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Abstract. In this paper, we develop a general technique for truncating Petri net un-
foldings, parameterized according to the level of information about the original unfolding
one wants to preserve. Moreover, we propose a new notion of completeness of a truncated
unfolding, which with the standard parameters is strictly stronger than that given in [5,
6], and is more appropriate for the existing model checking algorithms.
A key aspect of our approach is an algorithm-independent notion of cut-off events, used
to truncate a Petri net unfolding in the existing model checking systems. Such a notion
is based on a cutting context and results in the unique canonical prefix of the unfolding.
We show that the canonical prefix is complete in the new, stronger sense, and provide
necessary and sufficient conditions for its finiteness, as well as upper bounds on its size in
certain cases. We then consider the unfolding algorithm presented in [5, 6], and the par-
allel unfolding algorithm proposed in [10]. We prove that both algorithms, despite being
non-deterministic, generate the canonical prefix. This gives an alternative correctness
proof for the former algorithm, and a new (much simpler) proof for the latter one.
Keywords: Model checking, Petri nets, unfolding, canonical prefix.

1 Introduction

A distinctive characteristic of reactive concurrent systems is that their sets of local states
have descriptions which are both short and manageable, and the complexity of their behaviour
comes from highly complicated interactions with the external environment rather than from
complicated data structures and manipulations thereon. One way of coping with this com-
plexity problem is to use formal methods and, especially, computer aided verification tools
implementing model checking (see, e.g., [1, 2]) — a technique in which the verification of a
system is carried out using a finite representation of its state space.

The main drawback of model checking is that it suffers from the state space explosion prob-
lem. That is, even a relatively small system specification can (and often does) yield a very large
state space. To help in coping with this, a number of techniques have been proposed, which can
roughly be classified as aiming at a compact representation of the full state space of a reactive
concurrent system, or at generation of its reduced (though sufficient for a given verification
task) representation. McMillan’s (finite prefixes of) Petri Net unfoldings (see, e.g., [5, 15]) rely
on the partial order view of concurrent computation, and represent system’s actions and lo-
cal states implicitly, using an acyclic net. In this paper, we show that this technique can be
combined with the reduced representation of the state space, if one specifies which information
must be preserved for a particular model checking task.

The essential feature of the existing unfolding algorithms (see, e.g., [5, 6, 10, 15]) is the use
of cut-off events beyond which the unfolding starts to repeat itself, and so can be truncated
without loss of information. So far, cut-off events were considered as an algorithm-specific
issue, and were defined w.r.t. the part of the prefix already built by an unfolding algorithm. A
first main contribution of this paper is to define an algorithm-independent notion of a cut-off
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event and the related canonical prefix of a Petri net unfolding. We present conditions which
guarantee the finiteness of such a prefix and, in doing so, prove a version of König’s Lemma
for branching processes of (possibly unbounded) Petri nets.

When constructing a prefix, one wants to ensure that it is in some sense complete, i.e.,
that it preserves enough information to efficiently decide certain properties. Completeness of a
prefix is usually defined w.r.t. the set of reachable markings, i.e., a complete prefix comprises
configurations representing all the reachable markings of the original Petri net. However, there
are alternative definitions. For example, one might be interested not only in markings, but
also in the ways in which they have been reached (see, e.g., [13, 18]), or exploit symmetries
present in the original net system in order to reduce the size of the prefix (see, e.g., [3]).
Moreover, for efficiency reasons, the usual versions of the unfolding algorithm only consider
local configurations when deciding whether an event should be designated as a cut-off event;
but one can also consider arbitrary finite configurations for such a purpose (see, e.g., [7]). A
second main contribution of this paper is that we generalise the entire set-up and define cut-offs
and completeness in an abstract parametric setting: one parameter captures the information
we intend to retain in a complete prefix, while the other specify under which circumstances
an event can be designated as a cut-off event. This approach results both in a more elegant
presentation, and a powerful and flexible tool to deal with different variants of the unfolding
technique.

The notion of a complete prefix (i.e., one which contains enough information to re-construct
the entire unfolding) given in [5, 6] did not mention cut-off events at all. But, with the devel-
opment of model-checking algorithms based on unfoldings, it appeared that cut-off events are
heavily employed by almost all of them. Indeed, the deadlock detection algorithm presented
in [15] is based on the fact that a Petri net is deadlock-free iff each configuration of its finite
and complete prefix can be extended to one containing a cut-off event, i.e., a Petri net has a
deadlock iff there is a configuration which is in conflict with all cut-off events. The algorithms
presented in [8, 9, 11, 12, 17] use the fact that there is a certain correspondence between the
deadlocked markings of the original net and the deadlocked markings of a finite and complete
prefix, and cut-off events are needed to distinguish the ‘real’ deadlocks from the ‘fake’ ones,
introduced by truncating the unfolding. Moreover, those algorithms need a stronger notion
of completeness than the one presented in [5, 6], in order to guarantee that deadlocks in the
prefix do correspond to deadlocks in the original Petri net.1 Since all these algorithms make
certain assumptions about the properties of a prefix with cut-off events, there is a clear need
to formally define cut-off events and complete prefixes containing them, in order to close this
rather uncomfortable gap between theory and practice.

The above two aspects of this paper are tied together by showing that the canonical prefix
is ‘special’ in the sense that, for all parameter values, it is complete in a stronger sense than
the notion of completeness used in [5, 6], and is generated by an arbitrary run of the (non-
deterministic) unfolding algorithm presented in [5, 6] as well as an arbitrary run of the (even
more non-deterministic) parallel algorithm from [10]. This results in an alternative and, in the
latter case, much simplified correctness proof.

2 Basic Notions

In this section, we first present basic definitions concerning Petri nets, and then recall (see also
[4–6]) notions related to net unfoldings.

1 According to the notion of completeness presented in [5, 6], a marking M enabling a transition t

may be represented by a deadlocked configuration C in a complete prefix, as long as there is another
configuration C ′ representing this marking and enabling an instance of t. This means that the prefix
may contain a deadlock, which does not correspond to any deadlock in the original net system (see
Figure 2).
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Petri nets A net is a triple N
df
= (P, T, F ) such that P and T are disjoint sets of respectively

places and transitions, and F ⊆ (P × T ) ∪ (T × P ) is a flow relation. A marking of N is a
multiset M of places, i.e., M : P → N = {0, 1, 2, . . .}. We adopt the standard rules about
drawing nets, viz. places are represented as circles, transitions as boxes, the flow relation by

arcs, and markings are shown by placing tokens within circles. As usual, •z
df
= {y | (y, z) ∈ F}

and z•
df
= {y | (z, y) ∈ F} denote the pre- and postset of z ∈ P ∪T , and we define •Z

df
=
⋃

z∈Z
•z

and Z•
df
=
⋃

z∈Z z
•, for all Z ⊆ P ∪ T . We will assume that •t 6= ∅ 6= t•, for every t ∈ T .

A net system is a pair Σ
df
= (N,M0) comprising a finite net N = (P, T, F ) and a finite initial

marking M0. A transition t ∈ T is enabled at a marking M if for every p ∈ •t, M(p) ≥ 1.

Such a transition can be executed, leading to a marking M ′ df
= M − •t + t•, where ‘−’ and

‘+’ stand for the multiset difference and sum respectively. We denote this by M [t〉M ′. The set
of reachable markings of Σ is the smallest (w.r.t. set inclusion) set M(Σ) containing M0 and
such that if M ∈M(Σ) and M [t〉M ′ (for some t ∈ T ) then M ′ ∈M(Σ).

A net system Σ is k-bounded if, for every reachable marking M and every place p ∈ P ,
M(p) ≤ k, and safe if it is 1-bounded. Moreover, Σ is bounded if it is k-bounded for some
k ∈ N. The set M(Σ) is finite iff Σ is bounded.

Branching processes Two nodes (places or transitions), y and y′, of a net N = (P, T, F )
are in conflict, denoted by y#y′, if there are distinct transitions t, t′ ∈ T such that •t∩ •t′ 6= ∅
and (t, y) and (t′, y′) are in the reflexive transitive closure of the flow relation F , denoted by
¹. A node y is in self-conflict if y#y.

An occurrence net is a net ON
df
= (B,E,G), where B is the set of conditions (places) and

E is the set of events (transitions), satisfying the following: ON is acyclic (i.e., ¹ is a partial
order); for every b ∈ B, |•b| ≤ 1; for every y ∈ B ∪ E, ¬(y#y) and there are finitely many y′

such that y′ ≺ y, where ≺ denotes the transitive closure of G. Min(ON ) will denote the set of
minimal (w.r.t. ≺) elements of B ∪ E. The relation ≺ is the causality relation. A ≺-chain of
events is a finite or infinite sequence of events such that for each two consecutive events, e and
f , it is the case that e ≺ f . Two nodes are concurrent, denoted y co y′, if neither y#y′ nor
y ¹ y′ nor y′ ¹ y.

A homomorphism from an occurrence net ON to a net system Σ is a mapping h : B∪E →
P ∪ T such that: h(B) ⊆ P and h(E) ⊆ T ; for all e ∈ E, the restriction of h to •e is a
bijection between •e and •h(e); the restriction of h to e• is a bijection between e• and h(e)•;
the restriction of h to Min(ON ) is a bijection between the multisets Min(ON ) and M0; and
for all e, f ∈ E, if •e = •f and h(e) = h(f) then e = f . If an event e is such that h(e) = t,
then we will often refer to it as being t-labelled.

A branching process of Σ (see [4]) is a quadruple π
df
= (B,E,G, h) such that (B,E,G)

is an occurrence net and h is a homomorphism from ON to Σ. A branching process π ′ =
(B′, E′, G′, h′) of Σ is a prefix of a branching process π = (B,E,G, h), denoted by π′ v π, if
(B′, E′, G′) is a subnet of (B,E,G) containing all minimal elements and such that: if e ∈ E ′

and (b, e) ∈ G or (e, b) ∈ G then b ∈ B′; if b ∈ B′ and (e, b) ∈ G then e ∈ E′; and h′ is the
restriction of h to B′ ∪ E′. For each Σ there exists a unique (up to isomorphism) maximal
(w.r.t. v) branching process Unf maxΣ , called the unfolding of Σ.

Sometimes it is convenient to start a branching process with a (virtual) initial event ⊥,
which has the postset Min(ON ), empty preset, and no label; we will henceforth use such an
event, without drawing it in figures or treating it explicitly in algorithms.

An example of a safe net system and two of its branching prefixes is shown in Figure 1,
where the homomorphism h is indicated by the labels of the nodes. The process in Figure 1(b)
is a prefix of that in Figure 1(c).

Configurations and cuts A configuration of an occurrence net ON is a set of events C such
that for all e, f ∈ C, ¬(e#f) and, for every e ∈ C, f ≺ e implies f ∈ C; since we assume the
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(a)

s1 s2

s3 s4 s5

s6 s7

t1 t2 t3

t6 t7

t4 t5

(b)

s1 s2

e1 t1 e2 t2 e3 t3

s3 s4 s5

e4t4 e5 t5

s6 s7 s6 s7

e6 t6 e7 t7 e8 t6 e9 t7

s1 s2 s1 s2

(c)

s1 s2

e1 t1 e2 t2 e3 t3

s3 s4 s5

e4t4 e5t5

s6 s7 s6 s7

e6 t6 e7 t7 e8 t6 e9 t7

s1 s2 s1 s2

e10 t1 e11 t2 e12 t3 e13 t1 e14 t2 e15 t3

s3 s4 s5 s3 s4 s5

e16t4 e17 t5 e18t4 e19 t5

s6 s7 s6 s7 s6 s7 s6 s7

Fig. 1. A net system (a) and two of its branching processes (b,c).
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initial event ⊥, we additionally require that ⊥ ∈ C. For every event e ∈ E, the configuration

[e]
df
= {f | f ¹ e} is called the local configuration of e, and 〈e〉

df
= [e] \ {e} denotes the set of

causal predecessors of e. Moreover, for a set of events E ′ we denote by C ⊕ E′ the fact that
C∪E′ is a configuration and C∩E′ = ∅. Such an E′ is a suffix of C, and C⊕E′ is an extension
of C.

The set of all finite (resp. local) configurations of a branching process π will be denoted by
Cπfin (resp. Cπloc), and we will drop the superscript π in the case π = Unf maxΣ .

A set of events E′ is downward-closed if all causal predecessors of the events in E ′ also
belong to E′. Such a set induces a unique branching process π whose events are exactly the
events in E′, and whose conditions are the conditions adjacent to the events in E ′ (including ⊥).

A set of conditions B′ such that for all distinct b, b′ ∈ B′, b co b′, is called a co-set. A cut
is a maximal (w.r.t. set inclusion) co-set. Every marking reachable from Min(ON ) is a cut.

Let C be a finite configuration of a branching process π. Then Cut(C)
df
= (Min(ON )∪C•)\

•C is a cut; moreover, the multiset of places h(Cut(C)) is a reachable marking of Σ, denoted
Mark(C). A marking M of Σ is represented in π if there is C ∈ Cπfin such that M = Mark(C).
Every marking represented in π is reachable in the original net system Σ, and every reachable
marking of Σ is represented in the unfolding of Σ.

In the rest of this paper, we assume that Σ is a fixed, though not necessarily bounded, net
system, and that Unf maxΣ = (B,E,G, h) is its unfolding.

König’s Lemma for branching processes König’s Lemma (see [14]) states that a finitely
branching, rooted, directed acyclic graph with infinitely many nodes reachable from the root
has an infinite path.2 We end this section proving what can be regarded as a version of such a
result for branching processes of Petri nets.

Proposition 1. A branching process π is infinite iff it contains an infinite ≺-chain of events.

Proof. The ‘if’ part of the statement is trivial. To prove the ‘only if’ part, we observe that if π
is infinite then, by the the fact that branching on each event (including ⊥) is finite, π comprises
infinitely many events.

For every event e of π, let d(e) be the length of the longest ≺-chain of events from ⊥ to e.
It is easily seen that d(e) is a well-defined integer, and that, for every k, there are finitely many
events e of π such that d(e) ≤ k (comp. the proof of Proposition 4.8 in [6]).

Now, consider a graph G on the set of events of π, such that there is an arc from e to e′ iff
e ≺ e′ and d(e′) = d(e) + 1. Clearly, G is an infinite, rooted, directed acyclic graph with all its
nodes being reachable from the root ⊥. By the observation made in the previous paragraph,
G is finitely branching, and so, by König’s Lemma, there is an infinite path in G. Clearly, such
a path determines an infinite ≺-chain in π. ut

It is worth noting that the above result does not follow directly from the original König’s
Lemma, since conditions of a branching process can have infinitely many outgoing arcs.

3 Complete prefixes of Petri net unfoldings

As explained in the introduction, there exist different methods of truncating Petri net unfold-
ings. The differences are related to the kind of information about the original unfolding one
wants to preserve in the prefix, as well as to the choice between using either only local con-
figurations (which can improve the running time of an algorithm), or all finite configurations
(which can result in a smaller prefix). Also, we need a more general notion of completeness for
branching processes. In this section, we generalise the entire set-up so that it will be applicable
to different methods of truncating unfoldings and, at the same time, allow one to express the
completeness w.r.t. properties other than marking reachability.

2 The graph may be such that, for every n ∈ N, there is a node with more than n branches, but no
node can have an infinite number of branches.
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Cutting contexts In order to cope with different variants of the technique for truncating
unfoldings, we generalise the whole setup, using an abstract parametric model. The first pa-
rameter will determine the information we intend to preserve in a complete prefix (in the
standard case, this is the set of reachable markings). The main idea behind it is to speak about
finite configurations of Unf maxΣ rather than reachable markings of Σ. Formally, the information
to be preserved corresponds to the equivalence classes of some equivalence relation ≈ on Cfin .
The other parameters are more technical: they specify the circumstances under which an event
can be designated as a cut-off event.

Definition 2. A cutting context is a triple

Θ
df
=
(

≈ , ¢ ,
{

Ce
}

e∈E

)

,

where:

1. ≈ is an equivalence relation on Cfin .
2. ¢, called an adequate order (comp. [6, Definition 4.5]), is a strict well-founded partial order

on Cfin refining ⊂, i.e., C ′ ⊂ C ′′ implies C ′ ¢ C ′′.

3. ≈ and ¢ are preserved by finite extensions, i.e., for every pair of configurations C ′ ≈ C ′′,
and for every suffix E′ of C ′, there exists3 a finite suffix E′′ of C ′′ such that

(a) C ′′ ⊕ E′′ ≈ C ′ ⊕ E′, and

(b) if C ′′ ¢ C ′ then C ′′ ⊕ E′′ ¢ C ′ ⊕ E′.

4. {Ce}e∈E is a family of subsets of Cfin . 3

The main idea behind the adequate order is to specify which configurations will be preserved
in the complete prefix; it turns out that all ¢-minimal configurations in each equivalence class
of ≈ will be preserved. The last parameter is needed to specify the set of configurations used
later to decide whether an event can be designated as a cut-off event. For example, Ce may
contain all finite configurations of Unf maxΣ , or, as it is usually the case in practice, only the local
ones. We will say that a cutting context Θ is dense (saturated) if Ce ⊇ Cloc (resp. Ce = Cfin),
for all e ∈ E.

In practice, Θ is usually dense (or even saturated, see [7]), and at least the following cases
of the equivalence ≈ have been shown to be of interest:

– C ′≈marC
′′ if Mark(C ′) = Mark(C ′′). This is the most widely used equivalence (see [5–7,

10, 15]). Note that the equivalence classes of ≈mar correspond to the reachable markings
of Σ.

– C ′≈codeC
′′ if Mark(C ′) = Mark(C ′′) and Code(C ′) = Code(C ′′), where Code(C) is the

signal coding function. Such an equivalence is used in [18] for unfolding Signal Transition
Graphs (STGs) specifying asynchronous circuits. Briefly, an STG is a Petri net together
with a set of binary signals, which can be set or reset by transition firings. A transition can
either change the value of one specific signal, or not affect any signal at all. As a result,
the current values of the signals depend not on the current marking, but rather on the
sequence of transition firings from the initial marking. And, in effect, one is interested in
a ‘combined’ system state which includes both the current marking and the current values
of the binary signals.

– C ′≈symC
′′ if Mark(C ′) and Mark(C ′′) are symmetric (equivalent) markings. This equiv-

alence is the basis of the approach exploiting symmetries to reduce the size of the prefix,
described in [3].

3 Note that unlike [5, 6], we do not require that E ′′ = I2
1 (E

′), where I2
1 is the ‘natural’ isomorphism be-

tween the finite extensions of C ′ and C ′′. That isomorphism is defined only ifMark(C ′) = Mark(C ′′),
and thus cannot be used in our generalised settings.
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For an equivalence relation ≈, we denote by R
fin
≈

df
= Cfin/≈ the set of its equivalence classes,

and by R
loc
≈

df
= Cloc/≈ the set of its equivalence classes on the local configurations. We will also

denote by ΘERV the cutting context corresponding to the framework used in [5, 6], i.e., such
that ≈ is equal to ≈mar , ¢ is the total adequate order for safe net systems proposed there,
and Ce = Cloc , for all e ∈ E.

We will write e¢ f whenever [e]¢ [f ]. Clearly, ¢ is a well-founded partial order on the set
of events. Hence, we can use Noetherian induction for definitions and proofs, i.e., it suffices to
define or prove something for an event under the assumption that it has already been defined
or proven for all its ¢-predecessors.

Proposition 3. Let e and f be two events, and C be a finite configuration.

1. If f ≺ e then f ¢ e.
2. If f ∈ C ¢ [e] then f ¢ e.

Proof. The first part follows from the fact that f ≺ e implies [f ] ⊂ [e], and so, by Defini-
tion 2(2), [f ]¢ [e]. To show the second part, we observe that if [f ] ⊂ C then, by Definition 2(2),
[f ]¢ C. Hence [f ]¢ [e], by the transitivity of ¢. ut

In the rest of this paper, we assume that the cutting context Θ is fixed.

Completeness of branching processes We now introduce a new notion of completeness
for branching processes.

Definition 4. A branching process π is complete w.r.t. a set Ecut of events of Unf
max
Σ if the

following hold:

1. If C ∈ Cfin , then there is C ′ ∈ Cπfin such that C ′ ∩ Ecut = ∅ and C ≈ C ′.
2. If C ∈ Cπfin is such that C ∩ Ecut = ∅, and e is an event such that C ⊕ {e} ∈ Cfin , then

C ⊕ {e} ∈ Cπfin .

A branching process π is complete if it is complete w.r.t. some set Ecut . 3

Note that, in general, π remains complete after removing all events e for which 〈e〉 ∩Ecut 6= ∅;
i.e., without affecting the completeness, one can truncate a complete prefix so that the events
from Ecut (usually referred to as cut-off events) will be either maximal events of the prefix or
not in the prefix at all. Note also that the last definition depends only on the equivalence ≈,
and not on the other components of the cutting context.

For the relation ≈mar , each reachable marking is represented by a configuration in Cfin and,
hence, also by a configuration in Cπfin , provided that π is complete (see Definition 4). This is
what is usually expected from a correct prefix. But even in this special case, our notion of
completeness differs from that presented in [5, 6], since it requires all configurations in Cπfin
containing no events from Ecut to preserve all transition firings, rather than the existence
of a configuration preserving all firings (see Figure 2). The justification why such a stronger
property is desirable was given in the introduction. One can easily prove that our notion is
strictly stronger than the one considered in [5, 6], i.e., that the completeness in the sense of
Definition 4 implies the completeness in the sense of [5, 6], but not vice versa. However, it
should be noted that the proof of completeness in [5, 6] almost gives the stronger notion; we
have adopted it (see Proposition 8) with relatively few modifications.

As an example, consider the net system in Figure 1. If ≈ is equal to ≈mar , then the prefix in
Figure 1(b) is not complete w.r.t. any set Ecut for the following reason. The reachable marking
{s1, s7} is only represented by the local configurations of e6 and e8; for completeness, at least
one of these events would not be in Ecut , but then its local configuration would not have an
extension with a t1-labelled event. In contrast, the prefix in Figure 1(c) is complete w.r.t. the
set Ecut = {e5, e16, e17}.

4 Notice that the events e8, e9, e13–e15, e18, and e19 can be removed
from the prefix without affecting its completeness.

4 This choice of Ecut is not unique: one could have chosen, e.g., Ecut = {e4, e18, e19}.



8 V.Khomenko, M.Koutny, W.Vogler

(a)

s1

s2

s3

s4

t1

t2

t3

t4

s5

s6

t5 s7

(b)

s1

s2

s3

s4

e1

t1

e2

t2

e3

t3

e4

t4

s5

s5

s6

s6

e5

t5 s7

Fig. 2. A Petri net (a) and one of its branching processes (b), which is complete w.r.t. the definition
used in [5, 6], but not w.r.t. Definition 4. Note that the configuration {e1, e4} does not preserve firings
and introduces a fake deadlock. In order to make this prefix complete w.r.t. Definition 4 one has to
add another instance of t5, consuming the conditions produced by e1 and e4.

4 Canonical prefix

In this section, we develop the central results of this paper. First, we show that cut-off events
can be defined without resorting to any algorithmic argument. This yields a definition of the
canonical prefix, and we then prove several of its relevant properties.

Static cut-off events In [5, 6], the notion of a cut-off event was considered as algorithm-
specific, and was given w.r.t. the already built part of a prefix. Now we define cut-off events
w.r.t. the whole unfolding instead, so that it will be independent of an algorithm (hence the
term ‘static’), together with feasible events, which are precisely those events whose causal
predecessors are not cut-off events, and as such must be included in the prefix determined by
the static cut-off events.

Definition 5. The set of feasible events, denoted by fsbleΘ, and the set of static cut-off events,
denoted by cutΘ, are two sets of events of Unf maxΣ defined inductively, in the following way:

1. An event e is a feasible event if 〈e〉 ∩ cutΘ = ∅.
2. An event e is a static cut-off event if it is feasible, and there is a configuration C ∈ Ce

such that C ⊆ fsbleΘ \ cutΘ, C ≈ [e], and C ¢ [e]. In what follows, any C satisfying these
conditions will be called a corresponding configuration of e. 3

Note that fsbleΘ and cutΘ are well-defined sets. Indeed, when considering an event e, by the
well-foundedness of ¢ and Proposition 3(1), one can assume that for the events in 〈e〉 it has
already been decided whether they are in fsbleΘ or in cutΘ. And, by Proposition 3(2), the
same holds for the events in any configuration C satisfying C ¢ [e].

The above definition implies that ⊥ ∈ fsbleΘ since 〈⊥〉 = ∅. Furthermore, ⊥ 6∈ cutΘ,
since ⊥ cannot have a corresponding configuration. Indeed, [⊥] = {⊥} is the smallest (w.r.t.
set inclusion) configuration, and so, by Definition 2(2), it is also ¢-minimal.

Remark 1. A näıve attempt to define an algorithm-independent notion of a cut-off event as an
event e for which there is a configuration C ∈ Ce such that C ≈ [e] and C ¢ [e] fails. Indeed,
suppose that Θ = ΘERV , as it is often the case in practice. It may happen that a corresponding
local configuration C of a cut-off event e defined in this way contains another cut-off event.
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Though in this case Unf maxΣ contains another corresponding configuration C ′ ¢ C with no
cut-off events and the same final marking, such a configuration is not necessarily local.

The approach proposed in this paper, though slightly more complicated, allows to deal
uniformly with arbitrary cutting contexts. Moreover, it coincides with the described näıve
approach when Θ is saturated. 3

Proposition 6. Let e be an event of Unf maxΣ .

1. e ∈ fsbleΘ iff 〈e〉 ⊆ fsbleΘ \ cutΘ.
2. e ∈ cutΘ implies e ∈ fsbleΘ.

Proof. The ‘if’ part of the first clause follows directly from Definition 5(1). To prove the ‘only if’
part, suppose that g /∈ fsbleΘ \cutΘ for some g ≺ e. Since e ∈ fsbleΘ and thus 〈e〉∩cutΘ = ∅ by
Definition 5(1), g /∈ fsbleΘ. Therefore, by Definition 5(1), 〈g〉∩cutΘ 6= ∅, and so 〈e〉∩cutΘ 6= ∅,
a contradiction. Hence 〈e〉 ⊆ fsbleΘ \ cutΘ.

The second clause follows directly from Definition 5(2). ut

Canonical prefix and its properties Once we have defined the feasible events, the no-
tion of the canonical prefix arises quite naturally, after observing that the ‘only if’ part of
Proposition 6(1) implies that Unf ΘΣ is a downward-closed set of events.

Definition 7. The branching process Unf ΘΣ induced by the set of events fsbleΘ is called the
canonical prefix of Unf maxΣ . 3

Note that Unf ΘΣ is uniquely determined by the cutting context Θ.
In what follows, we prove several fundamental properties of Unf ΘΣ . Note that, unlike those

given in [5, 6], our proofs are not algorithm-specific.

Proposition 8 (completeness). Unf ΘΣ is complete w.r.t. Ecut = cutΘ.

Proof. (Comp. the proof of Proposition 4.9 in [6]).

Let π
df
= Unf ΘΣ . To show Definition 4(1), suppose that C ∈ Cfin . Let C

′ ∈ Cfin be ¢-minimal
among the configurations satisfying C ′ ≈ C. Note that C ′ exists since, by Definition 2(2),
¢ is well-founded. Suppose that C ′ ∩ cutΘ 6= ∅, i.e., there is an event e ∈ C ′ ∩ cutΘ. Then
C ′ = [e] ⊕ E′, for some finite suffix E′ of [e]. Let Ce be a corresponding configuration of
e. Since Ce ≈ [e] and Ce ¢ [e], by Definition 2(3), there exists a suffix E ′′ of Ce such that
Ce⊕E′′ ≈ [e]⊕E′ and Ce ⊕E′′ ¢ [e]⊕E′, i.e., Ce ⊕E′′ ≈ C ′ ≈ C and Ce ⊕E′′ ¢C ′. Since ¢
is strict, this contradicts the choice of C ′, and so C ′ ∩ cutΘ = ∅. Therefore, by Definition 5(1),
each event of C ′ is feasible, and so C ′ is a configuration of Unf ΘΣ containing no events from
Ecut .

To show Definition 4(it-compl-firings), suppose that C ∈ Cπfin , C ∩Ecut = ∅, and C⊕{f} ∈
Cfin . Then, by Proposition 6(1), f ∈ fsbleΘ, and so C ⊕ {f} ∈ Cπfin . ut

Having proved that the canonical prefix is always complete, we now set out to analyse
its finiteness. This property is, clearly, crucial if one intends to use such a prefix for model
checking.

Proposition 9 (finiteness I). Unf ΘΣ is finite iff there is no infinite ≺-chain of feasible events.

Proof. Follows directly from Definition 7 and Proposition 1. ut

Thus, in order to guarantee that the canonical prefix is finite, one should choose the cutting
context so that the Ce’s contain enough configurations, and ≈ is coarse enough, to cut each
infinite ≺-chain. It is interesting to observe that certain cutting contexts sometimes allow one
to produce finite canonical prefixes even for unbounded net systems. Figure 3(a) shows a net
modelling a loop, where place p2, used for counting the number of iterations, is unbounded.
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p1

t1 p2

p3t2

t3 p4

(a)

p1

e1

t1 p2

p3

e2

t3 p4

e3

t2 p1

(b)

Fig. 3. An unbounded net system (a) and its canonical prefix (b). The cutting context is such that
C′ ≈ C′′ ⇔ Mark(C ′) ∩ {p1, p3, p4} = Mark(C ′′) ∩ {p1, p3, p4} and {⊥} ∈ Ce3 , and so e3 is a static
cut-off event.

If ≈ ignores the value of this counter, it is possible to build a finite and complete canonical
prefix, shown in Figure 3(b).

A necessary condition for the finiteness of the canonical prefix is the finiteness of the set of
the equivalence classes of ≈. Moreover, this becomes also a sufficient condition if Θ is dense.
The following result provides quite a tight and practical indication for deciding whether Unf ΘΣ
is finite or not.

Proposition 10 (finiteness II).

1. If ≈ has finitely many equivalence classes and Θ is dense, then Unf ΘΣ is finite.
2. If ≈ has infinitely many equivalence classes, then Unf ΘΣ is infinite.

Proof. (1) (Comp. the proof of Proposition 4.8 in [6].)
By Proposition 9, it is enough to show that there is no infinite ≺-chain of feasible events.

To the contrary, suppose that such a chain e1 ≺ e2 ≺ · · · does exist. Since the number of
equivalence classes of ≈ is finite, there exist i, j ∈ N such that i < j and [ei] ≈ [ej ]. Since
ei ≺ ej , we have [ei] ⊂ [ej ], and so ei ¢ ej by Definition 2(2). Since Θ is dense, [ei] ∈ Cej , and
since ej is feasible, no event in [ei] belongs to cutΘ. Thus, ej ∈ cutΘ and has no feasible causal
successors, a contradiction.

(2) By Proposition 8, Unf ΘΣ is complete. Therefore, it contains at least one configuration
from every equivalence class of ≈. Since a finite branching process contains only a finite number
of configurations, Unf ΘΣ is infinite. ut

Corollary 11 (finiteness III). Let ≈ be either of ≈mar , ≈code , ≈sym .

1. If Σ is bounded and Θ is dense, then Unf ΘΣ is finite.
2. If Σ is unbounded, then Unf ΘΣ is infinite.

Proof. Follows from Proposition 10 and the fact that each of the three equivalences has a finite
number of equivalence classes iffΣ is bounded. Indeed, since there are only finitely many signals,
the set Code(Cfin) is finite, and so the set of combined states {(Mark(C),Code(C)) | C ∈ Cfin},

which is isomorphic to R
fin
≈code

, is finite iff the set M(Σ) of reachable markings is finite. For

≈sym , |Rfin
≈sym

| ≤ |Rfin
≈mar

|, and so R
fin
≈sym

is finite if so is R
fin
≈mar

. Moreover, since C≈symC
′ implies

|Mark(C)| = |Mark(C ′)|, R
fin
≈sym

is infinite if R
fin
≈sym

is infinite. ut

In the important special case of a total adequate order, one can also derive an upper bound
on the number of non-cut-off events in Unf ΘΣ . A specialised version of the next result (for
Θ = ΘERV ) was proven in [5, 6] for the prefix generated by the unfolding algorithm presented
there.
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Proposition 12 (upper bound). Suppose that ¢ is total and:

– The set R
loc
≈ is finite.

– For every R ∈ R
loc
≈ , there is an integer γR > 0 such that, for every chain e1¢e2¢ · · ·¢eγR

of feasible events whose local configurations belong to R, there is at least one i ≤ γR such
that [ei] ∈

⋂

[e]∈R Ce.

Then
∣

∣ fsbleΘ \ cutΘ
∣

∣ ≤
∑

R∈Rloc
≈

γR . (1)

Proof. Suppose that e1, . . . , eγR+1 ∈ fsbleΘ\cutΘ are distinct events whose local configurations
belong to the same equivalence class R of ≈. Since ¢ is total, we may assume, without loss of
generality, that e1¢ . . .¢ eγR+1. Hence, for at least one i ≤ γR, [ei] ∈

⋂

[e]∈R Ce ⊆ CeγR+1
, i.e.,

eγR+1 ∈ cutΘ, a contradiction. Thus (1) holds. ut

Note that if Θ is dense, then γR = 1 for every R ∈ R
loc
≈ , and

∑

R∈Rloc
≈

γR = |Rloc
≈ | ≤ |R

fin
≈ | .

The standard result of [6] is then obtained by taking Θ = ΘERV . Indeed, since the reachable
markings of Σ correspond to the equivalence classes of ≈mar , the upper bound on the number
of non-cut-off events in Unf ΘΣ in this case is equal to |M(Σ)|. Using the above proposition, one
can easily derive the following upper bounds for the remaining two equivalences considered in
this paper (in each case, we assume that Θ is dense):

–
∣

∣R
fin
≈code

∣

∣ =
∣

∣{(Mark(C),Code(C))}C∈Cfin
∣

∣ ≤
∣

∣M(Σ)
∣

∣ ·
∣

∣Code(Cfin)
∣

∣ ≤
∣

∣M(Σ)
∣

∣ · 2n, where n
is the number of signals.

– |Rfin
≈sym

| ≤ |Rfin
≈mar

| = |M(Σ)|.

Note that these upper bounds are rather pessimistic, particulary because we bound |Rloc
≈ | by

|Rfin
≈ |. In practice, the set R

fin
≈ is usually exponentially larger than R

loc
≈ , and so prefixes are

often exponentially smaller than reachability graphs.

5 Unfolding algorithms

We now show that the unfolding algorithm presented in [5, 6] and the parallel unfolding algo-
rithm proposed in [10] generate the canonical prefix defined in the previous section.

ERV unfolding algorithm The unfolding algorithm presented in [5, 6] can be expressed as
shown in Figure 4. We will call it the basic algorithm. In the present paper, it is parameterized
by a cutting context Θ. It is assumed that the function PotExt(PrefΣ) finds the set of possible
extensions of a branching process PrefΣ , according to the following definition.

Definition 13. Let π be a branching process of Σ. A possible extension of π is a pair (t,D),
where D is a co-set in π and t is a transition of Σ, such that h(D) = •t and π contains no
t-labelled event with preset D.5

The pair (t,D) is an event used to extend π, and we will take it as being t-labelled and having
D as its preset. 3

When ¢ is a total order, the algorithm in Figure 4 is deterministic, and thus always yields
the same result for a given net system. A rather surprising fact is that this is also the case
for an arbitrary adequate order for which the algorithm is, in general, non-deterministic. This
fact was proven in [10] in a rather complicated way, by comparing two runs of the algorithm.
Below, we provide a more elegant proof, by showing that the algorithm always generates the
canonical prefix.

5 Note that the π constructed at some stage can only contain a t-labelled event with preset D, if it
contains (t,D) already.
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input : Σ = (N,M0) — a net system
output : PrefΣ — the canonical prefix of Σ’s unfolding (if it is finite)

PrefΣ ← the empty branching process
add instances of the places from M0 to PrefΣ
pe ← PotExt(PrefΣ)
cut off ← ∅
while pe 6= ∅ do

choose e ∈ min¢pe
if [e] ∩ cut off = ∅
then

add e and new instances of the places from h(e)• to PrefΣ
pe ← PotExt(PrefΣ)
if e is a cut-off event of PrefΣ then cut off ← cut off ∪ {e}

else pe ← pe \ {e}

Note: e is a cut-off event of PrefΣ if there is C ∈ Ce such that
the events of C belong to PrefΣ but not to cut off , C ≈ [e], and C ¢ [e].

Fig. 4. The unfolding algorithm presented in [5].

Unfolding with slices An unfolding algorithm which admits efficient parallelization (pro-
posed in [10]) is shown in Figure 5. We will call it the slicing algorithm. When compared
to the basic algorithm, it has the following modifications in its main loop. A set of events
Sl ∈ Slices(pe), called a slice of the current set of possible extensions, is chosen on each
iteration and processed as a whole, without taking or adding any other events from or to pe.
A slice must satisfy the following:

– Sl is a non-empty subset of pe; and
– for every event e ∈ Sl and every event f ¢ e of Unf maxΣ , f 6∈ pe \ Sl and pe ∩ 〈f〉 = ∅. (*)

In particular, if f ∈ pe and f ¢ e for some e ∈ Sl , then f ∈ Sl . The set Slices(pe) is chosen so
that it is non-empty whenever pe is non-empty. Note that this algorithm, in general, exhibits
more non-determinism than the basic one (it may be non-deterministic even if the order ¢ is
total).

It was proven (in a very complicated way) in [10] that the unfolding algorithms shown in
Figures 4 and 5 are equivalent, in the sense that prefixes produced by arbitrary runs of these
algorithms are isomorphic. In this paper, we prove this result by showing that arbitrary runs
of these algorithms generate the canonical prefix.

Since the basic algorithm can be obtained as a special case of the slicing one, by setting

Slices(pe)
df
= {{e} | e ∈ min¢pe} (comp. [10]), the proofs below are given only for the slicing

algorithm.

Lemma 14. Consider the state of the algorithm in Figure 5 before adding an event e to PrefΣ.
If cut off ⊆ cutΘ, g ∈ fsbleΘ and g ¢ e, then g is in PrefΣ.

Proof. Let Pref ′Σ be the state of the variable PrefΣ at the moment when a slice Sl was chosen
in the current iteration of the main loop of the algorithm.

Suppose that g ∈ fsbleΘ is such that g ¢ e and g is not in PrefΣ . Consider the set G
df
=

{h ∈ [g] | h is not in Pref ′Σ}. Clearly, G 6= ∅ since g ∈ G (as g is not in PrefΣ and the
algorithm never removes events from the prefix being constructed). Thus there is f ∈ min≺G.
By Proposition 3(2), f ¢ e. Moreover, f ∈ pe because all its causal predecessors are in Pref ′Σ
by the choice of f .
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input : Σ = (N,M0) — a net system
output : PrefΣ — the canonical prefix of Σ’s unfolding (if it is finite)

PrefΣ ← the empty branching process
add instances of the places from M0 to PrefΣ
pe ← PotExt(PrefΣ)
cut off ← ∅
while pe 6= ∅ do

choose Sl ∈ Slices(pe)
if ∃e ∈ Sl : [e] ∩ cut off = ∅
then

for all e ∈ Sl in any order refining ¢ do
if [e] ∩ cut off = ∅
then

add e and new instances of the places from h(e)• to PrefΣ
if e is a cut-off event of PrefΣ then cut off ← cut off ∪ {e}

pe ← PotExt(PrefΣ)
else pe ← pe \ Sl

Note: e is a cut-off event of PrefΣ if there is C ∈ Ce such that
the events of C belong to PrefΣ but not to cut off , C ≈ [e], and C ¢ [e].

Fig. 5. Unfolding algorithm with slices.

By the first part of (*), e ∈ Sl , f ¢ e, and f ∈ pe, we have that f ∈ Sl . Moreover, if f 6= g
then f ≺ g, contradicting the second part of (*), since e ∈ Sl , g¢ e, and pe ∩ 〈g〉 6= ∅ (because
f ∈ pe ∩ 〈g〉). Therefore, g = f ∈ Sl . Since g ¢ e, it was processed before e in the for all
loop of the algorithm. By g ∈ fsbleΘ, cut off ⊆ cutΘ, and Proposition 6(1), we obtain that
〈g〉 ∩ cut off ⊆ 〈g〉 ∩ cutΘ = ∅. Moreover, g 6∈ cut off when g is being processed. Therefore, g
has been added to PrefΣ before the processing of e, a contradiction. ut

Lemma 15 (soundness). If the algorithm in Figure 5 adds an event e to PrefΣ, then e ∈
fsbleΘ. Moreover, such an event e is added to cut off iff e ∈ cutΘ.

Proof. By induction on the number of events added before e. When e is being added to PrefΣ ,
the condition [e] ∩ cut off = ∅ is satisfied. Since the events in 〈e〉 have been added before,
〈e〉 ∩ cutΘ = ∅ by induction, and so e ∈ fsbleΘ.

If e is then added to cut off due to some corresponding configuration C ¢ [e], then the
events of C belong to PrefΣ but not to cutΘ. Hence, by induction, C ⊆ fsbleΘ \ cutΘ. Thus,
e ∈ cutΘ.

Now assume an event e added to PrefΣ is in cutΘ with a corresponding configuration C.
Since, by Proposition 3(2), g ∈ C ¢ [e] implies g ¢ e, and by the fact that cut off ⊆ cutΘ
before e was added to PrefΣ (by induction), each g ∈ C has already been added to PrefΣ by
Lemma 14. Furthermore, g 6∈ cut off , by C∩cutΘ = ∅ and the induction hypothesis. Therefore,
the algorithm will add e to cut off . ut

Lemma 16 (termination). If Unf ΘΣ is finite, then the algorithm in Figure 5 terminates in
a finite number of steps.

Proof. The only time when events are added to pe is the call to PotExt. Such a call returns
only a finite set of possible extensions, and so pe is always finite. In the body of the while
loop, non-empty slices are removed from pe. This is repeated until a new event is added to
PrefΣ , which, by the assumption and Lemma 15, can happen only finitely many times, or until
pe becomes empty and the algorithm terminates. ut
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Lemma 17 (completeness). Let e ∈ fsbleΘ. If the algorithm in Figure 5 terminates yielding
a prefix PrefΣ, then e is an event of PrefΣ.

Proof. Suppose that e is a ¢-minimal event of fsbleΘ which is not in PrefΣ at termination. All
causal predecessors of e are in PrefΣ , but, by Lemma 15, not in cut off . Thus, e was in pe after
possible extensions where computed for the last time; the condition [e] ∩ cut off = ∅ holds at
termination, and thus has been holding before. Therefore, since pe is empty at termination, e
was added to PrefΣ , a contradiction. ut

Theorem 18 (correctness). If Unf ΘΣ is finite, then the algorithms in Figures 4 and 5 gen-
erate Unf ΘΣ in a finite number of steps.

Proof. Follows directly from Lemmata 15, 16, and 17, and the fact that the basic algorithm is
a special case of the slicing one. ut

In particular, this result implies the completeness of prefixes produced by the basic and
slicing algorithms w.r.t. our stronger notion of completeness (when compared to that used
in [5, 6]), and the fact that arbitrary runs of these non-deterministic algorithms always yield
the same result.

6 Conclusions

In this paper, we presented a general framework for truncating Petri net unfoldings. It provides
a powerful tool for dealing with different variants of the unfolding technique, in a flexible and
uniform way. In particular, by finely tuning the cutting contexts, one can build prefixes which
better suit a particular model checking problem. A fundamental result is that, for an arbitrary
Petri net and a cutting context, there exists a ‘special’ canonical prefix of its unfolding, which
can be defined without resorting to any algorithmic argument.

We introduced a new, stronger notion of completeness of a branching process, which was
implicitly assumed by many existing model checking algorithms employing unfoldings (see the
introduction). We have shown that the canonical prefix is complete w.r.t. this notion, and that
it is exactly the prefix generated by arbitrary runs of the non-deterministic unfolding algorithms
presented in [5, 6, 10]. This gives a new correctness proof for the unfolding algorithms presented
there, which is much simpler in the case of the slicing algorithm developed in [10]. As a result,
relevant model checking tools can now make stronger assumptions about the properties of the
prefixes they use. In particular, they can safely assume that for each configuration containing
no cut-off events, all firings are preserved.

Finally, we proposed conditions for the finiteness of the canonical prefix, and presented
criteria allowing placing bounds on its size, which should help in choosing problem-specific
cutting contexts. It is worth noting that to deal with the finiteness problem we proved a
version of König’s Lemma for branching processes of (possibly unbounded) Petri nets.

We believe that the results contained in this paper, on the one hand, will help to better
understand the issues relating to prefixes of Petri net unfoldings, and, on the other hand, will
facilitate the design of efficient model checking tools.
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