
MeshEye: A Hybrid-Resolution Smart Camera Mote for

Applications in Distributed Intelligent Surveillance
Stephan Hengstler, Daniel Prashanth, Sufen Fong, and Hamid Aghajan

Wireless Sensor Networks Lab
Department of Electrical Engineering

Stanford University, Stanford, CA 94305, United States

{hengstler, daniel.prashanth, sffong, aghajan}@stanford.edu

ABSTRACT
Surveillance is one of the promising applications to which smart

camera motes forming a vision-enabled network can add

increasing levels of intelligence. We see a high degree of in-node

processing in combination with distributed reasoning algorithms

as the key enablers for such intelligent surveillance systems. To

put these systems into practice still requires a considerable

amount of research ranging from mote architectures, pixel-

processing algorithms, up to distributed reasoning engines. This

paper introduces MeshEye, an energy-efficient smart camera mote

architecture that has been designed with intelligent surveillance as

the target application in mind. Special attention is given to

MeshEye’s unique vision system: a low-resolution stereo vision

system continuously determines position, range, and size of

moving objects entering its field of view. This information

triggers a color camera module to acquire a high-resolution image

sub-array containing the object, which can be efficiently

processed in subsequent stages. It offers reduced complexity,

response time, and power consumption over conventional

solutions. Basic vision algorithms for object detection,

acquisition, and tracking are described and illustrated on real-

world data. The paper also presents a basic power model that

estimates lifetime of our smart camera mote in battery-powered

operation for intelligent surveillance event processing.

Categories and Subject Descriptors
B.0 [Hardware]: General; C.4 [Performance of Systems]:

Design Studies; I.4.9 [Image Processing and Computer Vision]:

Applications

General Terms
Algorithms, Design, Experimentation, Measurement, Performance

Keywords
Distributed Intelligence, Mote Architecture, Power Efficiency,

Smart Cameras, Wireless Sensor Networks

1. INTRODUCTION
Distributed smart cameras have received increased focus in the

research community over the past several months. The notion of

cameras combined with embedded computation power and

interconnected through radio links opens up a new realm of

intelligent vision-enabled applications. Real-time image

processing and distributed reasoning made possible by smart

cameras can not only enhance existing applications but also

motivate new applications. Potential application areas range from

home monitoring, elderly care, and smart environments to security

and surveillance in public or corporate buildings. Critical issues

influencing the success of smart camera deployments for such

applications include reliable and robust operation with as little

maintenance as possible.

In comparison to scalar sensors, such as temperature, pressure,

humidity, velocity, and acceleration sensors, vision sensors

generate much higher bandwidth data due to the two-dimensional

nature of their pixel array. The sheer amount of raw data

generated precludes it from human analysis in many applications.

Hence distributed intelligent algorithms supported by in-node

image processing are required to successfully operate scalable

networks of wireless smart cameras. We see the combination of

local processing and distributed reasoning as the key challenge in

making intelligent vision-enabled applications a reality. As

outlined in [1]–[3], local processing calls for adequate low-level

pixel processing, which enhances image content, and

intermediate-level object processing, which detects and tracks

objects and extracts their properties. On the other hand,

distributed reasoning requires high-level algorithms, which

exchange and compare object information among nodes and make

joint decisions [2]. Several examples of low- and intermediate-

level algorithms can be found in [1]–[6].

In this paper, we introduce a smart camera mote architecture

designed for in-node processing, with the aim of facilitating

distributed intelligent surveillance. With this application in mind,

our mote architecture targets the provision of sufficient processing

power and an adequate vision system while minimizing

component count and power consumption. Low power

consumption is an important design objective to enable mobile

surveillance applications using battery-powered camera motes.

Several mote architectures for wireless image sensor networks

with similar objectives have been proposed in the past. In 2005,

Cao et al. [7] proposed an image sensor mote architecture in

which an FPGA connects to a VGA (640×480 pixel) CMOS

imager to carry out image acquisition and compression. An

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

IPSN’07, April 25–27, 2007, Cambridge, Massachusetts, USA.

Copyright 2007 ACM 978-1-59593-638-7/07/0004...$5.00.

ARM7 microcontroller processes images further and

communicates to neighboring motes via an ultra-low-power

transceiver at data rates up to 76.8 KBaud per second. Rahimi et

al. [4] suggested another powerful image sensor mote, which

combines Agilent Technologies’ Cyclops with Crossbow’s Mica2

mote. Cyclops was developed as an add-on CIF (320×240 pixel)

CMOS camera module board, which hosts an on-board 8-bit

microcontroller and 64 Kbytes of static and 512 Kbytes of flash

memory for pixel-level processing and storage. The authors of [5]

presented a smart camera mote architecture that uses an FPGA as

its central processing unit, a VGA CMOS imager, and 10 Mbytes

of static and 64 Mbytes of flash memory to perform early-vision,

i.e. pixel-level, tasks. Note that all three mote architectures use

FPGA or CPLD devices for interfacing with just a single image

sensor. As will be discussed in this paper, we believe that this may

not yield the most power-efficient nor optimal performance

solution for many distributed vision-enabled applications.

A mote architecture with minimal component count was

introduced by Downes et al. [6] at Stanford’s Wireless Sensor

Networks Lab. It deploys an ARM7 microcontroller at its core, up

to 2 Mbytes of flash memory, and a 2.4 GHz IEEE 802.15.4 radio.

Unlike the motes mentioned above, this mote pioneers the concept

of multiple vision sensors as it can host up to four low-resolution

(30×30 pixel) image sensors and two CIF CMOS camera

modules. Both types of vision sensors feature a serial interface

thus eliminating the need for additional FPGA or CPLD devices.

In 2006, Kleihorst et al. [8] presented WiCa—a smart camera

mote with a high-performance vision system. Its radio section

features a 2.4 GHz IEEE 802.15.4 radio controlled by an Atmel

AVR microcontroller. Its vision system consists of two VGA

camera modules, which feed video to Xetal, a remarkable

dedicated parallel processor based on a vector single-instruction

multiple-data (SIMD) architecture. Xetal exchanges image

processing results with an 8051-based host processor through a

128 Kbytes dual-port RAM.

The remainder of this paper is organized as follows. Section 2

outlines the target application and derives design objectives for

the mote architecture. In Section 3, we introduce our smart camera

mote architecture called MeshEye and discuss its constituent

components in more detail. Section 4 discusses our

implementation of the medium access control and data link layers

for low-rate wireless personal area networks. Section 5 describes

the configuration of MeshEye’s hybrid-resolution vision system

whereas Section 6 explains its underlying algorithms that perform

object detection, acquisition, and tracking as building blocks for

higher-level reasoning algorithms. In Section 7, we present a basic

power model of our battery-powered mote architecture that yields

lifetime predictions for surveillance operation under varying event

rate. Finally, Section 8 summarizes our smart camera mote

architecture and outlines directions for further work.

2. SURVEILLANCE APPLICATION
Our design of a smart camera mote has been pursued with a

specific application in mind: distributed intelligent surveillance.

This guides our design decisions and helps us in specifying

critical mote functionality. We believe that surveillance will be

one of the first areas to benefit from emerging wireless sensor

networking technology. Especially low per-node cost, ease of

deployment, scalability, and in-network distributed processing are

factors that make this technology ideal for intelligent surveillance.

Intelligent surveillance may have different meaning to different

people. Let us first consider how surveillance is typically realized

today. Pan-tilt-zoom cameras are distributed across the

deployment area and their raw video output is streamed to a

surveillance center, in which a panel of monitors displays the

video streams. Obviously, this implementation requires sufficient

bandwidth for video streaming, has high installation cost, and

most of all is hardly scalable. We consider any surveillance

solution that performs processing of the video stream right at the

camera and hence reduces bandwidth requirements as an

intelligent system.

As a first level of intelligence, the camera nodes use a motion

detection scheme such that only moving scenes are streamed to

the surveillance center. At a second level, the camera nodes could

perform object detection and classification such that only moving

scenes containing persons or more general objects of interest are

forwarded. Going even further, the smart camera nodes could

collaborate to identify objects and only transmit their textual

description along with a snapshot. Continuing this train of

thought of adding intelligence to surveillance, a network of smart

cameras could possibly just notify the surveillance center in case

of events of interest by providing a hybrid textual/visual or fully

textual description of the event. Figure 1 illustrates this concept of

levels of intelligence in surveillance. As the level of intelligence

increases, bandwidth requirements on the underlying data

transmission network decrease accordingly.

Moving scenes

Raw video stream

Object detection

Event description

Object description

Level of Intelligence

none

medium

high

Bandwidth Requirement

high

medium

low

Moving scenes

Raw video stream

Object detection

Event description

Object description

Level of Intelligence

none

medium

high

Bandwidth Requirement

high

medium

low

Figure 1. Intelligence-added surveillance.

Microcontroller

ARM7TDMI Core

IEEE 802.15.4,

ZigBee-compliant

Transceiver

KiloPixel Imager

low power,

high frame rate

KiloPixel Imager

low power,

high frame rate

VGA Camera

Module with

integrated optics

S
P
I

TWI

I/O CCIR

Control

Data

MMC/SD Card

as frame buffer

RAM FLASH

S
P
I

Power Supply Unit

stationary or battery

USB 2.0 Full Speed

Serial Interface

Power Management

Controller

devicesup to 8

Microcontroller

ARM7TDMI Core

IEEE 802.15.4,

ZigBee-compliant

Transceiver

KiloPixel Imager

low power,

high frame rate

KiloPixel Imager

low power,

high frame rate

VGA Camera

Module with

integrated optics

S
P
I

TWI

I/O CCIR

Control

Data

MMC/SD Card

as frame buffer

RAM FLASH

S
P
I

Power Supply Unit

stationary or battery

USB 2.0 Full Speed

Serial Interface

Power Management

Controller

devicesup to 8

Figure 2. Block diagram of our MeshEyeTM architecture.

A basic list of requirements for a smart camera mote architecture

can be formulated from this general description of intelligent

surveillance although arguably an optimized architecture would

require a much more detailed specification of the entire

surveillance system:

• The mote needs to monitor its observation area fast enough

to detect all objects of interest. These objects vary by

surveillance deployment and can include, for example,

humans, vehicles, animals, airplanes or a combination

thereof.

• The mote must be able to process and analyze multiple

detected objects in real time. Of course, actual real-time

specifications are driven by latency requirements of the

application at hand.

• Wired or wireless links between motes need to exist for

information exchange of the high-level reasoning algorithms.

In this paper, we consider wireless links due to their rapid

and scalable deployment.

• The surveillance network can either consist of homogeneous

or heterogonous motes. Our approach is a homogenous mote

network since we believe that it minimizes system cost and

simplifies mote capability management.

• For mobile applications, mote design needs to pay special

attention to energy consumption such that lifetime

expectations can be satisfied using an appropriately sized

battery pack. This case applies to our smart camera

architecture.

3. MOTE ARCHITECTURE
The block-level architecture of our smart camera mote called

MeshEyeTM mote is shown in Figure 2. An Atmel AT91SAM7S

family microcontroller [10] forms the core of our mote

architecture. It features a USB 2.0 full-speed port and a serial

interface for wired connection. The mote can host up to eight

kilopixel imagers and one VGA camera module, for which we

chose Agilent Technologies’ ADNS-3060 high-performance

optical mouse sensor [11] (30×30 pixel, 6-bit grayscale) and

Agilent Technologies’ ADCM-2700 landscape VGA resolution

CMOS camera module [12] (640×480 pixel programmable,

grayscale or 24-bit color), respectively. An MMC/SD flash

memory card provides sufficient and scalable non-volatile

memory for temporary frame buffering or even image archival.

Wireless connection to other motes in the network can be

established through a Texas Instruments CC2420 2.4 GHz IEEE

802.15.4/ZigBee-ready RF transceiver [13], which will be

discussed in the following section in more detail. The mote can

either be powered by a stationary power supply if available or

battery-operated for mobile applications or ease of deployment.

The objectives guiding the electrical design of the MeshEye

architecture have been the integration of low-power, readily

available parts, use of standard interfaces, and most of all

minimization of total component count. The main motivation in

keeping the component count small lies in reduced power

consumption and mote cost. The use of standard interfaces

manifests itself in that a single SPI interface connects flash

memory card, kilopixel imagers, and radio to the microcontroller.

A TWI interface controls the camera module while its CCIR video

is read out through general-purpose I/O pins. Note that this CCIR

read-out method is not common but allows us to avoid additional

interface components at the expense of a reduced frame rate of

about 3 frames per second. Most other solutions interface CCIR

image sensors to microcontrollers through a combination of an

FPGA or CPLD and static memory for frame buffering. While

such solutions may enable video streaming, it oftentimes adds

significantly to the mote cost and the power budget.

Initially we built a prototype of a MeshEye mote with two

kilopixel imagers. Low-level device drivers have been written and

tested. Figure 3 shows a photograph of a prototype with the

microcontroller development board (back, right), radio

development board (back, left), two kilopixel imagers (front, left

and right), and the camera module (front, center). Recently we

completed the design of a fully integrated Printed Circuit Board

(PCB) MeshEye mote, which is shown in Figure 4. It consists of a

base board and a sensor board. The base board hosts the voltage

regulators, microcontroller, radio, MMC/SD flash card and

external interface connectors. Power can be supplied through an

external source, the Mini-USB port, or at least one 2 AA battery

Figure 3. Photograph of a MeshEyeTM prototype. Figure 4. Photograph of the MeshEyeTM mote.

set. The sensor board, which sits on top of the base board,

contains the two kilopixel imagers and the VGA camera module.

3.1 Processing Unit
The mote architecture is centered around the Atmel AT91SAM7S

family of microcontrollers, which incorporate an ARM7TDMI

ARM Thumb processor. We prefer this microcontroller family for

their leading power-efficient 32-bit RISC architecture that can be

clocked up to 55 MHz. This high-performance architecture

appears adequate to carry out from low- to high-level processing

in real time if image resolutions and frame rates are chosen

appropriately. Note that other processor architectures may also be

suitable and even offer advantages in certain cases.

To meet varying memory requirements, the AT91SAM7S family

offers internal SRAM up to 64 Kbytes and internal flash memory

up to 256 Kbytes. Its built-in power management controller can

not only put the processor into different power-saving modes, it

can also power down peripherals by disabling their clock source.

Additionally, an internal, programmable PLL allows the

ARM7TDMI core to be operated at clock frequencies below the

maximum; for example during periods of little processing load.

4. WIRELESS LINK
The Texas Instruments CC2420 transceiver provides wireless

connectivity to other motes in the sensor network. It implements

the IEEE 802.15.4 standard, which targets low-rate wireless

personal area networks (LR-WPAN). Thus this transceiver

supports data transmission at 250 Kbps (Kbits per second) with a

maximum transmit power of 1mW in the unlicensed 2.4 GHz ISM

band.

Obviously such a wireless link cannot support video streaming in

real-time although transmission of small or highly compressed

images is possible [14]. But we deem it suitable for intelligent

surveillance if in-node, intermediate-level processing condenses

an object’s pixel array into more compact or descriptive

representations (axis projection, color histogram, or object shape

for instance).

4.1 Medium Access Control
Our current MAC layer implementation utilizes the CSMA-CA

MAC protocol. Hence, before transmission the radio monitors the

assigned channel and transmits data only when the signal on the

channel is below a particular threshold level, which indicates that

the channel is free. This minimizes collisions between packets

being sent over the channel from different transmissions. The

threshold level is user-defined.

For the reception of packets, the radio constantly monitors the

channel traffic. When a packet is detected, the receiver places the

packet in a 127-byte receive (RX) FIFO buffer. The Texas

Instruments CC2420 radio also allows for hardware-based address

recognition. When this function is used, which is the case for our

implementation, the radio monitors the destination field of

incoming packets and places the data into the RX FIFO only

when the destination address of the packet matches the address

assigned to the receiver. Upon reception of a packet, the receiver

checks for error via cyclic redundancy checking (CRC) and

checks for missing packets by comparing its expected packet

sequence number with the sequence number in the packet’s

header.

To allow for quick response to and processing of incoming

packets, an interrupt is used to notify the microcontroller when a

packet is received. This ensures that the RX FIFO is cleared for

further reception of packets. The interrupt occurs when a complete

packet has been received or when the number of bytes received

exceeds the preset threshold. Again, the threshold can be modified

by the user. After the interrupt has completed, the receiver is

ready to receive the next packet.

To avoid spurious packets (especially interference from nearby

IEEE 802.11 radios), a simple check of the size of the packet is

performed. All very small packets that cannot contain valid

headers are discarded. If the sender requests an acknowledgment,

the receiver automatically replies with an acknowledgment packet

if it has received a packet correctly and in order. If an

acknowledgment has not been received by the sender after a set

timeout, the sender retransmits the packet.

When a data packet has been received correctly, the receiver

extracts data from the RX FIFO to be stored internally, and then

flushes its buffer to prepare for reception of the next packet.

Figure 6. Implementation of efficient data link protocol.

Send 1
st
 packet

with ACK

Send next packet

without ACK

Last

packet?

Send last packet

with ACK

Get record of

missing packets

Resend lost

packets with ACK

DONE

yes

no

Figure 5. MAC layer performance (indoors).

We carried out indoor measurements of our IEEE 802.15.4

wireless link to validate its correct operation. As would be

expected, the observed packet error rate (PER) decreases with an

increase in the received signal strength indicator (RSSI) (left-hand

axis in Figure 5). The PER approaches zero for RSSI values larger

than -8, and only becomes observable for RSSI values below -8.

This indicates that the MAC layer provides for a highly reliable

wireless link.

The MAC layer is able to sustain a maximum data throughput of

about 11.2 KB/s (KBytes/second) for a RSSI of above -5 (right-

hand axis in Figure 5), which falls less than 4 KB/s short of the

maximum possible effective data rate inferred from Fig. 9 of [15]

for direct data transmission in a nonbeacon-enabled network.

Note that the throughput performance reported here applies to

single point-to-point links and will significantly decrease in multi-

node or multi-hop transmissions. The throughput drops to about

10.8 KB/s as the RSSI decreases to -28. This degradation of

throughput is very gradual with large changes in RSSI since

across the range from -28 to 25, the throughput changes only by

about 3.7%.

4.2 Data Link Layer
For transmission of kilopixel images, the 900-byte image is

broken up into several 110-byte long data frames. Each of these

frames is sent with request for acknowledgment (ACK) from the

receiver. If an ACK is not received within a certain timeout, the

sender retransmits the current data frame. Once the sender

receives the ACK correctly, it transmits the next frame. One

limitation of this data link implementation occurs when bursts of

error exist and the same frame needs to be retransmitted many

times until the error burst has disappeared. This degrades the

efficiency and throughput of this basic data link protocol. In

addition, the delay in waiting for the acknowledgment to arrive

after each data frame has been sent reduces efficiency and

throughput even further.

An alternative, more efficient protocol implementation, which

mitigates the above mentioned limitations, is shown in Figure 6.

The sender transmits all data frames without waiting for an

acknowledgment while the receiver keeps track of the correctly

received frames. Only the first and last frame sent require an

acknowledgment to delimit the start and end of the image

transmission cycle. Once the last frame has been received, the

receiver returns a special control frame to the sender side with the

sequence numbers of all lost data frames. In turn the sender

retransmits all lost frames; this time with acknowledgment for

each frame. In order to implement such a scheme, enough memory

must be available to store the frames which have been sent but not

yet acknowledged. Also, the receiver needs to have enough

memory to store the correctly received (but out of order) frames

and to store the incoming retransmitted frames (after the special

control frame has been sent at the end of the normal transmission

cycle) before further processing can be done on the image.

For medium to high link qualities, both data link protocols

support a maximum throughput of 11 KB/s. Thus, both protocols

have minimal overhead so that their throughput only falls slightly

below the MAC layer’s maximum throughput of 11.2 KB/s. The

maximum frame rate for wireless kilopixel transmission is 10

frames per second.

5. VISION SYSTEM
The vision system forms the key sensing element of our smart

camera mote. In a first implementation, we will use two kilopixel

imagers with the VGA camera module centered between them. All

three pixel arrays are parallel and thus facing the same direction.

The three image sensors are focused to infinity and their field of

view (FoV) angle should be approximately the same although

ideally the kilopixel imagers should have a slightly larger FoV

angle. Hence the three imagers have an overlapping FoV only

offset by the small distance—the baseline—in between them.

We envision the following usage model for the three image

sensors during intelligent surveillance operation. One of the

kilopixel imagers will be used to continuously poll for moving

objects entering its FoV. Once one or possibly more objects have

been detected, position and size within a kilopixel image can be

determined for each object. Basic stereo vision of the two

kilopixel imagers yields the distance to the object. This

information allows us to calculate the region of interest (RoI)

containing the object within the VGA camera’s image plane.

Subsequently the microcontroller triggers the VGA camera

Figure 7. Hybrid-resolution vision system.

STEP 1:

Object Detection

STEP 2:

Stereo Vision

Object

STEP 3: Region of Interest Capture

Lens

Left Kilopixel Imager Right Kilopixel Imager

High-Resolution Camera

PositionPosition & Size

STEP 1:

Object Detection

STEP 2:

Stereo Vision

Object

STEP 3: Region of Interest Capture

Lens

Left Kilopixel Imager Right Kilopixel Imager

High-Resolution Camera

PositionPosition & Size

Figure 8. Depth limit of MeshEye’s stereo vision system.

module to capture a high-resolution grayscale or color RoI

including the detected object. Figure 7 illustrates this hybrid-

resolution vision system overlaid with real images acquired by our

mote prototype. After possibly additional low-level processing,

the object’s RoI will then be handed over to intermediate-level

processing functions.

An obvious question frequently asked at this point is: “Why do

you not just use two VGA camera modules instead and have them

downsample or downsize their images to obtain kilopixel

images?” While this approach is certainly feasible [8], it leads to

longer image acquisition time and increased power consumption.

Typically, camera modules still acquire the entire pixel array

internally and downsample or downsize it digitally. Hence low-

resolution frame capture with a kilopixel imager is more power-

efficient even if it has about the same power consumption per

pixel as the camera module.

The depth limit of our low-resolution stereo vision system can be

calculated from the disparity-baseline relation

Z

Bf
disparity = , (1)

where B denotes the baseline between left and right low-

resolution imager sensors, f the focal length, and Z the object’s

depth. To determine the depth limit of MeshEye’s stereo vision

system as plotted in Figure 8, we lower-bound the disparity to the

30 µm pixel pitch of the kilopixel image arrays; f equals 4.6 mm
for the plastic aspheric lenses used. The 57 mm (95 mm) baseline

presently set in our MeshEye mote (prototype) allows for a

maximum perceived depth of 8.74 m (14.5 m) in theory, which we

deem adequate for indoor and limited outdoor usage. At fixed

resolution of the image sensors, one may increase the focal length

to increase the depth limit at the expense of narrower FoV angle.

6. VISION ALGORITHMS
The image processing algorithms behind the hybrid-resolution

vision system are designed to detect, acquire, and track objects

entering its FoV. Since we plan to implement and execute these

algorithms on a generic 32-bit RISC architecture without

dedicated DSP engines, the algorithms are intentionally kept at

lower computational complexity.

The overall vision processing flow is shown in the flowchart of

Figure 9. Both low-resolution (LR) imagers continue updating

their background image and estimate of temporal pixel noise when

no objects are present. Upon detection of a moving object in the

left kilopixel image, the vision system determines the bounding

box and stores the object’s RoI. This RoI serves as a template to

locate the object’s position within the FoV of the right kilopixel

imager. If this stereo matching cannot establish a positive match

to the template, the left LR imager will continue detecting the

object. This case occurs for example when the object lies outside

the overlapping FoV of the two kilopixel imagers. Knowing the

object’s position within both LR image arrays and its size, the

vision system triggers the VGA camera module to acquire a high-

resolution (HR) snapshot of the object. The left kilopixel imager

can continue tracking the object until it leaves its FoV and initiate

additional HR RoI acquisitions of the object as required by the

application.

6.1 Object Detection
Prior to any further processing, the raw image arrays from both

kilopixel imagers are normalized to each frame’s average pixel

value. This mitigates changes in brightness and exposure time. We

found this normalization especially effective in coping with

oscillations of the digital shutter control loop.

The kilopixel imager performs object detection through

background subtraction on a frame-by-frame basis. That is it

calculates the frame difference between the current frame

()yxI t
left
, , 30,,2,1, K=yx , and the latest background ()yxB t

left
,

as given by

 () () ()yxByxIyxD t

left

t

left

t

left ,,, −= . (2)

All pixels, whose frame difference ()yxD t

left
, exceed a preset

multiple k of the temporal noise standard deviation η , are set in

a binary mask ()yxM t

left
, as potential candidates of motion,

 () ()


 ≥

=
otherwise

kyxD
yxM

t

leftt

left
0

,1
,

η
. (3)

In our experimental vision system, η typically equals 1.75 and k
is set to about 6. To eliminate objects smaller than 2×2 pixel, we

low-pass filter the binary frame mask according to

 () ()
















= yxMconvyxF t

left

t

left
,,

11

11

4

1
, 2 , (4)

where 2conv denotes two-dimensional convolution.

In the final processing step, a blob search algorithm identifies all

regions as moving objects, which consist of connected groups of

unity pixels within the binary mask ()yxM t

left
, that contain at

least one unity pixel of the filtered mask ()yxF t

left
, . It is then

straightforward to determine the bounding box of the object and

Both LR imagers:
acquire new frame

Both LR imagers:
update background
and noise estimate

Left LR imager:
object detection

Object
detected

Right LR imager:
stereo matching

Positive
match?

HR camera:
capture object RoI
and identify object

no

yes

yes

no

Figure 9. Flowchart of the vision processing system.

extract the object’s difference RoI ()yxD t

object
, as a subset of the

current frame difference ()yxD t

left
, .

6.2 Stereo Matching
The objective of the stereo matching algorithm lies in locating the

object’s RoI within the right kilopixel image array. Since the pixel

arrays of both LR imagers are aligned in parallel, the object will

appear as a shifted version in the right kilopixel array if it is

located within their joint FoV. This satisfies the requirements for

template matching based on cross-correlation. Therefore, the

vision system computes the cross-correlation of the object’s array

()yxD t

object
, over the right kilopixel difference array ()yxDt

right
, ,

 () () ()()yxDyxDxcorvuC t

object

t

right

t

right
,,,, 2= , (5)

where 2xcor denotes two-dimensional unbiased cross-correlation

without boundary padding such that 30,,2,1, K=vu .

Lastly, the ()vu, coordinate with the largest cross-correlation

value—or the average ()vu, coordinate in case of multiple largest

cross-correlation values—is assumed as the object’s position

within the right LR image array. However, to qualify a positive

match and remove objects outside the joint FoV, the maximum

cross-correlation value has to be sufficiently close to the center

autocorrelation value of the object’s ROI, which may be

expressed as

 () ()0,075.0,max
,

t

object

t

right
vu

AvuC ≥ . (6)

()vuA t

object
, denotes the unbiased autocorrelation of the object’s

difference array

 () () ()()yxDyxDxcorvuA t

object

t

object

t

object
,,,, 2= .

If this condition is not met, no positive match can be established

and the object is discarded.

6.3 Object Acquisition
The top two frames of Figure 10a show the stationary background

for both kilopixel imagers in an outdoor scene. The bounding box

in the top left frame of Figure 10b indicates successful detection

of an object—in this case a person walking through the scene. The

bounding box in the top right frame of Figure 10b confirms

correct stereo matching of this person. The bounding box in the

bottom image of Figure 10b results from mapping the object’s

bounding box from both LR imagers into the image array of the

HR camera. The vision system performs this mapping by first

calculating the average position of the box for the two kilopixel

imagers. Recall that this averaging step is valid here since the HR

camera sits right in the center of the two LR imagers. In turn,

position and size of the bounding box are scaled to account for the

increase in resolution of the VGA camera. For our MeshEye mote

prototype, the scaling factor equals 10 in both, horizontal and

vertical, directions.

Finally, the VGA camera captures a HR snapshot of the object,

which is stored for further processing or exchange with

neighboring smart cameras. Such processing can include object

classification or even distributed, multi-camera view identification

based on its shape, orientation, aspect ratio, or color histogram for

example.

6.4 Computational Efficiency
To conclude this section, let us consider the computational

savings that our hybrid-resolution vision system achieves over the

WiCa smart camera mote [8]. WiCa’s dual high-resolution (VGA

format) camera system combined with the Xetal SIMD (Single

Instruction Multiple Data) dedicated video processor establishes a

fair base of comparison among published smart camera vision

systems to carry out range estimation and moving object detection

and RoI extraction.

For simplicity, this consideration of computational complexity is

limited to one moving object within the vision system’s FoV. The

MeshEye vision system carries out the algorithms described in the

previous subsections. For the dual-camera SIMD system, our

calculation assumes that it performs the same computations on its

two HR cameras rather than two LR imagers, which result in a

moving object’s pixel array and estimated range. Whenever

possible the computations utilize Xetal’s line-parallel processor

architecture, which executes an instruction across an entire line of

pixel data within one instruction cycle. Of course, an alternative

approach may downsize incoming frames from VGA to kilopixel

(a)

(b)

Figure 10. Hybrid-resolution vision system during operation: (a) stationary background and (b) moving person.

resolution prior to object detection and extraction. This however

would underutilize the line-parallel processor and not take full

advantage of its 640-pixel wide line buffers.

The computational efficiency of our MeshEye vision system

relative to the WiCA vision system is shown in Figure 11. More

specifically, it graphs the ratio of computational complexity (using

Big O notation for each image processing step) of the dual-camera

SIMD system over the hybrid-resolution vision system as a

function of object size in high resolution when both systems

perform moving object detection, ranging, and RoI extraction.

The MeshEye system achieves a fivefold reduction in complexity

for small object sizes, but the gains in efficiency diminish down to

0.7 as object size increases. Smaller objects require fewer

computations and hence the hybrid-resolution processing

outperforms the dual-camera SIMD system. Large objects cause a

heavier processing load and hence the SIMD processor excels

over hybrid-resolution vision.

For objects sized around 132,800 high-resolution pixel2, which

amounts to rather large objects of for example 364×364 pixel—or

more than half the VGA frame, both vision systems have equal

computational complexity. Note that it is for the significant

reductions in computational complexity for moderately sized

objects that the MeshEye architecture is viable without the need

for a dedicated, high-performance DSP engine.

7. POWER MODEL
An important performance metric for battery-operated motes is

their lifetime during deployment. The mote can be powered by

batteries in mobile applications for instance. Batteries may also

serve as backup energy sources in case the main power supply

fails for example due to intruder attacks. Therefore we developed

a power model for our smart camera mote architecture during

basic surveillance operation.

The power model assumes that the mote is powered by two non-

rechargeable AA batteries (capacity 2850 mAh) at a conversion

efficiency of 90%. It accounts for current consumption of the

following main mote components: Atmel AT91SAM7S64

microcontroller running at a processor clock of 47.92 MHz, PQI

256 MB MultiMediaCard flash memory, Agilent ADNS-3060

kilopixel imager, Agilent ADCM-2700 VGA camera module,

Texas Instruments CC2420 IEEE 802.15.4 transceiver. Table 1

summarizes the components’ typical current and runtime values

used in the power model. Estimated runtimes and current draw

values quoted in each component’s data sheet are shown in

regular font style. Italicized values have actually been measured

on our mote implementation. For the most part, the initially

estimated values are in good agreement with the measurements

although the estimated active currents for the flash card and the

image sensors turn out to be rather conservative. The power

model uses measured values whenever available. Note that we

have not yet entirely validated the mote lifetimes estimated by the

power model although our MeshEye mote can be powered from

two AA batteries.

The mote operates as follows during a basic surveillance

application. In periodic poll intervals, the microcontroller wakes

up, acquires a kilopixel image, and determines whether an object

has entered its FoV. Once an object has been detected, the

microcontroller captures a high-resolution RoI of the object

following the procedure of hybrid-resolution vision described in

the preceding section. For simplicity our model treats the random

occurrence of object detection as an event, which occurs in

periodic event intervals. Intermediate level processing reads the

object’s RoI from flash memory and extracts its descriptive

representation. The radio transceiver communicates this

representation to neighboring motes. We either measured or

approximated the duration of poll and event activity for every

main component as shown in Table 1. The worst-case end-to-end

detection latency—an important performance metric in

surveillance networks, e.g. the delay from a moving object

entering the FoV until it is “known” within the network, equals

the poll period plus the microcontroller’s event runtime of 2

seconds.

According to this power model, Figure 12 presents a graph of

mote lifetime vs. event interval for poll periods ranging from 0.5

to 3 seconds. Event processing dominates the power consumption

for very frequent events and reduces lifetime considerably. When

Table 1. Estimated (regular) and measured (italicized)

component values used in the power model.

Typical Current

(mA)
Runtime (ms)

Component

Active Sleep Poll Eventa

Microcontroller
29.40

29.72
0.034

200

125
2000

MMC Flash Card
34.00

14.03

0.050

0.116
— 2000

Kilopixel Imager
30.6

14.89

0.005

<0.010

95

24
—

Camera Module
48.00

9.65

0.005

0.015
—

1000

600

Radio Transceiver
18.10

19.81

0.426

0.419
— 500

a) Event assumes an average object region of interest size of

64×64 pixel.

 Figure 11. Computational efficiency of the hybrid-resolution

vision system over the dual-camera SIMD system.

events occur less often, poll processing governs the power

consumption and the mote lifetime increases approaching lifetime

limited only by poll activity. For a moderately fast poll period of 1

second, the lifetime of our smart camera mote approaches 22 days

in this basic surveillance application.

As for the comparison of computational efficiency, it would be

valuable to compare the lifetime of our MeshEye mote against the

WiCa dual high-resolution smart camera mote [8]. However,

insufficient data on power consumption of the WiCa mote has

been published to date to compile a directly comparable power

model.

Further reductions in power consumption of the microcontroller

are attainable by deploying even more power-efficient, high-

performance processor cores like Intel’s StrongARM SA-1110

used in the Consus platform [16] or more recently Intel’s PXA271

XScale used in the Intel Mote 2 [17].

8. CONCLUSION
In this paper, we introduced a low-power ARM7-based smart

camera mote architecture. We designed it for real-time object

detection and in-node processing for applications in distributed

intelligent surveillance. Its hybrid-resolution vision system

deploys two kilopixel imagers to trigger region of interest

acquisition through a high-resolution camera module. The

underlying image processing algorithms for object detection,

tracking, and acquisition were discussed and illustrated on an

outdoor scene. Our efficient data link layer utilizing the IEEE

802.15.4 MAC enables data exchange between smart cameras

with little overhead. We presented a basic power model, which

estimates battery-powered mote lifetime under varying operating

conditions in a surveillance application. Future work will be

directed towards continued development of mote boards, refining

the vision algorithms, deploying them on our smart camera mote,

and running in- and outdoor trials.

9. ACKNOWLEDGMENTS
We gratefully acknowledge Agilent/Avago Technologies for

funding this research in part and supplying camera modules and

optical mouse sensors. Funding support provided by Micron

Foundation is gratefully acknowledged. Special thanks go to Ian

Downes with Stanford University for providing the schematics of

his image sensor mote design and to Benny Lai with Avago

Technologies for offering advice on the boost converter circuit.

10. REFERENCES
[1] A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M.

Lu, H. Merkl, S. Pankanti, S., “Smart video surveillance:

exploring the concept of multiscale spatiotemporal tracking,”

IEEE Signal Processing Mag., vol. 22, no. 2, pp. 38–51,

Mar. 2005.

[2] G. L. Foresti, C. Micheloni, L. Snidaro, P. Remagnino, T.
Ellis, “Active video-based surveillance system: the low-level

image and video processing techniques needed for

implementation,” IEEE Signal Processing Mag., vol. 22, no.

2, pp. 25–37, Mar. 2005.

[3] R. Kleihorst, A. Abbo, V. Choudhary, B. Schueler, “Design
Challenges for Power Consumption in Mobile Smart

Cameras,” in Proc. COGnitive systems with Interactive

Sensors (COGIS 2006), Mar. 2006.

[4] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D.
Estrin, M. Srivastava, “Cyclops: In Situ Image Sensing and

Interpretation in Wireless Sensor Networks,” in Proc. 3rd

International Conference on Embedded Networked Sensor

Systems (SenSys 2005), Nov. 2005, pp. 192–204.

[5] F. Dias Real de Oliveira, P. Chalimbaud, F. Berry, J. Serot,
F. Marmoiton, “Embedded Early Vision Systems:

Implementation Proposal and Hardware Architecture,” in

Proc. COGnitive systems with Interactive Sensors (COGIS

2006), Mar. 2006.

[6] I. Downes, L. Baghaei Rad, H. Aghajan, “Development of a
Mote for Wireless Image Sensor Networks,” in Proc.

COGnitive systems with Interactive Sensors (COGIS 2006),

Mar. 2006.

[7] Z.-Y. Cao, Z.-Z. Ji, M.-Z. Hu, “An image sensor node for
wireless sensor networks,” in Proc. International Conference

on Information Technology: Coding and Computing (ITCC

2005), Apr. 2005, vol. 2, pp. 740–745.

[8] R. Kleihorst, B. Schueler, A. Danilin, M. Heijligers, “Smart
Camera Mote with High Performance Vision System,” ACM

SenSys 2006 Workshop on Distributed Smart Cameras (DSC

2006), Oct. 2006.

[9] M. Bramberger, A. Doblander, A. Maier, B. Rinner, H.
Schwabach, “Distributed embedded smart cameras for

surveillance applications,” in IEEE Computer Mag., vol. 39,

no. 2, pp. 68–75, Feb. 2006.

[10] Atmel Corporation, “AT91SAM7Sxxx AT91 ARM Thumb-
based Microcontrollers,” Data Sheet, Revision 6175E-

ATARM-04-Apr-06, Apr. 2006.

[11] Agilent Technologies, “Agilent ADNS-3060 High-
Performance Optical Mouse Sensor,” Data Sheet, Oct. 2004.

Figure 12. Mote lifetime vs. event interval.

[12] Agilent Technologies, “Agilent ADCM-2700-0000
Landscape VGA Resolution CMOS Camera Module,” Data

Sheet, Draft 0.20, Jan. 2005.

[13] Texas Instruments, “Chipcon CC2420 2.4 GHz IEEE
802.15.4 / ZigBee-ready RF Transceiver,” Data Sheet, Rev.

1.4, 2006.

[14] G. Pekhteryev, Z. Sahinoglu, P. Orlik, G. Bhatti, “Image
transmission over IEEE 802.15.4 and ZigBee networks,”

IEEE International Symposium on Circuits and Systems

(ISCAS 2005), May 2005, vol. 4, pp. 3539–3542.

[15] J.-S. Lee, “An Experiment on Performance Study of IEEE
802.15.4 Wireless Networks,” 10th IEEE Conference on

Emerging Technologies and Factory Automation (ETFA

2005), Sept. 2005, vol. 2, pp. 451–458.

[16] V. Raghunathan, T. Pering, R. Want, A. Nguyen, P. Jensen,
“Experience With A Low Power Wireless Mobile Computing

Platform,” in Proc. International Symposium on Low Power

Electronics and Design (ISLPED 2004), Aug. 2004, pp.

363–368.

[17] R. Adler, M. Flanigan, J. Huang, R. Kling, N. Kushalnagar,
L. Nachman, C. Y. Wan, M. Yarvis, “Intel mote 2: an

advanced platform for demanding sensor network

applications,” in Proc. 3rd International Conference on

Embedded Networked Sensor Systems (SenSys 2005), Nov.

2005, pp. 298–298.

