, k) = b] > 3/4 — negl(k) for b € {0,1}.

Proof. Note that the output of RDMj' (A, k) is simply h(Enc,x(fy(7), 7)) where (pk, sk) < Gen(1%),r +
Uy, and h <= H. The correctness of 1I implies that,

Pkr [Enc,(0,7) # Encpr(1,7)] > 1 — negl(k). (1)
PR,T
When this is the case, by the pairwise independence,

l;r[EI m s.t. h(Encp,(m,r)) =b] = 3/4.

It follows by an union bound that

Pr[RDM} (A, k) = b]
pg}:h[(Encpk(O,T) # Encyi(1,7)) A (3 m s.t. h(Encyi(m,r)) = b)]

v

> 3/4 —negl(k).
O
O
We proceed to establish the impossibility result on the circular RDM-secure encryption schemes.

Theorem 4.3. For every 1-bit encryption scheme II = (Gen, Enc, Dec), II is not g-circular RDM-
secure for every efficiently computable and polynomially bounded q.

We prove Theorem 4.3 by showing that in fact, circular RDM security implies RDM security.

Theorem 4.4. Let I1 = (Gen, Enc, Dec) be a 1-bit encryption scheme, and q : N — N be efficiently
computable and polynomially bounded. If Il is q-circular RDM-secure, then 11 is RDM-secure.

Theorem 4.3 follows by combining Theorem 4.1 and 4.4. Before presenting the formal proof
of Theorem 4.4, we first discuss the proof for the special case that II has perfect correctness and
that ¢ = 2, to illustrate the idea behind the proof. Suppose there exists a PPT adversary A that
breaks the RDM security of II, we want to construct a PPT adversary B that breaks the 2-circular
security of II.

The idea is to let B simulate the attack of A in the circular RDM security game using the second
message (in general, using the last message). More precisely, recall that in the RDM security game
RDM?, A generates RDM functions fo and fi, and receives ¢ = Encpy(fp(r); 7). To simulate the
attack of A in CIR], B generates fa, f2, fi, f# in a way so that B will receive & = (¢!, c?) with
¢® = Ency(fp(r?);7%). Then B can output whatever A outputs on input ¢?, and break the circular
RDM security with the same advantage as A.

Now, the key observation is that the RDM function fZ(r!,c') can in fact decrypt ¢! to get the
message fi(r?) by checking whether ¢! equals to Ency(0,71) or Encpi(1,7!) (the perfect correctness
implies Encyy(0,7!) # Encyr(1,7') and the decryption will be always correct). Thus, B can let
i = fp and let f2(rl,c') = f1(r?), and by doing so B will receive ¢*> = Enc,,(f2(r!,ct),r?) =
Encyi(f(r?),7?), as desired. This completes the proof of the special case.
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We can readily extend the proof to the general g-circular RDM security, by letting B set fb1 = fp
and fg“(ri, &)= fi(r=Y, ¢ 1) for i =1,...,q — 1. On the other hand, the imperfect correctness
only causes negligible probability of decryption errors, and reduce the advantage of B by a negligible
amount. We proceed to present a formal proof.

Proof. For the sake of contradiction, suppose that there exists a PPT adversary A that breaks the
RDM security of II. Namely, there exists a PPT distinguisher D and a non-negligible function &(-)
such that for every k € N,

| Pr[D(RDMEL (A, k)) = 1] — Pr[D(RDM(A, k) = 1]| > (k).
We construct a PPT adversary B that breaks the g-circular RDM security of II as follows.
o Bi(1%,pk):

— By runs A;(1%, pk) to obtain (fo, f1, state).

— Bj sets fol = fo and fl = f1.
— For i = 2,...,q and b € {0,1}, B constructs f; as follows. On input (r*=1, c¢'=1), fi
outputs 0 if Ency(0,7""1) = ¢'~1 and outputs 1 otherwise.

Finally, B outputs (fg,..., fd, fl...., f{, state).

e Bs(c,state): Bo simply outputs As(c?, state).
We claim that for b € {0,1},
A(RDM;!(A, k)), CIR; (B, k)) < negl(k),
which implies
| Pr[D(CIR{' (B, k)) = 1] — Pr[D(CIRY (B, k)) = 1]| > e(k) — negl(k),

and completes the proof. To prove the claim, we note that the correctness of II implies that there
exist negligible functions p and 7 such that for at least 1 — pu(k) fraction of pk, Pr,[Enc,(0,7) #
Enc,(1,7)] > 1 —n(k). Hence, with such a pk, Pr[fZ(r!,c!) = fl(r?)] > 1—n(k) and also for every

ic{3....q) o
Pr{fi(r ¢ ) = TN ) 2 1 (k).

By a union bound,

Pr[fi (r?™ ") = f (r9) = fo(r®)] 2 1 — q(k)n(k).
Therefore, in CIRE(B , k), except for negligible probability, B forwards the same distribution ¢? =
Encyi(fp(r?),77) to Ag as in RDM}'(A, k), and thus A(RDM}'(A, k)), CIR} (B, k)) < negl(k). O
5 Positive Results
5.1 Bounded RDM Security

In the previous sections we have seen that RDM security and circular RDM security are impossible
to achieve. In this section we see how we can achieve the weaker notions of bounded RDM security
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and bounded circular RDM security. In fact we achieve a stronger notion of RDM security which
implies both of the above.

This strong RDM security is in fact security in the presence of randomness leakage (such that
the leakage function size is a priori bounded by a polynomial) which is available to the adversary
when it chooses the messages to encrypt.

Definition 5.1. For every s,p : N — N an [-bit public-key encryption scheme IT = (Gen, Enc, Dec)
is s-bounded p-strong RDM secure (BSRDM-secure) if for every PPT adversary A = (A1, A2), the
ensembles {BSRDM{!(A, k)}ren and {BSRDM (A, k)}ren are computationally indistinguishable

where

BSRDM} (A, k) := (pk, sk) < Gen(1*)
T < UR
(f,statey) « A1(1%, pk)
(mg, my, statep) < Aa(f(r),state;)
¢ < Encpi(mp;7)
0 < As(c, statep)
Output o,

R is the encryption randomness length of I and f : {0,1}"l — {0,1}?®) is a function computed
by a circuit of size at most s(k). CCA security is defined analogously.

We show that any secure encryption scheme can be compiled to a bounded strong RDM-secure
encryption scheme (with “long” encryption randomness).

Theorem 5.2. Assume the existence of a CPA (resp., CCA) secure public key encryption scheme.
Then, there exists a l-bit s-bounded p-strong RDM-secure (resp., RDM-CCA-secure) encryption
scheme for every polynomial I, s and p.

We start by providing a construction that converts any secure encryption scheme to bounded
strong RDM secure encryption scheme. The main idea is that though leakage degrades the random-
ness, the randomness is long enough to have enough residual min-entropy so that the random bits
necessary for encryption can be extracted from it. The problem with this is that the extractor seed
will have to be part of the public key, and the adversary can choose a leakage function after seeing
the public key. Hence the leakage could be such that the seed always fails to extract randomness
from the source. This is where we exploit the fact that the set of possible leakage functions is
bounded: using a union bound, we show that if the randomness used by the encryption scheme is
long enough, then with overwhelming probability a random seed can extract randomness from the
source resulting from any leakage function. The following lemma captures the above idea.

Lemma 5.3 (Deterministic Extraction From Bounded Leakage Sources). Let F = {f : {0,1}" —
{0,1}*} be a class of (leakage) functions. Let H = {h: {0,1}" = {0,1}™} be a t-wise independent
hash function family. If

t > 2(m+ ¢ +log |F| +log(1/d) + 3),
m <n—{—3log(l/e) —logt — 5,

then with probability at least (1 — &) over h < H, it holds that for every f € F,
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The proof of the lemma can be found in Appendix A, and relies on the ideas similar to those
used by [46] to demonstrate deterministic extraction from sources computable by bounded size
circuits. We now see how we can get a bounded-SRDM-secure encryption scheme from any secure
encryption scheme. The following transformation is essentially identical to the one used in [33] but
using different parameters.’

Definition 5.4. For every polynomial s and p and encryption scheme II = (Gen, Enc, Dec), define
a new encryption scheme II' = (Gen’, Enc’, Dec’) as follows:

o Gen'(1%) : (pk,sk) < Gen(1¥), hy, < Hp where Hy = {hy : {0,1}7®) — {0,1}*)} is a
t(k)-wise independent family of hash functions where R(.) is the length of the randomness of
Enc, R'(.) is the length of the randomness of Enc/,

t(k) > 2(R(k) + k + s(k) + p(k) + 3)

and
R'(k) = p(k) + R(k) + 3k +logt(k) + 5

Output ((pk, hy), sk).
° Encl(pkyhk)(m) : 7 4= Upyry; output Encyy(m; hy(r)).
e Dec;(c) : output Decg(c).

We now show that the above construction transforms a CPA (resp., CCA) secure scheme to a
bounded strong RDM (resp., CCA-RDM) secure scheme (which implies Theorem 5.2).

Lemma 5.5. Let s,p be polynomials. Let I1 be a CPA (resp., CCA) secure public key encryption
scheme, and II' be the transformed encryption scheme obtained from Definition 5.4. Then, I is
s-bounded p-strong RDM (resp., CCA-RDM) secure.

Proof. We start by proving the lemma for the case of CPA security. Assume for contradiction
that there exists a probabilistic polynomial time adversary A that breaks the s-bounded p-strong
RDM security of II'. That is, there exists a probabilistic polynomial time distinguisher D and
non-negligible function € such that for all £k € N

| Pr[D(BSRDMY" (A, k)) = 1] — Pr[D(BSRDM!' (4, k)) = 1]| > (k)

We construct an adversary B that breaks the CPA security of II. On input (pk, 1¥), B sam-
ples hy < Hj and runs (f,state;) < Ay ((pk,hi),1%). B then samples r; « {0,1}*®) runs
(mg, my,statep) < As(f(r1),state;) and outputs (mg, mq,statey). On input (c,statey), B outputs
As(c, statep).

Note that the only difference in the experiments IND}(B, k) and BSRDM]! (4, k) is that in
BSRDM]! (A, k), A receives a randomness leakage f(r) and a ciphertext encrypted using hy(r),
whereas in INDII;[(B, k), A receives f(r1) but the ciphertext is encrypted using a fresh independent
randomness r. Applying Lemma 5.3 with F being the class of s-bounded RDM functions and note
that |F| < 25 with probability at least 1 — 2=% over the choice of hy < Hj, the statistical

®As mentioned in Section 1.2, the results of [33] however require the underlying encryption schemes to satisfy
additional properties (e.g., “lossiness”) and the results established about the resulting encryption scheme are very
different.
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distance between the two experiments conditioned on this hy, is at most 27%. Therefore, the overall
statistical distance is at most 27%*1. This implies that

|Pr[D(INDJ(B, k)) = 1] — Pr[D(INDY(B, k)) = 1]| > e — 27F1 > ¢/2

which is a contradiction.
The above proof extends to the case of CCA security if we simply let the adversary B forward
the decryption oracle queries of A, and forward back the answers.
O

It is clear that bounded strong RDM security implies RDM security. Additionally, bounded
strong RDM security is strong enough to also imply bounded circular RDM security.

Theorem 5.6. For all [-bit public key encryption schemes II = (Gen, Enc, Dec), if II is s-bounded
l-strong RDM secure (resp., CCA-RDM secure) then 11 is s-bounded circular RDM secure (resp.,
CCA-RDM secure).

Proof. We start by proving the theorem for the case of CPA security. Assume for contradiction there
exists a polynomial ¢ and probabilistic polynomial time adversary A that breaks the s-bounded
g-circular RDM security of II. Namely there exists a probabilistic polynomial time distinguisher D
and non-negligible function ¢ such that for all k € N

|Pr[D(BCIR{ (A, k)) = 1] — Pr[D(BCIRY (A, k)) = 1]| > (k)
Define for 1 < j < q(k) + 1, H}'(A, k) as follows

H]H(A7 k) := (pk,sk) < Gen(1¥)

L2, f1R) state « Ay (1%, pk)

rtr? . opak) o fo 1}aRlr|

fori=1,2...,q(k)
if i < j then ¢ < Encyr(f/(ri=1, ¢ 1);r?)
else ¢’ < Enc,(0;7)

0 < As(c, state)

Output o

where 10 = r1(k) O ig the empty string and ¢ = ¢!, ¢?, ... c1(k)

We define an adversary B that breaks the s-bounded [-strong RDM security of II. On in-
put (1%, pk), B first runs f1, f2,..., f4%) state < A;(1%,pk) and outputs f'. Note that f! is
computed by a circuit of size at most s(k) and f' : {0,1}I"l — {0,1}*), On input f'(r), B
first samples j « {1,2,...q(k)} and 77 « {0,1}I"@®)=D " For ; = 1,...5 — 1, B computes
¢+ Encyr(f1(ri=1, ¢ 1); %) where if j = g(k) then f1(r) is used as f1(r%, %) to compute ¢! (f1(r)
is not used otherwise). B outputs (f7/(r/=1,¢/=1),0) as (mg, m1). On input ¢, B sets ¢/ = ¢ and
computes for i = j +1,...¢q(k), ¢ < Ency(0;7"). Finally B outputs As(¢, state).

B is a probabilistic polynomial time adversary and for all £ € N, denoting B running with a
fixed value of j as B;, we have, BSRDMY'(B;, k) = H} (A, k) and BSRDMg(B;, k) = H}', | (A4, k).
Since j is uniform in {1,2,...q(k)} we have,

Pr[D(BSRDMY(B, k) = 1] = (1/q(k))24%) Pr[DHI(A, k) = 1]

and
Pr[D(BSRDMY (B, k)) = 1] = (1/q(k))S*) Pr[D(HY, (4, k) = 1].
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Since H{'(A, k) = BCIRY (A, k) and Hyj; (A, k) = BCIR{ (4, k), we have

| Pr[D(BSRDM! (B, k)) = 1] — Pr[D(BSRDM{' (B, k)) = 1]| > ZE: = ¢'(k)

~— | —

where €’ is also non-negligible, which is a contradiction.
The above proof extends to the case of CCA security if we simply let the adversary B forward
the decryption oracle queries of A, and forward back the answers.
O

5.2 Bounded RDM Secure Encryption Schemes with Short Randomness

The above construction yields strong bounded RDM-secure encryption schemes where the length
of the randomness is longer than the length of the message. We now provide a construction of
a bounded RDM-secure and bounded circular RDM-secure encryption scheme that can encrypt
arbitrarily long messages using “short” randomness. This construction, however, relies on stronger
cryptographic assumption—namely, we require the existence of “lossy” trapdoor functions.

Definition 5.7 ([45]). A tuple (GenLossy, Genlnj, F,invert)) is an (n,u)-lossy trapdoor function
if the following holds:

e (Injection mode) For every k € N, Pr[(pk, sk) < GenInj(1¥) :  + Un () © invert g, (Fpr(z)) =
x]=1

e (Lossy mode) For every k € N and pk < GenLossy(1%), the size of the range of Foi(.) (which
takes as input strings of length n(k)) is at most 24,

e The following ensembles are computationally indistinguishable
{(pk, sk) < GenInj(1*) : ph}ren
{pk + GenLossy(1%) : pk} ren

We turn to providing our construction of a bounded-RDM secure encryption scheme that can
encrypt also “long” messages using “short” randomness—the ratio between the message-length
and the randomness length is proportional to the lossiness of the trapdoor function. Formally, we
establish the following theorem.

Theorem 5.8. Letl and R be the message length and randomness length parameters with R(k) > k.
Assuming the existence of (n,u)-lossy trapdoor functions with n > 3(l + R) and u < R/8, then for
every polynomial s, there exist a l-bit s-bounded circular RDM secure encryption scheme with
randomness length R.

In particular, assuming the DDH assumption holds, for every polynomial I, R, s with R(k) > k,
there exist a l-bit s-bounded circular RDM secure encryption scheme with randomness length R.

We mention that the “in particular” part of the theorem follows by the DDH-based construc-
tion of lossy trapdoor functions in [45]. Our construction is closely related to the “pad-then-
deterministic” construction of hedged encryption schemes of Bellare et al [10], where the encryption
is done by first applying a invertible universal hash permutation h to the message-randomness pair
(m||r) and then applying a lossy trapdoor function Fpj to the hashed value. Recall that hedged
encryption scheme already satisfy a notion of RDM security when restricting to RDM functions
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that do not depend on the public-key. To deal with RDM functions that depend on the public key,
our key modification to their scheme is to replace the use of univeral hashing with ¢-wise indepen-
dent hashing. However, since constructions of t-wise independent permutations are not known, to
deal with arbitrary ¢t-wise independent hash functions, we further modify the scheme to “pad” the
message-randomness pair with a sufficiently long sequence of 0’s.

Recall that the standard construction of t-wise independent hash functions is a degree ¢t — 1
univariate polynomial over a prime field, which is invertible by the Berlekamp algorithm [?].

Definition 5.9. Let [, R, and s be the message length, randomness length, and size parameters
with R(k) > k. Let (GenLossy, Genlnj, F, invert) be an (n,u)-lossy trapdoor function with public-
key length v such that v < R/8 and n = 3(l + R). Let t = 8(s+u+ v+ R) and H, = {h :
{0,1}™ — {0,1}"} be an invertible family of ¢(-)-wise independent hash functions. Define an I-bit
s-bounded (circular) RDM-secure encryption scheme II = (Gen, Enc, Dec) with randomness length
R as follows®:

e Gen(1%) : (pk, sk) + GenInj(1%), h < H,; output ((pk, h), (sk,h)).
e Encgy ) (m) : 7 < Ug); output ¢ = Fpk(h(m||r||02(l+R))).
e Dec(gp p)(c) : output the first (k) bits of h™! (invert,y(c)).

While our construction is bounded circular RDM secure, it is instructive to first focus on the
bounded RDM security. Recall the security of the [10] scheme (which relies on a construction of
deteministic encryption from [14]) relies on a “crooked” version of leftover hash lemma [24], which
asserts that when Fj,; has small range size (which is the case in the lossy mode) and the source
(m||r) has sufficient min-entropy and is independent of h, then Fpi(h(m||r)) is statistically close
to the “crooked” distribution Fpk (U} |4|r|)-

In our context, however, the adversary selects a s-bounded RDM function f after seeing the
public key, and thus the source (f(r)||7]|02¢+%)) may be correlated with the hash function h (and
also Fpi). We overcome this issue by using t-wise independent hashing and proving a crooked
version of the deterministic extraction lemma from computationally bounded source of Trevisan and
Vadhan [46]. The lemma asserts that with overwhelming probability over h < H, the encryption
For(f(r)]|r]|020+1)) is statistically close to a corresponding crooked distribution Fy(Uy,) for every
lossy function Fy; and every s-bounded RDM function f. Therefore, the s-bounded RMD security
follows by switching to the lossy mode and applying the crooked deterministic extraction lemma.
We proceed to state the crooked deterministic extraction lemma and prove the s-bounded RDM
security of our scheme. The proof of Lemma 5.10 is deferred to Appendix B and follows similar
techniques to those used by [46].

Lemma 5.10 (Crooked Deterministic Extraction). Let H = {h : {0,1}" — {0,1}"} be a t-wise
independent hash function family. Let F = {f : {0,1}" — Ry} be a family of functions where each
[ € F has range Ry of size |[Ry| < 2™. Let C be a family of distributions over {0,1}" such that
every X € C has min-entropy Hoo(X) > k. If

t > 2(m + log | F| + log |C| + log(1/0) + 3),
m < k—2log(1/e) —logt — 2,

5Tn fact, to achieve only bounded RDM security (as opposed to circular RDM security), it suffices to, say, satisfy
u < R/5 and set t = 4(s + u + v). We do not optimize the parameters here.
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then with probability at least (1 — §) over h <— H, it holds that for every f € F and every X € C,

A(f(M(X)), f(Un)) <.

Lemma 5.11. The l-bit encryption scheme II = (Gen, Enc, Dec) constructed in Definition 5.9 is
correct and s-bounded RDM secure.

Proof. We first show that II is correct. Let S = {z|[020TR) . 2 e {0,1}'*#}. Note that for
((pk, h), (sk,h)) < Gen(1F), if h|g : S — {0,1}" is injective, then for every message m € {0,1},
Dec (g, ) (Encpp py(m)) = m with probability 1. Thus, it suffices to show that h|g is injective except
with negligible probability, which follows directly by Lemma B.5.

For proving RDM security, we show that for every PPT adversary A, the view of A in both
BRDM(EI and BRDMll_I are computationally indistinguishable to the same distribution (that is in-
dependent of the message and randomness used in the encryption).

Let b € {0,1}. Recall that in the experiment BRDMiY(A, k), the adversary A receives (i)
a public key (pk,h), where (pk,sk) < GenInj(1¥) and h < H,, and (ii) a ciphtertext ¢ =
Encppn) (fo(r);r) = k(R (fo(r)||r]|020+ 1)) where r + Ugk) and fp is a size-s RDM function
generated by (fo, f1,state) < A(1%,pk). Thus, the view of A in BRDMj (A, k) can be described by
(pk, h,c,0), where o is the internal randomness of A.

By the indistinguishability of the lossy and injective public keys of the lossy trapdoor functions,
the view of A is computationally indistinguishable to the experiment where pk is instead generated
in the lossy mode. Specifically, we refer to the view of A in the lossy mode as (pk, h,c, o), where
pk < GenLossy(1%) and h ¢, o are generated as above.

We now argue that the view of A in the lossy mode is statistically close to (pk, h, Fpr(Uy), o).
Recall that in the lossy mode, Fj; has range of size at most 2“. Applying Lemma 5.10 with
e=6=2""F= {Fpk : {O’ 1}% - R}pk%GenLossy(lk)v and C = {(f(r)”r|’02(l+R)) A UR(k)?f €

size-s RDM function}, we have with probability at least (1 —27%) over h < H, it holds that for

every pk ¢+ GenLossy(1¥) and every size-s RDM function f, A(Fpr(h(f(r)||7||02¢H)), Fp(U,)) <
27%. Note that for such good h and for every lossy public-key pk, the statistical distance between
the ciphertext c in the view of A and Fp(U,,) is at most 27". It follows that the statistical distance
between the view of A in the lossy mode and (pk, h, F,;(Uy),0) is at most 27% 4+ 27" & negl(k).

Putting things together, we showed that for every PPT adversary A and b € {0,1}, the view of
Ain BRDMbrI is computationally indistinguishable to (pk, h, Fpi(Up), o) where pk < GenLossy (1¥)
and h < H, and o being the internal randomness of A, which clearly implies {BRDM{' (A, k)}4
and {BRDMY!(A, k)}; are computationally indistinguishable. O

We now turn to prove also circular RDM security of our scheme. To do this, we require the
use of a generalized form of the above crooked deterministic extraction lemma that also deals with
leakage (just as our “plain” deterministic extraction of leakage-source lemma, lemma 5.3), whose
proof can be found in Appendix B.

Lemma 5.12 (Crooked Deterministic Extraction from Bounded Leakage Sources). Let H = {h :
{0,1}" — {0,1}"} be a t-wise independent hash function family. Let F = {f : {0,1}" — Ry} be
a family of functions where each f € F has range Ry of size |Rg| < 2™. Let G = {g : {0,1}" —
{0,1}"} be a family of functions. Let C be a family of distributions over {0,1}" such that every
X € C has min-entropy Hoo(X) > k. If

t > 2(2m + log | F| + log |G| + log |C| + log(1/d) + 3),
m < (k—3log(1/e) —logt —5)/2,
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then with probability at least (1 — 0) over h <— H, it holds that for every f € F, g € G, and X € C,

A((f(g(X)), F(MX))), (f(9(X)), f(Un))) < e

Lemma 5.13. The [-bit encryption scheme II = (Gen, Enc, Dec) constructed in Definition 5.9 is
s-bounded circular RDM secure.

Proof. The proof of circular RDM security follows the same line as the proof of Theorem 5.6
(recall that Theorem 5.6 shows that bounded strong RDM security implies bounded circular RDM
security). Note that in the proof of Theorem 5.6, the strong RDM security is only used to show
the indistinguishability of the last two hybrids, where the last message f?(rq—1,cq—1) is replaced
by 0 and the strong RDM security is used to simulate the first encryption Encyy(f!(rq);r1) using
randomness leakage f!(r,) (whereas the indistinguishability of remaining hybrids relies only on
the standard CPA security). In the current context, the message length may be longer than the
randomness length so 7, may have no randomness left after leaking f 1(7'(1). However, note that in
the lossy mode, Fj, has a small range and so r, has sufficient entropy left after conditioning on the
first encryption Fyp,(h(f!(ry)||r1]|02¢F)). Indeed, indistinguishability of these two hybrids follows
in exactly the same way as in the proof of Theorem 5.11, but by relying on Lemma 5.12 instead of
Lemma 5.10 (using Fpi(h(f1(ry)||71]]02¢+ 7)) as leakage). O

5.3 RDM security in the Random Oracle model

In this section we see how we can achieve (full) RDM security in the Random oracle model. Our
use of the random oracle model is extremely weak: we do not need to “program it”, or “see queries
to it”. Additionally, security holds even if the attacker may get any inefficient non-uniform advice
about the random oracle (as in the model of [47]). We refer to such a model as the “ultra-weak”
random oracle model, and omit a formal definition.

Definition 5.14. For every public key encryption scheme II = (Gen, Enc, Dec), define a new
encryption scheme II' = (Gen/, Enc, Dec’) using a random oracle RO : {0,1}(®) — {0, 1}7(k)
where R is the length of randomness of Enc, m is the length of messages of Enc, and R/'(k) =
R(k) +m(k) + 3k +log? k + 5 is the length of randomness of Enc’.

e Gen'(1¥) := (pk, sk) «+ Gen(1¥). Output (pk, sk).
e Enc'(pk,m) := Sample r + Ur(x)- Output Enc(pk, m; RO(r)).
e Dec/(sk, c) := Output Dec(sk, ).

Theorem 5.15. For every non-uniformly secure CPA secure public key encryption scheme II, TI'
as defined in Definition 5.14 is RDM secure in the ultra-weak random oracle model.

Proof. The theorem follows by essentially identical arguments to the proof of Theorem 5.5, by
noting that (1) the above transformation is essentially the transformation defined in Definition 5.4
except that instead of applying hx, here we apply the random oracle RO for randomness extraction,
and (2) a random oracle is a k'8 -wise independent family of hash functions, and for any polynomial
p and sufficiently large k

E8F > 2(k + p(k) + m(k)).

There is just a single point that needs to be addressed: how to deal with attackers that receive (in-
efficient) non-uniform advice about the random oracle. Note that since the randomness extraction
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lemma (i.e., Lemma 5.3) holds in a statistical sense, even conditioned on the “whole” hashfunction
(which is the random oracle in this case), it thus also holds conditioned on a function of it (i.e.,
the non-uniform advice the attacker may get). The only difference is that since we start off with
non-uniform attacker, we need to rely on the underlying scheme being non-uniformly secure.

O

Theorem 5.15, combined with Theorem 4.1, show the existence of a task—RDM secure encryption—
that can be achieved in the ultra-weak random oracle model (assuming the existence of CPA secure
encryption schemes), but cannot be achieved in the plain model. As far as we know, this is the first
separation between tasks achievable in such a weak random oracle model, and the plain model.

6 Barriers for RDM Security with Long Messages

An interesting question is whether any encryption schemes can be modified by just performing pre-
processing to the randomness (as in Theorem 5.5) to become bounded RDM secure but still handle
long messages using short randomness. In this section we demonstrate barriers to using black-box
proofs of security to show RDM security of encryption scheme that handle messages that are longer
than randomness, based on a computational intractability assumption. More specifically, we present
black-box barriers to encrypt schemes with perfect correctness and efficiently recognizable public-
keys that can encrypt long messages using short randomness. This shows that simply performing
some processing on the randomness of an encryption scheme (as in the construction used in Theorem
5.5) does not suffice to make every encryption scheme resilient to bounded-RDM attacks if requiring
that long message can be encrypted using short randomness. For instance, this means that the
El-Gamal crypto system [| cannot be modified (by performing pre-processing to the randomness)
to become bounded RDM secure for long messages.
Let us start by defining a falsifiable security game (following [39, 30, 26]).

Definition 6.1. A falsifiable security game is an efficient random system I' that on security pa-
rameter k interacts with an adversary A and outputs a bit, which we denote by A(1¥) < T'(1¥).
We say T is secure if for all PPT A, Pr[A(1¥) < T'(1%) = 1] is negligible in k where the probability
is over the randomness of A and I'.

Our separation result applies to any black-box reduction (i.e., the reduction only accesses the
attacker A as a black-box) that accesses the RDM function f as a black-box. Following the
terminology used by [29] (in the context of key-dependent message security), we refer to such
reductions as strongly black-box reductions. We point out that our proof of security in Section 5.1
is indeed strongly black-box.

Definition 6.2. [29] A strongly black-box reduction from the p-bounded RDM security of a public
key encryption scheme II to the security of a falsifiable security game I' is a PPT oracle aided
machine R such that for any adversary A that breaks the p-bounded RDM security of II, R4
breaks the security of I'. Additionally, R treats the challenge RDM functions provided by A as a
black-box.

More concretely, for any adversary A such that there exists a PPT distinguisher D, polynomial
p and infinitely many k such that

|Pr(D(BRDM{'(A, k) = 1] — Pr(D(BRDM (A, k)) = 1]| > p(lk)
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there exists a polynomial p’ and infinitely many k&’ such that

1
PrlRA(1F) < D17 =1] > ——
(R & T4 =1]> o
Our lower bound relies on the existence of a pseudorandom function family secure against
subexponential-size circuits.

Definition 6.3. Let m,r be polynomials. We say that a family of efficient functions F,""" = {f; :
{0,1}7®) — £0,1}®): s € {0,1 ¥} pen is a strong pseudorandom function family if there exists a
constant ¢ € [0, 1] such that for every distinguisher A of size at most 2*°, there exists a negligible
function p such that for every k € N,

| Pr[s « {0,1}* : Afs(1F) = 1] — Pr[A®F (1%) = 1]| < negl(k)
where RF' is a random oracle.

It is well-known that the existence of strong pseudorandom function families can be based on
the existence of one-way functions with subexponential security [27, 32]
We now have the following theorem.

Theorem 6.4. Assume the existence of an efficient strong pseudorandom function family ]:,Zn’r =
{fs :{0,1}7®) — {0, 1}™®); s € {0,1}*}ken for polynomials m and r such that

m(k) > r(k) + w(log k).

Then there exists a polynomial p such that the following holds. Consider any public-key encryption
scheme 11 with perfect correctness and efficiently recognizable public-keys, message length m and
encryption randomness length r, and a secure falsifiable security game I'. Then, there does not
exist a strongly-black-box reduction from the p-bounded RDM security of 11 to the security of T'.

We now provide an overview of the proof. Assume we have a reduction R such that, for
any adversary A that breaks the p-bounded RDM security of II, R breaks the security of the
falsifiable security game I'. For every walid public-key, due to the perfect correctness property of
II, we can always construct an inefficient adversary A that breaks the p-bounded RDM security
of IT with probability 1 (and that simply outputs L in case the ciphertext it receives is invalid, or
in case the public-key is invalid); we thus have that R4, though inefficient, breaks the security of
I". Furthermore, we are guaranteed that R not only uses A as a black-box but also that the RDM
function specified by A is used as a black-box. Now if the the RDM function chosen by A behaves
like a random function then its range is “elusive”—that is, the only way to compute any image of
the function is to query the RDM function in its pre-image. This allows us to efficiently simulate
RA. Given that the reduction must treat the RDM function as a black-box, such queries can be
seen by the simulator and knowing these queries allows it to circumvent the inefficiency of A; to
efficiently simulate A correctly, we need to be able to efficiently recognize what public-keys are
invalid (since such queries are answered | by A, even if R has correctly encrypted some message).”
Now, our simulator is an efficient machine that breaks the security of I', and we have a contradiction.
However, we require that the RDM function behaves as a random function, and a random function

"The reason that we have A answer L to queries on invalid public keys is that the perfect correctness property
only holds for valid public-keys; without the perfect correctness property we are not guaranteed that the message
recoverd by our simulator is the same as the one recoverd by the inefficient attacker.
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itself does not have a polynomial bound on its size. To this end, we use a pseudorandom function
as the RDM function. Still, A is inefficient and could be used by the reduction to distinguish the
pseudorandom function from a random function, in which case our simulation fails. To circumvent
this, we use a pseudorandom function secure against subexponential sized adversaries and simply
use this function with a sufficiently long seed to ensure security against A.

Proof. We start by choosing the polynomial p. Let ¢(-) be a polynomial time bound on the com-
plexity of F,™", and ¢ € (0,1) be a constant such that the indistinguishability of F; = F;" holds
against size 2F° distinguishers. Let &’ = r%/¢, and set p(k) £ t(k').

Now, assume for contradiction that there exists a public-key encryption scheme II with perfect
correctness, message length m, and encryption randomness length r, a secure falsifiable security
game I', and a strongly-black-box reduction R such that R reduces the p-bounded RDM security of
II to the security of I'. Namely, for every adversary A that breaks the p-bounded RDM security of
I, R* breaks the security of I' while using both A and the RDM functions chosen by A as black-
boxes. In this case, we shall show that the security of I' can be broken by an efficient adversary, a
contradiction to the assumed security of T

Towards this goal, we first define an (inefficient) “canonical” adversary A that breaks the p-
bounded RDM security of II . It follows that R4 breaks the security of T' with non-negligible
probability. We then construct an efficient “meta-reduction” M that internally emulates R4 ef-
ficiently and breaks the security of I' with essentially the same probability, which completes the
proof.

We now construct the (inefficient) canonical adversary A for breaking the p-bounded RDM
security of IT. For every s € {0,1}* define A, as follows:

e On input (1%, pk), A, checks if pk is a valid public-key given the security parameter k; if not
it outputs L. Otherwise, it chooses the RDM function f = fs € Fp and output (f,state)
where state = (f,pk).®

e On input the challenge ciphertext (c*,state) (for a valid public-key pk), As checks for all
r € {0,1}"®) whether ¢* = Encyi(f(r);r). If there is such an 7 then output a bit b = 0 else
output ' = 1.

It is easy to see that for every s, A, breaks the p-bounded RDM security of II. Hence for every s,
RAs breaks the security of I'. Hence, this also holds true for a random s. We define R* as R4
where s « {0, l}k and we have that R4 breaks the security of I'. More concretely, there exists a
polynomial p’ such that for infinitely many k

1
(k)

We proceed to construct an efficient meta-reduction M that interacts with I' by internally
emulating R4 efficiently and forwarding R’s messages to I" and back. Notice that emulating R
efficiently is easy except that in order to generate the message b’, we needs to enumerate over all
randomness r, which takes time O(2") and is inefficient. Instead, M maintains a list of queries L
made by R to the corresponding RDM function f (recall that R treats f as an oracle, and thus M

sees that queries of R to f) and on input the challenge ciphertext ¢* generates b’ by checking for
all ¢ € L whether Ency(f(q);q) = c¢*. If there is such a ¢, M sets b’ = 0 else it sets b’ = 1. It is

Pr[[(1%) & RA(1%) =1] >

8Technically, f maps r(k’)-bit strings to m(k’)-bit strings, but we can simply shrink the domain and the range to
the proper size.
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not hard to see that by simulating b’ this way, M can emulate the execution of R* in polynomial
time.

To show a contradiction it remains to show that M breaks the security of I' with non-negligible
probability. Let Hybridinefr = I'(1%) <+ RA(1%) and Hybridegr = I'(1%) <+ M(1¥). We prove that, for
every k, | Pr[Hybridiness = 1] — Pr[Hybridesr = 1]| < e(k) for some negligible € via a hybrid argument.

Let A’f be the adversary obtained by replacing the f; in A; with the function f. More precisely,
A’f behaves just as A, except that on input (pk, 1¥), A’f outputs f as the RDM function. We define

RA as RARr here RF is a random function from {0,1}"® to {0,1}™*). Similarly M’ behaves just
as M except that it uses a random function RF instead of a pseudorandom function. We define
hybrids HybridRF . = T'(1¥) <+ R4 (1%) and HybridRE = T'(1%) +» M’(1%)

Claim 6.5. HybridR" ¢ and HybrldefF are statistically close.

inefl

Proof. In both Hybrldﬁ]';ff and Hybrldsff, the RDM function f is a random function RF'. Note that
in HybrldIneff a ciphertext query ¢* is answered by using the canonical attacker A’ by finding the
unique (by perfect correctness) message m = f(r) encrypted as ¢* = Enc(f(r);r), and is answered
as 1 if such an r exists, and as 0 otherwise. On the other hand, in Hybridsf'rz, the meta-reduction M’
provides the correct message m = f(r) if and only if R has queried the RDM function on an input
r such that ¢* = Enc(f(r);r); if ¢ # Enc(f(r),r) for any r, then M’ outputs 0 just as A" does.
To show that HybridiFf]Eff and Hybridsff are statistically close, it suffices to show the probability that
R asks some ciphertext query ¢* = Enc(f(r);r) without first querying the RDM function on r, is
negligible. Since R makes at most a polynomial number of ciphertext queries, by a union bound,
it suffices to bound the probability that R makes a single query ¢* = Enc(f(r);r) without having
queried the RDM function on r. By perfect correctness, we have that for any fixed value ¢, and any
fixed random string r, the probability over the random function RF' that ¢ = Enc(f(r);r)) is upper
bounded by 27™(*) Tt follows by a union bound that for every fixed string ¢*, the probability over
the choice of the random function RF' that there exists some r such that ¢ = Enc(f(r);r) is upper
bounded by 2" /2™, which is negligible in k. The same holds for any choice of random variable c¢*.
This concludes the proof of the claim. O

Claim 6.6. Hybrlde]cf and Hybridess are statistically close.

Proof. Both HybridRF o and Hybridegr are PPT and differ only in the usage of a random function RF
in one and a function f < Fj in the other. Hence the claim follows directly from the pseudoran-
domness property of Fj, and the fact that I' outputs a single bit. O

Claim 6.7. Hybr|d|F§';fF and Hybridiefr are statistically close.

Proof. Again HybrldIneff and Hybridi e differ only in the usage of a random function RF' in one
and a function f < F, in the other. However both run in time at most p(k)2"*¥) which is at most
ok By the strong pseudorandomness of Fj, and the fact that I' outputs a single bit we have that
Hybr|d ¢ and Hybridinefr are statistically close.. ]

inef

The above three claims complete the hybrid argument and consequently the proof. O
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7 Randomness Dependent Security in Commitment Schemes

In this section we consider RDM security for commitment schemes. To contrast our result with
those for encryption schemes, we consider a setting as close as possible to the encryption case;
that is, we consider non-interactive commitment schemes in the Common Reference String (CRS)
model. In essence, non-interactive commitment schemes in the CRS model differ from encryption
schemes in two ways: 1) for commitment schemes, there is not necessarily an efficient way to decrypt
messages, and 2) for commitment schemes, on the other hand, we require a binding property.

We proceed to formally defining commitment schemes in the CRS model.

Definition 7.1. An [-bit (non-interactive) commitment scheme in the CRS model consists of a
tuple (Gen, Com) of PPT algorithms where (i) Gen takes a security parameter 1* as input and
generates a common reference string crs < Gen(1¥), (ii) Com takes crs and a message m in a
message space {0,1}(%) as input and generates a commitment ¢ < Com(crs, m).

Definition 7.2. We say an [-bit non-interactive commitment scheme in the CRS model (Gen, Com)
is secure if the following conditions hold:

e Computational Hiding: For every probabilistic polynomial time adversary A = (A1, Ag), the
ensembles {INDg(A, k)}; and {IND;(A, k)}, are computationally indistinguishable, where

INDy(A, k) := crs + Gen(1F)
(mg, m1, state) < A1(1¥, crs)
¢ < Com(crs, mp)
0 < Asz(c, state)
Output o

o Computational Binding: For every probabilistic polynomial time adversary A, there exists a
negligible function p such that

Pr[crs < Gen(1%), (mg, my,79,71)  A(1%, crs) : mo # my

ACom(crs, mg;rg) = Com(crs,mi;r) = ¢ < u(k)

We may now define RDM security in exactly the same way as RDM security for encryption
schemes.

Definition 7.3. A secure [-bit commitments scheme in the CRS model (Gen, Com) is randomness-
dependent message secure (RDM-secure)) if for every PPT adversary A = (Aj, As), the ensembles
{RDMy(A4, k) }reny and {RDM; (A4, k) }ren are computationally indistinguishable where

RDMy(A, k) := crs < Gen(1¥)
(fo, f1, state) — Ay (1k, C’I"S)
< U|T|
¢ < Com(ers, fo(r);T)
0 < As(c, state)
Output o

The RDM functions f, are represented as circuits from {0, 1} to {0, 1}/(*)
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7.1 Lower bound

We first remark that our impossibility result for “full” RDM security for encryption schemes directly
extends also to commitment schemes.

Theorem 7.4. No 1-bit commitment scheme in the CRS model (Gen, Com) is RDM-secure.

Proof. Note that in the proof of Theorem 4.1, the only property of the encryption scheme that is
used to violate RDM security is Equation 1; that is;

pPkrT[Encpk(O, r) # Encpr(1,7)] > 1 — negl(k). (2)

Let us now argue that the analog of this property also holds for commitment schemes; that is

Pr [Com(crs, 0;7) # Com(ers, 1;7)] > 1 — negl(k)

Ccrs,T
This holds since if committing to 0 and 1 (using the same randomness) results in identical commit-
ments, with non-negligible probability, then even the honest sender can later decommit to both 0
and 1 with non-negligible probability and break the computational binding property. O

Remark. We remark that the proof also extends to interactive commitments. Recall that in the
non-interactive case, RDM attacker applied a uniformly selected hashfunction to the commitment
and selected the bit v to commit to so as to bias the output of the hashfunction. In the interactive
setting, the RDM attacker acts as an honest receiver using some uniformly selected randomness
rr, and next picks RDM functions that emulate an interaction between the honest sender (using
his actual randomness) and the honest receiver using randomness rr, applies a hashfunction to the
complete transcript of the interaction, and finally picks the bit b so as to bias the output of the
hashfunction. It follows using the same argument as above that such an attacker violates RDM
security, unless computational binding of the commitment is broken (with non-negligible probability
over the choice of the CRS, and the receiver’s randomness).

7.2 Upper bounds

Since “full” RDM security is impossible to achieve, as with encryption schemes, we define RDM
security with respect to a priori bounded RDM functions.

Definition 7.5. For every s : N — N a secure [-bit (non-interactive) commitment scheme in
the CRS model (Gen, Com) is s-bounded RDM secure if for every PPT adversary A = (Aj, Az),
the ensembles {BRDMg(A, k) }reny and {BRDM; (A, k) }ren are computationally indistinguishable
where

BRDMy(A, k) :== crs < Gen(1%)
(f(), f1, state) — A (1k, CTS)
T U|T|
¢ < Com(crs, fy(r);T)
0 < As(c, state)
Output o

and f: {0,1}I"l — {0,1}*®) is a function computed by a circuit of size at most s(k).
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We note that exactly same construction as that for bounded RDM security for encryption
schemes works for also non-interactive commitments in the CRS model.

Definition 7.6. For every polynomial s and (non-interactive) [-bit commitment scheme in the
CRS model (Gen, Com), define a new [-bit commitment scheme in the CRS model (Gen’, Com’) as

e Gen'(1%) := ¢rs < Gen(1%), by, < Hy, where Hy = {hy : {0, 1} ®) — {0,1}F®)} is a t(k)-
wise independent family of hash functions where R(.) is the length of the randomness of Com,
R/(.) is the length of the randomness of Com’,

t(k) > 2(k + s(k) + 1(k))

and
R'(k) = 1(k) + R(k) + 3k + log t(k) + 5

Output (crs, hi).
e Com'((crs, hy),m) :=r < Ugyxy. Output Com(crs, m; hy(r)).

Theorem 7.7. Let s be a polynomial. Let (Gen,Com) be a secure I-bit commitment scheme in
the CRS model, and (Gen’, Com’) be the transformed commitment scheme obtained from Definition
7.6. Then, (Gen’, Com’) is s-bounded RDM secure.

Proof. Note that the above construction for bounded RDM-secure commitment schemes is the
exactly the same as the one we used for encryption schemes, except that public key is replaced by
the CRS and the encryption scheme is replaced by a commitment commitment scheme (and thus,
there may not exist an efficient decryption procedure). However the proof of Theorem 5.5 does not
rely on the existence of an efficient decryption procedure, and thus exactly the same proof applies
also for commitments schemes. That is, it follows that the transformed commitment scheme is
bounded RDM-secure.

It remains to show the computational binding property of (Gen’, Com’). Note that an opening
(mo, 70, m1,71) for (Gen’,Com’) constitutes an opening (mq, hi(ro), m1, hi(r1)) for the original
scheme. Hence computational binding of (Gen’, Com’) follows from the computational binding
property of of (Gen, Com). O

We finally note that (in contrast to Theorem 6.4), for the case of commitments, it is easy to
construct a bounded RDM secure commitments schemes that use “short” randomness to commit
to “long” messages.

Definition 7.8. For every polynomial m and [-bit commitment scheme in the CRS model (Gen, Com)
define a m-bit commitment scheme in the CRS model (Gen’, Com’) as follows

e We define Gen’ as sampling h + Hj, and appending h to the common reference string gen-
erated by running Gen, where {Hy} is a Collision Resistant Hash function family with Hy
from {0,1}™™ to {0,1}'®,

e We define Com’ as just applying h its m-bit long message and using Com on the shortened
[-bit message.

Theorem 7.9. Let s and m be polynomials. Let (Gen,Com) be an l-bit commitment scheme in the
CRS model. Assuming there exists a Collision Resistant Hash function family {Hy}r where Hy, is
from {0, 1}m(k) to {0, 1}l(k) and h € Hy, is computed by a circuit of size p(k), the m-bit commitment
scheme in the CRS model (Gen’, Com’) obtained from Definition 7.8 is s-bounded RDM secure if
(Gen, Com) is (s + p)-bounded RDM secure.
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Proof. It follows by the collision resistant property of the hash function that the transformed scheme
remains computational binding. More formally, assume for contradiction there exists a PPT A such
that for infinitely many k

Prlers « Gen'(1%), (mg, my,70,m1) + A(1%, crs) - mg # my

ACom’(ers, mo;rg) = Com

We construct PPT B that contradicts the computational binding property of (Gen,Com) as
follows: On input (1%,crs), B samples h < Hj, runs (mg,mi,r9,71) < A(1*, (crs,h)) and
outputs (h(mg),h(my),ro,,71). By the collision resistance of Hj; we have that the probability
h(mgo) = h(m1) is negligible, otherwise B has efficiently found a collision on a h < Hj. Hence
we have that B breaks the computational binding property of (Gen,Com) with non-negligible
probability and we have a contradiction.

The RDM hiding property of (Gen’, Com’) follows by that of (Gen,Com). Any RDM query
f(.) on the new scheme Com’ can be simulated by the slightly more “complex” RDM query h(f(.))
on the original scheme Com. If f(.) was evaluated by a circuit of size at most s(k) then h(f(.)) is
evaluated by a circuit of size at most s(k) 4+ p(k). Hence assuming a PPT attacker that breaks the
s-bounded RDM hiding property of (Gen’, Com’) we can construct a PPT attacker that breaks the
s + p-bounded RDM hiding property of (Gen, Com). Com’ uses randomness of the same length as
Com. This concludes the proof. O
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A Proof of Deterministic Extraction Lemma (Lemma 5.3)

Here we present the proof for Lemma 5.3. We will need the following lemmas. The first is from
[46] and is via a standard application of the t-moment method.

Lemma A.1 ([46]). Let H ={h:{0,1}" — {0,1}""} be a t-wise independent hash function family,
and let X be a distribution over {0,1}" with min-entropy Hoo(X) > k. If m < k — 2log(1/e) —
logt — 2, then

Pr [A(h(X), Um) > 5] < 2—(t/2—m_3)'
h<«H

The following is a standard simple lemma and the proof can be found in [48].

Lemma A.2. Let X = (X1, X2) be a distribution over {0,1}" = {0,1}" x {0,1}"* with min-
entropy Hoo(X) > n — A. For every € € (0,1), it holds that with probability at least 1 — & over
T < Xl, HOO(XQ‘Xlle) > no — A — log(l/s).

Lemma A.3 (Lemma 5.3 restated). Let F = {f : {0,1}" — {0,1}*} be a class of (leakage)
functions. Let H = {h:{0,1}"" — {0,1}""} be a t-wise independent hash function family. If

t>2(m+ £+ log|F| +log(1/d) + 3),
m <n—{—3log(l/e) —logt —5,

then with probability at least (1 — &) over h < H, it holds that for every f € F,
A((f(Un), h(Un)), (f (Un), Un)) < e.
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Proof. Let k = n—{—log(1/e)—1. Consider any f € F. By applying Lemma A.2 to the distribution
(f(Un),Upy) with the parameter ¢ set to be £/2, we obtain that with probability at least (1 —&/2)
over z < f(Uy), the distribution Xy, = Uy, )= has min-entropy Hoo(X) > k.

Noting that m < k—2log(1/(¢/2)) —logt — 2, Lemma A.1 implies that for every X over {0,1}"
with Ho(X) > k, with probability at least 1 — 272 over h < H, A(h(X),U,,) < €/2. By an
union bound over f € F and z € {0, 1}£ such that the corresponding Hu (Xt ) > k, it follows that
with probability at least

1—272 | F|.2>1-6

over h < H, for every f € F and z € {0, 1}£ such that the corresponding Huoo(X¢.) > k, we have
A(h(Xs.),Un) < €/2. For such h € H, we have for every f € F,

A((f(Un), M(Un)), (f(Un), Un)) = Ez(—f(Un)[A(h(Xf,z)v Unm)]

Pr [Hoo(Xf.) > k|- (¢/2)+ Pr |[Hoo(Xf,) <k|-1
LPr [H(Xp) 2 K- (2/2) | Pr [(Hao(Xp2) <A

< g/24+¢/2=¢,

IN

as desired. ]

B Proofs of Crooked Version Lemmas

Let us first recall a tail bound for ¢-wise independent random variables:

Lemma B.1 ([7]). Lett > 4 be an even integer. Suppose Y1,...,Yx are t-wise independent random
variables taking value in [0,1]. Let Y =3 Y;, p =E[Y]/K, and A > 0. Then,

tK 4 12\ 7?
A2 '

PrHY—Ku]>A]§8-<

The following lemma is a crooked version of Lemma A.1 and is proved in a similar way.

Lemma B.2. Let H = {h : {0,1}" — {0,1}"} be a t-wise independent hash function family,
f:4{0,1}" = R be an arbitrary function with range R of size |R| < 2™. Let X be a distribution
over {0, 1}" with min-entropy Hoo(X) > k. If m < k — 2log(1/e) — logt — 2, then

Pr [A(F(R(X), f(U) 2 &) < 27029,

Proof. W.lo.g., we can assume that |R| = 2™ and X is a flat source, i.e., X is uniform over a
subset S C {0,1}" of size |S| = 2¥. Let M = 2™ and K = 2. Fix a z € R, and let u, =
Pr[f(U,) = 2]. Note that for every x € {0,1}", Pr[f(H(x)) = 2] = p. and {f(H(x))}scq0,13~ are
t-wise independent. By the tail bound for ¢-wise independent random variables, with probability
at least 1 — 2= (#/273) gver h + H,

ep,  if p > 1/M,

e/M  o.w. )

| Pr(f(h(X)) = 2] = pz| < {

Indeed, let Y, be an indicator random variable such taht Y, = 1 iff f(H(x)) = 2z, and let ¥ =
> wes Yoo By definition, E[Y] = Kp.. If p. > 1/M, applying Lemma B.1 with A = eK i, we have

s + 12\ —(t/2-3)
=z]— = - > <g. (=221 ) < ,
Pt 1Prlf(h(X)) = 2] = pa| > eppe] = Pr(lY — Kpa| 2 eKp:] <8 ( EKpm)? > <2
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If p, < 1/M, Lemma B.1 with A = c¢K /M says

c K tKp. + 2\ s
] £l _ > og (BT o .
P [IPHA0) =21 = el > ] = Pr IV = Kl 2 57| <5+ (TRt <o

By an union bound over z € R, with probability at least 1 — 2~ #/2=m=3) gyer h « H, Eq.(3)
holds for every z € R. For such good h,

AR FO) = 5 S IPHFR()) = 2] o]

zZER

1 €
SEINCAST)
z€ER
= ¢

O

Lemma B.3 (Lemma 5.10 restated). Let H = {h : {0,1}" — {0,1}"} be a t-wise independent
hash function family. Let F = {f : {0,1}" — Ry} be a family of functions where each f € F has
range Ry of size |Rg| < 2™. Let C be a family of distributions over {0,1}" such that every X € C
has min-entropy Hoo(X) > k. If

t > 2(m + log | F| + log [C| + log(1/8) + 3),
m <k —2log(1/e) —logt — 2,
then with probability at least (1 — §) over h <— H, it holds that for every f € F and every X € C,
A(f(R(X)), f(Un)) < e.

Proof. (Sketch) The lemma follows immediately by Lemma B.2 and an application of union bound
over F and C. O

Lemma B.4 (Lemma 5.12 restated). Let H = {h : {0,1}"" — {0,1}"} be a t-wise independent
hash function family. Let F = {f : {0,1}" — Ry} be a family of functions where each f € F has
range Ry of size |[Ry| < 2™. Let G = {g: {0,1}" — {0,1}"} be a family of functions. Let C be a
family of distributions over {0,1}" such that every X € C has min-entropy Hoo(X) > k. If

t > 2(2m + log | F| + log |G| + log |C| + log(1/d) + 3),
m < (k—3log(1/e) —logt —5)/2,
then with probability at least (1 — 8) over h < H, it holds that for every f € F, g € G, and X € C,
A((f(g(X)), f(R(X))), (f(9(X), f(Un))) <e.

Proof. (Sketch) The lemma follows in essentially identical way to the proof of Lemma 5.3, where we
first apply Lemma A.2 to show that X has sufficient entropy conditioning on the leakage f(g(X)),
and then applying Lemma B.2 together with union bounds over F, G, C, and the leakage. O

Finally, the following rather standard lemma about pairwise independent hash function is useful
for us.

Lemma B.5. Let n =3m € N and H = {h : {0,1}"" — {0,1}"} be a pairwise independent hash
function family. With probability at least 1 — 27" guer h « H, h is injective.
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C Proof of Theorem 5.13

Assume for contradiction there exists a polynomial ¢ and probabilistic polynomial time adversary
A such that A breaks the s-bounded g-circular RDM security of II. We define hybrids exactly as
in Theorem 5.6: for 1 < j < g(k) + 1, H?(A, k) is as follows

H?(A, k):= (pk,sk) < Gen(1%)

fY 2, f9R) state « Ay (1%, pk)

rtor? . pak) o fo 1}aRlr

fori=1,2...,q(k)
if i < j then ¢ < Encpp(fi(r*=1, ¢ 1);r?)
else ' + Encyy(0;77)

0 + As(c, state)

Output o

where r0 = 74() | 0 is the empty string and & = ¢!, ¢2, ... 4%, As before, HI(A, k) = BCIRY (A4, k)
and an(k)+1(A, k) = BCIRL(A, k). Note that by 5.11, IT is s-bounded RDM secure and hence
CPA secure. The indistinguishability of H?(A, k) and HJHH(A, k) for j =1,2,...q — 1 follows in
a straightforward manner from the CPA security of II, just as it does in Theorem 5.6. Indeed,
H?(A, k) and H?_H(A, k) for j = 1,2,...q — 1 differ in only ¢/ which in H?(A, k) is an encryption
of 0 and in H]HH(A, k) is an encryption of f/(r?~1 ¢/~1). Furthermore both experiments can be
simulated exactly without f7*1(r7 ¢7), where r/ is the randomness used for the above encryptions.
Hence, if HJH(A, k) and HJHH(A,k:) are distinguishable then an efficient CPA adversary can be
constructed that breaks the CPA security of II.

It remains to show that HqH(A, k) and HqHH(A,k) are indistinguishable. Unlike the previous
cases, this does not follow in the same straightforward manner from the CPA security of IT because
here the reduction needs f!(r?) to simulate the experiment, where r¢ is the randomness used to
encrypt the challenge ciphertext in the CPA security game. We will use Lemma 5.12 to show that
both Hgl (A, k) and HEH(A, k) are indistinguishable from the same distribution: H (A, k) where

HYAK) = (pk,sk) « Gen(1F)
Y2, f9R) state «— Ay (1%, pk)
rhr? . rdk) g0 1}aklr|
fori=1,2...,q(k)—1

¢+ Encp(fi(ri=1, = 1);rt)

AR« Ency(Uy)
0 + As(c, state)
Output o

where r0 = 74 0 ig the empty string and ¢ = ¢!, ¢?, ... ¢?®) | First we show HEH(A, k) is indis-
tinguishable from H*H(A7 k). The view of A in both experiments can be described by (pk, h, ¢, o),
where pk is the key of the lossy trapdoor function and A is the t-wise independent hash function used
by IT and o is the internal randomness of A. Applying Lemma 5.12 with X = (f9(r?=1,c471), r9),
h as the same t-wise independent hash function used by II, f = F}; and g as a randomized function
such that g(X) = h(f*(r9)||r']|0*“+5)) we get that with 1 — 2% probability over h, for any pk,
any size s functions f7 and f! and any rt, (¢!, Eyp(h(f9(r7=t, c71),r9))) and (¢!, Fpr(h(Uy))) are
27" close, where ¢! = Fpp(h(f(r?),r!)). Hence (pk,h,ct,c?) in both experiments are statistically
close. The rest of A’s view is derived from (pk, h,c!,c?) in both experiments in the same manner.
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It follows that HEH(A, k) and H (A, k) are statistically close. Similarly applying Lemma 5.12
with X = (0,77) gives us that HqH(A, k) and H (A, k) are statistically close.
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