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ABSTRACT 
Surveillance is one of the promising applications to which smart 

camera motes forming a vision-enabled network can add 

increasing levels of intelligence. We see a high degree of in-node 

processing in combination with distributed reasoning algorithms 

as the key enablers for such intelligent surveillance systems. To 

put these systems into practice still requires a considerable 

amount of research ranging from mote architectures, pixel-

processing algorithms, up to distributed reasoning engines. This 

paper introduces MeshEye, an energy-efficient smart camera mote 

architecture that has been designed with intelligent surveillance as 

the target application in mind. Special attention is given to 

MeshEye’s unique vision system: a low-resolution stereo vision 

system continuously determines position, range, and size of 

moving objects entering its field of view. This information 

triggers a color camera module to acquire a high-resolution image 

sub-array containing the object, which can be efficiently 

processed in subsequent stages. It offers reduced complexity, 

response time, and power consumption over conventional 

solutions. Basic vision algorithms for object detection, 

acquisition, and tracking are described and illustrated on real-

world data. The paper also presents a basic power model that 

estimates lifetime of our smart camera mote in battery-powered 

operation for intelligent surveillance event processing. 

Categories and Subject Descriptors 
B.0 [Hardware]: General; C.4 [Performance of Systems]: 

Design Studies; I.4.9 [Image Processing and Computer Vision]: 

Applications 

General Terms 
Algorithms, Design, Experimentation, Measurement, Performance 

Keywords 
Distributed Intelligence, Mote Architecture, Power Efficiency, 

Smart Cameras, Wireless Sensor Networks 

1. INTRODUCTION 
Distributed smart cameras have received increased focus in the 

research community over the past several months. The notion of 

cameras combined with embedded computation power and 

interconnected through radio links opens up a new realm of 

intelligent vision-enabled applications. Real-time image 

processing and distributed reasoning made possible by smart 

cameras can not only enhance existing applications but also 

motivate new applications. Potential application areas range from 

home monitoring, elderly care, and smart environments to security 

and surveillance in public or corporate buildings. Critical issues 

influencing the success of smart camera deployments for such 

applications include reliable and robust operation with as little 

maintenance as possible. 

In comparison to scalar sensors, such as temperature, pressure, 

humidity, velocity, and acceleration sensors, vision sensors 

generate much higher bandwidth data due to the two-dimensional 

nature of their pixel array.  The sheer amount of raw data 

generated precludes it from human analysis in many applications. 

Hence distributed intelligent algorithms supported by in-node 

image processing are required to successfully operate scalable 

networks of wireless smart cameras. We see the combination of 

local processing and distributed reasoning as the key challenge in 

making intelligent vision-enabled applications a reality. As 

outlined in [1]–[3], local processing calls for adequate low-level 

pixel processing, which enhances image content, and 

intermediate-level object processing, which detects and tracks 

objects and extracts their properties. On the other hand, 

distributed reasoning requires high-level algorithms, which 

exchange and compare object information among nodes and make 

joint decisions [2]. Several examples of low- and intermediate-

level algorithms can be found in [1]–[6]. 

In this paper, we introduce a smart camera mote architecture 

designed for in-node processing, with the aim of facilitating 

distributed intelligent surveillance. With this application in mind, 

our mote architecture targets the provision of sufficient processing 

power and an adequate vision system while minimizing 

component count and power consumption. Low power 

consumption is an important design objective to enable mobile 

surveillance applications using battery-powered camera motes. 

Several mote architectures for wireless image sensor networks 

with similar objectives have been proposed in the past. In 2005, 

Cao et al. [7] proposed an image sensor mote architecture in 

which an FPGA connects to a VGA (640×480 pixel) CMOS 

imager to carry out image acquisition and compression. An 
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ARM7 microcontroller processes images further and 

communicates to neighboring motes via an ultra-low-power 

transceiver at data rates up to 76.8 KBaud per second. Rahimi et 

al. [4] suggested another powerful image sensor mote, which 

combines Agilent Technologies’ Cyclops with Crossbow’s Mica2 

mote. Cyclops was developed as an add-on CIF (320×240 pixel) 

CMOS camera module board, which hosts an on-board 8-bit 

microcontroller and 64 Kbytes of static and 512 Kbytes of flash 

memory for pixel-level processing and storage. The authors of [5] 

presented a smart camera mote architecture that uses an FPGA as 

its central processing unit, a VGA CMOS imager, and 10 Mbytes 

of static and 64 Mbytes of flash memory to perform early-vision, 

i.e. pixel-level, tasks. Note that all three mote architectures use 

FPGA or CPLD devices for interfacing with just a single image 

sensor. As will be discussed in this paper, we believe that this may 

not yield the most power-efficient nor optimal performance 

solution for many distributed vision-enabled applications. 

A mote architecture with minimal component count was 

introduced by Downes et al. [6] at Stanford’s Wireless Sensor 

Networks Lab. It deploys an ARM7 microcontroller at its core, up 

to 2 Mbytes of flash memory, and a 2.4 GHz IEEE 802.15.4 radio. 

Unlike the motes mentioned above, this mote pioneers the concept 

of multiple vision sensors as it can host up to four low-resolution 

(30×30 pixel) image sensors and two CIF CMOS camera 

modules. Both types of vision sensors feature a serial interface 

thus eliminating the need for additional FPGA or CPLD devices. 

In 2006, Kleihorst et al. [8] presented WiCa—a smart camera 

mote with a high-performance vision system. Its radio section 

features a 2.4 GHz IEEE 802.15.4 radio controlled by an Atmel 

AVR microcontroller. Its vision system consists of two VGA 

camera modules, which feed video to Xetal, a remarkable 

dedicated parallel processor based on a vector single-instruction 

multiple-data (SIMD) architecture. Xetal exchanges image 

processing results with an 8051-based host processor through a 

128 Kbytes dual-port RAM. 

The remainder of this paper is organized as follows. Section 2 

outlines the target application and derives design objectives for 

the mote architecture. In Section 3, we introduce our smart camera 

mote architecture called MeshEye and discuss its constituent 

components in more detail. Section 4 discusses our 

implementation of the medium access control and data link layers 

for low-rate wireless personal area networks. Section 5 describes 

the configuration of MeshEye’s hybrid-resolution vision system 

whereas Section 6 explains its underlying algorithms that perform 

object detection, acquisition, and tracking as building blocks for 

higher-level reasoning algorithms. In Section 7, we present a basic 

power model of our battery-powered mote architecture that yields 

lifetime predictions for surveillance operation under varying event 

rate. Finally, Section 8 summarizes our smart camera mote 

architecture and outlines directions for further work. 

2. SURVEILLANCE APPLICATION 
Our design of a smart camera mote has been pursued with a 

specific application in mind: distributed intelligent surveillance. 

This guides our design decisions and helps us in specifying 

critical mote functionality. We believe that surveillance will be 

one of the first areas to benefit from emerging wireless sensor 

networking technology. Especially low per-node cost, ease of 

deployment, scalability, and in-network distributed processing are 

factors that make this technology ideal for intelligent surveillance. 

Intelligent surveillance may have different meaning to different 

people. Let us first consider how surveillance is typically realized 

today. Pan-tilt-zoom cameras are distributed across the 

deployment area and their raw video output is streamed to a 

surveillance center, in which a panel of monitors displays the 

video streams. Obviously, this implementation requires sufficient 

bandwidth for video streaming, has high installation cost, and 

most of all is hardly scalable. We consider any surveillance 

solution that performs processing of the video stream right at the 

camera and hence reduces bandwidth requirements as an 

intelligent system. 

As a first level of intelligence, the camera nodes use a motion 

detection scheme such that only moving scenes are streamed to 

the surveillance center. At a second level, the camera nodes could 

perform object detection and classification such that only moving 

scenes containing persons or more general objects of interest are 

forwarded. Going even further, the smart camera nodes could 

collaborate to identify objects and only transmit their textual 

description along with a snapshot. Continuing this train of 

thought of adding intelligence to surveillance, a network of smart 

cameras could possibly just notify the surveillance center in case 

of events of interest by providing a hybrid textual/visual or fully 

textual description of the event. Figure 1 illustrates this concept of 

levels of intelligence in surveillance. As the level of intelligence 

increases, bandwidth requirements on the underlying data 

transmission network decrease accordingly. 
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Figure 1. Intelligence-added surveillance. 
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Figure 2. Block diagram of our MeshEyeTM architecture. 



A basic list of requirements for a smart camera mote architecture 

can be formulated from this general description of intelligent 

surveillance although arguably an optimized architecture would 

require a much more detailed specification of the entire 

surveillance system: 

• The mote needs to monitor its observation area fast enough 

to detect all objects of interest. These objects vary by 

surveillance deployment and can include, for example, 

humans, vehicles, animals, airplanes or a combination 

thereof. 

• The mote must be able to process and analyze multiple 

detected objects in real time. Of course, actual real-time 

specifications are driven by latency requirements of the 

application at hand. 

• Wired or wireless links between motes need to exist for 

information exchange of the high-level reasoning algorithms. 

In this paper, we consider wireless links due to their rapid 

and scalable deployment. 

• The surveillance network can either consist of homogeneous 

or heterogonous motes. Our approach is a homogenous mote 

network since we believe that it minimizes system cost and 

simplifies mote capability management. 

• For mobile applications, mote design needs to pay special 

attention to energy consumption such that lifetime 

expectations can be satisfied using an appropriately sized 

battery pack. This case applies to our smart camera 

architecture. 

3. MOTE ARCHITECTURE 
The block-level architecture of our smart camera mote called 

MeshEyeTM mote is shown in Figure 2. An Atmel AT91SAM7S 

family microcontroller [10] forms the core of our mote 

architecture. It features a USB 2.0 full-speed port and a serial 

interface for wired connection. The mote can host up to eight 

kilopixel imagers and one VGA camera module, for which we 

chose Agilent Technologies’ ADNS-3060 high-performance 

optical mouse sensor [11] (30×30 pixel, 6-bit grayscale) and 

Agilent Technologies’ ADCM-2700 landscape VGA resolution 

CMOS camera module [12] (640×480 pixel programmable, 

grayscale or 24-bit color), respectively. An MMC/SD flash 

memory card provides sufficient and scalable non-volatile 

memory for temporary frame buffering or even image archival. 

Wireless connection to other motes in the network can be 

established through a Texas Instruments CC2420 2.4 GHz IEEE 

802.15.4/ZigBee-ready RF transceiver [13], which will be 

discussed in the following section in more detail. The mote can 

either be powered by a stationary power supply if available or 

battery-operated for mobile applications or ease of deployment. 

The objectives guiding the electrical design of the MeshEye 

architecture have been the integration of low-power, readily 

available parts, use of standard interfaces, and most of all 

minimization of total component count. The main motivation in 

keeping the component count small lies in reduced power 

consumption and mote cost. The use of standard interfaces 

manifests itself in that a single SPI interface connects flash 

memory card, kilopixel imagers, and radio to the microcontroller. 

A TWI interface controls the camera module while its CCIR video 

is read out through general-purpose I/O pins. Note that this CCIR 

read-out method is not common but allows us to avoid additional 

interface components at the expense of a reduced frame rate of 

about 3 frames per second. Most other solutions interface CCIR 

image sensors to microcontrollers through a combination of an 

FPGA or CPLD and static memory for frame buffering. While 

such solutions may enable video streaming, it oftentimes adds 

significantly to the mote cost and the power budget. 

Initially we built a prototype of a MeshEye mote with two 

kilopixel imagers. Low-level device drivers have been written and 

tested. Figure 3 shows a photograph of a prototype with the 

microcontroller development board (back, right), radio 

development board (back, left), two kilopixel imagers (front, left 

and right), and the camera module (front, center). Recently we 

completed the design of a fully integrated Printed Circuit Board 

(PCB) MeshEye mote, which is shown in Figure 4. It consists of a 

base board and a sensor board. The base board hosts the voltage 

regulators, microcontroller, radio, MMC/SD flash card and 

external interface connectors. Power can be supplied through an 

external source, the Mini-USB port, or at least one 2 AA battery 

Figure 3. Photograph of a MeshEyeTM prototype. Figure 4. Photograph of the MeshEyeTM mote. 



set. The sensor board, which sits on top of the base board, 

contains the two kilopixel imagers and the VGA camera module. 

3.1 Processing Unit 
The mote architecture is centered around the Atmel AT91SAM7S 

family of microcontrollers, which incorporate an ARM7TDMI 

ARM Thumb processor. We prefer this microcontroller family for 

their leading power-efficient 32-bit RISC architecture that can be 

clocked up to 55 MHz. This high-performance architecture 

appears adequate to carry out from low- to high-level processing 

in real time if image resolutions and frame rates are chosen 

appropriately. Note that other processor architectures may also be 

suitable and even offer advantages in certain cases. 

To meet varying memory requirements, the AT91SAM7S family 

offers internal SRAM up to 64 Kbytes and internal flash memory 

up to 256 Kbytes. Its built-in power management controller can 

not only put the processor into different power-saving modes, it 

can also power down peripherals by disabling their clock source. 

Additionally, an internal, programmable PLL allows the 

ARM7TDMI core to be operated at clock frequencies below the 

maximum; for example during periods of little processing load. 

4. WIRELESS LINK 
The Texas Instruments CC2420 transceiver provides wireless 

connectivity to other motes in the sensor network. It implements 

the IEEE 802.15.4 standard, which targets low-rate wireless 

personal area networks (LR-WPAN). Thus this transceiver 

supports data transmission at 250 Kbps (Kbits per second) with a 

maximum transmit power of 1mW in the unlicensed 2.4 GHz ISM 

band. 

Obviously such a wireless link cannot support video streaming in 

real-time although transmission of small or highly compressed 

images is possible [14]. But we deem it suitable for intelligent 

surveillance if in-node, intermediate-level processing condenses 

an object’s pixel array into more compact or descriptive 

representations (axis projection, color histogram, or object shape 

for instance). 

4.1 Medium Access Control 
Our current MAC layer implementation utilizes the CSMA-CA 

MAC protocol. Hence, before transmission the radio monitors the 

assigned channel and transmits data only when the signal on the 

channel is below a particular threshold level, which indicates that 

the channel is free. This minimizes collisions between packets 

being sent over the channel from different transmissions. The 

threshold level is user-defined. 

For the reception of packets, the radio constantly monitors the 

channel traffic. When a packet is detected, the receiver places the 

packet in a 127-byte receive (RX) FIFO buffer. The Texas 

Instruments CC2420 radio also allows for hardware-based address 

recognition. When this function is used, which is the case for our 

implementation, the radio monitors the destination field of 

incoming packets and places the data into the RX FIFO only 

when the destination address of the packet matches the address 

assigned to the receiver. Upon reception of a packet, the receiver 

checks for error via cyclic redundancy checking (CRC) and 

checks for missing packets by comparing its expected packet 

sequence number with the sequence number in the packet’s 

header. 

To allow for quick response to and processing of incoming 

packets, an interrupt is used to notify the microcontroller when a 

packet is received. This ensures that the RX FIFO is cleared for 

further reception of packets. The interrupt occurs when a complete 

packet has been received or when the number of bytes received 

exceeds the preset threshold. Again, the threshold can be modified 

by the user. After the interrupt has completed, the receiver is 

ready to receive the next packet. 

To avoid spurious packets (especially interference from nearby 

IEEE 802.11 radios), a simple check of the size of the packet is 

performed. All very small packets that cannot contain valid 

headers are discarded. If the sender requests an acknowledgment, 

the receiver automatically replies with an acknowledgment packet 

if it has received a packet correctly and in order. If an 

acknowledgment has not been received by the sender after a set 

timeout, the sender retransmits the packet.  

When a data packet has been received correctly, the receiver 

extracts data from the RX FIFO to be stored internally, and then 

flushes its buffer to prepare for reception of the next packet. 

Figure 6. Implementation of efficient data link protocol. 
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We carried out indoor measurements of our IEEE 802.15.4 

wireless link to validate its correct operation. As would be 

expected, the observed packet error rate (PER) decreases with an 

increase in the received signal strength indicator (RSSI) (left-hand 

axis in Figure 5). The PER approaches zero for RSSI values larger 

than -8, and only becomes observable for RSSI values below -8. 

This indicates that the MAC layer provides for a highly reliable 

wireless link.  

The MAC layer is able to sustain a maximum data throughput of 

about 11.2 KB/s (KBytes/second) for a RSSI of above -5 (right-

hand axis in Figure 5), which falls less than 4 KB/s short of the 

maximum possible effective data rate inferred from Fig. 9 of [15] 

for direct data transmission in a nonbeacon-enabled network. 

Note that the throughput performance reported here applies to 

single point-to-point links and will significantly decrease in multi-

node or multi-hop transmissions. The throughput drops to about 

10.8 KB/s as the RSSI decreases to -28. This degradation of 

throughput is very gradual with large changes in RSSI since 

across the range from -28 to 25, the throughput changes only by 

about 3.7%. 

4.2 Data Link Layer 
For transmission of kilopixel images, the 900-byte image is 

broken up into several 110-byte long data frames. Each of these 

frames is sent with request for acknowledgment (ACK) from the 

receiver. If an ACK is not received within a certain timeout, the 

sender retransmits the current data frame. Once the sender 

receives the ACK correctly, it transmits the next frame. One 

limitation of this data link implementation occurs when bursts of 

error exist and the same frame needs to be retransmitted many 

times until the error burst has disappeared. This degrades the 

efficiency and throughput of this basic data link protocol. In 

addition, the delay in waiting for the acknowledgment to arrive 

after each data frame has been sent reduces efficiency and 

throughput even further. 

An alternative, more efficient protocol implementation, which 

mitigates the above mentioned limitations, is shown in Figure 6. 

The sender transmits all data frames without waiting for an 

acknowledgment while the receiver keeps track of the correctly 

received frames. Only the first and last frame sent require an 

acknowledgment to delimit the start and end of the image 

transmission cycle. Once the last frame has been received, the 

receiver returns a special control frame to the sender side with the 

sequence numbers of all lost data frames. In turn the sender 

retransmits all lost frames; this time with acknowledgment for 

each frame. In order to implement such a scheme, enough memory 

must be available to store the frames which have been sent but not 

yet acknowledged. Also, the receiver needs to have enough 

memory to store the correctly received (but out of order) frames 

and to store the incoming retransmitted frames (after the special 

control frame has been sent at the end of the normal transmission 

cycle) before further processing can be done on the image.  

For medium to high link qualities, both data link protocols 

support a maximum throughput of 11 KB/s. Thus, both protocols 

have minimal overhead so that their throughput only falls slightly 

below the MAC layer’s maximum throughput of 11.2 KB/s. The 

maximum frame rate for wireless kilopixel transmission is 10 

frames per second. 

5. VISION SYSTEM 
The vision system forms the key sensing element of our smart 

camera mote. In a first implementation, we will use two kilopixel 

imagers with the VGA camera module centered between them. All 

three pixel arrays are parallel and thus facing the same direction. 

The three image sensors are focused to infinity and their field of 

view (FoV) angle should be approximately the same although 

ideally the kilopixel imagers should have a slightly larger FoV 

angle. Hence the three imagers have an overlapping FoV only 

offset by the small distance—the baseline—in between them. 

We envision the following usage model for the three image 

sensors during intelligent surveillance operation. One of the 

kilopixel imagers will be used to continuously poll for moving 

objects entering its FoV. Once one or possibly more objects have 

been detected, position and size within a kilopixel image can be 

determined for each object. Basic stereo vision of the two 

kilopixel imagers yields the distance to the object.  This 

information allows us to calculate the region of interest (RoI) 

containing the object within the VGA camera’s image plane. 

Subsequently the microcontroller triggers the VGA camera 

Figure 7. Hybrid-resolution vision system. 
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module to capture a high-resolution grayscale or color RoI 

including the detected object. Figure 7 illustrates this hybrid-

resolution vision system overlaid with real images acquired by our 

mote prototype. After possibly additional low-level processing, 

the object’s RoI will then be handed over to intermediate-level 

processing functions. 

An obvious question frequently asked at this point is: “Why do 

you not just use two VGA camera modules instead and have them 

downsample or downsize their images to obtain kilopixel 

images?” While this approach is certainly feasible [8], it leads to 

longer image acquisition time and increased power consumption. 

Typically, camera modules still acquire the entire pixel array 

internally and downsample or downsize it digitally. Hence low-

resolution frame capture with a kilopixel imager is more power-

efficient even if it has about the same power consumption per 

pixel as the camera module. 

The depth limit of our low-resolution stereo vision system can be 

calculated from the disparity-baseline relation 

 
Z

Bf
disparity = , (1) 

where B  denotes the baseline between left and right low-

resolution imager sensors, f  the focal length, and Z  the object’s 

depth. To determine the depth limit of MeshEye’s stereo vision 

system as plotted in Figure 8, we lower-bound the disparity to the 

30 µm pixel pitch of the kilopixel image arrays; f  equals 4.6 mm 
for the plastic aspheric lenses used. The 57 mm (95 mm) baseline 

presently set in our MeshEye mote (prototype) allows for a 

maximum perceived depth of 8.74 m (14.5 m) in theory, which we 

deem adequate for indoor and limited outdoor usage. At fixed 

resolution of the image sensors, one may increase the focal length 

to increase the depth limit at the expense of narrower FoV angle. 

6. VISION ALGORITHMS 
The image processing algorithms behind the hybrid-resolution 

vision system are designed to detect, acquire, and track objects 

entering its FoV. Since we plan to implement and execute these 

algorithms on a generic 32-bit RISC architecture without 

dedicated DSP engines, the algorithms are intentionally kept at 

lower computational complexity. 

The overall vision processing flow is shown in the flowchart of 

Figure 9. Both low-resolution (LR) imagers continue updating 

their background image and estimate of temporal pixel noise when 

no objects are present. Upon detection of a moving object in the 

left kilopixel image, the vision system determines the bounding 

box and stores the object’s RoI. This RoI serves as a template to 

locate the object’s position within the FoV of the right kilopixel 

imager. If this stereo matching cannot establish a positive match 

to the template, the left LR imager will continue detecting the 

object. This case occurs for example when the object lies outside 

the overlapping FoV of the two kilopixel imagers. Knowing the 

object’s position within both LR image arrays and its size, the 

vision system triggers the VGA camera module to acquire a high-

resolution (HR) snapshot of the object. The left kilopixel imager 

can continue tracking the object until it leaves its FoV and initiate 

additional HR RoI acquisitions of the object as required by the 

application. 

6.1 Object Detection 
Prior to any further processing, the raw image arrays from both 

kilopixel imagers are normalized to each frame’s average pixel 

value. This mitigates changes in brightness and exposure time. We 

found this normalization especially effective in coping with 

oscillations of the digital shutter control loop. 

The kilopixel imager performs object detection through 

background subtraction on a frame-by-frame basis. That is it 

calculates the frame difference between the current frame 

( )yxI t
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All pixels, whose frame difference ( )yxD t

left
,  exceed a preset 

multiple k  of the temporal noise standard deviation η , are set in 

a binary mask ( )yxM t

left
,  as potential candidates of motion, 
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In our experimental vision system, η  typically equals 1.75 and k  
is set to about 6. To eliminate objects smaller than 2×2 pixel, we 

low-pass filter the binary frame mask according to 

 ( ) ( )
















= yxMconvyxF t

left

t

left
,,

11

11

4

1
, 2 , (4) 

where 2conv  denotes two-dimensional convolution. 

In the final processing step, a blob search algorithm identifies all 

regions as moving objects, which consist of connected groups of 

unity pixels within the binary mask ( )yxM t

left
,  that contain at 

least one unity pixel of the filtered mask ( )yxF t

left
, . It is then 

straightforward to determine the bounding box of the object and 
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Figure 9. Flowchart of the vision processing system. 



extract the object’s difference RoI ( )yxD t

object
,  as a subset of the 

current frame difference ( )yxD t

left
, . 

6.2 Stereo Matching 
The objective of the stereo matching algorithm lies in locating the 

object’s RoI within the right kilopixel image array. Since the pixel 

arrays of both LR imagers are aligned in parallel, the object will 

appear as a shifted version in the right kilopixel array if it is 

located within their joint FoV. This satisfies the requirements for 

template matching based on cross-correlation. Therefore, the 

vision system computes the cross-correlation of the object’s array 

( )yxD t

object
,  over the right kilopixel difference array ( )yxDt

right
, , 

 ( ) ( ) ( )( )yxDyxDxcorvuC t

object

t

right

t

right
,,,, 2= , (5) 

where 2xcor  denotes two-dimensional unbiased cross-correlation 

without boundary padding such that 30,,2,1, K=vu . 

Lastly, the ( )vu,  coordinate with the largest cross-correlation 

value—or the average ( )vu,  coordinate in case of multiple largest 

cross-correlation values—is assumed as the object’s position 

within the right LR image array. However, to qualify a positive 

match and remove objects outside the joint FoV, the maximum 

cross-correlation value has to be sufficiently close to the center 

autocorrelation value of the object’s ROI, which may be 

expressed as 

 ( ) ( )0,075.0,max
,

t

object

t

right
vu

AvuC ≥ . (6) 

( )vuA t

object
,  denotes the unbiased autocorrelation of the object’s 

difference array 

 ( ) ( ) ( )( )yxDyxDxcorvuA t

object

t

object

t

object
,,,, 2= .  

If this condition is not met, no positive match can be established 

and the object is discarded. 

6.3 Object Acquisition 
The top two frames of Figure 10a show the stationary background 

for both kilopixel imagers in an outdoor scene. The bounding box 

in the top left frame of Figure 10b indicates successful detection 

of an object—in this case a person walking through the scene. The 

bounding box in the top right frame of Figure 10b confirms 

correct stereo matching of this person. The bounding box in the 

bottom image of Figure 10b results from mapping the object’s 

bounding box from both LR imagers into the image array of the 

HR camera. The vision system performs this mapping by first 

calculating the average position of the box for the two kilopixel 

imagers. Recall that this averaging step is valid here since the HR 

camera sits right in the center of the two LR imagers. In turn, 

position and size of the bounding box are scaled to account for the 

increase in resolution of the VGA camera. For our MeshEye mote 

prototype, the scaling factor equals 10 in both, horizontal and 

vertical, directions. 

Finally, the VGA camera captures a HR snapshot of the object, 

which is stored for further processing or exchange with 

neighboring smart cameras. Such processing can include object 

classification or even distributed, multi-camera view identification 

based on its shape, orientation, aspect ratio, or color histogram for 

example. 

6.4 Computational Efficiency 
To conclude this section, let us consider the computational 

savings that our hybrid-resolution vision system achieves over the 

WiCa smart camera mote [8]. WiCa’s dual high-resolution (VGA 

format) camera system combined with the Xetal SIMD (Single 

Instruction Multiple Data) dedicated video processor establishes a 

fair base of comparison among published smart camera vision 

systems to carry out range estimation and moving object detection 

and RoI extraction. 

For simplicity, this consideration of computational complexity is 

limited to one moving object within the vision system’s FoV. The 

MeshEye vision system carries out the algorithms described in the 

previous subsections. For the dual-camera SIMD system, our 

calculation assumes that it performs the same computations on its 

two HR cameras rather than two LR imagers, which result in a 

moving object’s pixel array and estimated range. Whenever 

possible the computations utilize Xetal’s line-parallel processor 

architecture, which executes an instruction across an entire line of 

pixel data within one instruction cycle. Of course, an alternative 

approach may downsize incoming frames from VGA to kilopixel 

(a) 

 

(b) 

 

Figure 10. Hybrid-resolution vision system during operation: (a) stationary background and (b) moving person. 



resolution prior to object detection and extraction. This however 

would underutilize the line-parallel processor and not take full 

advantage of its 640-pixel wide line buffers. 

The computational efficiency of our MeshEye vision system 

relative to the WiCA vision system is shown in Figure 11. More 

specifically, it graphs the ratio of computational complexity (using 

Big O notation for each image processing step) of the dual-camera 

SIMD system over the hybrid-resolution vision system as a 

function of object size in high resolution when both systems 

perform moving object detection, ranging, and RoI extraction. 

The MeshEye system achieves a fivefold reduction in complexity 

for small object sizes, but the gains in efficiency diminish down to 

0.7 as object size increases. Smaller objects require fewer 

computations and hence the hybrid-resolution processing 

outperforms the dual-camera SIMD system. Large objects cause a 

heavier processing load and hence the SIMD processor excels 

over hybrid-resolution vision. 

For objects sized around 132,800 high-resolution pixel2, which 

amounts to rather large objects of for example 364×364 pixel—or 

more than half the VGA frame, both vision systems have equal 

computational complexity. Note that it is for the significant 

reductions in computational complexity for moderately sized 

objects that the MeshEye architecture is viable without the need 

for a dedicated, high-performance DSP engine. 

7. POWER MODEL 
An important performance metric for battery-operated motes is 

their lifetime during deployment. The mote can be powered by 

batteries in mobile applications for instance. Batteries may also 

serve as backup energy sources in case the main power supply 

fails for example due to intruder attacks. Therefore we developed 

a power model for our smart camera mote architecture during 

basic surveillance operation. 

The power model assumes that the mote is powered by two non-

rechargeable AA batteries (capacity 2850 mAh) at a conversion 

efficiency of 90%. It accounts for current consumption of the 

following main mote components: Atmel AT91SAM7S64 

microcontroller running at a processor clock of 47.92 MHz, PQI 

256 MB MultiMediaCard flash memory, Agilent ADNS-3060 

kilopixel imager, Agilent ADCM-2700 VGA camera module, 

Texas Instruments CC2420 IEEE 802.15.4 transceiver. Table 1 

summarizes the components’ typical current and runtime values 

used in the power model. Estimated runtimes and current draw 

values quoted in each component’s data sheet are shown in 

regular font style. Italicized values have actually been measured 

on our mote implementation. For the most part, the initially 

estimated values are in good agreement with the measurements 

although the estimated active currents for the flash card and the 

image sensors turn out to be rather conservative. The power 

model uses measured values whenever available. Note that we 

have not yet entirely validated the mote lifetimes estimated by the 

power model although our MeshEye mote can be powered from 

two AA batteries. 

The mote operates as follows during a basic surveillance 

application. In periodic poll intervals, the microcontroller wakes 

up, acquires a kilopixel image, and determines whether an object 

has entered its FoV. Once an object has been detected, the 

microcontroller captures a high-resolution RoI of the object 

following the procedure of hybrid-resolution vision described in 

the preceding section. For simplicity our model treats the random 

occurrence of object detection as an event, which occurs in 

periodic event intervals. Intermediate level processing reads the 

object’s RoI from flash memory and extracts its descriptive 

representation. The radio transceiver communicates this 

representation to neighboring motes. We either measured or 

approximated the duration of poll and event activity for every 

main component as shown in Table 1. The worst-case end-to-end 

detection latency—an important performance metric in 

surveillance networks, e.g. the delay from a moving object 

entering the FoV until it is “known” within the network, equals 

the poll period plus the microcontroller’s event runtime of 2 

seconds. 

According to this power model, Figure 12 presents a graph of 

mote lifetime vs. event interval for poll periods ranging from 0.5 

to 3 seconds. Event processing dominates the power consumption 

for very frequent events and reduces lifetime considerably. When 

Table 1. Estimated (regular) and measured (italicized) 

component values used in the power model. 

Typical Current 

(mA) 
Runtime (ms) 

Component 

Active Sleep Poll Eventa 

Microcontroller 
29.40 

29.72 
0.034 

200 

125 
2000 

MMC Flash Card 
34.00 

14.03 

0.050 

0.116 
— 2000 

Kilopixel Imager 
30.6 

14.89 

0.005 

<0.010 

95 

24 
— 

Camera Module 
48.00 

9.65 

0.005 

0.015 
— 

1000 

600 

Radio Transceiver 
18.10 

19.81 

0.426 

0.419 
— 500 

a) Event assumes an average object region of interest size of 

64×64 pixel. 

 Figure 11. Computational efficiency of the hybrid-resolution 

vision system over the dual-camera SIMD system. 



events occur less often, poll processing governs the power 

consumption and the mote lifetime increases approaching lifetime 

limited only by poll activity. For a moderately fast poll period of 1 

second, the lifetime of our smart camera mote approaches 22 days 

in this basic surveillance application. 

As for the comparison of computational efficiency, it would be 

valuable to compare the lifetime of our MeshEye mote against the 

WiCa dual high-resolution smart camera mote [8]. However, 

insufficient data on power consumption of the WiCa mote has 

been published to date to compile a directly comparable power 

model. 

Further reductions in power consumption of the microcontroller 

are attainable by deploying even more power-efficient, high-

performance processor cores like Intel’s StrongARM SA-1110 

used in the Consus platform [16] or more recently Intel’s PXA271 

XScale used in the Intel Mote 2 [17]. 

8. CONCLUSION 
In this paper, we introduced a low-power ARM7-based smart 

camera mote architecture. We designed it for real-time object 

detection and in-node processing for applications in distributed 

intelligent surveillance. Its hybrid-resolution vision system 

deploys two kilopixel imagers to trigger region of interest 

acquisition through a high-resolution camera module. The 

underlying image processing algorithms for object detection, 

tracking, and acquisition were discussed and illustrated on an 

outdoor scene. Our efficient data link layer utilizing the IEEE 

802.15.4 MAC enables data exchange between smart cameras 

with little overhead. We presented a basic power model, which 

estimates battery-powered mote lifetime under varying operating 

conditions in a surveillance application. Future work will be 

directed towards continued development of mote boards, refining 

the vision algorithms, deploying them on our smart camera mote, 

and running in- and outdoor trials. 
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