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INTRODUCTION

What is nowadays the central part of any introduction to logic, and indeed to some
the logical theory par excellence, used to be a modest fragment of the more ambi-
tious language employed in the logicist program of Frege and Russell. ‘Elemen-
tary’ or ‘first-order’, or ‘predicate logic’ only became a recognized stable base for
logical theory by 1930, when its interesting and fruitful meta-properties had be-
come clear, such as completeness, compactness and Löwenheim-Skolem. Richer
higher-order and type theories receded into the background, to such an extent that
the (re-) discovery of useful and interesting extensions and variations upon first-
order logic came as a surprise to many logicians in the sixties.

In this chapter, we shall first take a general look at first-order logic, its proper-
ties, limitations, and possible extensions, in the perspective of so-called ‘abstract
model theory’. Some characterizations of this basic system are found in the pro-
cess, due to Lindström, Keisler-Shelah and Fraı̈ssé. Then, we go on to consider the
original mother theory, of which first-order logic was the elementary part, starting
from second-order logic and arriving at Russell’s theory of finite types. As will be
observed repeatedly, a border has been crossed here with the domain of set theory;
and we proceed, as Quine has warned us again and again, at our own peril. Never-
theless, first-order logic has a vengeance. In the end, it turns out that higher-order
logic can be viewed from an elementary perspective again, and we shall derive var-
ious insights from the resulting semantics.

Before pushing off, however, we have a final remark about possible pretensions
of what is to follow. Unlike first-order logic and some of its less baroque exten-
sions, second and higher-order logic have no coherent well-established theory; the
existent material consisting merely of scattered remarks quite diverse with respect
to character and origin. As the time available for the present enterprise was rather
limited (to say the least) the authors do not therefore make any claims as to com-
plete coverage of the relevant literature.

1 FIRST-ORDER LOGIC AND ITS EXTENSIONS

The starting pointof the present story lies somewhere withinHodges’s chapter (I.1).
We will review some of the peculiarities of first-order logic, in order to set the stage
for higher-order logics.
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1.1 Limits of Expressive Power

In addition to its primitives all and some, a first-order predicate language with iden-
tity can also express such quantifiers as precisely one, all but two, at most three,
etcetera, referring to specific finite quantities. What is lacking, however, is the gen-
eral mathematical concept of finiteness.

EXAMPLE. The notion ‘finiteness of the domain’ is not definable by means of any
first-order sentence, or set of such sentences.

It will be recalled that the relevant refutation turned on the compactness theorem
for first-order logic, which implies that sentences with arbitrarily large finite models
will also have infinite ones.

Another striking omission, this time from the perspective of natural language, is
that of common quantifiers, such as most, least, not to speak of many or few.

EXAMPLE. The notion ‘most A are B’ is not definable in a first-order logic with
identity having, at least, unary predicate constantsA�B. This time, a refutation in-
volves both compactness and the (downward) Löwenheim-Skolem theorem: Con-
sider any proposed definition��A�B� together with the infinite set of assertions ‘at
least n A are B’, ‘at least nA are notB’ �n � �� �� �� � � ��. Any finite subset of this
collection is satisfiable in some finite domain with A�B large enough and A�B
a little larger. By compactness then, the whole collection has a model with infinite
A�B,A�B. But now, the Löwenheim-Skolem theorem gives a countably infinite
such model, which makes the latter two sets equinumerous — and ‘most’ A are no
longer B: in spite of ��A�B�.

One peculiarity of this argument is its lifting the meaning of colloquial ‘most’
to the infinite case. The use of infinite models is indeed vital in the coming sec-
tions. Only in Section 1.4.3 shall we consider the purely finite case: little regarded
in mathematically-oriented model theory, but rather interesting for the semantics
of natural language.

In a sense, these expressive limits of first-order logic show up more dramatically
in a slightlydifferent perspective. A given theory in a first-order language may pos-
sess various ‘non-standard models’, not originally intended. For instance, by com-
pactness, Peano Arithmetic has non-Archimedean models featuring infinite natural
numbers. And by Löwenheim-Skolem, Zermelo-Fraenkel set theory has countable
models (if consistent), a phenomenon known as ‘Skolem’s Paradox’. Conversely, a
given model may not be defined categorically by its complete first-order theory, as
is in fact known for al (infinite) mathematical standard structures such as integers,
rationals or reals. (These two observations are sides of the same coin, of course.)
Weakness or strength carry no moral connotations in logic, however, as one may
turn into the other. Non-standard models for analysis have turned out quite useful
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for their own sake, and countable models of set theory are at the base of the inde-
pendence proofs: first-order logic’s loss thus can often be the mathematician’s or
philosopher’s gain.

1.2 Extensions

When some reasonable notion falls outside the scope of first-order logic, one rather
natural strategy is to add it to the latter base and consider the resulting stronger
logic instead. Thus, for instance, the above two examples inspire what is called
‘weak second-order logic’, adding the quantifier ‘there exist finitely many’, as well
as first-order logic with the added ‘generalized quantifier’ most. But, there is a price
to be paid here. Inevitably, these logics lose some of the meta-properties of first-
order logic employed in the earlier refutations of definability. Here is a telling little
table:

Compactness Löwenheim-Sk.
First-order logic yes yes
Plus ‘there exists finitely many’ no yes
Plus ‘there exist uncountably many’ yes no
Plus ‘most’ no no

For the second and third rows, cf. [Monk, 1976, Chapter 30]. For the fourth row,
here is an argument.

EXAMPLE. Let the most-sentence ��R� express that R is a discrete linear order
with end points, possessing a greatest pointwith more successors than non-successors
(i.e. most points in the order are its successors). Such orders can only be finite,
though of arbitrarily large size: which contradicts compactness. Next, consider the
statement that R is a dense linear order without end points, possessing a point with
more successors than predecessors. There are uncountable models of this kind, but
no countable ones: and hence Löwenheim-Skolem fails.

As it happens, no proposed proper extension of first-order logic ever managed
to retain both the compactness and Löwenheim-Skolem properties. And indeed,
in 1969 Lindström proved his famous theorem [Lindström, 1969] that, given some
suitable explication of a ‘logic’, first-order logic is indeed characterizable as the
strongest logic to possess these two meta-properties.

1.3 Abstract Model Theory

Over the past two decades, many types of extension of first-order logic have been
considered. Again, the earlier two examples illustrate general patterns. First, there
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are so-called finitary extensions, retaining the (effective) finite syntax of first-order
logic. The most example inspires two general directions of this kind.

First, one may add generalized quantifiersQ, allowing patterns

Qx � ��x� or Qxy � ��x�� ��y��

E.g. ‘the�’s fill the universe’ (all), ‘the�’s form the majority in the universe’ (most),
‘the �’s form the majority of the �’s’ (most � are �). But also, one may stick with
the old types of quantifier, while employing them with new ranges. For instance,
‘most A are B’ may be read as an ordinary quantification over functions: ‘there
exists a 1–1 correspondence between A–B and some subset of A�B, but not vice
versa’. Thus, one enters the domain of higher-order logic, to be discussed in later
sections.

The earlier example of ‘finiteness’ may lead to finitary extensions of the above
two kinds, but also to an infinitary one, where the syntax now allows infinite con-
junctions and disjunctions, or even quantifications. For instance, finiteness may be
expressed as ‘either one, or two, or three, or � � � ’ inL���: a first-order logic allow-
ing countable conjunctions and disjunctions of formulas (provided that they have
only finitely many free variables together) and finite quantifier sequences. Alter-
natively, it may be expressed as ‘there are no x�� x�� � � �: all distinct’, which would
belong toL���� , having a countably infinite quantifier string. In general, logicians
have studied a whole family of languages L��; butL��� remains the favourite (cf.
[Keisler, 1971]).

FollowingLindström’s result, a research area of ‘abstract model theory’ has arisen
where these various logics are developed and compared. Here is one example of
a basic theme. Every logic L ‘casts its net’ over the sea of all structures, so to
speak, identifying models verifying the same L-sentences (L-equivalence). On the
other hand, there is the finest sieve of isomorphism between models. One of Lind-
ström’s basic requirements on a logic was that the latter imply the former. One
measure of strength of the logic is now to which extent the converse obtains. For
instance, when L is first-order logic, we know that elementary equivalence im-
plies isomorphism for finite models, but not for countable ones. (Cf. the earlier
phenomenon of non-categorical definability of the integers.) A famous result con-
cerning L��� is Scott’s theorem to the effect that, for countable models, L���-
equivalence and isomorphism coincide. (Cf. [Keisler, 1971, Chapter 2] or [Bar-
wise, 1975, Chapter VII.6].) That such matches cannot last in the long run fol-
lows from a simple set-theoretic consideration, however, first made by Hanf. As
long as the L-sentences form a set, they can distinguish at best �kLk models, up
to L-equivalence — whereas the number of models, even up to isomorphism, is
unbounded.

A more abstract line of research is concerned with the earlier meta-properties.
In addition to compactness and Löwenheim-Skolem, one also considers such prop-
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erties as recursive axiomatizability of universally valid sentences (‘completeness’)
or interpolation (cf. [Hodges, 1983, I.1, Section 14]). Such notions may lead to
new characterization results. For instance, Lindström himself proved that elemen-
tary logic is also the strongest logic with an effective finitary syntax to possess
the Löwenheim-Skolem property and be complete. (The infinitary language L���
has both, without collapsing into elementary logic, however; its countable admissi-
ble fragments even possess compactness in the sense of [Barwise, 1975].) Similar
characterizations for stronger logics have proven rather elusive up till now.

But then, there are many further possible themes in this area which are of a gen-
eral interest. For instance, instead of haphazardly selecting some particular feature
of first-order, or any other suggestive logic, one might proceed to a systematic de-
scription of meta-properties.

EXAMPLE. A folklore prejudice has it that interpolation was the ‘final elementary
property of first-order logic to be discovered’. Recall the statement of this meta-
property: if one formula implies another, then (modulo some trivial cases) there ex-
ists an interpolant in their common vocabulary, implied by the first, itself implying
the second. Now, this assertion may be viewed as a (first-order) fact about the two-
sorted ‘meta-structure’ consisting of all first-order formulas, their vocabulary types
(i.e. all finite sets of non-logical constants), the relations of implication and type-
inclusion, as well as the type-assigning relation. Now, the complete first-order the-
ories of the separate components are easily determined. The pre-order hformulas,
implicationi carries a definable Boolean structure, as one may define the connec-
tives (� as greatest lower bound, � as some suitable complement). Moreover, this
Boolean algebra is countable, and atomless (the latter by the assumption of an infi-
nite vocabulary). Thus, the given principles are complete, thanks to the well-known
categoricity and, hence, completeness of the latter theory. The complete logic of the
partial order hfinite types, inclusionimay be determined in a slightlymore complex
way. The vindication of the above conviction concerning the above meta-structure
would then consist in showing that interpolationprovides the essential link between
these two separate theories, in order to obtain a complete axiomatization for the
whole.

But as it happens, [Mason, 1985] (in response to the originalversion of this chap-
ter) has shown that the complete first-order theory of this meta-model is effectively
equivalent to True Arithmetic, and hence non-axiomatizable.

Even more revolutionary about abstract model theory is the gradual reversal in
methodological perspective. Instead of starting from a given logic and proving
some meta-properties, one also considers these properties as such, establishes con-
nections between them, and asks for (the ranges of) logics exemplifying certain de-
sirable combinations of features.
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Finally, a warning. The above study by no means exhausts the range of logi-
cal questions that can be asked about extensions of first-order logic. Indeed, the
perspective of meta-properties is very global and abstract. One more concrete new
development is the interest in, e.g. generalized quantifiers from the perspective of
linguistic semantics (cf. [Barwise and Cooper, 1981; van Benthem, 1984]), which
leads to proposals for reasonable constraints on new quantifiers, and indeed to a
semantically-motivated classification of all reasonable additions to elementary logic.

1.4 Characterization Results

A good understanding of first-order logic is essential to any study of its extensions.
To this end, various characterizations of first-order definability will be reviewed
here in a little more detail than in chapter I.1.

1.4.1 Lindström’s Theorem. Lindström’s result itself gives a definition of first-order
logic, in terms of its global properties. Nevertheless, in practice, it is of little help
in establishing or refuting first-order definability. To see if some property � of
models is elementary, one would have to consider the first-order language with �
added (say, as a propositional constant), close under the operations that Lindström
requires of a ‘logic’ (notably, the Boolean operations and relativization to unary
predicates), and then find out if the resulting logic possesses the compactness and
Löwenheim-Skolem properties. Moreover, the predicate logic is to have an infinite
vocabulary (cf. the proof to be sketched below): otherwise, we are in for surprises.

EXAMPLE. Lindström’s theorem fails for the pure identity language. First, it is a
routine observation that sentences in this language can only express (negations of)
disjunctions ‘there are precisely n� or � � �or precisely nk objects in the universe’.
Now, add a propositional constant C expressing countable infinity of the universe.

This logic retains compactness. For, consider any finitely satisfiable set � of its
sentences. It is not difficult to see that either � � fCg or � � f�Cg must also be
finitely satisfiable. In the first case, replace occurrences of C in � by some tau-
tology: a set of first-order sentences remains, each of whose finite subsets has a
(countably) infinite model. Therefore, it has an infinite model itself and, hence, a
countably infinite one (satisfyingC) — by ordinary compactness and Löwenheim-
Skolem. This model satisfies the original � as well. In the second case, replace C
in � by some contradiction. The resulting set either has a finite model, or an infi-
nite one, and hence an uncountably infinite one: either way, �C is satisfied — and
again, the original � is too.

The logic also retains Löwenheim-Skolem. Suppose that � has no countably
infinite models. Then � � �C has a model, if � has one. Again, replace occur-
rences of C inside � by some contradiction: a pure identity sentence remains. But
such sentences can always be verified on some finite universe (witness the above
description) where �C is satisfied too.
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1.4.2 Keisler’s Theorem. A more local description of first-order definability was
given by Keisler, in terms of preservation under certain basic operations on models.

THEOREM. A property � of models is definable by means of some first-order sen-
tence iff both � and its complement are closed under the formation of isomorphs
and ultraproducts.

The second operation has not been introduced yet. As it will occur at several
other places in this Handbook, a short introduction is given at this point. For con-
venience, henceforth, our standard example will be that of binary relational models
F � hA�Ri (or Fi � hAi� Rii).

A logical fable. A family of models fFi j i � Ig once got together and decided
to join into a common state. As everyone wanted to be fully represented, it was
decided to create new composite individuals as functions f with domain I, picking
at each i � I some individual f�i� � Ai. But now, how were relations to be estab-
lished between these new individuals? Many models were in favour of consensus
democracy:

Rfg iff Rif�i�g�i� for all i � I�

But, this lead to indeterminacies as soon as models started voting about whether or
notRfg. More often than not, no decision was reached. Therefore, it was decided
to ask the gods for an ‘election manual’ U , saying which sets of votes were to be
‘decisive’ for a given atomic statement. Thus, votes now were to go as follows:

Rfg iff fi � I j Rif�i�g�i�g � U� ���

Moreover, although one should not presume in these matters, the gods were asked
to incorporate certain requirements of consistency

if X � U� then I �X �� U

as well as democracy

if X � U and Y 	 X� then Y � U�

Finally, there was also the matter of expediency: the voting procedure for atomic
statements should extend to complex decisions:

��f�� � � � � fn� iff fi � I j Fi � ��f��i� � � � � fn�i�	g � U

for all predicate-logical issues �.
After having pondered these wishes, the gods sent them an ultrafilter U over I,

proclaiming the Łoś Equivalence:
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THEOREM. For any ultrafilter U over I, the stipulation ��� creates a structure
F � h
i�IAi� Ri such that

F � ��f�� � � � � fn	 iff fi � I j Fi � ��f��i�� � � � � fn�i�	g � U�

Proof. The basic case is just ���. The negation and conjunction cases correspond
to precisely the defining conditions on ultrafilters, viz. (i) X �� U iff I �X � U ;
(ii)X�Y � U iffX�Y � U (or, alternatively, besides consistency and democracy
above: if X�Y � U then also X � Y � U ; and: if I �X �� U then X � U ). And
finally, the gods gave them the existential quantifier step for free:


 if �x��x� f�� � � � � fn� holds then so does ��f� f�� � � � � fn� for some function
f . Hence, by the inductive hypothesis for �, we have that fi � I j Fi �
��f�i�� f��i�� � � � � fn�i�	g � U , which set is contained in fi � I j Fi �
�x��f��i�� � � � � fn�i�	g � U .


 if fi � I j Fi � �x��f��i�� � � � � fn�i�	g � U , then choose f�i� � Ai verify-
ing� for each of these i (and arbitrary elsewhere): this f verifies��x� f�� � � � � fn�
in the whole product, whence �x��f�� � � � � fn� holds.

�

After a while, an unexpected difficulty occurred. Two functionsf� g who did not
agree among themselves asked for a public vote, and the outcome was � � �

fi � I j f�i� � g�i�g � U�

Thus it came to light how the gift of the gods had introduced an invisible equality
�. By its definition and the Łoś Equivalence, it even turned out to partition the
individuals into equivalence classes, whose members were indistinguishable as to
R behaviour:

Rfg� f � f �� g � g� imply Rf �g��

But then, such classes themselves could be regarded as the building bricks of soci-
ety, and in the end there were:

DEFINITION. For any family of models fFi j i � Ig with an ultrafilter U on I,
the ultraproduct 
UFi is the model hA�Ri with

1. A is the set of classes f� for all functions f � 
i�IAi, where f� is the
equivalence class of f in the above relation,

2. R is the set of couples hf�� g�i for which fi � I j Rif�i�g�i�g � U .

By the above observations, the latter clause is well-defined — and indeed the whole
Łoś Equivalence remained valid.
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Whatever their merits as regards democracy, ultraproducts play an important
role in the following fundamental question of model theory:

What structural behaviour makes a class of models elementary, i.e. definable by
means of some first-order sentence?

First, the Łoś Equivalence implies that first-order sentences � are preserved un-
der ultraproducts in the following sense:

if Fi � � (all i � I), then 
UFi � ��

(The reason is that I itself must belong to U .) But conversely, Keisler’s theorem
told us that this is also enough. End of fable.

The proof of Keisler’s theorem (subsequently improved by Shelah) is rather formidable:
cf. [Chang and Keisler, 1973, Chapter 6]. A more accessible variant will be proved
below, however. First, one relaxes the notion of isomorphism to the following par-
tial variant.

DEFINITION. A partial isomorphism between hA�Ri and hB� Si is a set I of cou-
pled finite sequences �s� t� from A resp. B, of equal length, satisfying

�s�i � �s�j iff �t�i � �t�j
�s�iR�s�j iff �t�iS�t�j

which possesses the back-and-forth property, i.e. for every �s� t� � I and every
a � A there exists some b � B with �s�a� t�b� � I; and vice versa.

Cantor’s zig-zag argument shows that partial isomorphism coincides with total
isomorphism on the countable models. Higher up, matters change; e.g. hQ� �i and
hR� �i are partially isomorphic by the obvious I without being isomorphic.

First-order formulas� are preserved under partial isomorphism in the following
sense:

if �s� t� � I� then hA�Ri � ��s	 iff hB� Si � ��t	�

Indeed, this equivalence extends to formulas from arbitrary infinitary languages
L��: cf. [Barwise, 1977, Chapter A.2.9] for further explanation.

THEOREM. A property � of models is first-order definable iff both� and its com-
plement are closed under the formation of partial isomorphs and countable ultra-
products.

1.4.3 Fraı̈ssé’s Theorem. Even the Keisler characterization may be difficult to ap-
ply in practice, as ultraproducts are such abstract entities. In many cases, a more
combinatorial method may be preferable; in some, it’s even necessary.
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EXAMPLE. As was remarked earlier, colloquial ‘most’ only seems to have natu-
ral meaning on the finite models. But, as to first-order definability on this restricted
class, both previous methods fail us completely, all relevant notions being tied up
with infinite models. Nevertheless, mostA areB is not definable on the finite mod-
els in the first-order language withA�B and identity. But this time, we need a closer
combinatorial look at definability.

First, a natural measure of the ‘pattern complexity’ of a first-order formula � is
its quantifier depth d���, which is the maximum length of quantifier nestings inside
�. (Inductively,d�� � � for atomic�� d���� � d���, d����� �maximum�d���� d����,
etcetera, d��x�� � d�x�� � d����.) Intuitively, structural complexity beyond
this level will escape �’s notice. We make this precise.

Call two sets X�Y n-equivalent if either jXj � jY j � n or jXj� jY j � n. By
extension, call two models hD�A�Bi� hD�� A�� B�i n-equivalent if all four ‘state
descriptions’A�B�AnB�BnA�Dn�A�B� are n-equivalent to their primed coun-
terparts.

LEMMA. If hD�A�Bi� hD�� A�� B�i are n-equivalent then all sequences d, d� with
corresponding points in corresponding states verify the same first-order formulas
with quantifier depth not exceeding n.

COROLLARY. ‘MostA are B’ is not first-order definable on the finite models.

Proof. For no finite number n, ‘mostA are B’ exhibits the requiredn-insensitivity.
�

This idea of insensitivity to structural complexity beyond a certain level forms
the core of our third and final characterization, due to Fraı̈ssé. Again, only the case
of a binary relation R will be considered, for ease of demonstration.

First, on the linguistic side, two models are n-elementarily equivalent if they
verify the same first-order sentences of quantifier depth not exceeding n. Next, on
the structural side, a matching notion of n-partial isomorphism may be defined, by
postulating the existence of a chain In 	 � � � 	 I� of sets of matching couples
�s� t�, as in the earlier definition of partial isomorphism. This time, the back-and-
forth condition is index-relative, however:

if �s� t� � Ii�� and a � A, then for some b � B� �s�a� t�b� � Ii, and
vice versa.

PROPOSITION. Two models are n-elementarily equivalent iff they are n-partially
isomorphic.

The straightforward proof uses the following auxiliary result, for first-order lan-
guages with a finite non-logical vocabulary of relations and individual constants.
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LEMMA. For each depth n and for each fixed number of free variables
x�� � � � � xm, there exist only finitely many formulas ��x�� � � � � xm�, up to logical
equivalence.

This lemma allows us to describe all possible n-patterns in a single first-order for-
mula, a purpose for which one sometimes uses explicit ‘Hintikka normal forms’.

THEOREM. A property � of models is first-order definable iff it is preserved under
n-partial isomorphism for some natural number n.

Proof. The invariance conditionis obvious for first-order definable properties. Con-
versely, for n-invariant properties, the disjunction of all complete n-structure de-
scriptions for models satisfying � defines the latter property. �

Applications. Now, from the Fraı̈ssé theorem, both the weak Keisler and the
Lindström characterization may be derived in a perspicuous way. Here is an indi-
cation of the proofs.

EXAMPLE. (Weak Keisler from Fraı̈ssé) First-order definable properties are obvi-
ously preserved under partial isomorphism and (countable) ultraproducts. As for
the converse, suppose that � is not thus definable. By Fraı̈ssé, this implies the ex-
istence of a sequence of n-partially isomorphic model pairs An�Bn of which only
the first verify �.

The key observation is now simply this. Any free ultrafilterU onN (containing
all tails of the form �n���) will make the countable ultraproducts 
UAn, 
UBn

partially isomorphic. The trick here is to find a suitable set I of partial isomor-
phisms, and this is accomplished by setting, for sequences of functions s� t of length
m

��s�U � �t�U� � I iff fn � m j �s�n�� t�n�� � Inn�mg � U

where ‘Inn � � � � � I
n
� ’ is the sequence establishing the n-partial isomorphism of An,

Bn.
So, by the assumed preservation properties, � would hold for 
UAn and hence

for 
UBn. But, so would not-�: a contradiction.

EXAMPLE. (Lindström from Fraı̈ssé) Let L be a logic whose non-logical vocab-
ulary consists of infinitely many predicate constants of all arities. L is completely
specified by its sentences S, each provided with a finite ‘type’ (i.e. set of predicate
constants), its models M (this time: ordinary first-order models) and its truth rela-
tion T between sentences and models. We assume four basic conditions on L: the
truth relation is invariant for isomorphs, the sentence set S is closed under nega-
tions and conjunctions (in the obvious semantic sense), and each sentence � can
be relativized by arbitrary unary predicates A, such that a model verifies �A iff its
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A-submodel verifies �. Finally, we say that L ‘contains elementary logic’ if each
first-order sentence is represented by some sentence in S having the same mod-
els. ‘Compactness and ‘Löwenheim-Skolem’ are already definable in this austere
framework. (By the latter we’ll merely mean: ‘sentences with any model at all have
countable models’.)

THEOREM. Any logic containingelementary logic has compactness and Löwenheim-
Skolem iff it coincides with elementary logic.

The non-evident half of this assertion again starts from Fraı̈ssé’s result. Suppose
that � � S is not first-order. Again, there is a sequence An, Bn as above. For a
natural number n, consider the complex model (an expanded “model pair”)Mn �
�An�Bn� R�� � � � � Rn�, where the �i-ary relations Ri � Ai

n � Bi
n (i � �� � � � � n)

are defined by

Ri�a�� � � � � ai� b�� � � � � bi� � �An� a�� � � � � ai� �
n�i �Bn� b�� � � � � bi�

(�n�i denoting �n� i�-equivalence here). The modelMn satisfies sentences ex-
pressing that

1. � is true in its first component An but false in its second oneBn,

2. if i � n and Ri�a�� � � � � ai� b�� � � � � bi� holds, then the relation f�a�� b���
� � � � �ai� bi�g between the component-modelsAn andBn has the properties
of a partial isomorphism (preservation of equality and relations) introduced
earlier,

3. (a) R� (which has � arguments) is true (of the empty sequence),

(b) if i � n and Ri�a�� � � � � ai� b�� � � � � bi� holds, then for all a � An

there exists b � Bn such that Ri���a�� � � � � ai� a� b�� � � � � bi� b�, and
vice versa.

By the Downward Löwenheim-Skolem and Compactness property, there is a count-
able complex �A�B� R�� R�� R�� � � �� with an infinite sequence R�� R��
R�� � � � that satisfies these requirements for every i. By requirements 2 and 3 and
Cantor’s zig-zag argument it follows that A �� B. However, this contradicts re-
quirement 1. �

2 SECOND-ORDER LOGIC

2.1 Language

Quantification over properties and predicates, rather than just objects, has a philo-
sophical pedigree. For instance, Leibniz’s celebrated principle of Identity of Indis-
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cernibles has the natural form

xy�X�X�x� � X�y�� � x � y��

There also seems to be good evidence for this phenomenon from natural language,
witness Russell’s example ‘Napoleon had all the properties of a great general’

X�y�GG�y� � X�y�� � X�n���

Moreover, of course, mathematics abounds with this type of discourse, with its ex-
plicit quantification over relations and functions. And indeed, logic itself seems to
call for this move. For, there is a curious asymmetry in ordinary predicate logic be-
tween individuals: occurring both in constant and variable contexts, and predicates:
where we are denied the power of quantification. This distinction seems arbitrary:
significantly, Frege’s Begriffsschrift still lacks it. We now pass on to an account of
second-order logic, with its virtues and vices.

The language of second-order logic distinguishes itself from that of first-order
logic by the addition of variables for subsets, relations and functions of the universe
and the possibilityof quantification over these. The result is extremely strong in ex-
pressive power; we list a couple of examples in Section 2.2. As a consequence, im-
portant theorems valid for first-order languages fail here; we mention the compact-
ness theorem, the Löwenheim-Skolem theorems (Section 2.2) and the complete-
ness theorem (Section 2.3). With second-order logic, one really enters the realm
of set theory. This state of affairs will be illustrated in Section 2.4 with a few ex-
amples. What little viable logic can be snatched in the teeth of these limitations
usually concerns special fragments of the language, of which some are considered
in Section 2.5.

2.2 Expressive Power

2.2.1. An obvious example of a second-order statement is Peano’s induction axiom
according to which every set of natural numbers containing 0 and closed under im-
mediate successors contains all natural numbers. Using S for successor, this might
be written down as

Y �Y ��� � x�Y �x�� Y �S�x��� � xY �x�	 ���

(The intention here is that x stands for numbers, Y for sets of numbers, and Y �x�
says, as usual, that x is an element of Y .)

Dedekind already observed that the axiom system consisting of the induction
axiom and the two first-order sentences

xy�S�x� � S�y� � x � y� ���
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and
x�S�x� �� �� ���

is categorical. Indeed suppose that hA� f� aimodels (1)–(3). LetA� � fa� f�a�� f�f�a��� � � �g.
Axioms (2) and (3) alone imply that the submodel hA�� f � A�� ai is isomorphic
with hN� S� �i (the isomorphism is clear). But, (1) implies that A� � A (just let X
be A�).

This result should be contrasted with the first-order case. No set of first-order sen-
tences true of hN� S� �i is categorical. This can be proved using either the upward
Löwenheim-Skolem theorem or the compactness theorem. As a result, neither of
these two extend to second-order logic. The nearest one can come to (1) in first-
order terms is the ‘schema’

���� � x���x�� ��S�x��� � x��x� ���

where � is any first-order formula in the vocabulary under consideration. It fol-
lows that in models hA� f� ai of (4) the set A� above cannot be defined in first-order
terms: otherwise one could apply (4) showing A� � A just as we applied (1) to
show this before. (This weakness of first-order logic becomes its strength in so-
called ‘overspill arguments’, also mentioned in [Hodges, 1983, Chapter I.1].) We
will use the categoricity of (1)–(3)again in Section 2.3 to show non-axiomatizability
of second-order logic.

2.2.2. The next prominent example of a second-order statement is the one express-
ing ‘Dedekind completeness’ of the order of the reals: every set of reals with an
upper bound has a least upper bound. Formally

X��xy�X�y� � y � x��
� �x�y�X�y� � y � x� � x��y�X�y� � y � x��� x � x�	�	 (5)

It is an old theorem of Cantor’s that (5) together with the first-order statements ex-
pressing that � is a dense linear order without endpoints plus the statement ‘there
is a countable dense subset’, is categorical. The latter statement of so-called ‘sepa-
rability’ is also second-order definable: cf. Section 2.2.5. Without it a system is ob-
tained whose models all embed hR��i. (For, these models must embed hQ��i for
first-order reasons; and such an embedding induces one for hR��i by (5).) Thus,
the downward Löwenheim-Skolem theorem fails for second-order logic.

2.2.3. A relation R � A� is well-founded if every non-empty subset of A has an
R-minimal element. In second-order terms w.r.t. models hA�R� � � �i

X��xX�x�� �x�X�x� � y�X�y� � �R�y� x�	�	 ���

This cannot be expressed in first-order terms. For instance, every first-order the-
ory aboutR which admits models withR-chains of arbitrary large but finite length
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must, by compactness, admit models with infinite R-chains which decrease, and
such a chain has no minimal element.

2.2.4. Every first-order theory admitting arbitrarily large, finite models has infi-
nite models as well: this is one of the standard applications of compactness. On
the other hand, higher-order terms enable one to define finiteness of the universe.
Probably the most natural way to do this uses third-order means: a set is finite iff
it is in every collection of sets containing the empty set and closed under the addi-
tion of one element. Nevertheless, we can define finiteness in second-order terms
as well: A is finite iff every relation R � A� is well-founded; hence, a second-
order definition results from (6) by putting a universal quantifier over R in front.
Yet another second-order definition of finiteness uses Dedekind’s criterion: every
injective function on A is surjective. Evidently, such a quantification over func-
tions onA may be simulated using suitable predicates. By the way, to see that these
second-order sentences do indeed define finiteness one needs the axiom of choice.

2.2.5 Generalized Quantifiers. Using Section 2.2.4, it is easy to define the quan-
tifier ���� (where ����x��x� means: there are only finitely many x s.t. ��x�)
in second-order terms; ���� simply is its negation. (In earlier terminology, weak
second-order logic is part of second-order logic.) What about higher cardinalities?
Well, e.g. jXj � �� iff X has an infinite subset Y which cannot be mapped one–
one onto X. This can obviously be expressed using function quantifiers. And then
of course one can go on to ������ � � �

Other generalized quantifiers are definable by second-order means as well. For
instance, the standard example of Section 1 has the following form. MostA are B
becomes ‘there is no injective function from A �B into A� B’.

A highly successful generalised quantifier occurs in stationary logic, cf. [Bar-
wise et al., 1978]. Its language is second-order in that it contains monadic second-
order variables; but the only quantification over these allowed is by means of the
almost all quantifier aa. A sentence aaX��X� is read as: there is a collectionC of
countable setsX for which��X�, which is closed under the formation of countable
unions and has the property that every countable subset of the universe is subset of a
member ofC. (We’ll not take the trouble explaining what ‘stationary’ means here.)
The obvious definition of aa in higher-order terms employs third-order means. Sta-
tionary logic can define the quantifier ���� . It has a complete axiomatization and,
as a consequence, obeys compactness and downward Löwenheim-Skolem (in the
form: if a sentence has an uncountable model, it has one of power ��).

Other compact logics defining ���� have been studied by Magidor and Malitz
[1977].

2.2.6. The immense strength of second-order logic shows quite clearly when set
theory itself is considered.

Zermelo’s separation axiom says that the elements of a given set sharing a given
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property form again a set. Knowingof problematic properties occurring in the para-
doxes, he required ‘definiteness’ of properties to be used. In later times, Skolem re-
placed this by ‘first-order definability’, and the axiom became a first-order schema.
Nevertheless, the intended axiom quite simply is the second-order statement

Xx�yz�z � y � z � x �X�z�� ���

Later on, Fraenkel and Skolem completed Zermelo’s set theory with the substitu-
tion axiom: the complete image of a set under an operation is again a set, resulting
from the first by ‘substituting’ for its elements the corresponding images. Again,
this became a first-order schema, but the original intention was the second-order
principle

Fa�by�y � b� �x�x � a � y � F �x�	� ���

Here F is used as a variable for arbitrary operations from the universe to itself;
F �x� denotes application. The resources of set theory allow an equivalent formula-
tion of (9) with a set (i.e. class) variable, of course. Together with the usual axioms,
(9) implies (8).

It must be considered quite a remarkable fact that the first-order versions of (8)
and (9) have turned out to be sufficient for every mathematical purpose. (By the
way, in ordinary mathematical practice, (9) is seldom used; the proof that Borel-
games are determined is a notable exception. Cf. also Section 2.4.)

The Zermelo-Fraenkel axioms intend to describe the cumulative hierarchy with
its membership structure hV��i, where V � ��V� (� ranging over all ordinals)
and V� � ����PV� . For the reasons mentioned in Section 1, the first-order ver-
sion ZF� of these axioms does not come close to this goal, as it has many non-
standard models as well. The second-order counterpart ZF� using (9) has a much
better score in this respect:

THEOREM. hA�Ei satisfies ZF� iff for some strongly inaccessible cardinal � 
hA�Ei �� hV���i.

It is generally agreed that the models hV���i are ‘standard’ to a high degree.
If we add an axiom to ZF� saying there are no inaccessibles, the system even

becomes categorical, defining hV���i for the first inaccessible �.

2.3 Non-axiomatizability

First-order logic has an effective notion of proof which is complete w.r.t. the in-
tended interpretation. This is the content of Gödel’s completeness theorem. As a
result, the set of (Gödel numbers of) universally valid first-order formulas is re-
cursively enumerable. Using Example 2.2.1, it is not hard to show that the set of
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second-order validities is not arithmetically definable, let alone recursively enu-
merable, and hence that an effective and complete axiomatization of second-order
validity is impossible.

Let P � be Peano arithmetic in its second-order form, i.e. the theory in the lan-
guage ofN � hN� S� �����i consisting of (1)–(3) above plus the (first-order) re-
cursion equations for � and�. P � is a categorical description ofN, just as (1)–(3)
categorically describe hN� S� �i. Now, let � be any first-order sentence in the lan-
guage ofN. Then clearly

N � � iff P � � � is valid.

(Notice that P � may be regarded as a single second-order sentence.)
Now the left-hand side of this equivalence expresses a condition on (the Gödel

number of) � which is not arithmetically definable by Tarski’s theorem on non-
definability of truth (cf. Section 3.2 or, for a slightly different setting, see [Hodges,
1983, Section 20]). Thus, second-order validity cannot be arithmetical either. �

Actually, this is still a very weak result. We may take � second-order and show
that second-order truth doesn’t fit in the analytic hierarchy (again, see Section 3.4).
Finally, using Section 2.2.6, we can replace in the above argument N by hV���i,
where � is the smallest inaccessible, and P� by ZF�� ‘there are no inaccessibles’,
and find that second-order truth cannot be (first-order) defined in hV���i, etc. This
clearly shows how frightfully complex this notion is.

Not to end on too pessimistic a note, let it be remarked that the logic may im-
prove considerably for certain fragments of the second-order language, possibly
with restricted classes of models. An early example is the decidability of second-
order monadic predicate logic (cf. [Ackermann, 1968]). A more recent example is
Rabin’s theorem (cf. [Rabin, 1969]) stating that the monadic second-order theory

(employingonly second-order quantificationover subsets) of the structure h�
�
�� P�� P�i

is still decidable. Here, �
�
� is the set of all finite sequences of zeros and ones, and

Pi is the unary operation ‘post-fix i’ (i � �� �).
Many decidability results for monadic second-order theories have been derived

from this one by showing their models to be definable parts of the Rabin structure.
For instance, the monadic second-order theory of the natural numbers hN� �i is de-
cidable by this method.

The limits of Rabin’s theorem show up again as follows. The dyadic second-
order theory of hN� �i is already non- arithmetical, by the previous type of con-
sideration. (Briefly, N � � iff hN� �i verifies P � � for all those choices of
�� S����whose defined relation ‘smaller than’ coincides with the actual �. Here,
P is first-order Peano Arithmetic minus induction. In this formulation, ternary pred-
icates are employed (for ���), but this can be coded down to the binary case.)
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2.4 Set-Theoretic Aspects

Even the simplest questions about the model theory of second-order logic turn out
to raise problems of set theory, rather than logic. Our first example of this phe-
nomenon was a basic theme in Section 1.3.

If two models are first-order (elementarily) equivalent and one of them is fi-
nite, they must be isomorphic. What, if we use second-order equivalence and re-
lax finiteness to, say, countability? Ajtai [1979] contains a proof that this ques-
tion is undecidable in ZF (of course, the first-order system is intended here). One
of his simplest examples shows it is consistent for there to be two countable well-
orderings, second-order (or indeed higher-order) equivalent but not isomorphic.

The germ of the proof is in the followingobservation. If the Continuum Hypoth-
esis holds, there must be second-order (or indeed higher-order) equivalent well-
orderings of power��: for, up to isomorphism, there are �� such well orderings (by
the standard representation in terms of ordinals), whereas there are only ��� � ��
second-order theories. The consistency-proof itself turns on a refined form of this
cardinality-argument, using ‘cardinal collapsing’. On the other hand, Ajtai men-
tions the ‘folklore’ fact that countable second-order equivalent models are isomor-
phic when the axiom of constructibility holds. In fact, this may be derived from
the existence of a second-order definable well-ordering of the reals (which follows
from this axiom).

Another example belongs to the field of second-order cardinal characterization
(cf. [Garland, 1974]). Whether a sentence without non-logical symbols holds in a
model or not depends only on the cardinality of the model. If a sentence has models
of one cardinality only, it is said to characterize that cardinal. As we have seen in
Section 1, first-order sentences can only characterize single finite cardinals. In the
meantime, we have seen how to characterize, e.g. �� in a second-order way: let �
be the conjunct of (1)–(3) of Section 2.2.1 and consider �S��� — where S and �
are now being considered as variables. Now, various questions about the simplest
second-order definition of a given cardinal, apparently admitting of ‘absolute’ an-
swers, turn out to be undecidable set theoretic problems; cf. [Kunen, 1971].

As a third example, we finally mention the question of cardinals characterizing,
conversely, a logic L. The oldest one is the notion of Hanf number of a logic, al-
luded to in Section 1.3. This is the least cardinal � such that, if an L-sentence has
a model of power � �, it has models of arbitrarily large powers. The Löwenheim
number	 of a languageL compares to the downward Löwenheim-Skolem property
just as the Hanf number does to the upward notion: it is the least cardinal with the
property that every satisfiable L-sentence has a model of power � 	. It exists by a
reasoning similar to Hanf’s: for satisfiable �, let j�j be the least cardinal which is
the power of some model of�. Then 	 clearly is the sup of these cardinals. (By the
way, existence proofs such as these may rely heavily on ZF’s substitution-axiom.
Cf. [Barwise, 1972].)
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How large are these numbers pertaining to second-order logic? From Section
2.2.6 it follows, that the first inaccessible (if it exists) can be second-order charac-
terized; thus the Löwenheim and Hanf numbers are at least bigger still. By similar
reasoning, they are not smaller than the second, third, � � � inaccessible. And we
can go on to larger cardinals; for instance, they must be larger than the first mea-
surable. The reason is mainly that, like inaccessibility, defining measurability of
� only needs reference to sets of rank not much higher than �. (In fact, inaccessi-
bility of � is a first-order property of hV�����i; measurability one of hV�����i.)
Only when large cardinal properties refer in an essential way to the whole set theo-
retic universe (the simplest example being that of strong compactness) can matters
possibly change. Thus, [Magidor, 1971] proves that the Löwenheim number of uni-
versal second-order sentences (and hence, by 4.3, of higher-order logic in general)
is less than the first supercompact cardinal.

As these matters do bring us a little far afield (after all, this is a handbook of
philosophical logic) we stop here.

In this light, the recommendation in the last problem of the famous list ‘Open
problems in classical model theory’ in Chang and Keisler [1973] remains as prob-
lematic as ever: ‘Develop the model theory of second and higher-order logic’.

Additional evidence for the view that second-order logic (and, a fortiori, higher-
order logic in general) is not so much logic as set theory, is provided by looking
directly at existing set-theoretic problems in second-order terms.

Let � be the first inaccessible cardinal. In Section 2.2.6 we have seen that every
ZF� model contains (embeds) hV���i. As this portion is certainly (first-order) de-
finable in all ZF� models in a uniform way, ZF� decides every set theoretic problem
that mentions sets in V� only. This observation has led Kreisel to recommend this
theory to our lively attention, so let us continue.

Indeed, already far below �, interesting questions live. Foremost is the contin-
uum problem, which asks whether there are sets of reals in cardinality strictly be-
tween N and R. (Cantor’s famous continuum hypothesis (CH) says there are not.)
Thus, ZF� decides CH: either it or its negation follows logically from ZF�. Since
ZF� is correct, in the former case CH is true, while it is false in the latter. But of
course, this reduction of the continuum problem to second-order truth really begs
the question and is of no help whatsoever.

It does refute an analogy, however, which is often drawn between the continuum
hypothesis and the Euclidean postulate of parallels in geometry. For, the latter ax-
iom is not decided by second-order geometry. Its independence is of a different na-
ture; there are different ‘correct’ geometries, but only one correct set theory (mod-
ulo the addition of large cardinal axioms): ZF�. (In view of Section 2.2.6, a better
formal analogy would be that between the parallel postulate and the existence of
inaccessibles — though it has shortcomings as well.)

Another example of a set-theoretic questiondeep down in the universe is whether
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there are non-constructible reals. This question occurs at a level so low that, using
a certain amount of coding, it can be formulated already in the language of P �.

ZF� knows the answers — unfortunately, we’re not able to figure out exactly
what it knows.

So, what is the practical use of second-order set theory? To be true, there are
some things we do know ZF� proves while ZF� does not; for instance, the fact that
ZF� is consistent. Such metamathematical gains are hardly encouraging, however,
and indeed we can reasonably argue that there is no way of knowing something to
follow from ZF� unless it is provable in the two-sorted set/class theory of Morse-
Mostowski, a theory that doesn’t have many advantages over its subtheory ZF �
ZF�. (In terms of Section 4.2 below, Morse-Mostowski can be described as ZF�

under the general-models interpretation with full comprehension-axioms added.)
We finally mention that sometimes, higher-order notions find application in the

theory of sets. In Myhill and Scott [1971] it is shown that the class of hereditarily
ordinal-definable sets can be obtained by iterating second-order (or general higher-
order) definability through the ordinals. (The constructible sets are obtained by it-
erating first-order definability; they satisfy the ZF-axioms only by virtue of their
first-order character.) Also, interesting classes of large cardinals can be obtained
by their reflecting higher-order properties; cf. for instance [Drake, 1974, Chapter
9].

2.5 Special Classes: ��

�
and ��

�

In the light of the above considerations, the scarcity of results forming a subject of
‘second-order logic’ becomes understandable. (A little) more can be said, how-
ever, for certain fragments of the second-order language. Thus, in Section 2.3,
the monadic quantificational part was considered, to which belong, e.g. second-
order Peano arithmeticP � and Zermelo-Fraenkel set theory ZF�. The more fruitful
restriction for general model-theoretic purposes employs quantificational pattern
complexity, however. We will consider the two simplest cases here, viz. prenex
forms with only existential second-order quantifiers (��

� formulas) or only univer-
sal quantifiers (
�

� formulas). For the full prenex hierarchy, cf. Section 3.2; note
however that we restrict the discussion here to formulas all of whose free variables
are first-order. One useful shift in perspective, made possible by the present re-
stricted language, is the following.

If �X�� � � � � �Xk� is a ��
� formula in a vocabularyL, we sometimes consider�

as a first-order formula in the vocabularyL�fX�� � � � � Xkg— now suddenly look-
ing upon theX�� � � � � Xk not as second-order variables but as non-logicalconstants
of the extended language. Conversely, if � is a first-order L formula containing a
relational symbolR, we may consider �R� as a ��

� formula ofL�fRg— viewing
R now as a second-order variable. As a matter of fact, this way of putting things
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has been used already (in Section 2.4).

2.5.1 Showing Things to be ��
� or 
�

�. Most examples of second-order formulas
given in Section 2.2 were either ��

� or 
�
�; in most cases, it was not too hard to

translate the given notion into second-order terms.
A simple result is given in Section 3.2 which may be used in showing things to be

��
� or 
�

�-expressible: any formula obtained from a ��
� (
�

�) formula by prefixing
a series of first-order quantifications still has a ��

� (
�
�) equivalent.

For more intricate results, we refer to Kleene [1952] and Barwise [1975]. The
first shows that if 
 is a recursive set of first-order formulas, the infinitary conjunctV

 has a ��

� equivalent (on infinite models). Thus, �X�� � � � � �Xk

V

 is also ��

�.
This fact has some relevance to resplendency, cf. Section 2.5.4 below. Kleene’s
method of proof uses absoluteness of definitions of recursive sets, coding of satis-
faction and the integer structure on arbitrary infinite models. (It is implicit in much
of Barwise [1975, Chapter IV 2/3], which shows that we are allowed to refer to
integers in certain ways when defining ��

� and 
�
� notions.)

We now consider these concepts one by one.

2.5.2 ��
�-sentences. The key quantifier combination in Frege’s predicate logic ex-

presses dependencies beyond the resources of traditional logic: �. This depen-
dency may be made explicit using a ��

� formula:

x�y��x� y� � �fx��x� f�x���

This introduction of so-called Skolem functions is one prime source of ��
� state-

ments. The quantification over functions here may be reduced to our predicate for-
mat as follows:

�X�xyz�X�x� y� �X�x� z�� y � z� � x�y�X�x� y� � ��x� y����

Even at this innocent level, the connection with set theory shows up (Section 2.4):
the above equivalence itself amounts to the assumption of the Axiom of Choice
(Bernays).

Through the above equivalence, all first-order sentences may be brought into
‘Skolem normal form’. E.g., x�yz�uA�x� y� z� u� goes to
�fxz�uA�x� f�x�� z� u�, and thence to �f�gxzA�x� f�x�� z� g�x� z��. For
another type of Skolem normal form (using relations instead), cf. [Barwise, 1975,
Chapter V 8.6].

Conversely, ��
� sentences allow for many other patterns of dependency. For in-

stance, the variant �f�gxzA�x� f�x�� z� g�z��, with g only dependent on z, is
not equivalent to any first-order formula, but rather to a so-called ‘branching’ pat-
tern (first studied in [Henkin, 1961])�

x�y
z�u

�
A�x� y� z� u��
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For a discussion of the linguistic significance of these ‘branching quantifiers’,
cf. [Barwise, 1979]. One sentence which has been claimed to exhibit the above
pattern is ‘some relative of each villager and some relative of each townsman hate
each other’ (Hintikka). The most convincing examples of first-order branching to
date, however, rather concern quantifiers such as (precisely) one or no. Thus, ‘one
relative of each villager and one relative of each townsman hate each other’ seems
to lack any linear reading. (The reason is that any linear sequence of precisely one’s
creates undesired dependencies. In this connection, recall that ‘one sailor has dis-
covered one sea’ is not equivalent to ‘one sea has been discovered by one sailor’.)
An even simpler example might be ‘no one loves no one’, which has a linear read-
ing ��x��yL�x� y� (i.e. everyone loves someone), but also a branching reading
amounting to ��x�yL�x� y�. (Curiously, it seems to lack the inverse scope read-
ing��y��xL�x� y� predicted by Montague Grammar.) Actually, this last example
also shows that the phenomenon of branching does not lead inevitably to second-
order readings.

The preceding digression has illustrated the delicacy of the issue whether second-
order quantification actually occurs in natural language. In any case, if branching
quantifiers occur, then the logic of natural language would be extremely complex,
because of the following two facts. As Enderton [1970] observes, universal validity
of ��

� statements may be effectively reduced to that of branching statements. Thus,
the complexity of the latter notion is at least that of the former. And, by inspection
of the argument in Section 2.3 above, we see that

THEOREM. Universal validity of ��
�-sentences is non-arithmetical, etc.

Proof. The reduction formula was of the form P� � �, where P� is 
�
� and � is

first-order. By the usual prenex operation, the universal second-order quantifier in
the antecedent becomes an existential one in front. �

Indeed, as will be shown in Section 4.3, the complexity of ��
�-universal validity

is essentially that of universal validity for the whole second-order (or higher-order)
language. Nevertheless, one observation is in order here.

These results require the availability of non-logical constants and, e.g. universal
validity of �X��X�R� really amounts to universal validity of the 
�

�-statement
Y �X��X�Y �. When attention is restricted to ‘pure’ cases, it may be shown that
universal validity of ��

� statements is much less complex, amounting to truth in all
finite models (cf. [van Benthem, 1977]). Thus, in the arithmetical hierarchy (cf.
Section 3.2.) its complexity is only 
�

�.
When is a��

� sentence, say of the form �X�� � � � � �Xk��X�� � � � � Xk� R�, equiv-
alent to a first-order statement about its parameter R? An answer follows from
Keisler’s theorem (Section 1.4.2), by the following observation.

THEOREM. Truth of��
� sentences is preserved under the formationof ultra-products.
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(This is a trivial corollary of the preservation of first-order sentences, cf. Section
1.4.2.)

COROLLARY. A ��
� sentence is first-order definable iff its negation is preserved

under ultraproducts.

(That ��
� sentences, and indeed all higher-order sentences are preserved under iso-

morphism should be clear.)
Moreover, there is a consequence analogous to Post’s theorem in recursion the-

ory:

COROLLARY. Properties of models which are both ��
� and 
�

� are already ele-
mentary.

(Of course, this is also immediate from the interpolation theorem which, in this ter-
minology, says that disjoint ��

� classes an be separated by an elementary class.)
Next, we consider a finer subdivision of ��

� sentences, according to their first-
order matrix. The simplest forms are the following (� quantifier-free):

1. (��) �X� � � �Xk�y� � � � ym��X�� � � � � Xk� y�� � � � � ym� R�

2. (��) �X� � � �Xky� � � � ym��X�� � � � � Xk� y�� � � � � ym� R�

3. (���) �X� � � �Xky� � � � ym�z� � � � zn��X�� � � � y�� � � � z�� � � �R�.

We quote a few observations from [van Benthem, 1983]:


 all forms (1) have a first-order equivalent,


 all forms (2) are preserved under elementary (first-order) equivalence, and
hence are equivalent to some (infinite) disjunction of (infinite) conjunctions
of first-order sentences,


 the forms (3) harbour the full complexity of ��
�.

The first assertion follows from its counterpart for 
�
� sentences, to be stated be-

low. A proof sketch of the second assertion is as follows. If (2) holds in a model
A, then so does its first-order matrix (2)� in some expansion A� of A. Now sup-
pose thatB is elementarily equivalent toA. By a standard compactness argument,
(2)� is satisfiable together with the elementary diagram ofB, i.e. in some elemen-
tary extension ofB. But, restrictingX�� � � � � Xk to B, a substructure arises giving
the same truth values to formulas of the specific form (2)�; and hence we have an
expansion ofB to a model for (2)� — i.e.B satisfies (2).

Finally, the third assertion follows from the earlier Skolem reduction: with proper
care, the Skolem normal form of the first-order matrix will add some predicates to
X�� � � � � Xk, while leaving a first-order prefix of the form �. �
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Lastly, we mention the Svenonius characterization of ��
�-sentences in terms of

quantifiers of infinite length. In chapter I.1 an interpretation is mentioned of finite
formulas in terms of games. This is a particularly good way of explaining infinite
sequences of quantifiers like

x��y�x��y�x��y� � � � ��x�� y�� x�� y�� � � ��� ���

Imagine players  and � alternatively pickingx�� x�� � � � resp. y�� y�� � � �: � wins iff
��x�� y�� x�� � � ��. (1) is counted as true iff � has a winning strategy, i.e. a function
telling him how to play, given ’s previous moves, in order to win. Of course, a
winning strategy is nothing more than a bunch of Skolem functions.

Now, Svenonius’ theorem says that, on countable models, every ��
� sentence is

equivalent to one of the form (1) where� is the conjunctionof an (infinite) recursive
set of first-order formulas. The theorem is in Svenonius [Svenonius, 1965]; for a
more accessible exposition, cf. [Barwise, 1975, Chapter VI.6].

2.5.3 
�
�-sentences. Most examples of second-order sentences in Section 2.2 were


�
�: full induction, Dedekind completeness, full substitution. Also, our recurrent

example most belonged to this category — and so do, e.g. the modal formulas of
intensional logic (compare van Benthem [II.4]).

Results about
�
� sentences closely parallel those for��

�. (One notable exception
is universal validity, however: that notion is recursively axiomatizable here, for the
simple reason that �� X��X�Y � iff �� ��X�Y �.) For instance, we have

THEOREM. A 
�
�-sentence has a first-order equivalent iff it is preserved under

ultraproducts.

This time, we shall be little more explicit about various possibilities here. The
above theorem refers to elementary definitions of
�

�-sentences, i.e. in terms of sin-
gle first-order sentences. The next two more liberal possibilities are �-elementary
definitions (allowingan infinite conjunctionof first-order sentences) and�-elementary
ones (allowing an infinite disjunction). As was noted in Section 1.2, the non-first-
order 
�

� notion of finiteness is also �-elementary: ‘precisely one or precisely two
or � � � ’. The other possibility does not occur, however: all �-elementary 
�

� sen-
tences are already elementary. (If the conjunction

V
S defines X�� � � � � Xn�, then

the following first-order implication holds: S � ��X�� � � � � Xn�. Hence, by com-
pactness S� � � for some finite S� � S — and

V
S� defines X�� � � � � Xn� as

well.) The next levels in this more liberal hierarchy of first-order definability are
�� and ��. (Unions of intersections and intersections of unions, respectively.)
These two, and in fact all putative ‘higher’ ones collapse, by the following obser-
vation from Bell and Slomson [1969].

PROPOSITION. A property of models is preserved under elementary equivalence
iff it is ��-elementary.
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Thus, essentially, there remains a hierarchy of the following form:

�
�

�
�

�
��

�
��

essentially higher-order

��-elementary

�-elementary�-elementary

elementary

Now, by a reasoning similar to the above, we see that��-elementary
�
�-sentences

are �-elementary already. Thus, in the
�
�-case, the hierarchy collapses to ‘elemen-

tary, �-elementary, essentially second-order’. This observation may be connected
up with the earlier syntactic classification of ��

�. Using negations, we get for 
�
�-

sentences the types ����� ���� and �����. And these provide precisely instances
for each of the above remaining three stages. For instance, that all types (1) are ele-
mentary follows from the above characterization theorem, in combination with the
observation that type (1) 
�

�-sentences are preserved under ultraproducts (cf. [van
Benthem, 1983]).

We may derive another interesting example of failure of first-order model theory
here. One of the classical mother results is the Łoś-Tarski theorem: preservation
under submodels is syntactically characterized by definability in universal prenex
form. But now, consider well-foundedness (Section 2.2.3). This property of mod-
els is preserved in passing to submodels, but it cannot even be defined in the uni-
versal form (1), lacking first-order definability.

Our last result shows that even this modest, and basic topic of connections be-
tween 
�

� sentences and first-order ones is already fraught with complexity.

THEOREM. The notionof first-order definability for
�
�-sentences is not arithmeti-

cal.

Proof. Suppose, for the sake of reduction, that it were. We will then derive the
arithmetical definability of arithmetical truth — again contradicting Tarski’s theo-
rem. Actually, it is slightly more informative to consider a set-theoretic reformula-
tion (involvingonly one, binary relation constant): truth in hV � ��i cannot be arith-
metical for first-order sentences �.

Now, consider any categorical 
�
�-definition � for hV���i. Truth in hV���i of

� then amounts to the implication � �� �. It now suffices to show that this state-
ment is effectively equivalent to the following one: ‘��� is first-order definable’.
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Here, the 
�
� statement ��� is obtained by pulling� into the first-order matrix of

�.
‘��’: If � �� �, then � �� is defined by �.
‘��’: Assume that some first-order sentence � defines � � �.

Consider hV� ��i: � holds here, and hence so does �. Now let A be any proper
elementary extension of hV���i  � fails there, while � still holds. Hence �� � �
and so) � holds in A. But then, � holds in the elementary submodel hV���i, i.e.
� �� �. �

2.5.4 Resplendent Models. One tiny corner of ‘higher-order model theory’ deserves
some special attention. Models on which ��

� formulas are equivalent with their set
of first-order consequences recently acquired special interest in model theory. For-
mally, A is called resplendent if for every first-order formula � � ��x�� � � � � xn�
in the language of A supplemented with some relation symbol R:

A �� x� � � �xn�
�

� � �R���

where � is the set of all first-order � � ��x�� � � � � xn� in the language of A logi-
cally implied by �. Thus, A can be expanded to a model of � as soon as it satisfies
all first-order consequences of � in its own language.

Resplendency was introduced, in the setting of infinitary admissible languages
by Ressayre [1977] under the name relation-universality. A discussion of its im-
portance for the first-order case can be found in Barwise and Schlipf [1976]. The
notion is closely related to recursive saturation (i.e. saturation w.r.t. recursive types
of formulas): every resplendent model is recursively saturated, and, for countable
models, the converse obtains as well. In fact, Ressayre was led to (the infinitary
version of) this type of saturation by looking at what it takes to prove resplendency.

The importance of resplendent models is derived from the fact that they exist in
abundance in all cardinals and can be used to trivialize results in first-order model
theory formerly proved by means of saturated and special models of awkward car-
dinalities. Besides, Ressayre took the applicability of the infinitary notions to great
depth, deriving results in descriptive set theory as well.

We only mention two easy examples.

Proof. (Craig interpolation theorem) Suppose that � ��R� � ��S�; let � be the
set of R-less consequences of �. When � � �, we are finished by one application
of compactness. Thus, let �A� S� be a resplendent model of �. By definition, we
can expand �A� S� to a model �A� R� S� of�. Hence, �A� S� � �. But then, � � �,
as every model has a resplendent equivalent. �

As is the case of saturated and special models, many global definability theorems
have local companions for resplendent ones. We illustrate this fact again with the
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interpolation theorem, which in its local version takes the following form: if the
resplendent model A satisfies x��R��x� � S��x��, then there exists a first-
order formula ��x� in the A-language such that A satisfies both x��R� � ��
and x�� � S��. To make the proof slightly more perspicuous, we make the
statement more symmetrical. Let �� � ��. The first sentence then is equivalent
with x���R� � ��S��� (*), while the last amounts then to x��S�� � ���.
Hence, interpolation takes the (local) ‘Robinson-consistency’ form: disjoint ��

�-
definable sets on A can be separated by a first-order definable one.

Now for the proof, which is a nice co-operation of both resplendency and recur-
sive saturation. Suppose that our resplendent model A � hA� � � �i satisfies (*). By
resplendency, the set of logical consequences of either � or �� in the language of
A is not satisfiable in A.

Applying recursive saturation (the set concerned is only recursively enumerable
according to first-order completeness — but we can use Craig’s ‘pleonasm’ trick
to get a recursive equivalent), some finite subset � ��� is non-satisfiable already,
where we’ve put the � consequences in � and the �� consequences in ��. We now
have � � �

V
�, � �� �

V
��, and, by choice of � ���, A � x�

V
�� � ���,

which amounts toA � x��
V
���

V
���; hence we may take either

V
� or

V
��

as the ‘separating’ formula. The local Beth theorem is an immediate consequence:
if the disjoint��

�-definable sets are each other’s complement, they obviously coin-
cide with the first-order definable separating set and its complement, respectively.
In other words, sets which are both��

� and 
�
�-definable onA are in fact first-order

definable. �

This situation sharply contrasts with the case for (say) N discussed in Section
3.2, where we mention that arithmetic truth is both ��

� and 
�
�-definable, but not

arithmetical.

3 HIGHER-ORDER LOGIC

Once upon the road of second-order quantification, higher predicates come into
view. In mathematics, one wants to quantify over functions, but also over func-
tions defined on functions, etcetera. Accordingly, the type theories of the logicist
foundational program allowed quantification over objects of all finite orders, as in
Principia Mathematica. Bt also natural language offers such an ascending hierar-
chy, at least in the types of its lexical items. For instance, nouns (such as ‘woman’)
denote properties, but then already adjectives become higher-order phrases (‘blond
woman’), taking such properties to other properties. In fact, the latter type of moti-
vation has given type theories a new linguistic lease of life, in so-called ‘Montague
Grammar’, at a time when their mathematical functions had largely been taken over
by ordinary set theory (cf. [Montague, 1974]).
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In this section, we will consider a stream-lined relational version of higher-order
logic, which leads to the basic logical results with the least amount of effort. Unfor-
tunately for the contemporary semanticist, it does not look very much like the func-
tional Montagovian type theory. In fact, we will not even encounter such modern
highlightsas lambda-abstraction, because our language can do all this by purely tra-
ditional means. Moreover, in Section 4, we shall be able to derive partial complete-
ness results from the standard first-order ones for many-sorted logic in an extremely
simple fashion. (In particular, the complicated machinery of [Henkin, 1950] seems
unnecessary.) It’s all very elegant, simple, and exasperating. A comparison with
the more semantic, categorial grammar-oriented type theories will be given at the
end.

3.1 Syntax and Semantics

As with first-order languages, higher-order formulas are generated from a given set
L of non-logical constants, among which we can distinguish individual constants,
function symbols and relation signs. (Often, we will just think of the latter.) For-
mulas will be interpreted in the same type of models A � hA� �i as used in the
first-order case, i.e. A �� �, and � assigns something appropriate to every L sym-
bol: (‘distinguished’) elements of A to individual constants, functions over A to
function symbols (with the proper number of arguments) and relations over A to
relation signs (again, of the proper arity).

Thus, fix any such set L. Patterns of complexity are now recorded in types, de-
fined inductively by

1. � is a type

2. a finite sequence of types is again a type.

Here, � will be the type of individuals, ���� � � � � �n� that of relations between ob-
jects of types ��� � � � � �n. Notice that, if we read clause (2) as also producing the
empty sequence, we obtain a type of relation without arguments; i.e. of proposi-
tional constants, or truth values. Higher up then, we will have propositional func-
tions, etcetera. This possibility will not be employed in the future, as our metathe-
ory would lose some of its elegance. (But see Section 3.3 for a reasonable substi-
tute.)

The order of a type is a natural number defined as follows: the order of 0 is 1
(individuals are ‘first-order’ objects), while the order or ���� � � � � �n� equals � �
max order��i� (� � i � n). Thus, the terminology of ‘first-order’, ‘second-order’,
etcetera, now becomes perfectly general.

For each type � , the language has a countably infinite set of variables. The or-
der of a variable is the order of its type. Thus, there is only one kind of first-order
variable, because the only order 1-type is 0. The second-order variables all have
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types ��� � � � � ��. Next, the terms of type 0 are generated from the type 0 variables
and the individual constants by applying function symbols in the proper fashion. A
term of type �� � is just a variable of that type. Thus, for convenience, non-logical
constants of higher-orders have been omitted: we are really thinking of our for-
mer first-order language provided with a quantificational higher-order apparatus.
Finally, one might naturally consider a relation symbol with n places as a term of
type ��� � � � � �� (n times); but the resulting language has no additional expressive
power, while it becomes a little more complicated. Hence, we refrain from utilising
this possibility.

Atomic formulas arise as follows:

1. R�t�� � � � � tn� where R is an n-place relation symbol and t�� � � � � tn terms of
type 0,

2. X�t�� � � � � tn�, where X is a variable of type ���� � � � � �n� and ti a type �i-
term �� � i � n�.

We could have added identities X � Y here for all higher types; but these
may be thought of as defined through the scheme X� � � �Xn�X�X�� � � � � Xn�
� Y �X�� � � � � Xn��, with appropriate types.

Formulas are defined inductively from the atomic ones using propositional con-
nectives and quantification with respect to variables of all types. The resulting set,
based on the vocabulary L is called L� . Ln is the set of formulas all of whose
variables have order � n (n � �� �� � � �). Thus, we can identify L� with the first-
order formulas over L, and L� with the second-order ones. (A more sophisticated
classification of orders is developed in Section 3.2 below, however.) The reader is
requested to formulate the examples of Section 2.2 in this language; especially the
L�-definition of finiteness.

Again, let us notice that we have opted for a rather austere medium: no higher-
order constants or identities, no conveniences such as functionquantifiers, etcetera.
One final omission is that of relational abstracts taking formulas��X�� � � � � Xn� to
terms 	X� � � �Xn � ��X�� � � � � Xn� denoting the corresponding relation. In prac-
tice, these commodities do make life a lot easier; but they are usually dispensable
in theory. For instance, the statement ��	X � ��X�� is equally well expressed by
means of �Y �Y � 	X � ��X� � ��Y ��, and this again by �Y �Z�Y �Z� �
��Z�� � ��Y ��.

From the syntax of our higher-order language, we now pass on to its seman-
tics. Let A be an ordinary L-model hA� �i as described above. To interpret the
L�-formulas in A we need the universes of type � over A for all types � :

1. D��A� � A

2. D����			��n��A� � P�D�� �A�� � � � �D�n �A��.
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An A-assignment is a function � defined on all variables such that, if X has type
�� ��X� � D� �A�.

We now lift the ordinary satisfaction relation to L�-formulas � in the obvious
way. For instance, for an L-model A and an A-assignment �,

A �� X�t�� � � � � tn���	 iff ��X��tA� ��	� � � � � t
A

n ��	��

where tA��	 is the value of the term t under � in A defined as usual. Also, e.g.
A �� X���	 iff for all assignments�� differing from� at most in the value given
to X  A �� ����	.

The other semantical notions are derived from satisfaction in the usual fashion.

3.2 The Prenex Hierarchy of Complexity

The logic and model theory of L� exhibit the same phenomena as those of L�: a
fluid border line with set theory, and a few systematic results. Indeed, in a sense,
higher-order logic does not offer anything new. It will be shown in Section 4.2 that
there exists an effective reduction from universal validity for L� formulas to that
for second-order ones, indeed to monadic ��

� formulas [Hintikka, 1955].
As for the connections between L� and set theory, notice that the present logic

is essentially that of arbitrary modelsA provided with a natural set-theoretic super-
structure

S
n V

n�A�; where V ��A� � A, and V n���A� � V n�A� � P�V n�A��.
As a ‘working logic’, this is a sufficient setting for many mathematical purposes.
(But cf. [Barwise, 1975] for a smaller, constructible hierarchy over models, with a
far more elegant metatheory.)

We will not go into the exact relations between the logic of L� and ordinary set
theory, but for the following remark.

Given a structureA � hA� �i, the structureA� � h
S
n V

n�A���� �i is a model
for a set theory with atoms. There is an obvious translation from the L�-theory of
A into a fragment of the ordinary first-order theory of A�. The reader may care to
speculate about a converse (cf. [Kemeny, 1950]).

What will be considered instead in this section, is one new topic which is typical
for a hierarchical language such as the present one. We develop a prenex classifi-
cation of formulas, according to their patterns of complexity; first in general, then
on a specific model, viz. the natural numbers. This is one of the few areas where a
coherent body of higher-order theory has so far been developed.

There exists a standard classification of first-order formulas in prenex form. �� �

� is the class of quantifier-free formulas;�m�� is the class of formulas�x� � � ��xk�
where � � 
m; and dually, 
m�� is the class of formulas x� � � �xk� with
� � �m. The well-known Prenex Normal Form Theorem now says that every
first-order formula is logically equivalent to one in

S
m��m � 
m�; i.e. to one in

prenex form.
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The above may be generalized to arbitrary higher-order formulas as follows. We
classify quantificational complexity with respect to the n� �st order. �n

� � 
n
� is

the class of L�-formulas all of whose quantified variables have order � n. Thus,
��
� is the class of quantifier-freeL�-formulas. (Notice that the above �� is a proper

subclass of ��
�, as we allow free variables of higher type in ��

� formulas. Also, it
is not true that ��

� � L�, or even ��
� � Ln for some n  �.)

Next, �nm�� is the class of formulas�X� � � ��Xk�, where� � 
nm andX�� � � � � Xk

have order n � �; and dually, 
n
m�� consists of the formulas X� � � �Xk� with

� � �n
m andX�� � � � � Xk �n���st order. (Notice the peculiar, but well-established

use of the upper index n: a ��
� formula thus has quantified second-order variables.)

The reader may wonder why we did not just take �n� to be Ln. The reason is
that we do not consider the mere occurrence of, say, second-order variables in a for-
mula a reason to call it (at least) second-order. (Likewise, we do not call first-order
formulas ‘second-order’ ones, because of the occurrence of second-order relational
constants.) It is quantification that counts: we take a formula to be of order nwhen
its interpretation in a model hA� � � �i presupposes complete knowledge about some
nth order universe D� �A� over A. And it is the quantifier over some order n vari-
able which presupposes such knowledge, not the mere presence of free variables
of that order. (After all, we want to call, e.g. a property of type ����� ‘first-order’
definable, even if its first-order definition contains a second-order free variable —
and it must.) There is an interesting historical analogy here. One way to think of
the prenex hierarchy is as one of definitional complexity, superimposed upon one
of argument type complexity (given by the free variable pattern of a formula). This
move is reminiscent of Russell’s passage from ordinary to ramified type theory.

THEOREM. Every Ln��-formula has an equivalent in
S
m��

n
m �
n

m�.

Proof. Let � � Ln�� be given. First, manipulate it into prenex form, where the
order of the quantifiers is immaterial — just as in the first-order case. Now, if we
can manage to get quantifiers over n� 1st order variables to the front, we are done.
But, this follows by repeated use of the valid equivalence below and its dual.

Let x have type �� and order less than n� �: the order of the type ���� � � � � �k�
of the variable X. Let Y be some type ���� � � � � �k� variable; its order is then n��
too, and we have the equivalence

x�X� � �Y x���

Here �� is obtained from � by replacing subformulas X�t�� � � � � tk� by
Y �x� t�� � � � � tk�; where Y does not occur in �. Thanks to the restriction to Ln��,
the only atomic subformulas of � containing X are of the above form and, hence,
�� does not containX any longer. (IfX could occur in argument positions, it would
have to be defined away using suitable Y abstracts. But, this addition to the lan-
guage would bring about a revised account of complexity in any case.)
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To show intuitivelythat the above equivalence is valid, assume that x�X��x�X�.
For everyx, chooseXx such that��x�Xx�. Define Y by settingY �x� y�� � � � � yn� �
Xx�y�� � � � � yn�. Then clearly x��x� fhy�� � � � � yni j Y �x� y�� � � � � yn�g and, hence,
�Y x��. The converse is immediate. �

We will now pass on to more concrete hierarchies of higher-order definable re-
lations on specific models.

Let A � hA� � � �i be some model, R � D� �A�� � � ���� � � � � �n�, and let � �
L� have free variables X�� � � � � Xn of types (respectively) ��� � � � � �n. � is said to
define R on A if, whenever S� � D�� �A�� � � � � Sn � D�n �A�,

R�S�� � � � � Sn� iff A �� ��S�� � � � � Sn	�

R is called �nm�
n
m� on A if it has a defining formula of this kind. It is �n

m if it is
both �n

m and 
n
m. We denote these classes of definable relations onA by �nm�A�,

etcetera.
Now, let us restrict attention toA= the natural numbersN  hN����� �i. (In this

particular case it is customary to let��
��N� � 
�

��N� be the wider class of relations
definable using formulas in which restricted quantification over first-class variables
is allowed.) For any type � , ��

��N� �D� �N� is the class of recursive relations of
type � ; the ones in��

��N��D� �N� are called recursively enumerable. These are the
simplest cases of the arithmetical hierarchy, consisting of all ��

n and 
�
n-definable

relations onN. Evidently, these are precisely the first-order-definable ones, in any
type � .

At the next level, the analytic hierarchy consists of the ��
n and 
�

n-definable
relations onN. Those in ��

��N� are called hyperarithmerical, and have a (transfi-
nite) hierarchy of their own. One reason for the special interest in this class is the
fact that arithmetic truth for first-order sentences is hyper-arithmerical (though not
arithmetical, by Tarski’s Theorem).

These hierarchies developed after the notion of recursiveness had been identified
by Gödel, Turing and Church, and were studied in the fifties by Kleene, Mostowski
and others.

Just to give an impression of the more concrete type of investigation in this area,
we mention a few results. Methods of proof are rather uniform: positive results
(e.g. ‘� � ��

n’) by actual inspection of possible definitions, negative results (‘� ��
��
n’) by diagonal arguments reminiscent of the mother example in Russell’s Para-

dox.

1. The satisfaction predicate ‘the sequence (coded by) s satisfies the first-order
formula (coded by) � inN’ is in ��

��N� �D������N�.

2. This predicate is not in ��
��N�.
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3. The Analytic Hierarchy Theorem forD����N� relations. All inclusions in the
following scheme are proper (for all m):

��
m�R�

� �
��
m�R� ��

m���R�
� �


�
m�R�

These results may be generalized to higher orders.

4. Satisfaction for �n
� -formulas (with first-order free variables only) onN is in

�n
� �N�� �n

� �N�.

5. The Hierarchy Theorem holds in fact for any upper index� �.

By allowing second-order parameters in the defining formulas, the analytic hi-
erarchy is transformed into the classical hierarchy of projective relations. Stifled
in set-theoretic difficulties around the twenties, interest in this theory was revived
by the set-theoretic revolution of the sixties. The reader is referred to the modern
exposition [Moschovakis, 1980].

3.3 Two Faces of Type Theory

As was observed earlier, the above language L� is one elegant medium of descrip-
tion for one natural type superstructure on models with relations. Nevertheless,
there is another perspective, leading to a more function-oriented type theory closer
to the categorial system of natural language. In a sense, the two are equivalent
through codings of functions as special relations, or of relations through charac-
teristic functions. It is this kind of sous entendu which would allow an ordinary
logic text book to suppress all reference to functional type theories in the spirit of
[Church, 1940; Henkin, 1950] or [Montague, 1974]. (It is this juggling with cod-
ings and equivalences also, which makes advanced logic texts so impenetrable to
the outsider lacking that frame of mind.)

For this reason, we give the outline of a functional type theory, comparing it with
the above. As was observed earlier on, in a first approximation, the existential part
of natural language can be described on the model of a categorial grammar, with
basic entity expressions (e.g. proper names; type e) and truth value expressions
(sentences; type t), allowing arbitrary binary couplings �a� b�: the type of func-
tional expressions taking an a-type expression to a b-type one. Thus, for instance,
the intransitive verb ‘walk’ has type �e� t�, the transitive verb ‘buy’ type �e� �e� t��,
the sentence negation ‘not’ has �t� t�while sentence conjunctionhas �t� �t� t��. More
complicated examples are quantifier phrases, such as ‘no man’, with type ��e� t�� t�,
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or determiners, such as ‘no’, with type ��e� t�� ��e� t�� t��. Again, to a first approx-
imation, there arises the picture of natural language as a huge jigsaw puzzle, in
which the interpretable sentences are those for which the types of their component
words can be fitted together, step by step, in such a way that the end result for the
whole is type t.

Now, the natural matching type theory has the above types, with a generous sup-
ply of variables and constants for each of these. Its basic operations will be, at least,
identity (between expressions of the same type), yielding truth value expressions,
and functional application combiningB with type �a� b� and A with type a to form
the expression B�A� of type b. What about the logical constants? In the present
light, these are merely constants of specific categories. Thus, binary connectives
(‘and’, ‘or’) are in �t� �t� t��, quantifiers (‘all’, ‘some’) in the above determiner type
��e� t�� ��e� t�� t��. (Actually, this makes them into binary relations between proper-
ties: a point of view often urged in the logical folklore.) Nevertheless, one can sin-
gle them out for special treatment, as was Montague’s own strategy. On the other
hand, a truly natural feature of natural language seems to be the phenomenon of
abstraction: from any expression of type b, we can make a functional one of type
�a� b� by varying some occurrence(s) of component a expressions. Formally then,
our type theory will have so-called ‘lambda abstraction’: if B is an expression of
type b, and x a variable of type a, then 	x �B is an expression of type �a� b�.

Semantic structures for this language form a function hierarchy as follows:

1. De is some set (of ‘entitities’ or ‘individuals’),

2. Dt is the set of truth values f�� �g (or some generalization thereof),

3. D�a�b� � DDa

b

Given a suitable interpretation for constants and assignments for variables, val-
ues may be computed for terms of type a in the proper domainDa through the usual
compositional procedure. Thus, in particular, suppressing indices,

val�B�A�� � val�B��val�A��
val�	x �B� � 	a � Da � val�B�x	a�

(Just this once, we have refrained from the usual pedantic formulation.)
In Montague’s so-called ‘intensional type theory’, this picture is considerably

complicated by the addition of a realm of possible world-times, accompanied by an
auxiliary type s with restricted occurrences. This is a classical example of an un-
fortunate formalization. Actually, the above set-up remains exactly the same with
one additional basic type s (or two, or ten) with corresponding semantic domains
Ds (all world-times, in Montague’s case). In the terms of [Gallin, 1975]: once we
move up from Ty to Ty�, simplicity is restored.
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We return to the simplest case, as all relevant points can be made here. What is
the connection with the earlier logicL�? Here is the obvious translation, simple in
content, a little arduous in combinatorial detail.

First, let us embed the Montague hierarchy of domainsDa over a given universe
A into our previous hierarchy D� �A�. In fact, we shall identify theDa with certain
subsets of the D� �A�. There seems to be one major problem here, viz. what is to
correspond to Dt � f�� �g. (Recall that we opted for an L�-hierarchy without
truth-value types.) We choose to define Dt � D����A�  � becoming �, and 1
becoming the whole A. Next, of course De � D��A�. The rule D�a�b� � DDa

b

then generates the other domains. Thus, every Montague universe Da has been
identified with a subset of a certain Da�A�; where a is obviously determined by
the rules e � �, t � ��� and �a� b� � �a� b�. (Thus, functions have become
identified with their graphs; which are binary relations in this case.)

Next, for each Montague type a, one can write down anL�-formulaTa�x� (with
x of type a) which definesDa inDa�A�, i.e. for b � Da�A�,A �� Ta�b	 iff b � Da.

When E � E�x�� � � � � xn� is any type a� expression in the Montague system,
with the free variables x�� � � � � xn (with types a�� � � � � an, respectively) and bi �
Dai (� � i � n), an object EA�b�� � � � � bn	 � Da� has been defined which is
the value of E under b�� � � � � bn in A. We shall indicate now how to write down
an L�-formula V �x�� E� with free variables x�� � � � � xn (where now xi has type
ai (� � i � n)), which says that x� is the value of E under x�� � � � � xn. To be
completely precise, we will have

A �� V �x�� E��b�� � � � � bn	 iff b� � EA�b�� � � � � bn	

for objects b�� � � � � bn of the appropriate types.
As a consequence of this, we obtain

A �� �x�V �x�E�� � V �x�E��� iff EA� � EA�

for closed expressions E�� E�. Thus, the characteristic assertions of Montagovian
type theory have been translated into our higher-order logic.

It remains to be indicated how to construct the desired V . For perspicuity, three
shorthands will be used inL�. First, x�y� stands for the unique z such that x�y� z�,
if it exists. (Elimination is always possible in the standard fashion.) Furthermore,
we will always have x� � � �xn��x�V �x�� E� valid when relativized to the proper
types. Therefore, instead of V �x�� E�, one may write x� � V �E�. Third, quanti-
fier relativization to Ta will be expressed by x � Ta (�x � Ta) (where x has type
a). Finally, in agreement with the above definition of the truth values, we abbrevi-
ate y � Tex�y� and y � Te�x�y� by x � �, x � �, respectively (where x has
type ���).

Here are the essential cases:
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1. E is a two-place relation symbol of the base vocabulary L.

V �x�E� � x � T�e��e�t�� � yz � Te��x�y���z� � �� E�y� z���

2. E � E��E��.
V �x�E� � x � V �E���V �E����

3. E � 	y � F (y of type a, F of type b).

V �x�E� � x � T�a�b� � y � Ta�x�y� � V �F ���

4. E � �E� � E��.

V �x�E� � x � Tt � �x � �� V �E�� � V �E����

That these clauses do their job has to be demonstated by induction, of course; but
this is really obvious.

It should be noted that the procedure as it stands does not handle higher-order
constants: but, a generalization is straightforward.

For further details, cf. [Gallin, 1975, Chapter 13]. Gallin also has a converse
translation from L� into functional type theory, not considered here.

The reduction to L� makes some prominent features of functional type theory
disappear. Notably, lambda abstraction is simulated by means of ordinary quantifi-
cation. It should be mentioned, however, that this also deprives us of some natural
and important questions of functional type theory, such as the search for unique
normal forms. This topic will be reviewed briefly at the end of the following Sec-
tion.

4 REDUCTION TO FIRST-ORDER LOGIC

One weak spot in popular justifications for employing higher-order logic lies pre-
cisely in the phrase ‘all predicates’. When we say that Napoleon has all proper-
ties of the great generals, we surely mean to refer to some sort of relevant human
properties, probably even definable ones. In other words, the lexical item ‘prop-
erty’ refers to some sort of ‘things’, just like other common nouns. Another, more
philosophical illustration of this point is Leibniz’ Principle, quoted earlier, of the
identity of indiscernibles. Of course, when x� y share all properties, they will share
that of being identical to x and, hence, they coincide. But this triviality is not what
the great German had in mind — witness the charming anecdote about the ladies at
court, whom Leibniz made to search for autumn leaves, promising them noticeable
differences in colour or shape for any two merely distinct ones.
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Thus, there arises the logical idea of re-interpretingsecond-order, or even higher-
order logicas some kindof many-sorted first-order logic, with various distinctkinds
of objects: a useful, though inessential variation upon first-order logic itself. To be
true, properties and predicates are rather abstract kinds of ‘things’; but then, so are
many other kinds of ‘individual’ that no one would object to. The semantic net ef-
fect of this change in perspective is to allow a greater variety of models forL�, with
essentially smaller ranges of predicates than the original ‘fullones’. Thus, more po-
tential counter-examples become available to universal truths, and the earlier set of
L�-validities decreases; so much so, that we end up with a recursively axiomatiz-
able set. This is the basic content of the celebrated introductionof ‘general models’
in [Henkin, 1950]: the remainder is frills and laces.

4.1 General Models

The type structure hD� �A� j � �T i (T the set of types) over a given non-empty set
A as defined in Section 3.1 is called the principal or full type structure over A; the
interpretation of L� by means of �� given there the standard interpretation. We
can generalize these definitions as follows.
E � hE� j � � T i is called a type structure over A when

1. E� � A (as before)

2. E����			��n� � P�E�� � � � � � E�n�.

Thus, not every relation on E�� � � � � �E�n need be in E����			��n� any more. Re-
stricting assignments to take values in such more general type structures, satisfac-
tion can be defined as before, leading to a notion of truth with respect to arbitrary
type structures. This so-called general models interpretation of L� admits of a
complete axiomatisation, as we shall see in due course.

First, we need a certain transformation of higher-order logic intofirst- order terms.
LetL be a given vocabulary. L� is the first-order language based on the vocabulary

L � f�� j � �� � � T g � fT� j � � T g�

where �� is an n � �ary relation symbol when � � ���� � � � � �n�, and the T� are
unary relation symbols. Now, define the translation �  L� � L� as follows. Let
� � L�. First, replace every atom X�t�� � � � � tn� in it by �� �X� t�� � � � � tn� when
X has type � . Second, relativize quantification with respect to type � variables to
T� . Third, consider all variables to be (type 0) variables of L�. This defines ��.
(For those familiar with many-sorted thinking(cf. [Hodges, 1983, Chapter I.1]), the
unary predicates T� may even be omitted, and�� just becomes �, in a many-sorted
reading.)
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On the model-theoretic level, suppose that �A� E� is a general model for L; i.e.
A is anL-model with universeA andE is a type structure overA. We indicate how
�A� E� can be transformed into an ordinary (first-order) model �A� E�� for L�:

1. the universe of �A� E�� is
S
��T E�

2. the interpretation of L-symbols is the same as inA

3. �� is interpreted by (� � ���� � � � � �n�): ��� �R�S�� � � � � Sn� iff R � E� , Si �
E�i (� � i � n) and R�S�� � � � � Sn�

4. T� is interpreted by E� .

There is a slight problem here. When L contains function symbols, the corre-
sponding functions in A should be extended on

S
��T E� . It is irrelevant how this

is done, as arguments outside of E� will not be used.
The connection between these transformations is the

LEMMA. Let � be an E assignment, and let � � L� . Then �A� E� �� ���	 iff
�A� E�� � ����	.

The proof is a straightforward induction on �.
There is semantic drama behind the simple change in clause (2) for E����			��n�

from identity to inclusion. Full type structures are immense; witness their cardinal-
ity, which increases exponentially at each level. In stark contrast, a general model
may well have an empty type structure, not ascending beyond the original universe.
Evidently, the interesting general models lie somewhere in-between these two ex-
tremes.

At least two points of view suggest themselves for picking out special candi-
dates, starting from either boundary.

‘From above to below’, the idea is to preserve as much as possible of the global
type structure; i.e. to impose various principles valid in the full model, such as
Comprehension or Choice (cf. the end of Section 4.2). In the limit, one might con-
sider general models which are L�-elementarily equivalent to the full type model.
Notice that, by general logic, only 
�

� truths are automatically preserved in passing
from the full model to its general submodels. Such preservation phenomena were
already noticed in [Orey, 1959], which contains the conjecture that a higher-order
sentence is first-order definable if and only if it has the above persistence property,
as well as its converse. (A proof of this assertion is in van Benthem [1977].)

Persistence is of some interest for the semantics of natural language, in that some
of its ‘extensional’ fragments translate into persistent fragments of higher-order
logic (cf. [Gallin, 1975, Chapter 1.4]). Although the main observation (due to Kamp
and Montague) is a little beyond the resources of our austere L� , it may be stated
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quite simply. Existential statements �XA�X� may be lost in passing from full stan-
dard models to their general variants (cf. the example given below). But, restricted
existential statements �X�P �X�Y ��A�X�� with all their parameters (i.e.P (!),Y )
in the relevant general model, are thus preserved — and the above-mentioned ex-
tensional fragments of natural language translate into these restricted forms, which
are insensitive, in a sense, to the difference between a general model and its full
parent. Therefore, the completeness of L� with respect to the general models in-
terpretation (Section 4.2) extends to these fragments of natural language, despite
their prima facie higher-order nature.

Conversely, one may also look ‘from below to above’, considering reasonable
constructions for filling the type universes without the above explosive features.
For instance, already in the particular case of L�, a natural idea is to consider pred-
icate ranges consisting of all predicates first-order definable in the base vocabulary
(possibly with individual parameters). Notice that this choice is stable, in the sense
that iteration of the construction (plugging in newly defined predicates into first-
order definitions) does not yield anything new. (By the way, the simplest proof that,
e.g. von Neumann-Bernays-Gödel set theory is conservative over ZF uses exactly
this construction.)

EXAMPLE. The first-order definable sets on the base model hN� �i are precisely
all finite and co-finite ones; and a similar characterization may be given for arbitrary
predicates. This general model forL� is not elementarily equivalent to the standard
model, however, as it fails to validate

�Xy���z�X�z� � y � z� � �z��X�z� � y � z���

Second-order general models obtained in this way only satisfy the so-called ‘pred-
icative’ comprehension axioms. (Referring to the end of Section 4.2, these are the
sentences (1) where � does not quantify over second-order variables, but may con-
tain them freely.) We can, however, obtain general models of full (‘impredicative’)
comprehension if we iterate the procedure as follows. For any second-order gen-
eral model hA� Ei, letE� consist of all relations onA parametrically second-order
definable in hA� Ei. Thus, the above ‘predicative’ extension is just hA� ��i. This
time, define E� for ordinals� by E� �

S
���E

�
� . By cardinality considerations,

the hierarchy must stop at some � (by first-order Löwenheim-Skolem, it can in fact
be proved that � has the same cardinal as A), which obviously means that hA� E
i
satisfies full comprehension.

For A � N, the above transfinite hierarchy is called ramified analysis, � is
Church-Kleene�� and there is an extensive literature on the subject. Barwise [1975]
studies related things in a more set-theory oriented setting for arbitrary models.
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4.2 General Completeness

As a necessary preliminary to a completeness theorem for L� with its new seman-
tics, we may ask which L�-sentences hold in every model of the form �A� E��,
where A is an L-model and E a type structure over its universe A. As it happens,
these are of six kinds.

1. �xT�x. This is because T� is interpreted by E� � A, which is not empty.
The other type levels of E might indeed be empty, if E is not full.

2. The next sentences express the fact that theL-symbols stand for distinguished
elements, functions and relations over the set denoted by T�:

(a) T��c�, for each individual constant of L.

(b) x� � � �xn�T��x�� � � � � � T��xn�� T��F �x�� � � � � xn���, for all n-
place function symbols F of L.

(c) x� � � �xn�R�x�� � � � � xn�� T��x��� � � ��T��xn��, for all n-place
relation symbols R of L.

Finally, there are sentences about the type levels.

3. x�T� �x�� �T� � �x��, whenever � �� � �.

As a matter of fact, there is a small problem here. IfA has elements which are
sets, then we might have simultaneously a � A and a � A. It could happen
then that a � E��� also, and hence E� � E��� �� �. To avoid inessential
sophistries, we shall resolutely ignore these eventualities.

4. x
W
��T T� �x�.

The content of this statement is clear; but unfortunately, it is not a first- or-
der sentence of L�, having an infinite disjunction. We shall circumvent this
problem eventually.

5. xy� � � �yn��� �x� y�� � � � � yn�� T� �x��T���y���� � ��T�n �yn��, when-
ever � � ���� � � � � �n�. (Compare the earlier definition of �A� E��: espe-
cially the role of ��� .)

The sentences (1)–(5) are all rather trivial constraints on the type framework. The
following extensionality axioms may be more interesting:

6. xy�T� �x� � T� �y� � z� � � �zn�T�� �z�� � � � � � T�n �zn��
� ��� �x� z�� � � � � zn� � �� �y� z�� � � � � zn��� � x � y�; whenever � �
���� � � � � �n�.

That this holds in �A� E�� when E is full, is due to the extensionality axiom
of set theory. But it is also easily checked for general type structures.
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This exhausts the obvious validities. Now, we can ask whether, conversely, ev-
ery L� model of (1)–(6) is of the form �A� E��, at least, up to isomorphism. (Oth-
erwise, trivial counter-examples could be given.) The answer is positive, by an el-
ementary argument. For any L�-modelB of our six principles, we may construct
a general model �A� E� and an isomorphism h B� �A� E�� as follows.

Writing h� � h � TB� , we shall construct h� and E� simultaneously by induc-
tion on the order of � , relyingheavily on (6). (This construction is really a particular
case of the Mostowski collapsing lemma in set theory.)

First, let A � E� � TB� , while h� is the identity of TB� . (1) says that A �� �,
and (2) adds that we can define A by taking over the interpretations that B gave
to the L-symbols. Trivially then, h� preserves L-structure. Next, suppose � �
���� � � � � �n�, where E�i � h�i�� � i � n� have been constructed already. Define
h� on TB� by setting

h� �b� � f�h���a��� � � � � h�n�an�� j �
B

� �b� a�� � � � � an�g

(by (5), this stipulation makes sense); putting E� � h� �T
B
� 	. Clearly, E� �

P�E�� � � � � � E�n�. We are finished if it can be shown that h� is one-one, while
�B� �b� a�� � � � � an� iff h� �b��h�� �a��� � � � � h�n�an��. But, the first assertion is im-
mediate from (6), and it implies the second. Finally, put h �

S
��T h� . (3) is our

licence to do this. That h is defined on all ofB is implied by (4).

The previous observations yield a conclusion:

LEMMA. An L�-sentence � is true in all general models if its translation�� log-
ically follows from (1)–(6) above.

Proof. The direction from right to left is immediate from the definition of the trans-
lation �, and its semantic behaviour. From left to right, we use the above represen-
tation. �

The value of the Lemma is diminished by the fact that (4) has an infinite disjunc-
tion, outside of L�. But we can do better.

THEOREM. � � L� is true in all general models iff�� follows from (1), (2), (3),
(5) and (6).

Proof. The first half is as before. Next, assume that � is true in all general mod-
els, and consider any L�-modelB satisfying the above five principles. Now, its
submodelB� with universe

S
��T T

B
� satisfies these principles as well, but in ad-

dition, it also verifies (4). Thus, as before,B� � ��. But then, as all quantifiers in
�� occur restricted to the levels T� �B � ��, and we are done after all. �
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This theorem effectively reduces L�-truth under the general model interpreta-
tion to first-order consequence from a recursive set of axioms: which shows it to
be recursively enumerable and, hence, recursively axiomatisable (by Craig’s The-
orem). This strongly contrasts with the negative result in Section 2.3. We conclude
with a few comments on the situation.

Henkin’s original general models (defined, by the way, with respect to a richer
language) form a proper subclass of ours. This is because one may strengthen the
theorem a little (or much — depending on one’s philosophy) by adding to (1)–(6)
translations of L�-sentences obviously true in the standard model interpretation,
thereby narrowing the class of admissible general models. Of course, Section 2.3
prevents an effective narrowing down to exactly the standard models!

Here are two examples of such additional axioms, bringing the general models
interpretation closer to the standard one.

1. Comprehension Axioms for type � � ���� � � � � �n�:

X� � � �Xm�Y Z� � � �Zn�Y �Z�� � � � � Zn�� ���

where Y has type �� Zi type �i�� � i � n� and the free variables of � are
amongX�� � � � � Xm� Z�� � � � � Zn. Thus, all definable predicates are to be ac-
tually present in the model.

2. Axioms of Choice for type � � ���� � � � � �n� �n���:

Z��Z�X� � � �Xn��Y Z��X�� � � � � Xn� Y ��
� ��Y Z��X�� � � � � Xn� Y ���

whereZ�� Z� have type � , Xi has �i (� � i � n) and Y has type �n��. Thus,
every relation contains a function: cf. Bernay’s Axiom of Choice mentioned
in Section 2.5.1.

There is also a more ‘deductive’ motivation for these axioms. When one ponders
which principles of deduction should enter into any reasonable higher-order logic,
one immediate candidate is the ordinary complete first-order axiom set, with quan-
tifiers now also of higher orders (cf. [Enderton, 1972] last chapter, for this line). All
usual principles are valid in general models without further ado, except for Univer-
sal Instantiation, or equivalently, Existential Generalization:

X��X� � ��T � or ��T �� �X��X��

These two axioms are valid in all general models whenT is any variable or constant
of the type ofX. But, in actual practice, one wants to substitute further instances in
higher-order reasoning. For example, from X��X�R�, with X of type ���, one
wants to conclude ���� for any first-order definable property � in R, = (cf. van
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Benthem, Chapter II.4). In terms of Comprehension, this amounts to closure of
predicate ranges under first-order definability, mentioned in Section 4.1. A further
possibility is to allow predicative substitutions, where � may be higher-order, but
with its quantifiers all ranging over orders lower than that of X. Finally, no holds
barred, there is the use of arbitrary substitutions, whether predicative or not; as in
the above Comprehension Schema.

One consequence of Comprehension is the followingAxiom of Descriptiveness:

x��y��x� y�� �fx��x� f�x���

If we want to strengthen this to the useful existence of Skolem functions (cf. Section
2.5.2), we have to postulate

x�y��x� y� � �fx��x� f�x���

and this motivates the above Axioms of Choice.
No further obvious logical desiderata seem to have been discovered in the liter-

ature.
By the way, our above formulation of the Axiom of Choice cannot be strength-

ened when all types are present, assuming the comprehension axioms. If this is not
the case, it can be. For instance, in the second-order language, the strongest possi-
ble formulation is just the implication x�X� � �Y x� � (where �� is obtained
from� by substitutingY �x� t�� � � � � tn� forX�t�� � � � � tn�) used to prove the prenex
theorem in Section 3.2.

In a sense, this form gives more than just choice; conceived of set-theoretically,
it has the flavour of a ‘collection’ principle. It plays a crucial role in proving reflec-
tivity of second-order theories containing it, similar to the role the substitution (or
collection) axiom has in proving reflection principles in set theory.

The general picture emerging here is that of an ascending range of recursively
axiomatized higher-order logics, formalizing most useful fragments ofL�-validity
that one encounters in practice.

4.3 Second-Order Reduction

The general completeness theorem, or rather, the family of theorems in Section 4.2,
by no means exhausts the uses of the general model idea of Section 4.1. For in-
stance, once upon this track, we may develop a ‘general model theory’ which is
much closer to the first-order subject of that description. A case in point are the
‘general ultraproducts’ of van Benthem [1983], which allow for an extension of the
fundamental characterization theorems of Section 1.4 to higher-order logic. This
area remains largely unexplored.
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Here we present a rather more unexpected application, announced in Section 3.2:
L�-standard validity is effectively reducible to standard validity in monadic L�, in
fact in the monadic ��

�-fragment.
Consider the first-order languageL� (relative to a given base languageL) intro-

duced in Section 4.1. Extend it to a second-order language L�� by adding second-
order variables of all types ��� � � � � ��, with which we can form atomsX�t�� � � � � tn�.
Consider the followingL�

� -principles �� � ���� � � � � �n��:

Plenitude�� �
X�xy� � � �yn�T� �x� � �T�� �y�� � � � � � T�n �yn��

� ��� �x� y�� � � � � yn�� X�y�� � � � � yn�����

Evidently, Plenitude holds in all �-transforms of all standard models ofL�. Con-
versely, if the L�-modelB satisfies Plenitude�� � for all types � , then its submodel
B� (cf. the proof of the main theorem in Section 4.2) is isomorphic to a model of
the form �A� E�� with a full type structure E.

THEOREM. � � L� is true in all standard models iff�� follows from (1), (2), (3),
(5), (6), and the Plenitude axioms.

As � can only mention a finite number of types and non-logical constants, the
relevant axioms of the above-mentioned kinds can be reduced to a finite number
and hence to a single sentence �.

THEOREM. With every � � L�, a 
�
�-sentence � of L�� can be associated effec-

tively, and uniformly, such that

�� � iff �� � � ���

As � � 
�
� and �� is first-order, this implication is equivalent to a ��

�-sentence;
and the promised reduction is there.

But Plenitude has been formulated using second-order variables of an arbitrary
type. We finally indicate how this may be improved to the case of only monadic
ones. Consider the variant

Plenitude��� �
X�xy� � � �yn�T� �x� � �T�� �y�� � � � � � T�n �yn��

� ��� �x� y�� � � � � yn�� �y�T� �y� �X�y� � �� �y� y�� � � � � yn�����

When E is full, this will obviously hold in �A� E��. To make this monadic vari-
ant do its job, it has to be helped by the following first-order principle stating the
existence of singleton sets of ordered sequences:

Singletons�� �
z� � � �zn�xy� � � �yn�T�� �z�� � � � � � T�n �zn�� �T� �x��
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��T���y�� � � � � � T�n �yn�� ��� �x� y�� � � � � yn��
� y� � z� � � � � � yn � zn�����

Suppose now that B satisfies all these axioms and �A� E�� �� B�. Let S �
E���� � ��E�n be arbitrary: we must show thatS � E� . Notice that Singletons�� �
implies that, if s � E�� � � � ��E�n (in particular, if s � S), then fsg � E� . Now
let S� � ffsg j s � Sg. Clearly, S �

S
S� and S� � E� . That S � E� follows

from one application of Plenitude��� �, taking S� as value for X. �

4.4 Type Theory and Lambda Calculus

Readers of Section 4.2 may have been a little disappointed at finding no preferred
explicit axiomatized ‘first-order’ version ofL�-logic. And indeed, an extreme lati-
tude of choices was of the essence of the situation. Indeed, there exist various addi-
tional points of view leading to, at least, interesting logics. One of these is provided
by the earlier functional type theory of Section 3.3. We will chart the natural road
from the perspective of its basic primitives.

Identity and application inspire the usual identityaxioms, includingreplacement
of identicals. Lambda abstraction really contributes only one further principle, viz.
the famous ‘lambda conversion’

	x �B�A� � �A�x	B�

forx�B�A of suitable types, and moduloobvious conditionsof freedom and bondage.
Thus, there arises a simple kind of lambda calculus. (Actually, a rule of ‘alphabetic
bound variants’ will have to be added in any case, for domestic purposes.)

Lambda conversion is really a kind of simplification rule, often encountered in
the semantics of natural, or programming languages. One immediate question then
is if this process of simplification ever stops.

THEOREM. Every lambda reduction sequence stops in a finite number of steps.

Proof. Introduce a suitable measure of type complexity on terms, so that each re-
duction lowers complexity �

This theorem does not hold for the more general type free lambda calculi of[Baren-
dregt, 1980]; where, e.g. 	x � x�x��	x � x�x�� runs into an infinite regress.

Another immediate follow-up question concerns the unicity (in addition to the
above existence) of such irreducible ‘normal forms’. This follows in fact from the
‘diamond property’:

THEOREM. (Church-Rosser) Every two lambda reduction sequences starting from
the same terms can be continued to meet in a common term (up to alphabetic vari-
ance).
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Stronger lambda calculi arise upon the addition of further principles, such as ex-
tensionality:

	x �A�x� � 	x �B�x� implies A � B (for x not free in A�B)�

This is the lambda analogon of the earlier principle (6) in Section 4.2.
Still further additions might be made reflecting the constancy of the truth value

domain Dt. Up till now, all principles considered would also be valid for arbitrary
truth value structures. (In some cases, this will be a virtue, of course.)

Let us now turn to traditional logic. Henkin has observed how all familiar log-
ical constants may be defined (under the standard interpretation) in terms of the
previous notions. Here is the relevant list [Henkin, 1963]:

� (a tautology) � 	x � x � 	x � x
� (a contradiction) � 	xt � xt � 	xt � �
� (negation) � 	xt � xt � �

The most tricky case is that of conjunction:

� � 	xt � 	yt�	f�t�t� � �f�t�t��xt� � yt� � 	f�t�t� � f�t�t����

One may then define ��� in various ways. Finally, as for the quantifiers,

xA � 	x �A � 	x � ��

The induced logic has not been determined yet, as far as we know.
With the addition of the axiom of bivalence, we are on the road to classical logic:

xt � f�t�t� � xt � f�t�t��� f�t�t���

For a fuller account, cf. [Gallin, 1975, Chapter 1.2].
One may prove a general completeness theorem for the above identity, applica-

tion, abstraction theory in a not inelegant direct manner, along the lines of Henkin’s
original completeness proof. (Notably, the familiar ‘witnesses’ would now be needed
in order to provide instances f�c� �� g�c� when f �� g.) But, the additional techni-
calities, especially in settingup the correct account of general models for functional-
type theory, have motivated exclusion here.

Even so, the differences between the more ‘logical’ climate of functional- type
theory and the more ‘set-theoretic’ atmosphere of the higher-order L� will have
become clear.

5 REFLECTIONS

Why should a Handbook of (after all) Philosophical Logic contain a chapter on ex-
tensions of first-order logic; in particular, on higher-order logic? There are some
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very general, but also some more specific answers to this (by now) rather rhetori-
cal question.

One general reason is that the advent of competitors for first-order logic may
relativize the intense preoccupation with the latter theory in philosophical circles.
No specific theory is sacrosanct in contemporary logic. It is rather a certain logical
perspective in setting up theories, weaker or stronger as the needs of some specific
application require, that should be cultivated. Of course, this point is equally valid
for alternatives to, rather than extensions of classical first-order logic (such as in-
tuitionistic logic).

More specifically, two themes in Section 1 seem of a wider philosophical inter-
est: the role of limitative results such as the Löwenheim-Skolem, or the Compact-
ness theorem for scientific theory construction; but also the new systematic per-
spective upon the nature of logical constants (witness the remarks made about gen-
eralized quantifiers). Some authors have even claimed that proper applications of
logic, e.g. in the philosophy of science or of language, can only get off the ground
now that we have this amazing diversity of logics, allowing for conceptual ‘fine
tuning’ in our formal analyses.

As for the specific case study of higher-order logic, there was at least a con-
vincing prima facie case for this theory, both from the (logicist) foundations of
mathematics and the formal semantics of natural language. Especially in the lat-
ter area, there have been recurrent disputes about clues from natural language urg-
ing higher-order descriptions. (The discussion of branching quantifiers in Section
2.5.1 has been an example; but many others could be cited.) This subject is rather
delicate, however, having to do with philosophy as much as with linguistics. (Cf.
[van Benthem, 1984] for a discussion of some issues.) For instance, the choice be-
tween a standard model or a general model approach to higher-order quantification
is semantically highly significant and will hopefully undercut at present rather dog-
matic discussions of the issue. For instance, even on a Montagovian type theoretic
semantics, we are not committed to a non-axiomatizable logic, or models of wild
cardinalities: contrary to what is usually claimed. (General models on a countable
universe may well remain countable throughout, no matter how far the full type
structure explodes.)

One might even hazard the conjecture that natural language is partial to restricted
predicate ranges which are constructive in some sense. For instance, [Hintikka,
1973] contains the suggestion to read branching quantifier statements on countable
domains in terms of the existence of Skolem functions which are recursive in the
base predicates. If so, our story might end quite differently: for, the higher-order
logic of constructive general models might well lapse into non-axiomatizability
again. Thus, our chapter is an open-ended one, as far as the philosophy and seman-
tics of language are concerned. It suggests possibilities for semantic description;
but on the other hand, this new area of application may well inspire new directions
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in logical research.

ADDENDA

This chapter was written in the summer of 1982, in response to a last-minute request
of the editors, to fill a gap in the existing literature. No standard text on higher-order
logic existed then, and no such text has emerged in the meantime, as far as our in-
formation goes. We have decided to keep the text of this chapter unchanged, as
its topics still seem to the point. Nevertheless, there have been quite a few devel-
opments concerning different aspects of our exposition. We provide a very brief
indication — without any attempt at broad coverage.�

Ehrenfeucht-Fraı̈ssé Games

Game methods have become a common tool in logic for replacing compactness ar-
guments to extend standard meta-properties beyond first-order model theory. Cf.
[Hodges, 1993], [Doets, 1996]. They extend to many variations and extensions of
first-order logic (cf. [Barwise and van Benthem, 1996]).

Finite Model Theory

Model theory over finite models has become a topic in its own right. Cf. [Ebbing-
haus and Flum, 1995]. For connections with data base theory, cf. [Kanellakis, 1990].
In particular, over finite models, logical definability links up with computational
complexity: cf. [Immerman, 1996].

General Models

[Henkin, 1996] is an exposition by the author of the original discovery. [Manzano,
1996] develops a broad spectrum of applied higher-order logics over general mod-
els with partial truth values. [van Benthem, 1996] gives a principled defense of
general models in logical semantics, as a ‘geometric’ strategy of replacing predi-
cates by objects.

Order-Independent Properties of Logics

The distinction ‘first-order’/‘higher-order’ is sometimes irrelevant. Many logical
properties hold independently of the division into logical ‘orders’. Examples are

�The following people were helpful in providing references: Henk Barendregt, Philip Kremer,
Godehard Link, Maria Manzano, Marcin Mostowski, Reinhard Muskens, Mikhail Zakhariashev.
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monotonicity (upward preservation of positive statements) or relativization (quan-
tifier restriction to definable subdomains), whose model-theoretic statements have
nothing to do with orders. There is an emerging linguistic interest in such ‘transcen-
dental’ logical properties: cf. [van Benthem, 1986b], [Sanchez Valencia, 1991].

Generalized Quantifier Theory

The theory of generalized quantifiers has had a stormy development in the 80s and
90s, both on the linguistic and the mathematical side. Cf. [van Benthem, 1986a],
[Westerståhl, 1989]. In particular, the latter has systematic game-based (un-)definability
results for hierarchies of generalized quantifiers. [van Benthem and Westerståhl,
1995] is a survey of the current state of the field, [Keenan and Westerståhl, 1996]
survey the latest linguistic applications, many of which involve the polyadic quan-
tifiers first introduced by [Lindström, 1966].

Higher-Order Logic in Computer Science

Higher-order logics have been proposed for various applications in computer sci-
ence. Cf. [Leivant, 1994].

Higher-Order Logic in Natural Language

Much discussion has centered around the article [Boolos, 1984], claiming that plu-
rals in natural language form a plausible second-order logic. Strongrelational higher-
order logics have been proposed by [Muskens, 1995]. The actual extent of higher-
order phenomena is a matter of debate: cf. [Lönning, 1996], [Link, 1997, Chapter
14]. In particular, there is a continuing interest in better-behaved ‘bounded frag-
ments’ that arise in natural language semantics.

Higher-Order Logic in the Philosophy of Science

Higher-order logic has been used essentially in the philosophy of time (cf. various
temporal postulates and open questions in [van Benthem, 1992]), the foundations
of physics and measurement (cf. the higher-orderphysical theories of [Field, 1980])
and mathematics (cf. [Shapiro, 1991]).

Infinitary Logic

Infinitary logics have become common in computer science: cf.[Harel, 1984], [Gold-
blatt, 1982]. In particular, fixed-point logics are now a standard tool in the theory
of data bases and query languages: cf. [Kanellakis, 1990]. Recently, [Barwise and
van Benthem, 1996] have raised the issue just what are the correct formulations of
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the first-order meta-properties that should hold here. (For instance, the standard
interpolation theorem fails for L
� , but more sophisticated variants go through.)
Similar reformulation strategies might lead to interesting new meta-properties for
second-order logic.

Lambda Calculus and Type Theories

There is an exploding literature on (typed) lambda calculus and type theories, mostly
in computer science. Cf. [Hindley and Seldin, 1986], [Barendregt, 1980; Baren-
dregt, 1992], [Mitchell, 1996; Gunter and Mitchell, 1994]. In natural language,
higher-order logics and type theories have continued their influence. Cf. [Muskens,
1995] for a novel use of relational type theories, and [Lapierre, 1992;Lepage, 1992]
for an alternative in partial functional ones. [van Benthem, 1991] develops the
mathematical theory of ‘categorial grammars’, involvinglinear fragments of a typed
lambda calculus with added Booleans.

Modal Definability Theory

First-order reductions of modal axioms viewed as 
�
�-sentences have been con-

siderably extended in [Venema, 1991], [de Rijke, 1993]. In the literature on theo-
rem proving, these translations have been extended to second-order logic itself: cf.
[Ohlbach, 1991], [Doherty et al., 1994]. [Zakhariashev, 1992; Zakhariashev, 1996]
provides a three-step classification of all second-order forms occurring in modal
logic.

Propositional Quantification in Intensional Logic

Modal Logic. [Kremer, 1996] considers the obvious interpretation of propositional
quantification in the topological semantics for S4, and defines a system S4�t, re-
lated to the system S4�� of [Fine, 1970]. He shows that second-order arithmetic
can be recursively embedded in S4�t, and asks whether second order logic can.

[Fine, 1970] is the most comprehensive early piece on the topic of propositional
quantifiers in modal logic. (Contrary to what is stated therein, decidabilityof S4.3��

is open.)

Intuitionistic Logic. References here are [Löb, 1976], [Gabbay, 1981], [Kreisel,
1981] and [Pitts, 1992].

Relevance Logic. Cf. [Kremer, 1994].
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Higher-Order Proof Theory

Cf. [Troelstra and Schwichtenberg, 1996, Chapter 11], for a modern exposition of
relevant results.
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