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Abstract. A major project is investigating methods for conserving power in
wireless networks. A component of this project addresses methods for predicting
whether the user demand load in each zone of a network is increasing, decreasing
or approximately constant. These predictions are then fed into the power regula-
tion system. This paper describes a real-time predictive model of network traffic
load which is derived from experiments on real data. This model combines a
linear regression based model and a highly reactive model that are applied to
real-time data that is aggregated at two levels of granularity. The model gives ex-
cellent performance predictions when applied to network traffic load data.
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1 Introduction

Power conservation in wireless networks is attracting considerable attention. Most ap-
proaches are based either on maximising the number of stations that can be put into
sleep mode, or on minimising the power for transmission when the unit is active [1].
However, the majority of approaches are not based on predictive models of network
load. This paper describes work in a power conservation project conducted in collabo-
ration between UTS and Alcatel-Lucent (Bell Labs). A component of this project ad-
dresses methods for predicting user demand load in each zone of a network. This paper
describes the data mining methods used to build a predicative model that is then fed
into the power regulation system.

The size and nature of communications networks suggests that forecasting methods
should be distributed and should react quickly. We use the term agent to refer to a de-
cision making entity located in each zone of the network. Each agent has to determine:
which signals to select, and how the selected signals should be combined. Data mining
can be an expensive business; costly solutions may be justified if they can be replicated
across the network. The management of the extent to which data mining is applied is
important, and is not discussed directly here.

The model described aims only to predict whether the local load is either generally
unchanged, or is increasing, or is decreasing. This model combines:

– signals derived from local observations that each agent makes within its zone in the
network,

– signals from agents in neighbouring zones, and
– signals derived from background information sources external to the network



The method for deriving predictions from local observations is particularly interesting.
Here we found that a subtle combination of a linear regression based model and a highly
reactive model applied to real-time data that is aggregated at two levels of granularity
outperformed non-linear methods. This technique is described in detail.

Section 2 discusses the application of data mining to network management as well
as distributed data mining techniques that are particularly relevant to this work. Sec-
tion 3 explains how three types of signal are combined to form our solution. Section 4
describes the experimental case study on real-time mining of local observations using
real network data. The data was selected from Internet traffic at the University of Tech-
nology, Sydney, where we found that data from some of the University’s zones had
characteristics similar to wireless networks in that it was bursty with fluctuations that
were significant but bounded. Finally, Section 5 concludes.

2 Background

There is an established history of data mining in network management. We discuss work
on alarm or fault related issues as well as work in distributed data mining.

2.1 Mining Alarms and Faults in Communications Networks

Alarm Correlation Alarms are messages produced by different components of net-
works. They describe some sort of abnormal situations [2]. Modern communication
networks produce large numbers of alarm messages. These alarm messages travers-
ing the network burden the network traffic, possibly lead to packet loss, latency and
data retransmission, and ultimately degrade the network performance [3]. Also, due to
the rapid development of hardware and software used in communication networks, the
characteristics of the alarm sequences are changed as new nodes are added to the net-
work or old ones are updated [4]. Thus, the operators may not have time to learn how to
respond to each situation appropriately. In order to avoid overloading operators, alarm
correlation systems are used to filter and condense the incoming alarms and diagnose
the initial cause of the alarm burst [5]. Due to the dynamic nature of growing telecom-
munication networks, alarm correlation systems need to adapt to different topologies
and extensions of network structure [5]. Also, they need to be tolerant of missing and
unnecessary alarm data which are defined as noise.

Neural Networks have characteristics which makes them suitable for the alarm cor-
relation task. No expert knowledge is needed to train the neural network. Moreover,
Neural Networks are resistant to noise because of their generalising capabilities [5].
The “Cascade Correlation Alarm Correlator” (CCAC) is a neural network based alarm
correlator. It minimises the count of operations — no topology of the hidden layer has
to be proposed during training. The system is able to treat noise with up to 25 percent
of missing alarms while still achieving 99.76% correct decisions [5]. Self-Organising
Maps, a type of neural network, are able to recognise input alarm patterns even when
the input data is noisy, corrupted or has significant variation [6].

Bayesian Belief Networks (BBN) are well suited to automated diagnosis because of
their deep representation of knowledge and their precise calculations [7]. A BBN rep-
resents cause and effect between observable symptoms and the unobserved problems.



When a set of symptoms are observed, the most likely cause can be determined. How-
ever, the development of a diagnostic BBN requires a deep understanding of the cause
and effect relationships in a domain, provided by domain experts [7].

Fault prediction The occurrence of a fault often triggers alarm signals. When two
consecutive faults occur within a short time, the alarms corresponding to them may mix
together. Fault identification may be a very difficult task when the operator is required
to take into account the network elements up or down stream of the fault that are also
issuing alarms.

The “fixed time windows” method has been used by Sasisekharan and others to
predict network faults [3]. The basic idea is that a consecutive period of time is divided
into two windows Wa and Wb first, then the measurements made in Wa is used to
predict problems in Wb [3]. Because faults are often transient, a reasonably long period
for Wb should be specified.

The “Telecommunication Alarm Sequence Analyser” (TASA) has also been used
for fault prediction. By using a specialised data mining algorithm, this tool can discover
recurrent patterns of alarms automatically [8]. Network specialists then use this infor-
mation to construct a rule-based alarm correlation system, which can then be used to
identify faults in real time. Also, TASA is capable of finding episodic rules that de-
pend on temporal relationships between the alarms [8]. For example, it may discover
the following rule: if alarms of type “link alarm” and type “link failure” occur within 5
seconds, then an alarm of type “high fault rate” occurs within 60 seconds with a prob-
ability of 0.7 [9]. Based on the rules, faults can be predicted, and counter-measures can
be taken to deal with the faults in advance.

“Timeweaver” is another tool for fault prediction. It is a genetic algorithm based
machine learning system that predicts rare events by identifying predictive temporal and
sequential patterns [10]. It consists of two processes. First, a Genetic Algorithm is used
to extract alarm patterns and then a greedy algorithm is applied to form prediction rules.
Compared with some existing methods like ANSWER, RIPPER, C4.5, Timeweaver
performs better at the prediction task [10].

2.2 Distributed Data Mining of Communications Networks

Traditionally data mining was based on a centralised approach. However, in distributed
computing environments, such as the Internet, intranets, sensor networks, wireless net-
works and Peer-to-peer systems, it is often desirable to mine data that is distributed in
different places [11]. In such cases, centralised data mining approach is inappropriate
because of its long response time and inability to capitalise on distributed resources
[11]. Distributed data mining is often indicated in distributed environments. For exam-
ple, in a wireless sensor network with limited communication bandwidth and limited
battery power, the central collection of data from every sensor node may create heavy
traffic and consume a considerable amount of power. In contrast, distributed data min-
ing may be more suitable because it reduces the communication load and spreads power
consumption evenly across the different nodes of the sensor network.

Distributed data mining can also be used in network management, and for bundled
service management. It offers the following advantages over centralised mining:



Table 1. Data description

Atribute Description
Date Time Date time

Traffic in (Volume) Sum of inbound network load
Traffic in (Volume) (Raw) Sum of inbound network load

Traffic out (volume) Sum of outbound network load
Traffic out (volume) (Raw) Sum of outbound network load

1. Network traffic and processing load in the network management system may be
both reduced by performing data processing closer to the network elements.

2. Distributed data mining methods may scale well were centralised methods will not.
3. Searches can be performed closer to the data, improving speed and efficiency.
4. Distributed network management may be inherently more robust without depend-

ing on continuous communications between the network management system and
network elements [12].

Recently, agent-based distributed data mining has become a very active research
area — this combines distributed mining with distributed decision making. Ogston and
Vassiliadis use agents to simulate a peer-to-peer auction and a centralised auction [13]
for resource allocation. They show that the distributed auction exhibits price conver-
gence behaviour similar to that of the centralised auction. Also, the peer-to-peer system
has a constant cost in the number of message rounds needed to find the market equilib-
rium price as the number of traders is increased, in contrast to the linear cost incurred
by the central auctioneer [13]. In terms of message costs, the peer-to-peer system out-
performs the central auction.

BODHI, implemented in Java, has been designed for collective DM tasks on hetero-
geneous data sites [14]. This framework requires low network communication within
local and global data models. The mining process is distributed to the local agents and
mobile agents that carry data and knowledge. A central facilitator agent is responsible
for initialising and coordinating the data mining task within the agents.

Parallel Data Mining Agents (PADMA) architecture is proposed by Kargupta, Hamza-
oglu and Stafford [15]. PADMA deals with the problem of distributed data mining from
homogeneous data sites. At first, data cluster models are counted by agents locally at
different sites. Then, the local models are collected to a central site to perform a second-
level clustering to produce the global cluster model.

Papyrus is a Java-based system addressing wide-area distributed data mining over
clusters of heterogeneous data sites and meta-clusters [16]. It supports predictive model
strategies including C4.5. Mobile data mining agents move data, intermediate results,
and models between clusters to perform all computation locally or from local sites to
a central root which produces the final result [16]. Each cluster has one distinguished
node which acts as its cluster access and control point for the agents. Coordination
of the overall clustering task is either done by a central root site or the (peer-to-peer)
network of cluster access points.

All the above approaches aim to integrate the knowledge which is extracted from
data at different geographically distributed network sites with a minimum amount of



Table 2. Correlation coefficient 1-minute time granularity

Coefficient between: In(T)/In(T-1) In(T)/In(T-1) In(T)/In(T-2)
Granularity: 1 minute 5 minutes 5 minutes

B1 0.89 0.67 0.50
B3 0.88 0.66 0.48
B4 0.83 0.76 0.61
B5 0.90 0.82 0.69
B10 0.95 0.79 0.58

network communication, and maximum of local computation. Concerning distributed
data mining algorithms, Bandyopadhyay and others [17] have introduced a P2P K-
Means algorithm for distributed clustering of data streams in a peer-to-peer sensor net-
work environment. In the P2P K-Means algorithm, computation is performed locally,
and communication of the local data models is restricted only within a limited neigh-
bourhood. As opposed to the full synchronisation required in some other algorithms,
synchronisation in P2P K-Means is restricted only within a neighbourhood. Moreover,
even if some node and/or link fails, the algorithm can continue, though its performance
will degrade gracefully with an increase in the number of failures.

Although distributed data mining approach could be very useful in network man-
agement, associated privacy issues are important. Roughan and Zhang proposed a dis-
tributed data mining algorithm to conduct summarisation of Internet traffic without re-
vealing traffic volume of any ISP [18].

3 Solution Structure

Any intelligent approach to conserve power will incorporate predictive models of load.
We combine three solutions to smaller problems to form the complete solution:

1. Real-time mining of local observations that predicts the load in a zone on the basis
of observed variations in load on the stations in that zone.

2. Off-line data mining is applied to historic load data over a region to identify whether
changes in load in one zone may, under certain conditions, signal subsequent changes
in another zone. For example, the natural flow of pedestrian traffic around a build-
ing may be the underlying cause of such a relationship.

3. Background mining of data, text and news sources that are outside the network. For
example, knowledge that a football match may be held in a certain stadium next
Saturday may have significant implications for load near the stadium.

The important point is that any solution to the above problem should attempt to capi-
talise on these three approaches. Also, the solutions must be scalable and operate fast.
Scalability suggests distributed decision making systems, and speed of operation sug-
gests they should be based on simple models with low computational demands.

Our solution combines three classes of signals: first, signals that an agent derives
from observations within its zone; second, signals that an agent chooses to import from
adjacent zones, and third, signals that an agent chooses to import from the mining of



Fig. 1. Goodness of fit generated by Model (1), (2) and (3)

 

background data. Traditional data mining techniques are applied to select and combine
these three classes of signal — as we noted in Section 1 this is a costly process unless
the solution derived can be replicated across the network.

4 Real-time mining of local observations

Our overall aim is to identify a suitable architecture for load prediction in LTE networks.
To do this, we based our experiments on Ethernet load data obtained from University
of Technology, Sydney (UTS), because the data is characteristic of load data in LTE
networks. Our hypothesis is that the solution to the prediction of UTS Ethernet load
will indicate the architecture for load prediction in LTE networks.

In each zone of UTS, an agent is used to record the network load in the zone over
a period of time, and then analyses it to build a load predictive model for the zone.
Based on the predictive model, each agent can then forecast its zone’s network load. In
this experiment, only predictive models for inbound network load are introduced, since
outbound network load can be predicted similarly. Also, predictive models are built by
applying linear regression and moving average3 method is used to smooth coarse data
to improve prediction accuracy. Besides, we use the goodness of fit as a measure of the
accuracy of predictive models, which is defined as follows:

σest =

√∑
(Y − Y ′)

2

N

Where Y is an actual value and Y’ is a predicted value while N is the number of values
to predict.

4.1 Data pre-processing and Transformation

A key feature of the method described is that it operates on data aggregated at two
levels of granularity. In the Internet load data used in the experiments the aggregation
periods were 1 minute and 5 minutes. These granularity settings were derived as a result
of visual examination of the raw data. If the method described is applied to wireless

3 Subset size for moving average method is arbitrarily assigned to 5, and moving average for in-
bound network load is calculated as: Ain(T ) =

In(T−1)+In(T−2)+In(T−3)+In(T−4)+In(T−5)
5



Fig. 2. Comparison of Goodness of fit between Model (1) and (4)

 

network traffic then these levels would of course be considerably shorter, and would be
derived by visual examination of data as was performed in these experiments.

Table 1 shows the column headings for the raw data — some columns have the
same meaning. For example, Traffic in (Volume) and Traffic in (Volume) (Raw) repre-
sent the same information, both of raws stand for the inbound network traffic volume
within a minute but measured by different units, Kilobyte and Byte respectively. Since
they represent the same information, only one of the two columns is considered. In our
experiments, data is reconstructed with only three columns: Data Time, Traffic In, and
Traffic Out.

The University of Technology, Sydney has Internet facilities deployed through a
large campus. The university monitors data in a number of zones that vary from teaching
laboratories to open access areas in the various building foyers. We inspected the data
and selected six zones on the basis that they exhibited characteristics of wireless data in
that it was bursty with fluctuations that were significant buy bounded. These zones are
referred to in this paper as B1, B3, B4, B5 and B10 — these labels have no significance
beyond identifying the data sets selected.

Initial analysis of the data applied Pearson’s sample coefficient of linear correlation
— a measure of the tendency of two variables to vary together — was applied to the
five data sets. It is often denoted by r and defined as follows:

r =
n
∑

iXiYi −
∑

iXi ×
∑

i Yi√
n
∑

iX
2
i − (

∑
iXi)2 ×

√
n
∑

i Y
2
i − (

∑
i Yi)

2

An r value of 1 or -1 indicates a perfect linear relationship between variable X and
Y , while value of 0 means variable X is independent of Y . If r = 1 then Y always
increases as X increases. If r = −1 then Y always decreases as X increases.

The results of this initial analysis are shown in Table 2. For 1 minute granularity
the correlation coefficient between In(T) and In(T-1) is very high, ranging from 0.83 to
0.95 within the five zones. The correlation coefficient between In(T) and In(T-1) based
on 1 minute granularity data is greater than that based on 5 minute granularity data.
Consequently we hypothesise that current network traffic load has a strong linear rela-
tionship with preceding network traffic load. That is to say, the network load recorded
in the previous minute can be used to predict the network load in the next minute. Also,



Fig. 3. Comparison of Goodness of fit between Model (4) and (5)

 

data of 1 minute granularity is a better foundation for predictive models than data of 5
minute granularity — this is consistent with intuition.

4.2 Models Based on Moving Averages

We denote the total inbound and outbound network load within the minute T as In(T )
and Out(T ) respectively. An intuitive assumption is that In(T ) could have strong linear
relationships with its previous moving average like Ain(T − 1) and Ain(T − 2), and
it may also have linear relationship with Aout(T − 1) and Aout(T − 2). Based on the
above assumption, three linear predictive models were considered as follows:

Model (1): In(T ) = f(Ain(T − 1), Ain(T − 2))
Model (2): In(T ) = f(Aout(T − 1), Aout(T − 2))
Model (3): In(T ) = f(Ain(T − 1), Ain(T − 2), Aout(T − 1), Aout(T − 2))

In Figure 1, goodness of fit generated by Models (1), (2) and (3) are compared, with
Model (3) has the smallest goodness of fit. The goodness of fit generated by Model (1)
is slightly smaller than that generated by Model (1). In order to simplify our approach,
we decide to build predictive models by improving Model (1). In Model (1), network
traffic load is predicted based on the previous two moving averages. Then, we consider
a possibility of improved performance when the model is based on the previous three
moving averages. So a new model is proposed as follows:

Model (4): In(T ) = f(Ain(T − 1), Ain(T − 2), Ain(T − 3))

Goodness of fit generated by models (1) and (4) is compared in Figure 2. It can be seen
that Models (4) outperforms Model (1) because of generating smaller goodness of fit.

4.3 Models based on three independent variables

The models described in Section 4.2 have large goodness of fit values. This is due to
their poor performance when there are significant oscillations in network load. To deal
with these situations, we develop a new approach based on the assumption that using
the previous 3 real network load values (three independent variables) for prediction will
provide more accurate prediction than using the average network load data. Based on
this assumption, Model (5) is proposed:



Fig. 4. Successful prediction

 

Model (5): In(T ) = f(In(T − 1), In(T − 2), In(T − 3))

As is displayed in Fig 3 that Models (5) performs better than Model (4), because Model
(5) has a smaller goodness of fit than Model (4).

4.4 Model applied on an hour basis

Although models (5) has the best performance within the above models, the calculated
goodness of fit value is still significant. Generally, the increase of goodness of fit value
is caused by sudden and dramatic fluctuations in network traffic load. It still needs to be
established how well these models work on different type of data (smooth and coarse).
When we consider network load data for a whole day, it is more likely that the data will
be coarse. However, when we consider the same data in segments that are an hour long,
most of the segments will be smooth. Therefore, Model (5) is considered an hour long
segments. In this experiment, the first 40-minute data is used to build model, and then
the next 20-minute network traffic load is predicted by using the model.

Numerous generated results show that Model (5) provides accurate network load
forecasts for certain time periods, however for some other periods forecasts are not
sufficiently accurate. Here we only display two sample examples of successful and un-
successful forecast situations for inbound network load.

In Fig 4 and Fig 5, Ein(T ) stands for the estimate value of the inbound network
load, and Ein(T )− In(T ) is the deviation of estimated inbound network load from the
real inbound network load. The two results based on different data samples (smooth
and coarse data respectively) differ dramatically in predicting network load. According
to the good prediction, the deviation of inbound network load is very small, with its
absolute value varying from 8 KB to 2882 KB. Its maximum deviation 2882 KB is less
than 9% of the average inbound load 34,000 KB. In contrast, the maximum deviation of
inbound network load in the bad prediction incredibly reaches 57,892 KB, which even
surpasses the average inbound network load 40,000 KB.

Since the models work well for the smooth data, as to how to build models based on
coarse data and make it work well for prediction would be the next challenge. Besides,
this model is not feasible for a continuous prediction, because the prediction of the last
20-minute network load in each hour is based on the model built with the first 40-minute
network load, and the first 40-minute network load is not predicted.



Fig. 5. Unsuccessful prediction
 

 

Fig. 6. Goodness of fit obtained from Model (5) and current models

 

4.5 Continuous predictive models

In this section, a predictive model is built by combining Model (5) and one instance of
the same model based on constant values (Model (5) - instance A). The weight con-
stants used in Model (5) - instance A are based on results of extensive simulations. The
prediction procedure is illustrated in Figure 7 and the combined model is explained as
follows:

Model (5): Ein(T ) = f(In(T − 1), In(T − 2), In(T − 3))
Model (5) instance A: Ein(T ) = 0.85×In(T−1)+0.1×In(T−2)+0.05×In(T−3)

Goodness of fit: Dr(T) = Ein(T−1)−In(T−1)
In(T−1)

Goodness of fit ratio threshold: Threshold: (i.e. 0.5, 0.3 and 0.1)

At first, a counter is set to 0. The counter is increased when the goodness of fit calculated
for the obtained prediction is within the given threshold. When the goodness of fit is
above given threshold than counter is reset to 0. Model (5) instance A is applied to
predict network load whenever the counter is smaller than 5. When counter is 5, Model
(5) can be built based on the previous 5 network load data and used to predict the next
network load. When the counter is greater than 5 already built Model (5) is applied.

As it can be seen from Figure 6, as threshold decreases, the combined model per-
forms better; and when the threshold is equal to 0.1, the goodness of fit generated by the
combined model is as small as that generated by purely using Model (5). One advan-
tage of the combined model is that it is very reactive to sudden and dramatic changes
in network traffic load. Also, it is easy to be built and implemented without requiring
much storage space.



Fig. 7. Algorithm for combining two approaches for the load predicton
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5 Discussion

We have described a predictive model that combines local signals, neighbouring sig-
nals and signals mined from background information. This paper has focussed on the
predictive model for local signals as its solution is more surprising than the other com-
ponents. A surprising conclusion of these experiments is that a subtle combination of a
linear regression based model and a highly reactive model applied to data aggregated at
two levels of granularity gives excellent performance. The use of Markov Chains and
other non-linear models is not warranted. This result is to an extent a consequence of
the simple goal of the local prediction task, that is just to predict whether the load is
(roughly) increasing, decreasing or constant. The conclusion is significant as this sim-
ple model is easier to built, and requires less computational resources than non-linear
methods. More importantly, by flipping between data granularity aggregations it is able
to react quickly to sudden and dramatic changes in network traffic load.

The results described in this paper are presently being trialled in simulation exper-
iments at the University of Technology, Sydney where distributed algorithms are being
developed for regulating the power consumption of LTE networks. The solution being
investigated is a multi-agent system in which an agent is located with each cluster of
LTE stations in the network. A key input to support the agent’s decision making is the
load predications provided by the system described here. Early in 2011 we will conduct
trials in the Alcatel-Lucent (Bell Labs) research laboratory located at Blackfriars on the
UTS campus.
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