
Reuse, Validation and Verification of
System Development Processes

Peter J. Funk and Ivica Crnkovic
Mälardalen University, Computer Science Lab

 Västerås, Sweden, {peter.funk, ivica.crnkovic}@mdh.se

Abstract
Large companies often use standardized template devel-
opment processes. Project-specific adaptation of tem-
plates must address aspects such as: project resources
(time/ staff), standards, regulations, etc. Adapting tem-
plates is a particularly manual process requiring skill
and for large companies a large proportion of the devel-
opment cost. Integrating locally gained experiences and
updating the template process is tedious work and re-
sources for such updates are rarely available. Fortu-
nately, formal representation of processes and process
components enables reuse, analysis and comparison of
processes and parts of processes. We use a case-based
reasoning (CBR) approach which permits identification
and reuse of processes or parts of processes. The formal
notation allows the user to sketch new processes or adapt
template processes. These sketches/ adaptations are used
in a matching process which identifies and suggest the
reuse of similar processes and process components stored
in the library. Once an adaptation has been successfully
used, it is automatically added to the case library.

1. Introduction

System development is one of the most complex pro-
cesses found in organizations today [1a, 1b]. Large com-
panies often use a standard development process as a
framework for all their development projects. Such a best
practice process aims at reflecting the companies collec-
tive experience, their commitment to quality and mini-
mum lead time and reflects the category of projects and
the level of skill of those engaged in projects. In small
projects an explicit system development process is rarely
used and the success or failure is mostly dependent on the
individual skill and experience of the project leader and
the project members. Such skill and experience is expen-
sive to win if they are the result of unsuccessful projects.
More than half of all software projects fail [2] and failure
is believed to arise from deficiencies in software devel-
opment processes. Many technology-intensive companies

have tens of thousands of people working in different
projects, and the savings achieved by using a uniform
system development process throughout the company is
believed to be considerable when compared with permit-
ting each project manager to develop here own process. It
enables the company to ensure that new projects meet in-
ternal requirements in addition to external requirements
such as quality standards, control over progress and
checkpoints to identify problems as early as possible.

Unfortunately, reality in large companies often re-
quires extensive local adaptation of template processes to
suit different types of projects and different circumstances
in the environment of the project. If project-specific modi-
fications and adaptations are made, the overall process
cannot be warranted to meet overall demands of the com-
pany and customers and there is a risk that less suitable
adaptations are introduced which may cause subsequent
problems in the project. Finally, the experience gained
from local adaptations is difficult to transfer back to the
template processes and difficult to spread within the com-
pany. To collect the experience from adaptations per-
formed locally require skilled staff (often short in supply)
and much time and effort as the overall experience is dis-
tributed over many people, each with a small part of the
total experience. The experience gained from completed
projects is seldom collected.

2. Development Processes

There is a wide variety of abstract system develop-
ment methodologies available such as the waterfall and V
models. These models are often too generic and need
careful adaptation to fit specific types of project, company
standards and the skill level of the employees. Companies
therefore often develop their own detailed system devel-
opment template to meet internal and external require-
ments. These template processes are thereafter adapted to
specific projects. The information concerned is mostly
available in informal manuals with guidelines, quality and
control points and examples. They are difficult to use and
there is commonly no or very little support provided to

assist those engaged in projects in following these docu-
ments and guidelines.

System development processes used are usually rep-
resented informally. Recent technology and tools which
support producing and analyzing system development
processes are beneficial. Standards such as ISO9001 and
models such as CMM (Capability Maturity Model) can be
incorporated in the tools and aid the production of system
development processes which meet these requirements.
These tools unfortunately rarely aid the transfer between
users of knowledge gained from local adaptations. We
propose a case-based reasoning approach in which proc-
esses adapted and successfully used, are stored in a case
library and enable reuse of these processes in part or
whole. A matching algorithm identifies similar, but not
necessarily exactly identical processes in the case library.
These may be reused in part or in whole. A case-based
approach can be considered to be an important factor in
building and maintaining a corporate memory.

3. Case-Based Process Tailoring

The CABS system (Case-Based Specification Sys-
tem, see section 4 on case-based reasoning) formalizes
processes based on graphical examples and uses a tempo-
ral logic for internal formal representation. The user
sketches process examples and the system proposes pre-
viously specified processes or parts of previously speci-
fied processes which may be reused. The CABS system
was originally developed for behavioral requirements [3]
such as the behavior of telephone features. CABS treats a
process definition task as an experimental development
task (see Figure 1) and arrives quickly at something we
can validate and verify in a variety of ways. These
sketches are then refined, compared with similar process
descriptions in the case library and used to identify parts
for reuse or to point out differences. All this in a tightly
integrated environment with few restrictions on order or
sequence. This will aid the users of CABS to refine and
extend the system development process until they are
convinced that the requirements for the specific project
are met. We have begun making CABS more generic in
order to include system development processes as a suit-
able application domain. The formal representation is
based on predicate logic (transition rules) and has suffi-
cient expressive power to represent system development
processes, but is not unnecessarily expressive, “a formal
representation should be as simple as possible, but no
simpler.” [4]. Limiting expressiveness is a major ap-
proach to taming the combinatorial explosion in produc-
tion systems [5]. We do not confront the user with the
formal notation and the notation is concealed behind a
user interface.

Project Manager, Customers
 and Project Members

Process Definition

Sketching & Rapid
Process Prototyping Environment

Idea of, and requirements on a
suitable development process

for the project

Formalized, validated
and verified.

Case Library
Previously used development

processes, templates,
standard processes, quality

processes etc.
sketching, concretizing

aided by reuse, simulation
and verification

Figure 1: From an idea to a formalized process definition.

4. Case-Based Reasoning

The central concept of case-based reasoning is ex-
pressed by Riesbeck and Schank as: "the essence of how
human reasoning works. People reason from experience.
They use their own experience if they have a relevant one,
or they make use of the experience of others" [6]. Aamodt
and Plaza´s picture, Figure 2, illustrates the main ideas of
case-based reasoning: a problem is given in the top left
corner, similar cases are retrieved from a case library and
the most suitable case is selected and re-used. The most
suitable case may need to be revised to solve the problem.
If the solution is approved, the problem and its solution
are stored in the case library. The next time a similar
problem is encountered, less adaptation of the retrieved
case may be needed and the process will be simplified if
similar problems are often encountered and the features
identifying similar cases are sufficiently recognizable.

The study of a previous case which has solved a
similar problem may, in some situations, aid the process
of finding a solution because a case provides a context for
understanding [8]. A case-based system may also adapt to
changing demands, for example, if a new type of problem
not previously encountered is solved (if no similar cases
are available, a solution of the problem is most likely to
be produced manually). The problem solved and its solu-
tion are stored in the case library as a new case, with the
aim of expanding its competence [5]. The next time the
system encounters the same or a similar problem, the sys-
tem will have increased its potential to produce a solution.
It is more likely that, in a rule-based system, it would be
necessary to update the rules to include this new class of
problems.

Problem

Case Library

RETRIEVE

R
E

U
S
E

RETAIN

Confirmed
Solution

Proposed
Solution

REVISE

Figure 2: General architecture of a case-based reasoning sys-
tem. Adapted from [7,Aamodt, Plaza 94].

Case-based reasoning may be suitable for problem
areas in which the knowledge of how a solution is created
is poorly understood [9], e.g. the creation and adaptation
of system development process. In technical domains,
case-based reasoning has been applied to a variety of a
application domains such as: architectural design support
[10]; qualitative reasoning in engineering design [11],
[12], software specification re-use [13], software re-use
[14], fault correction in help desk applications [9], build-
ing regulations [15], business modeling [16], fault diagno-
sis and repair of software [17]. There are already certain
CBR systems in commercial use and CBR components
embedded in other systems.

In summary, case-based reasoning may be applied to
application domains which are not sufficiently well under-
stood to create a consistent and complete knowledge-base
in how to solve the problem automatically, provided that:
• problems and their solutions have similarities.
• a case library with past problems and their solutions

is available or can be created.
• solutions can be adapted and re-used for similar

problems.
• there are suitable means for identifying relevant cases

in the case library.
We suggest that development processes fit these re-

quirements well if a formal notation is used. The user

does not need to know that there is a formal notation in-
volved and draws the process descriptions in a graphical
editor as usual, the editor translates the diagrams to the
formal textual representation used in matching and analy-
sis. A matching algorithm which identifies similar behav-
ior is used [3].

5. Representation of Development Processes

A system development process is modeled by divid-
ing the process into a number of process components (e.g.
System study, design subsystem, specify function, test
function, formally verify function, verify system, handle
release, …). Each process component is a set of tasks
having a clearly defined input and output. One or more
process components can be combined in a system devel-
opment process. Process components may be sequential-
ized or concurrent if parallel or incremental development
is applied in the project (verification will identify if there
are dependencies causing problems if performed in paral-
lel, e.g. if one process component needs output from the
other process component). Input and output from process
components are well defined items which may be under
CM management [18]. Examples of input and output (see
Figure 3) are: validated function requirements; function
test plan; implementation proposal, tested code; formally
verified code; etc. The ontology for the application do-
main must to be determined carefully [19] as all cases in
the case library will be based on these and both reuse and
identification of similar processes and process compo-
nents is based on input and output items. Atomic items
cannot be divided and are the smallest parts reflecting the
granularity of the system in which the development proc-
ess is described. How to determine an ontology is beyond
the scope of this paper. System checkpoints may be de-
fined as a collection of information in a given revision
state, for example "mile stone 14 is defined as being all
output items in the completed or implemented state".

A process component may have one or more tasks
each representing a specific activity requiring specific in-
put and producing specific output. An example of a proc-
ess component with two tasks is given in Figure 3. Indi-
vidual tasks may be applied in parallel or sequenced in
any particular order with the only restriction that tasks
only can be performed if the input and the necessary re-
sources are available (resources which are not properly
modeled in this example, may be available or selected
tools, estimation of manpower needed for task, etc.). In
the example in Figure 3 the task is activated if the process
component "formally verify function(X)" is requested. All
tasks having their requirements met (input available) will
be performed. Process components may have more infor-
mation than shown below but name, input and result is the

information used to model the process. Additional infor-
mation such as work description (how to produce the out-
put given the input) may be informal text, links to other
documents or a process description or workflow descrip-
tion.

Process component: formally verify function(X)
 Task 1a

Input:
formalized function
requirement(X, internally approved)

formal notation(X, predicate logic)
Result after completion:

formally verified function requirement(X, completed)
Work description/workflow/process/tool:

Use theorem prover for predicate logic to formally ver-
ify behavior against original requirements.

Process component: formally verify function(X)
 Task 1b

Input:
formalized function
requirement(X, informally approved)

 formal notation(X, Petri-Nets)
Result after completion:

formalized function requirement(X, completed)
Work description/workflow/process/tool:

Use Petri Net tools and perform model checking etc. If
liveness is proven (absence of deadlock) the task is
completed.

Figure 3: Example of two process components

Reports or documents may be defined as a specific
set of items and their revision state (started/ ongoing/ im-
plemented/ internally approved/ customer approved/ com-
pleted/…) together with layout information showing how
to display or print the report.

6. The CABS Approach to Reuse and Verifi-
cation

The system is illustrated in Figure 4. In the top left-
hand corner, the user gives examples of desired parts of
the system development process. Examples can be given
as graphical examples in which parts of the desired proc-
ess are exemplified as partial process sketches. Input may
be in the form of examples created by the user selecting
process components believed to be suitable for the proj-
ect. Size, quality requirements, standard requirements,

preferred tools etc. may also be given as input which may
be used to further improve the matching process (not han-
dled in CABS). The matching algorithm [3] (the second
box from the top of the left corner) uses the input sketches
to identify tasks and process components which show
similarities with the input examples. After the matching
algorithm has identified a set of tasks and process compo-
nents this result is used to rank the system development
processes stored in the case library. The user is presented
with the ranking result and may explore the different pro-
posals. When the user selects a proposal the selected so-
lution can be validated and verified against the input (the
Revise box in Figure 4). If the user rejects the final solu-
tion more examples are requested (broken line out from
Revise box).

Give examples on desired
parts in a development
process for the project

Prepare input for
matching

Identify similar
tasks

Construct solution

(Formalised
processes)

R
e
t
r
i
e
v
e

R
e
u
s
e

Proposed Solution

R
e
v
i
s
e Simulate dynamic

Confirmed
Development

Process

Solution not
accepted

Adapt to conform

Verify against input

R
e
s
t
o
r
e

Rank processes and
process components Prove properties

Provide more
 features/examples

Case Library

to input

behaviour

Tasks grouped
in process

components and
processes

Figure 4: Outline of the CABS approach
If the solution is accepted (after verification against

input examples and simulation of the behavior), the new
or adapted system development process is stored in the
case library but should not be available for reuse until the
project has been successfully completed.

7. Conclusion

Using case-based reasoning in combination with
formalized system development processes offers certain
advantages over current practice in which system devel-

opment processes are mostly informal. The proposed
CBR approach also offers advantages if used together
with tools supporting the user in creating a specific system
development process. The prime advantage is that suc-
cessfully adapted system development processes are now
available for reuse. Adapted system development proc-
esses which have been successfully used in a project are
automatically made available for reuse (less successful
processes may also be kept in the case library to avoid
similar less successful processes in future, this is not im-
plemented). This enables an organization to preserve lo-
cally gained experience in terms of improved and adapted
system development processes.

In our further work we need to formalize a number of
realistically sized system development processes and store
them in the case library. Thereafter we propose an
evaluation based on users with specific projects for which
they need to develop a system development process. The
case-based reasoning prototype and graphical editor is
currently adapted to fit the domain of development proc-
esses and a suitable graphical notation for system devel-
opment processes will be chosen.

References

[1a] Doheny J.G. and Filby I.M. (1996). A framework and
Tool for Modeling and Assessing Software Devel-
opment Processes, The European Software Control
and Metrics Conference, 1996.

[1b] Doheny J.G. and Filby I.M. (1996) Modelling Soft-
ware Development Processes and Standards, Techni-
cal Report AIAI-TR-205, University of Edinburgh,
pp 1-10.

[2] Sommerville I. (1996). Software Engineering, fifth
edition part one & five, Addison Wesley.

[3] Funk, P.J. and Robertson D. (1995). Case-Based Se-
lection of Requirements Specifications for Telecom-
munications Systems. Second European Workshop
on Case-Based Reasoning, Proceedings, Keane M.,
Haton J. P., Manago, M. (eds.), Chantilly, France, pp
293-301.

[4] Zave P. and Jackson M. (1996). Four Dark Corners
of Requirements Engineering. ACM pp 1-34.

[5] Aamodt A. (1993). A Case-Based Answer to Some
Problems of Knowledge-Based Systems. Scandina-
vian Conference on Artificial Intelligence. E. Sande-
wall, C.G. Jansson (eds.), IOS Press, pp 168-182.

[6] Riesbeck C. and Schank R. (1989). Inside Case-
Based Reasoning, Lawrence Erlbaum Inc. Intelli-
gence, Budapest, Hungary, John Wiley & Sons Ltd,
pp 390-394.

[7] Aamodt A. and Plaza E (1994), Case-Based Reason-
ing: Foundational Issues, Methodological Variations
and System Approaches. AI Communications, vol 7,
pp 39-59.

[8] Kolodner J. (1993), Case-Based Reasoning. Morgan
Kaufmann.

[9] Watson I. (1997). Applying Case-Based Reasoning:
Techniques for Enterprise Systems, Morgan Kauf-
mann.

[10] Pearce M., Goel A.K., Kolodner J.L., Simring C.,
Sentosa L. and Billington R. (1992). Case-Based De-
sign Support. IEEE, October, pp 14-20.

[11] Sycara K.P., Navinchandra D., Guttal R., Koning J.
and Narasimhan S. (1992). CADET: A Case-Based
Synthesis Tool for Engineering Design. International
Journal of Expert Systems, vol 4, no. 2, pp 167-188.

[12] Nakatani Y., Tsukiyama M. and Fukuda T. (1992).
Engineering Design Support Framework by Case-
Based Reasoning. ISA Transaction, vol 31, no. 2, pp
235-180.

[13] Maiden N.A.M. and Sutcliffe A.G. (1995). Require-
ments Engineering by Example: an Empirical Study.
Proceedings of IEEE International Symposium on
Requirements Engineering, pp 104-111.

[14] Fouqué G. and Matwin S. (1993). Compositional
Software Reuse with Case-Based Reasoning. Confer-
ence on Artificial Intelligence Applications 1993,
IEEE, Florida.

[15] Yang S.-A., Robertson D. and Lee J. (1995). Use of
Case-Based Reasoning in the Domain of Building
Regulations. Topics in Case-Based Reasoning,
Springer-Verlag, pp 292-306.

[16] Chen-Burger J. and Robertson D. (1998). Formal
Support for an Informal Business Modelling Method.
10th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE'98),
USA.

[17] Hunt J. (1997). Case based diagnosis and repairs of
software faults. Expert Systems, vol 14, no 1, pp 15-
23.

[18] Crnkovic I., Funk P.J. and Larsson M. (1999). Proc-
essing Requirements by Software Configuration
Management. Euromicro 99 Conference, York, June
1999.

[19] Uschold M., (1996). Building Ontologies: Towards a
Unified Methodology, Proceedings of Expert Sys-
tems 1996, Cambridge, UK.

