
Model-Driven Service Engineering with SoaML

Brian Elvesæter, Cyril Carrez, Parastoo Mohagheghi, Arne-Jørgen Berre, Svein G.
Johnsen and Arnor Solberg

Abstract This chapter presents a model-driven service engineering (MDSE) method-
ology that uses OMG MDA specifications such as BMM, BPMN and SoaML to
identify and specify services within a service-oriented architecture. The methodol-
ogy takes advantage of business modelling practices and provides a guide to ser-
vice modelling with SoaML. The presentation is case-driven and illuminated using
the telecommunication example. The chapter focuses in particular on the use of the
SoaML modelling language as a means for expressing service specifications that are
aligned with business models and can be realized in different platform technologies.

Brian Elvesæter
SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway, e-mail: brian.elvesater@sintef.no

Cyril Carrez
SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway, e-mail: cyril.carrez@sintef.no

Parastoo Mohagheghi
SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway, e-mail: paras-
too.mohagheghi@sintef.no

Arne-Jørgen Berre
SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway, e-mail: arne.j.berre@sintef.no

Svein G. Johnsen
SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway, e-mail: svein.g.johnsen@sintef.no

Arnor Solberg
SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway, e-mail: arnor.solberg@sintef.no

1



2 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

1 Introduction and Overview

1.1 Background and Motivation

There are two major trends in modern service engineering. Firstly, service-oriented
architecture (SOA) has emerged as a direct consequence of specific business and
technology drivers that have materialized over the past decade. Trends such as
the outsourcing of non-core business operations, the importance of business pro-
cess re-engineering and the need for system integration have been key influences
in pushing SOA as an important architectural approach to information technology
(IT) today. Secondly, modelling has become an integral part of software engineer-
ing approaches. Business process models are ideally used to describe how work is
done within an enterprise, while various technical models describe the IT systems.
There are several approaches to model-driven engineering (MDE) such as the OMG
Model Driven Architecture (MDA)1 [12] and efforts around domain-specific lan-
guages which have recently gained much popularity.

In MDA, business models are described as computational independent models
(CIMs). For the IT models, MDA separates platform-independent models (PIMs)
from platform-specific models (PSMs) in order to abstract the implementation tech-
nologies. It is also common to model a system from different views or perspectives
such as its structure and behaviour. In addition to models, MDA includes the mecha-
nism of transformations to provide mappings between representations of the system
on different abstraction levels. Due to the powerful concepts of abstraction and re-
finement, MDA is being increasingly applied in various domains and for different
types of applications, thus making it also an attractive solution for implementing the
new wave of applications based on service-oriented architectures. In order to do so,
new methodologies and languages with concepts required for modelling of services
are required.

SOA has been promoted for some years without a specific language that sup-
ports modelling services. In order to meet this requirement the Service oriented
architecture Modelling Language (SoaML) [16] was specified. The goals of SoaML
are to support the activities of service modelling and design and to fit into an over-
all model-driven development approach. The SoaML profile defines extensions to
UML 2 [17] to support the range of modelling requirements for service-oriented
architectures, including the specification of systems of services, the specification of
individual service interfaces, and the specification of service implementations. This
is done in such a way as to support the automatic generation of derived artefacts
following an MDA based approach.

The role of the SoaML specification is to specify a language, i.e., a metamodel
and a UML profile, for the design of services within a service-oriented architec-
ture. However, developing services requires a language and a process. It is not the
role of the specification to define a methodology, but rather to provide a founda-
tion for model-driven service engineering (MDSE) based on the MDA approach

1 OMG Model Driven Architecture (MDA), http://www.omg.org/mda/



Model-Driven Service Engineering with SoaML 3

that can be adopted in different software development processes. The aim of this
chapter is to provide a methodology for the SoaML language. This methodology
was developed as part of the 7th Framework Programme research project SHAPE
(ICT-2007-216408)2.

1.2 Solution Idea

The business requirements of real-world applications require a flexible development
approach to service-based IT landscapes that enables the businesses to exploit the
benefits of the SOA paradigm in an efficient manner. We assume that there should be
a systematic approach to service development which we refer to as service engineer-
ing. Service engineering should ideally cover all phases of a service life-cycle: from
collecting requirements to the stages of development or identifying services, com-
position, operation, monitoring and evolution. A challenge is therefore to identify
activities in software engineering related to the concept of services and SOA.

Generally speaking, a methodology describes a regular and systematic way of
how to accomplish something. The term methodology here denotes a set or collec-
tion of methods and related artefacts needed to support the model-driven engineer-
ing of SOA-based systems. Our view of methodology aligns with [5] who defines
methodology as a ”body of methods, meant to support all software development
phases” and with [7] who defines methodology in the context of model-based sys-
tems engineering as the ”collection of related processes, methods, and tools used
to support the discipline of systems engineering in a model-based or model-driven
context”.

To address this need we present a model-driven service engineering (MDSE)
methodology based on the OMG MDA approach [12]. The methodology guides
solution architects in how to specify services that are aligned with the business pro-
cess models. The focus of the MDSE methodology presented here is on the analysis
and design of service-oriented architectures. Rather than providing a comprehen-
sive methodology for supporting the engineering process for SOA systems, the aim
is to define SOA modelling guidelines that can be included in existing model-driven
methodologies. The MDSE methodology takes advantage of the SOA concepts de-
fined in SoaML which allows to:

1. Identify services and the requirements they are intended to fulfil, and the antici-
pated dependencies between them.

2. Specify services, including the functional capabilities they provide, what capa-
bilities consumers are expected to provide, the protocols or rules for using them,
and the service information exchanged between consumers and providers.

3. Define service consumers and providers, what requisition and services they
consume and provide, how they are connected and how the service functional

2 Semantically-enabled Heterogeneous Service Architecture and Platforms Engineering (SHAPE),
http://www.shape-project.eu/



4 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

capabilities are used by consumers and implemented by providers in a manner
consistent with both the service specification protocols and requirements.

4. Define policies for using and providing services.
5. Define architectural classification schemes having aspects to support a broad

range of architectural, organizational and physical partitioning schemes and con-
straints.

1.3 Outline of the Approach

Our MDSE methodology aims to integrate with existing business modelling prac-
tices within an enterprise, allowing building upon and extending existing modelling
practices rather than replacing them. The methodology assumes that modern busi-
ness modelling practices take advantage of business modelling tools that adopts the
OMG MDA specifications Business Motivation Model (BMM) [13] and Business
Process Modeling Notation (BPMN) [14]. From these models we will drive the
specification of services as a set of SoaML model artefacts.

The MDSE methodology provides guidelines for how to use SoaML to define
and specify a service-oriented architecture from both a business and an IT perspec-
tive. The methodology prescribes building a set of model artefacts following the
iterative and incremental process paradigm. Figure 1 depicts the overall process and
identifies the set of model artefacts to specify. The figure shows the set of work
products prescribed by the methodology and the overall workflow. The icons indi-
cate the associated BMM, BPMN or SoaML diagram(s) for each work product and
the arrows show the most common path through the set of work products within an
iteration.

Starting from the upper left we have the Business Architecture Model (BAM)
which includes the business goals, business processes, capabilities, services ar-
chitectures, and service contracts and choreographies. The System Architecture
Model (SAM) specifies the service interfaces, interfaces and message types, ser-
vice choreographies and software components. The model-to-model (M2M) trans-
formation consists of transformation rules and procedural guidelines to support a
semi-automated mapping from BAM to SAM.

The Platform-Specific Model (PSM) contains the design and implementation
artefacts of the specified service-oriented architecture in the chosen technology plat-
forms, e.g. cloud, Web Services, Java Enterprise Edition (JEE), multi-agent systems
(MAS), peer-2-peer (P2P), grid and Semantic Web Services (SWS). We consider
PSM-level modelling guidelines out of scope for the presentation of the methodol-
ogy in this chapter and focus on the business architecture and system architecture
modelling. PSM-level extensions to the methodology would involve defining further
modelling guidelines and model-to-text (M2T) transformation rules for the technol-
ogy platforms.



Model-Driven Service Engineering with SoaML 5

Fig. 1 The overall model-driven process

We use and extend the Eclipse Process Framework (EPF)3 for implementing
the methodology. EPF is a process framework that allows to define methodology
and process content that can be customized and integrated with other engineering
methodologies. The methodology presented here is dependent on modelling tools
that support the OMG specifications BMM, BPMN and SoaML. In the example
presented in this chapter we have used the UML modelling tool Modelio4.

3 Eclipse Process Framework (EPF), http://www.eclipse.org/epf/
4 Modeliosoft, http://www.modeliosoft.com/



6 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

1.4 Structure of the Chapter

The remainder of this chapter is organized as follows: In Section 2 we introduce
the telecommunication scenario that we use to illustrate our model-based service
engineering methodology. Section 3 presents the business architecture modelling
guidelines to describe the business perspective of an SOA, and Section 4 presents the
system architecture modelling guidelines to describe the IT perspective of an SOA.
Section 5 contains a discussion of our results in comparison with other related efforts
on service modelling. Finally, Section 6 summarizes and concludes the chapter.

2 Illustrative Scenario

We have developed a methodology that takes advantage of existing business mod-
elling practices and provides a guide for specifying services using SoaML concepts.
The methodology is illuminated using the telecommunication scenario as introduced
for the book. The scenario is about mobile phone services portability and has the
following business goals:

• To provide mobile phone number portability.
• To provide mobile services portability.
• To make the portability as much transparent as possible to the customer.

In the following sections we provide guidelines for how to specify the services
and their contracts, starting from the business processes descriptions. Specifically,
we focus on the first goal addressing phone number portability. The starting point
is a BPMN process description involving a customer and a number of cell phone
operators (CPOs). The scenario assumes a cooperation between different CPOs as
well as internal cooperation between the different departments of a CPO.

SoaML allows to specify service-oriented architectures at two levels of granu-
larity. The community-level architecture is a public ”top-level” view of how inde-
pendent participants collaborate without any single controlling entity or process.
The participant-level architecture is an internal view that specifies how parts of a
specific participant (e.g. departments within an organization) work together to pro-
vide the services of the owning participant. In the telecommunication scenario we
will show how to apply SoaML to specify a community-level architecture and how
this is refined into a participant-level architecture and further mapped to a software
architecture for a specific CPO named AcmeCPO.

The BPMN process diagram shown in Figure 2 describes the request and assign-
ment of mobile services portability. When a Customer requires a telephone number
portability, the AcmeCPO has to provide not only the porting of the number, but
also the porting of the services enabled on it, when possible. After checking the
portability of the number the CPO executes the porting. At the end of the process
the number is activated and bound to the new CPO.



Model-Driven Service Engineering with SoaML 7

Fig. 2 Request and assignment of mobile phone services portability (BPMN diagram)

3 Business Architecture Modelling

This part of the methodology covers selected areas of CIM-level modelling resulting
in a Business Architecture Model (BAM) that describes the business perspective of
a service-oriented architecture. The BAM is used to express the business operations
and environment which the service-oriented architecture is to support. The BAM
includes business goals (Section 3.1), business processes with associated organi-
sation roles and information elements (Section 3.2), and capabilities (Section 3.3)
that are relevant for capturing business requirements and identify services within
a service-oriented architecture. The BAM further describes the services architec-
ture (Section 3.4) of the business community and the service contracts (Section 3.5)
between the business entities participating in the community. Figure 3 depicts an
activity diagram that shows the modelling tasks involved in the specification of the
Business Architecture Model.

3.1 Business Goals

Business Motivation Model (BMM) [13] is a business-level modelling technique
that supports the modelling of the business goals and objectives, the means and
policies to achieve them, and the influencing factors that drive and control the work
involved. This is typically used to define the overall business strategy in early phases
of an engineering project.



8 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

Fig. 3 Business architecture modelling activities (EPF activity diagram)

The purpose of the BMM is to agree with the business stakeholders the business
goals that will be met by implementing the service-oriented architecture, so that a
set of required high level business processes can be identified for further analysis.
BMM provides a scheme or structure for developing, communicating, and manag-
ing business plans in an organized manner. In particular, the BMM supports the
following:

• It identifies factors that motivate the establishment of business plans.
• It identifies and defines the elements of business plans.
• It indicates how all these factors and elements inter-relate.

Among these elements, business policies and business rules provide governance
for and guidance to the business. Once produced and agreed, the BMM serves as
a reference that ensures that a full assessment may be made of all the business
implications of any proposed changes to the service-oriented architecture.

3.1.1 Modelling of Business Goals

Business goals are discovered by a process of workshops and interviews involving
relevant stakeholders. The BMM describes a loose hierarchy of goals of the business
within the particular area of concern, from the goals of a business stakeholder in
developing a product to the business goals met by the product or its users.

The goals are created as classes containing motivation-related information. The
name is expressed in a natural language and has properties such as scope, quantita-
tive/qualitative value, etc. Relationships between goals such as ”part of”, ”positive
influence”, ”negative influence”, ”guarantee” and ”measure” can be specified. Fig-
ure 4 shows the goals specified for the telecommunication example.



Model-Driven Service Engineering with SoaML 9

Fig. 4 Business goals diagram (BMM diagram)

3.2 Business Processes

Business Process Modeling Notation (BPMN) [14], is designed to communicate a
wide variety of information on business processes to a wide variety of audiences,
providing a standard notation that is readily understandable by all business stake-
holders. Business process descriptions bring real business vision and constitute an
excellent formalization and analysis tool when constructing systems. In the con-
text of a development project they are used in business-oriented activities related to
requirements, specifications and analysis.

Business processes may be at a number of levels of detail, from a high level
description of the business processes down to task flows which comprise a set of de-
tailed specifications for the business services to be realized in the service-oriented
architecture. BPMN is designed to cover many types of modelling and allows the
creation of end-to-end business processes. It allows the specification of private pro-
cesses (both non-executable and executable), public processes, choreographies and
collaborations.

Typically, BPMN is used to define business processes on the CIM level. The
definitions are then mapped to more technical models on the PIM and PSM level.
Our methodology does not address the full scope of business modelling at the CIM
level, but rather assumes that some kind of business process models or descriptions
already exist that have been developed using existing BPMN guidelines. However,
typically these models must be further refined and mapped to SoaML concepts for
describing the business perspective of an SOA.

3.2.1 Modelling of Business Processes

The BAM should contain refined descriptions of the business processes which are
relevant to the service-oriented architecture to be defined. These are the business
processes that will enable the goals to be met and include the roles which collaborate
through services that are to be specified and developed.

The first step is to identify the relevant business processes for the service-oriented
architecture, following these guidelines:



10 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

• Identify public and collaborative business processes that involve interactions and
potential usage of software services between different business organizations.
These processes are candidates for public community-level services architectures
in SoaML.

• Identify private business processes for the business entities under your ownership
control that are involved in the services architecture under consideration. These
processes are candidates for internal participant-level services architectures in
SoaML.

• The business goals resulting from the modelling steps outlined in Section 3.1.1
can be used to scope the selection of business processes.

Each of the selected business processes identified will be a candidate for a
SoaML services architecture (see Section 3.4). Concerning our illustrative scenario,
the public business process will encompass all the actors of the system (i.e. the
customer and the different CPOs, as it will be exemplified hereafter); the private
business process will encompass the AcmeCPO.

Once the business processes have been identified, their specification can begin.
Each business process will be specified in a business process diagram and refined
with respect to participants, their tasks, and information flow between the partici-
pants.

Participants represent the business units or organization roles that are involved
in the execution of a process. Participants are specified using the BPMN constructs:
pools, participants and lanes. Pools represent business organizations and lanes rep-
resent internal business units within an organization.

Each participant will perform different tasks and exchange information with
other participants. The next step is to focus on the tasks which describe the interac-
tion points between the business entities. These interaction points will be associated
with service contracts in SoaML (see Section 3.5). Each task will possibly create,
manipulate and use some information items. The following BPMN constructs are
used for information modelling: data objects, data inputs and outputs, data associ-
ations and messages.

Figure 5 shows the refined business process model for the request and assign-
ment of mobile phone services originally depicted in Figure 2. Three different par-
ticipants take part in this process: Customer, AcmeCPO and OtherCPO. The inter-
action points between the participant tasks have been further revised by modelling
data objects that are typed as specific message types, e.g. PhoneNumberPortabili-
tyRequest. The tasks in the OtherCPO participant are considered private, thus from
the perspective of AcmeCPO we only model the public information exchange.

Since the focus of our modelling refinement is on AcmeCPO, we can also spec-
ify an internal process that details the AcmeCPO pool. As can be seen in Figure 6
we have introduced two new roles represented by the lanes CustomerManager and
CPOManager and assigned the tasks specified in the pool to these two roles accord-
ing to whether the task is oriented towards the customer or another CPO. The figure
only shows a partial left view of the BPMN diagram to illustrate the refinements
with regards to the lanes.



Model-Driven Service Engineering with SoaML 11

Fig. 5 Public community process for request and assignment of portability (BPMN diagram)



12 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

Fig. 6 Private AcmeCPO process for request and assignment of portability (BPMN diagram)

3.3 Capabilities

Capabilities identify or specify a cohesive set of functions or resources that a ser-
vice provided by one or more participants might offer. Capabilities can be used by
themselves or in conjunction with participants to represent general functionality or
abilities that a participant must have. Capabilities are used to identify needed ser-
vices, and to organize them into catalogues in order to communicate the needs and
capabilities of a service area, whether that be business or technology focused, prior
to allocating those services to particular participants. Capabilities can have usage
dependencies on other capabilities to show how these capabilities are related. Ca-
pabilities can also be organized into architectural layers to support separation of
concern within the resulting service architecture.

3.3.1 Modelling of Capabilities

The specification of capabilities is optional in our methodology. Capabilities rep-
resent high-level services with abstract operations. For large business architectures
it may be a good idea to start with capability modelling to help identifying needed
services, whereas for more technical architectures it might be easier to focus on the
IT services directly. Once you have defined the capabilities, these can later be used
to identify candidate services.

In order to identify the capabilities in the first place there exists different tech-
niques:



Model-Driven Service Engineering with SoaML 13

• Goal-service modelling, which identifies capabilities needed to realize business
requirements such as strategies and goals.

• Domain decomposition, which uses activities in business processes and other
descriptions of business functions to identify needed capabilities.

• Existing asset analysis, which mines capabilities from existing applications.

Figure 7 shows a simple example of two capabilitites that were derived from the
business goals (Figure 4).

Fig. 7 Capabilities (UML class diagram)

3.4 Services Architectures

A services architecture is a high level description of how participants work together
for a purpose by providing and using services expressed as service contracts. The
services architecture defines the requirements for the types of participants and ser-
vice realizations that fulfill specific roles. A role defines the basic function (or set of
functions) that an entity may perform in a particular context. In contrast, a partici-
pant specifies the type of a party that fills the role in the context of a specific services
architecture. Both service contracts and participants can be reused when composing
different services in other services architectures.

3.4.1 Modelling of Services Architectures

Services architectures are modelled as UML collaborations with the stereotype
�ServicesArchitecture�. A services architecture has components at two levels of
granularity: The community services architecture is a ”top level” view of how in-
dependent participants work together for some purpose. The services architecture
of a community does not assume or require any single controlling entity or pro-
cess. The public process described in Figure 5 maps to a community-level services
architecture for the telecommunication scenario.

A participant may also have a participant services architecture, which specifies
how parts of that participant (e.g., departments within an organization) work to-
gether to provide the services of the owning participant. Participants that realize



14 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

this specification must adhere to the architecture it specifies. The internal process
described in Figure 6 maps to a participant-level architecture for AcmeCPO.

Participants are modelled as UML classes stereotyped �Participant�. Partici-
pants are identified from pools, participants and lanes specified in the BPMN pro-
cesses (see Section 3.2.1). Figure 8 shows the participants identified from the two
BPMN process diagrams: the three pools in Figure 5 map to the three participants
Customer, AcmeCPO and OtherCPO for the community-level services architecture.
The two lanes in the Figure 6 map to the two participants CustomerManager and
CPOManager which are internal roles in the AcmeCPO participant-level services
architecture.

Fig. 8 Participants (UML class diagram)

The next step is to identify the possible interactions between the different partic-
ipants. The interactions are represented as service contracts. A service contract is a
UML collaboration with the stereotype �ServiceContract�. In this step, only an
empty UML collaboration is specified. The detailing of the service contracts will be
further elaborated in Section 3.5.1.

Once all service contracts and participants have been identified, the service de-
signer can use them to build the service architecture. Roles in the UML collaboration
are typed by the identified participants, while UML collaboration uses are linked to
the service contracts. The modeller has to bind the different roles to the appropriate
collaboration uses, hence specifying how participants will interact.

Concerning the scenario, Figure 9 shows the two resulting services architec-
tures. The CommunityMobilePhoneServicesPortability specifies the community-
level architecture with its three participants that are connected together by four
collaboration uses which are linked to the service contracts NumberPortingRe-
quest, PlaceOrder, CheckNumberServicesPorting and ProcessNumberServicesPort-
ing. The AcmeCPOMobilePhoneServicesPortability shows how AcmeCPO is or-
ganized internally to provide services. Two additional participants CustomerMan-
ager and CPOManager have been specified, connected by the service contracts
AcmeCheckMobileServicesPorting and AcmeExecuteMobileServicesPorting. These
two participants represent internal roles that are connected to the existing, exter-
nal roles and the corresponding service contracts specified in the community-level
services architecture.



Model-Driven Service Engineering with SoaML 15

Fig. 9 Services architecture (UML collaboration diagram)

3.5 Service Contracts and Choreographies

SoaML allows different approaches to specify services. In our methodology, we
have chosen to combine two different approaches, as we see one fits more at the
business level (service contract approach) and the other at the IT level (service in-
terface approach). In the business architecture modelling we suggest to use service
contracts that are further refined to service interfaces in the system architecture mod-
elling.



16 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

A service contract approach defines service specifications (the service contract)
that define the roles each participant plays in the service (such as provider and con-
sumer) and the interfaces they implement to play that role in that service. The ser-
vice contract represents an agreement between the involved participants for how
the service is to be provided and consumed. This agreement includes the interfaces,
choreography and any other terms and conditions. Service contracts are frequently
part of one or more services architectures that define how a set of participants pro-
vide and use services for a particular business purpose or process.

3.5.1 Modelling of Service Contracts

The specification of service contracts can be seen as the refinement of a services
architecture. Service contracts are specified as UML collaborations stereotyped
�ServiceContract�.

The first step is to analyse the BPMN diagrams to identify service contracts.
This is a design-choice as there is no single construct in the BPMN that resembles a
service contract. However, a certain pattern of objects can reveal service contracts,
for instance when two single tasks follow one after another across a pool or lane and
are connected with a sequence flow and associated with a data object.

Four services contracts were identified from the community process (Figure 5).
Two between the Customer and AcmeCPO: requesting a file number porting and
place the order (and pay the bill). Two other service contracts were identified be-
tween AcmeCPO and OtherCPO: checking and actually processing the number port-
ing. Another two service contracts were identified between the CustomerManager
and the CPOManager in the analysis of the internal process (Figure 6). The six
identified service contracts are shown in Figure 10.

Once the service contracts are identified, one has to specify the consumer and
provider roles. These roles are typed by corresponding UML interfaces stereotyped
�Consumer� and �Provider� respectively. At this modelling step we only iden-
tify the names and possibly some high-level operations in the interfaces. These in-
terfaces will be further elaborated and refined as part of the system architecture
modelling. Figure 10 shows the six service contracts, with their interfaces. The first
one, NumberPortingRequest, represents a simple service where any consumer can
use the service without any contractual obligations. It has two roles: customer and
CPO, but only the CPO role has an interface type, namely NumberPortingRequest.
The five other service contracts specify that there are contractual obligations on
both the consumer and provider side, which means that both roles must have an
interface type. For example, the service contract PlaceOrder specifies the interface
CustomerOrder for the consumer role and the interface MobileServicesOrder for
the CPO role.

Each interface will define (business) operations. The arguments of those opera-
tions specify the information elements that are exchanged. These information ele-
ments can be derived from the business processes, where the information items map
to a message type or a data entity in SoaML. Message types and data entities are



Model-Driven Service Engineering with SoaML 17

Fig. 10 Service contracts (UML collaboration diagram)

defined as stereotypes on a UML class. So a first step would be to create these infor-
mation items as regular UML classes, and then refine them to either message types
or data entities as part of the system architecture modelling (see Section 4.2.1). The
information modelled here does not need to be complete. It may be sufficient to just
link the class to a particular information standard or just describe the most impor-
tant properties of the data objects. For instance Figure 11 shows a partial view of
the data objects identified in the BPMN process (Figure 5). These data objects are
represented as SoaML message types and have been linked with the BPMN data
objects.

3.5.2 Modelling of Service Choreographies

A choreography is a specification of what is transmitted and when it is transmitted
between participants to enact a service exchange. The choreography defines what
happens between the provider and consumer participants without defining their in-
ternal processes - their internal processes do have to be compatible with their service
contracts.

We recommend to model the behaviour of any complex service contract in order
to get a better understanding of the interaction between the roles. A starting point
for specifying the behaviour of the service contracts are the BPMN process dia-
grams. Thus, BPMN may be the preferred formalism to use for describing service
choreographies at the business level. Figure 12 shows the part of the BPMN process



18 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

Fig. 11 Message types (UML class diagram)

related to the service contract PlaceOrder. Modelling the service choreographies
also gives you an opportunity to revise and further refine the information exchange
between the two parties. This model will later be refined at the IT level as part of the
modelling of the corresponding service interface and its service choreography (see
Section 4.3).

Fig. 12 Service choreography for the PlaceOrder service contract (BPMN diagram)



Model-Driven Service Engineering with SoaML 19

4 System Architecture Modelling

The System Architecture Model (SAM) describes the IT perspective of a service-
oriented architecture. The SAM is a refinement of the BAM, and is used to express
the overall architecture of the system at the PIM level. It partitions the system into
components and defines the components in terms of what interfaces they provide,
what interfaces they use, and how these interfaces should be used (protocol). Two
aspects of component collaborations are described: the static model (structure) and
dynamic model (behaviour). The structural model describes the components, their
dependencies, and their interfaces; the dynamic model describes the component in-
teractions and protocols.

The methodology first starts by refining the service contracts of the BAM by
defining service interfaces (Section 4.1) with the associated interfaces and messages
(Section 4.2) and service choreographies (Section 4.3) which define the protocols
to use when accessing those interfaces. Software components are then specified and
composed in a component architecture (Section 4.4). Figure 13 depicts an activity
diagram that shows the modelling tasks involved in the specification of the System
Architecture Model.

Fig. 13 System architecture modelling activities (EPF activity diagram)

4.1 Service Interfaces

The service contracts specified in the business architecture modelling (Section 3.5)
are refined to service interfaces in the system architecture modelling. The service
interfaces specify the interactions between the software components of the service-
oriented architecture: service interfaces will serve as port types on software compo-
nents (Section 4.4). SoaML allows for two approaches:



20 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

• Simple interface based approach: A simple interface specifies a uni-directional
service, focusing on a one-way interaction provided by a participant on a port.
The participant receives operations on this port and may provide results to the
caller. A simple interface can be used with ”anonymous” callers where the partic-
ipant makes no assumptions about the caller or the choreography of the service.
The one-way service corresponds most directly to simpler remote procedure call
(RPC) style Web services.

• Service interface based approach: A service interface specifies a bi-directional
service, where ”callbacks” exist at the provider’s side (in addition to the usual
operations at the consumer’s side), allowing an exchange from the consumer to
the provider as a part of a conversation between the two parties. A service inter-
face defines the interface and responsibilities of the provider and the consumer of
a service, by including commands and information by which actions are initiated
(Section 4.2), and by optionally including specific protocols (Section 4.3).

A service interface will type the service port of a software component, hence
specifying that this component provides the service on that port (Section 4.4).
SoaML also defines a conjugate service interface, where the consumer and provider
are inverted from the associated service interface; the name of a conjugate service
interface is the same as the associated service interface, with a tilde ’˜’ in front.
A conjugate service interface will type the request port of a software component
consuming the service (Section 4.4).

4.1.1 Modelling of Service Interfaces

Service interfaces are modelled as UML classes stereotyped �ServiceInterface�.
The associated required and provided interfaces are modelled as UML interfaces
with the stereotypes �Consumer� and �Provider� respectively; they are repre-
sented inside the service interface as parts with a connection. This is illustrated in
Figure 14, where the �ServiceInterface� PlaceOrderInterface contains two parts,
namely the �Provider� interface CustomerOrder and the �Consumer� interface
MobilServiceOrder.

The required and provided interfaces are refinements of the interface types of the
consumer and provider roles defined in the service contracts. However, in the service
contracts these interfaces were primarily defined as business-level interfaces. These
interfaces can be refined directly, or possibly mapped to a new set of interfaces
that will be used to detail the IT-level artefacts. Figure 14 shows such a refinement,
where each service contract maps to a corresponding service interface with a new
set of consumer and provider interface types. These interfaces will be used to further
detail the specification for the software components (see hereafter).



Model-Driven Service Engineering with SoaML 21

Fig. 14 Service interfaces (UML class diagram)

4.2 Interfaces and Messages

The provided and required interfaces of the previous section are refined with oper-
ations and callbacks, hence specifying how to interact with a component that pro-
vides or uses such interfaces. The operations are specified in the provided interface,
while the callbacks are specified as part of the required interface, hence allowing a
conversation between provider and consumer of a service.

Arguments of operations and callbacks can make use of messages, which specify
the kind of data expected. There are several SOA interaction paradigms in com-
mon use, including document centric messaging, remote procedure calls (RPC),
and publish-subscribe. The decision depends on cohesion and coupling, state man-
agement, distributed transactions, performance, granularity, synchronization, ease
of development and maintenance, and best practices. SoaML supports document-
centric messaging and RPC-style service data:

• Document-centric messaging: Message types specify the information exchanged
between service consumers and providers. Message types represent ”pure data”
that may be communicated between parties – it is then up to the parties, based on
the SOA specification, to interpret this data and act accordingly. As ”pure data”



22 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

message types may not have dependencies on the environment, location or infor-
mation system of either party. A message type is in the domain or service-specific
content and does not include header or other implementation or protocol-specific
information.

• RPC-style service data: Service data is data that is exchanged between service
consumers and providers. The data types of parameters for service operations are
typed by a data type, primitive type, or message type.

The choice of document-centric or RPC-style approach affects how to model
the operation signatures (parameters and responses). The choice may differ from
interface to interface within the same component architecture, depending on, e.g.
technology platform choices and whether the services at stake are public external
services or private internal services.

4.2.1 Modelling of Interfaces and Messages

As written in Section 4.1, provided and required interfaces are stereotyped with
�Provider� and �Consumer�. The provided interface will contain the opera-
tions of the service, while the required interface can have callbacks, which are spec-
ified as signals. For instance Figure 15 shows the �Provided� interface MobileSer-
vicesOrder with the operations placeOrder and payBill, and the �Consumer� in-
terface with the callback confirmOrderAndPay; this callback asks for the consumer
to actually pay the bill. Service choreographies (Section 4.3) specify how operations
and callbacks are put together into a conversation between the two parties.

Message types are represented as UML classes stereotyped �MessageType�.
Service data are represented as UML classes with the stereotype �entity�. The
specification of message types and service data are closely linked to the specification
of the operations and callbacks in the interfaces. For a document-centric approach
you will typically only specify one input parameter and one response parameter that
are typed as message types. Both message types and service data may have proper-
ties that can be either modelled as UML properties or associated UML classes. This
is illustrated in Figure 15 where the two operations and the callback have been spec-
ified with their own separate message types as input parameters and responses. The
message types OrderRequest and OrderResponse have both properties and associ-
ated classes that contain additional information to support the customer in browsing
the cost of the services before selecting the ones to be ported and enabling whether
a temporary or fixed porting should be enabled.

4.3 Service Choreographies

The behaviour of a service interface expresses the expected interaction between the
consumers and providers of services. It is a refinement of the behaviour of service



Model-Driven Service Engineering with SoaML 23

Fig. 15 Interfaces and message types (UML class diagram)

contracts (Section 3.5), and is mostly used in association with bi-directional ser-
vices, where operations and callback need to be sequenced in a specific manner.
The components taking part in the service at stake will then have to act according to
the protocol specified by the service choreography.

4.3.1 Modelling Service Choreographies

Service choreographies can be specified as any UML behavior, the most common
ones being activity, interaction or state machine. One has to specify the message
sequence between the consumer and provider interfaces. The sequence should be
linked to operations defined in the interfaces. The modelling of the service chore-
ography is an iterative process that is linked to revising the interfaces and messages
(Section 4.2), until a complete service choreography can be specified.

Figure 16 specifies the behaviour of the service interface PlaceOrderInterface
using an interaction diagram. The service interface describes a bi-directional ser-



24 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

Fig. 16 Service choreography or service interface behaviour defined as a UML interaction (UML
sequence diagram)

vice with a call-back at the client-side (see Figure 15). The customer invokes the
operation placeOrder on the interface MobileServicesOrder. A message type Or-
derResponse is returned to the customer. Then the CPO invokes the callback confir-
mOrderAndPay on the interface CustomerOrder at the customer-side which triggers
a signal forcing the customer to confirm and pay for the order and invoke the oper-
ation payBill.

4.4 Software Components

The component model focuses on specifying the involved software components that
realizes the services architecture specified during the business architecture mod-
elling, either for a community or a participant. Once the components are defined,
a composite structure is used to show how implementations of these components
form a composite service-oriented application. Service interfaces (Section 4.1) are
used to type the ports of the components, which means that those components must
abide by the specified provided/required interfaces and message types (Section 4.2)
as well as the associated protocols (Section 4.3). While the services architecture of
the business architecture modelling gathers all the pieces of the BAM together, the
component model does the same for the system architecture modelling.

4.4.1 Modelling Software Components

Software components are modelled as components with composite structures using
class diagrams in UML. Each participant in the services architecture of the BAM
can be refined into SoaML participant in the SAM. SoaML participants of the SAM



Model-Driven Service Engineering with SoaML 25

represent software components that realize the service contracts specified for the
business organizations (specified as SoaML participant) in the Business Architec-
ture Model. For instance the three participants of the community services architec-
ture of Figure 9 are refined and assembled in the component model of Figure 17 (i.e.
components CustomerWeb, AcmeCPOServices and OtherCPOServices).

The next step is to connect the software components together, through their
ports. Each port of a component is either a �Service� port or a �Request�
port. The former will provide a service, and is typed by a service interface; the
latter is a consumer of a service, and is typed by the conjugate service interface. A
�Service� port will then have to implement the operations specified in the asso-
ciated �Provider� interface, while the �Request� port will have to implement
the callbacks specified in the associated �Consumer� interface. The ports can
then be connected such that they have matching types. This is exemplified in Fig-
ure 17, where the three components are connected using request and service ports.
For instance, the component CustomerWeb has a port which is typed by the conju-
gate service interface ˜PlaceOrderInterface, which means that it has to implement
the callback confirmOrderAndPay specified in the �Consumer� interface Cus-
tomerOrder. Similarly the component AcmeCPOServices has a port which is typed
by the service interface PlaceOrderInterface, which means the component has to
implement the operations defined in the �Provider� interface MobileServicesOr-
der (see Figure 14). As the two ports are typed by matching interfaces, they can be
connected together.

Finally, the internals of the software components can be further refined. The
two components CustomerManager and CPOManager inside the AcmeCPOSer-
vices corresponds to the participants defined for the participant-level services ar-
chitecture of Figure 9. These two internal components are interconnected through
the AcmeCheckMobileServicesPortingInterface and AcmeExecuteMobileServices-
PortingInterface request (conjugate service interface) and provider (service inter-
face) port types.

Note that not all software components can be specified fully in this manner. In-
deed some components are provided or developed by third parties, which means
that their internal structure may be unknown. However, such component must be-
have according to the service interfaces that type their ports, possibly including the
corresponding service choreographies. This is why the system component OtherC-
POServices of Figure 17 has no internal structure and is specified as a ”black-box”.

5 Related Work and Discussion

In this section, we discuss the work presented in this chapter and compare it with
other efforts on service modelling. We first consider the model-driven methodolo-
gies in general and how they need extensions to cover service engineering activities.
Then we focus on service engineering methodologies and how our service mod-



26 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

Fig. 17 Software components (UML class diagram)

elling approach can be integrated in these by using SoaML as a means for service
specification.

5.1 Model-Driven Methodologies

There are many general purpose model-driven methodologies such as the Rational
Unified Process (RUP) [11] and KobrA [3]. These methodologies have differences
and similarities but they all emphasize on the systematic use of models as primary
software artefacts throughout the software engineering life-cycle.

However, service engineering needs additional artefacts and activities which are
not found in development paradigms such as object-oriented analysis and design
(OOAD) where MDE is commonly applied. There are especially two characteristics
of service engineering that should be addressed by a model-driven service engineer-
ing methodology:

• Core concepts of SOA such as service, services architecture and service contracts
should be covered and there should be specific activities in the methodology that
lead to the specification and modelling of these core concepts.

• Service orientation essentially means focusing on service functionality and ser-
vices architecture, and how services fulfil business goals. This requires modelling
services in a platform independent way. Implementation details on the other hand



Model-Driven Service Engineering with SoaML 27

are covered by transforming the PIMs to the selected platforms and should be
hidden at the service modelling stage.

Thus existing general methodologies with focus on objects and components need
higher level abstraction level including services which is the contribution of this
work.

5.2 Service Engineering Methodologies

There are numerous methods for technologies related to service-based system engi-
neering where [4] provides a comprehensive overview. SOAD (Service Oriented
Analysis and Design) [18] developed by IBM is one of the first systematic ap-
proaches to service engineering. The idea was to combine object-oriented analy-
sis and design, enterprise architecture and business process modelling in a hybrid
approach in order to support SOA deployment. This idea was further developed in
SOMA (Service Oriented Modeling and Architecture) [2], where services, flows and
components realizing services are identified. The methodology describes a business-
driven top-down approach, combined with and IT-based bottom-up approach (where
existing services can be reused). Our approach is therefore close to the process of
SOMA in starting from business models and aligning services to business goals.
Another methodology that have influenced our work was developed in the FP6 EU
project SIMS5 [8] which defined a top-down approach for specifying mobile ser-
vices, starting from a high level specification of the system and modelling composite
collaboration representing the services and refining these to fine grained specifica-
tion of components, interfaces and data.

Our contribution to service engineering methodologies is introducing SoaML as
the modelling language to be used in the specification and modelling of services.
SoaML standardization is in the final phase and it is already supported by several
modelling tools. Thus SOA methodologies will benefit from using the language in
their life cycle models and include activities proposed in this chapter in order to
take advantage of the standard. Other phases of development such as deployment,
monitoring and management are out of the scope of this work.

5.3 Discussion

Any project that adopts SOA should cover the phases of service identification and
specification, in addition to the phases of composition, realization, monitoring and
management of services. This paper proposes a methodology that starts from higher-
level models such as goal models, requirement models or business process models
down to the modelling of services and their realization by software components. We

5 Semantic Interfaces for Mobile Services (SIMS), http://www.ist-sims.org/



28 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

have covered key concepts, activities, and models pertaining to a service engineering
life-cycle method. The methodology takes advantage of SoaML as the modelling
language and is therefore complementary to existing service engineering methods
that are either silent about the language or take advantage of non-standard solutions
for the purpose of service modelling. Another contribution of the work is proposing
relations between business processes and goals and service constructs that may be
basis for transformations or validation activities.

Many of the service-oriented methods analysed are mostly dedicated to a specific
technology and define static procedures that can hardly be combined into a compre-
hensive methodology for integrated engineering frameworks. Because of the fact
that engineering situations vary considerably from one application system develop-
ment project to another, the traditional systems development methods are often not
well suitable. Even though they claim to be universal and propose a large number
of models and views for system analysis and specification, they cannot foresee all
possible development situations. To overcome this, our approach follows the idea of
Situational Method Engineering (see [10] and [6]) where reusable method chunks
are assembled into customized engineering methods for particular application sce-
narios. Most of them use assembly techniques based on the reuse of existing method
parts in the construction of new methods or in the enhancement of existing ones.

We have chosen the Eclipse Process Framework (EPF)6 as the technical infras-
tructure for implementing our methodology. EPF is an open-source project for defin-
ing customizable software engineering processes, providing a specification frame-
work for methods and processes along with editing and content management fa-
cilities. Recent approaches aim at providing a generic infrastructure for customiz-
able software engineering methodologies. Most notably, OpenUP provides an open-
source implementation of the Unified Process – a generic framework for iterative
software engineering processes [9] – within EPF, and the IBM Rational Method
Composer (RMC)7 provides a commercial tool with IBM’s own SoaML-based
Service-Oriented Modeling and Architecture (SOMA) methodology [1]. Thus EPF
provides the possibility to integrate the steps proposed in our methodology with
other processes that cover other activities of software development.

6 Concluding Remarks and Future Work

In this chapter we have presented an overview of our MDSE methodology and in
particular how the SoaML modelling language has been applied in a top-down man-
ner to model a subset of the telecommunication use case. By following the method-
ology, which uses the SoaML language to represent both a business perspective and
an IT perspective of SOA, better business and IT alignment can be achieved since
the IT-level model can be viewed as a refinement of the business-level SOA model.

6 Eclipse Process Framework (EPF), http://www.eclipse.org/epf
7 Rational Method Composer (RMC), http://www-01.ibm.com/software/awdtools/rmc



Model-Driven Service Engineering with SoaML 29

Additionally, the SoaML model artefacts can be linked to business goals described
in BMM to further help in the alignment process.

The MDSE methodology is currently in the finalization phase and is being re-
vised according to user feedback and experience. Moreover, the methodology is
being aligned with the latest changes in the SoaML specification which is also cur-
rently under finalization in the OMG. One aspect of the methodology that requires
further work is to provide better guidelines for behavioural modelling. SoaML is
quite open with regards to behavioural modelling, and explicitly states that any
UML behaviour can be used. There is also a synchronization and integration to be
done with the ongoing BPMN 2.0 specification [15], which introduces some service
concepts that overlaps with the SoaML specification.

The MDSE methodology is implemented in the Eclipse Process Framework
(EPF) to allow extensibility and open access. The core methodology presented fo-
cuses on the computational independent and platform independent abstractions lev-
els according to the OMG MDA approach. The methodology has also been extended
to support various platform technologies, in particular Web services, multi-agent
platforms and Semantic Web Services. These correspond to PIMs for different ar-
chitectural styles. Flexibility of the solution lies in being independent of various
platforms in service design while it is extensible, generalization lies in standard-
izing the developed UML profile and metamodel, the business value lies in being
adaptable to various platforms, while innovation lies in combining SOA with model-
driven development and taking advantage of advances in both fields.

Acknowledgements The SoaML methodology presented here has mainly been developed in the
7th Framework Programme research project SHAPE (ICT-2007-216408). The overall aim of the
project is to develop the foundations for the model-driven development of service-oriented system
landscapes with support for the integration of other technologies in order to increase the effective-
ness and quality of modern software and system engineering.

The authors acknowledge and thank collaboration with partners within the SHAPE project for
stimulating input and feedback since the start-up in 2007.

References

1. Amsden, J.: Modeling with SoaML. Technical article, IBM (7 January 2010). Online:
http://www.ibm.com/developerworks/rational/library/09/modelingwithsoaml-1/index.html

2. Arsanjani, A.: Service-Oriented Modeling and Architecture - How to identify, spec-
ify and realize services for your SOA. Technical article, SOA and Web Ser-
vices Center of Excellence, IBM, Software Group (9 November 2004). Online:
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/

3. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wust, J., Zettel, J.: Component-based Product Line Engineering with UML. Addi-
son Wesley (2002)

4. Bastida, L., Berre, A.J., Elvesæter, B., Hahn, C., Johnsen, S.G., Kamper, S., Kerrigan, M.,
Larrucea, X., Limyr, A., Muth, M., Nilsen, G., Roman, D., Rubina, J.M., Stollberg, M.: Model-
driven Methodology and Architecture Specification. Deliverable D2.1, SHAPE Project (2009)



30 B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen and A. Solberg

5. Blum, B.I.: A taxonomy of software development methods. Commununications of the ACM
37(11), 82–94 (1994)

6. Brinkkemper S. Saeki, M., Harmsen, F.: Assembly Techniques for Method Engineering. In:
10th Conference on Advanced Information Systems Engineering, CAiSE’98, LNCS 1413, pp.
381–400. Springer (1998)

7. Estefan, J.A.: Survey of model-based systems engineering (MBSE) methodologies. Incose
MBSE Focus Group (2007)

8. Floch, J., Carrez, C., Cieślak, P., Rój, M., Sanders, R.T., Shiaa, M.M.: A comprehensive engi-
neering framework for guaranteeing component compatibility (2010). Journal of Systems and
Software, to appear

9. Kroll, P., MacIsaac, B.: Agility and Discipline Made Easy: Practices from OpenUP and RUP.
Addison-Wesley (2006)

10. Kumar, K., Welke, R.: Method Engineering: A Proposal for Situation-specific Methodology
Construction. In: Cotterman, Senn (eds.) In Systems Analysis and Design : A Research
Agenda, pp. 257–268. Wiley (1992)

11. Kurchten, P.: The Rational Unified Process: An Introduction. Addison Wesley (2003)
12. MDA Guide Version 1.0.1. Object Management Group, Document omg/03-06-01 (2003)
13. Business Motivation Model (BMM), Version 1.0. Object Management Group, Document

formal/08-08-02 (2008). Online: http://www.omg.org/spec/BMM/
14. Business Process Model and Notation (BPMN), Version 1.2. Object Management Group,

Document formal/2009-01-03 (2009). Online: http://www.omg.org/spec/BPMN/1.2/
15. Business Process Model and Notation (BPMN), Version 2.0 - Beta 1. Object Management

Group, Document dtc/2009-08-14 (2009). Online: http://www.omg.org/spec/BPMN/2.0/
16. Service oriented architecture Modeling Language (SoaML), Version 1.0 - Beta 2. Object Man-

agement Group, Document ptc/2009-12-10 (2009). Online: http://www.omg.org/spec/SoaML/
17. Unified Modeling Language (UML), Infrastructure, Version 2.2. Object Management Group,

Document formal/2009-02-04 (2009). Online: http://www.omg.org/spec/UML/2.2/
18. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of Service-Oriented Analysis and Design

- An interdisciplinary modeling approach for SOA projects. Technical article, IBM (2 June
2004). Online: http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/


