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Abstract We propose a method for restoring the surface of
tooth crowns in a 3D model of a human denture, so that the
pose and anatomical features of the tooth will work well for
chewing. This is achieved by including information about
the position and anatomy of the other teeth in the mouth.
Our system contains two major parts: A statistical model of
a selection of tooth shapes and a reconstruction of missing
data.

We use a training set consisting of 3D scans of dental cast
models obtained with a laser scanner, and we have build a
model of the shape variability of the teeth, their neighbors,
and their antagonists, using the eigenstructure of the covari-
ance matrix, also known as Principle Component Analysis
(PCA). PCA is equivalent to fitting a multivariate Gaussian
distribution to the data and the principle directions consti-
tute a linear model for stochastic data and is used both for
a data reduction or equivalently noise elimination and for
data analysis. However for small sets of high dimensional
data, the log-likelihood estimator for the covariance matrix
is often far from convergence, and therefore reliable models
must be obtained by use of prior information. We propose a
natural and intrinsic regularization of the log-likelihood es-
timate based on differential geometrical properties of teeth
surfaces, and we show general conditions under which this
may be considered a Bayes prior.
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Finally we use Bayes method to propose the reconstruc-
tion of missing data, for e.g. finding the most probable shape
of a missing tooth based on the best match with our shape
model on the known data, and we superior improved recon-
structions of our full system.
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1 Tooth Reconstruction

In the dental industry, the design and construction of restora-
tions to be inserted in a patient’s mouth is carried out by
dental technicians, that are highly trained experts in tooth
anatomy and the function of the bite. The task can be to
model the missing part of a broken tooth crown, model the
crown of a whole missing tooth or even several missing
teeth. The restorations are traditionally constructed directly
from the materials by hand, but the use of software to model
the construction elements of a restoration has been grow-
ing rapidly the last couple of years [1–4]. Other than saving
money on the temporary building materials, the software so-
lution saves time, as some of the traditional production steps
can be skipped and proper customized 3D modeling tools
and automatic routines can speed up the construction work.
The existing dental software systems combines the software
with a scanning device to produce a 3D surface model of the
patients remaining teeth, on which the restoration is to be
designed. The modeled restoration can then be exported as a
3D surface model and milled or printed directly in the final
material.

One of the most challenging steps towards an automa-
tion of dental restoration modeling software is the anatom-
ical deformations of the tooth crowns to be reconstructed.

mailto:sporring@diku.dk


246 J Math Imaging Vis (2008) 31: 245–254

Fig. 1 Cast models scanned by
the 3Shape laser scanner,
aligned (a) and the lower
jaw (b), and a triangulated
surface mesh of a scanned cast
model (c). Notice on (c) that the
mesh has been decimated to a
much lower solution than the
usual quality

An anatomical correct deformation of a tooth crown surface
cannot be calculated exclusively from the size and location
of the surrounding surfaces of the scanned data. Some prior
knowledge must be added to the system, which describes the
shapes and legal deformations of the teeth. It is our goal to
develop a system that can learn and describe the complex
shape system of the bite, and with this knowledge recon-
struct the surfaces of missing tooth crown parts, whole teeth,
or several teeth from information extracted from scanned
data. The plaster casts have been scanned by a 3Shape laser
scanner, some of which are illustrated in Fig. 1. The work
reported in this article is an extension of [5].

In the following we will discuss shape variation of land-
marks on teeth using Bayes Principle Component Analysis
[4, 6–9], and we will suggest to estimate of the covariance
matrix as,

C = 1

m
XXT + αW, (1)

where X = [x1 | x2 | . . . | xm] is a matrix of m concatenated
vectors xi ∈ R

3n, XT is the transpose of X, and α controls
the amount of regularization. It was observed that the gen-
eralization error was reduced in terms of the leave-one-out
error, when matrix W had the following form,

W = � ⊗ 13×3, (2a)

�ab = 1

2
f (dab)(na · nb + 1), (2b)

where R ⊗ S = {Rij S} is the Kronecker product, 13×3 is a
3 × 3 matrix of ones, the function f is an exponentially de-
creasing function such that f (0) = 1, dab is the geodesic
distance between two points on the surface of a tooth pa

and pb , and na and nb are the corresponding outward nor-
mals. The estimate in (1) corresponds to a Bayes estimate
of the covariance matrix with a Gaussian Likelihood and an
inverted Wishart distribution as Prior,

P(C) = k exp
(
−m

2
tr(WC−1)

)
, (3)

for a suitable normalization constant k, arbitrary constant
matrix m > 0, and when W is positive definite. We will
prove that W is positive definite, when f (dab) is diagonally
dominant.

2 Shape Modeling

We operate with the notion of shape as that which is left,
when translation, rotation, and scaling is removed. To re-
construct the shape of an incomplete object, we need a
model description of the object shape and variability. The
classical approach is based on representing and modeling
shape as a set of landmarks (see [8, 10–13] and references
herein). On each training shape, a finite number of land-
marks are located on surface features that corresponds be-
tween the shapes. This representation is directly applicable
in the Active Shape Model (ASM). The biggest disadvan-
tage is the time-consuming manual labor needed. Alterna-
tive approaches, that carry a smooth surface implicitly in the
shape description, are the Level-set function representation
[14] and the Medial representation (M-rep) [15]. However,
both representations are problematic, since they cannot ro-
bustly handle non-closed shape surfaces such as scans of
plaster casts of teeth.

Shape Warping has also been studied in the literature: In
[16], each training shape landmark is warped to a template
shape, where a template shape mesh is projected onto the
shape before warping landmarks and mesh vertices back.
Based on this idea, [17] introduced a 3D morphable model
that use 3D meshes as training data rather than images. Each
mesh vertex achieves the same status as a landmark, and
the correspondence between the training meshes and the
template mesh is estimated from a sparse set of correspon-
dence points, manually marked by the user on each train-
ing mesh. This work was later extended to include Bayes
priors using a the exponential of the Mahalanobis distance
between landmarks [4]. In [3] the reconstructions were ad-
justed for neighboring teeth using local mathematical mor-
phology. The quality of the warping depends on both the
complexity of the surfaces and the unknown variation of
the samples. Further, when only extracting data from the
occlusal, frontal, and back sides of the teeth, a significant
amount of surface is left unknown. We are thus lead to the
idea of keeping the surface representation separated from the
data. Further, the reconstruction situations depends on the
amount of a tooth that must be reconstructed. If the areas of
reconstruction are somehow marked in the process, a better
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approach is to let the surface conform to the reconstructed
data, while respecting the borders between the reconstructed
parts and the original data. The task is to create a mesh that
can be guided through the landmarks, while keeping the sur-
face smooth and respecting the local and global constraints.
This coupling we implement using Variational Implicit Sur-
faces [18] interpolated between landmarks, and thus we ob-
tain a flexible method, that may be extended with additional
information about the anatomical features, and allow us to
focus on landmarks only.

A shape will be described as a collection of n points
pi ∈ R

3, and we represent a shape as the concatenation
of these points into a single 3n dimensional vector x =
[p1,p2, . . . ,pn]T . We assume that a population of m differ-
ent examples of a shape is given, and we analyze the shape
variability in this population up to the similarity group of
actions: translation, rotation, and scaling. Following [8] we
normalize each shapes by fist translating it to origo, scale it
each to unit size, and rotate it to a common reference shape,
e.g. x1. We will misuse notation and use x for the normal-
ized shape coordinates in the remainder of this article. We
now build a linear model of the population by calculating
the population mean x = 1

m

∑m
i=1 xi , produce a matrix of

concatenated differences of each shape to the common mean
as,

X = [x1 − x | x2 − x | . . . | xm − x]. (4)

Then we compute the covariance matrix as

C = 1

m
XXT , (5)

and its eigenvalues λi and eigenvectors φi ,

C� = ��, (6)

where � is the diagonal matrix of eigenvalues and the
columns of the matrix � contains the corresponding eigen-
vectors or modes. Thus any shape x from the training set can
be reproduced by a linear computation of the mean and the
principal components as

x = x + �b, (7)

where b is the vector of shape model parameters. The
strength of the model is that the eigenvectors correspond-
ing to the largest eigenvalues model the training set with an
error equal to the sum of the neglected eigenvalues.

Our training set for each tooth consist of 12 samples.
The landmarks were set by a non-expert with expert assis-
tance and are primarily anatomical, with the exception of
some pseudo-landmarks. 11 principal components were cal-
culated for each shape model. The relative small training
set size could potentially introduce problems regarding the

Fig. 2 The original 2D shape (left), the effect on the neighbors when
moving a point with CId as covariance matrix (middle) and with CId

augmented with a small value in the covariances of neighboring points
(right)

generality, if the dependence on the model statistics is not
relaxed in the reconstruction procedure. We will attempt to
add artificial eigenmodes to the models, to improve flexi-
bility without hazarding the object shape or overruling the
existing eigenmodes. The rationale is that landmarks on the
same side of a surface are expected to be correlated propor-
tional with their distance. Thus, if one landmark were to be
moved, then we expect that the neighboring landmarks will
be effected. We will refer to this as elasticity, which will be
described in the following.

The modes of variations were calculated from the covari-
ance matrix of the combined data samples. Consider the gen-
eral 3n × 3n covariance matrix with covariances Cij . If the
covariance matrix of the data sample matrix was replaced by
the identity covariance matrix CId = I3n, then all landmark
coordinates would be independent of each other. This means
that combinations of the resulting eigenmodes could move
the landmarks of a modeled shape in any direction. In that
sense, CId defines an under-constrained, lower limit to the
shape models. In [19] it has been shown how to add smooth-
ness constrained deformations to a shape model by increas-
ing the correlation between neighboring points in 2D shapes.
The idea is, that when adding a small value to neighboring
points in CId , a covariation between the points is artificially
created. Visually, moving a point in the shape will have an
elastic effect on the neighbors. The effect of moving a point
in a 2D shape with CId and CId augmented with a posi-
tive value, e.g. 0.5, in the covariances between neighboring
points, is illustrated in Fig. 2.

The actual smoothness used in [19] was, however, not
controlled in the relation to the model statistics, they were
implemented to substitute model statistics. We need to con-
trol the amount of smoothness so that its function is a de-
formation supplement. Furthermore, we need to re-think the
concept of neighbors in 3D, so that the elastic deformation
added makes sense and respect the object shape.

In order to relax the tooth shape models we add a small
value to all the neighbor-landmark covariances in the covari-
ance matrix. Defining ‘neighborhood’ is a little more diffi-
cult in 3D, though. Neighborhood should be defined more
in terms of distance than a number of closest neighbors,
and should furthermore be measured over the surface and
not necessarily as the shortest distance between two land-
marks. As the solid objects teeth are, the smaller artifacts
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on one side of a given tooth type doesn’t have any effect on
the smaller surface variations on the other side, disregard-
ing the distance from landmarks on one side to landmarks
on the other. In fact, when teeth have more unusual arti-
fact’s on the surface and is thus a difficult subject for an
over-constrained shape model, it is usually due to abnormal
chewing or smaller damages, both of which only have a lo-
cal effect. The neighborhood of a landmark p could be mea-
sured as the landmarks within some fixed distance from p.
This, however, leaves us with the problem of deciding such a
distance. Furthermore, it could introduce some problems re-
garding the scale of the individual tooth samples—we must
choose a method that determines a well defined neighbor-
hood of all shape samples in a model. Therefore, along
with each shape sample we calculate a matrix of landmark
pair geodesic surface distances. These distances are then
‘aligned’ along with the shape samples, by scaling them ac-
cording to the corresponding sample. This way we achieve a
mean distance for each landmark pair, a value which should
support in an expression of the effect of the position of one
landmark, on others. Furthermore, we want to restrict the ef-
fect of a landmark on one side of a tooth ‘cusp’ feature on
landmarks on the other side, referring to the above philoso-
phy and thus gaining an elasticity with an even more local
effect. As illustrated on Fig. 3 this can be done by calculating
a mean surface normal in each landmark and adding to our
expression a weight of the angular difference between each
landmark pair. In effect, the smaller the geodesic distance,
and the smaller the angular difference between two land-
marks, the bigger a value we should add to the covariance
matrix and the bigger effect will the landmarks thus have on
each others positions in the later reconstruction. To restrict
the expression even more, so only landmarks close to each
other, i.e. in the ‘local’ neighborhood, should have increased
covariance, we apply an exponential weighting of the dis-
tances and angular differences rather than linear, and find
an appropriate locality parameter experimentally. Let dab be
the mean surface-geodesic distance between landmark pa

and pb over the training data. Then, a general way of calcu-
lating how much they should affect each other is to calculate
this as a weight 0 < �ab < 1, where it is our experience that
the following function is useful,

�ab = 1

2
f (dab) (na · nb + 1) , (8a)

f (dab) = 31− β dab
dmax − 1 (8b)

and where na are the normal at point pa as shown in Fig. 3,
dmax is the maximum surface-geodesic distance between
points on a shape over the training set, and β is a locality
parameter, controlling the increasing of the weight for de-
creasing distance between the landmarks. For a given pair of

Fig. 3 (Color online) Three
points on a tooth (green)
together with their surface
normal (red), and angle
difference to the rightmost
normal. The neighbors to the
rightmost landmark is a
weighted sum of the
surface-geodesic distance and
the angle differences

Table 1 Leave-one-out experiments without and with elasticity of
v = 0.2 and locality β = 2

Shape model Mean residual error Mean residual error

with elasticity

Upper 1st molar 0.011 0.010

Upper 2nd premolar 0.018 0.016

Upper 1st premolar 0.016 0.015

Upper canine 0.024 0.022

Lower 1st molar 0.012 0.011

hypothetical landmarks pa and pb , where a �= b, we mod-
ify the 9 corresponding entries of the covariance matrix,
Celastic = {Celastic

ij }, as follows

Celastic
ij = Cij + Wijα, (9)

where we have found it useful to let α = vm
n

be controlled
by the new parameter v. The elasticity influences the least
significant eigenmodes the most, and should be kept suffi-
ciently small in order not to destroy the statistical properties
of the training data.

The parameters will experimentally be found by per-
forming the leave-one-out experiments on the corresponding
shape models based on PCA of Celastic. The goal is thus to
find a set of parameters that decreases the residual error for
all models in the experiment. Table 1 demonstrates the gen-
erally better results. With higher values of v than v = 0.2,
the most significant eigenvectors slowly started changing di-
rection, until the corresponding eigenmode changed signifi-
cance at around v = 0.9, and therefore we accept v = 0.2 as
the maximum. The amount of non-zero eigenmodes created
from Celastic are typically as many as kn, but a big amount of
the least significant eigenmodes can be removed while still
keeping the model more general than in the pure statistical
model. The locality parameter β has given the best results
for values between 2 and 3.

3 Bayes Estimation of the Covariance Matrix

In the following we will show that (9) is a Bayes estimate
for the covariance matrix, where Wijα is the prior on the co-
variance matrix, when Wab is diagonally dominant. We use



J Math Imaging Vis (2008) 31: 245–254 249

the matrix differential calculus according to [20], and for
expository reasons we will first give a derivation of the clas-
sical log-likelihood estimates of the covariance matrix for
random data, and this material will be used as a reference
point for deriving expressions for a Bayes estimate. Deriva-
tion of the log-likelihood estimate for the mean is similar.
Following this derivation we will show that the prior must
be of Inverse Wishart type, and we will prove the conditions
on Wab for this to be a distribution.

Consider an 3n dimensional Euclidean space and m

sample points in this space, xm ∈ R
3n. We will assume

that the sample points are identically, independently, and
normally distributed in R

3n according to, P(xm | x,C) =
(2π)(

3n
2 ) det C( 1

2 ) exp(− 1
2 (xm − x)T C−1(xm − x)), for un-

known covariance matrix C ∈ R
3n×3n and mean x ∈ R

3n.
Hence, the joint distribution is given as,

P(x1, . . . ,xm | x,C)

= (
(2π)(

3n
2 ) det C( 1

2 )
)−m

× exp

(
−1

2

m∑
m=1

(xm − x)T C−1(xm − x)

)
. (10)

To estimate C from a set of samples, we seek the maxi-
mum point of P(x1, . . . ,xm | x,C), and since the logarithm
function is strictly monotonic, this point coincide with the
maximum point of logP(x1, . . . ,xm | x,C). For practical
reasons we also rewrite the sum under the exponential func-
tion as,

∑m
m=1(xm − x)T C−1(xm − x) = tr(C−1XXT ), and

rewrite the logarithm of the Gaussian distribution as,

L(x1, . . . ,xm | x,C) = logP(x1, . . . ,xm | x,C) (11a)

= −3nm

2
log(2π) − m

2
log det C

− 1

2
tr(C−1XXT ). (11b)

This is the same as minus the optimal code length [21] of the
total set of data points from our assumed Gaussian source,
and where C and x is fixed and known to both the sender
and receiver.

The differential dL of L varying only C is found to be,

dLc = − tr

(
m

2
C−1dC + 1

2
(dC−1)XXT

)
. (12)

To identify the partial derivatives of dL we isolate dC using,
dC−1 = −C−1 (dC)C−1, and we find that

0 = dLC (13a)

= − tr

(
m

2
C−1dC − 1

2
C−1 (dC)C−1XXT

)
(13b)

= −1

2
tr(C−1(dC)(mI − C−1XXT )). (13c)

A non-trivial solution is 0 = mI − C−1XXT or equivalently,

C = 1
m

XXT , (14)

which may be recognized as the log-likelihood estimate of
the covariance matrix [22, Theorem 3.2.1].

Applying Bayes theorem on Mean vectors and Covari-
ance matrices we find that

P(x,C | x1, . . . ,xm) = P(x1, . . . ,xm | x,C)P (x,C)

P (x1, . . . ,xm)
, (15)

where we denote P(x,C | x1, . . . ,xm) the posterior,
P(x1, . . . ,xm | x,C) the likelihood, P(x,C) the prior, and
P(x1, . . . ,xm) the evidence. The point of Maximum Poste-
rior, also known as Maximum A Posteriori (MAP), is found
as the maximum as the point of zero partial derivatives by
the differential of the log-Posterior w.r.t. x and C,

d logP(x,C | x1, . . . ,xm)

= d logP(x1, . . . ,xm | x,C) + d logP(x,C)

− d logP(x1, . . . ,xm) (16a)

= d logP(x1, . . . ,xm | x,C) + d logP(x,C). (16b)

Again this has an information theoretical equivalent as the
differential of minus the two-parts Minimum Description
Length (MDL) [23]. We will impose independence on our
prior, such that P(x,C) = P(x)P (C), in which case for
fixed x we have that

d logP(x,C) = d logP(C). (17)

Returning to the regularization term defined in (8) and
(9), we will now interpret the addition of the standard log-
likelihood estimate (14) of the covariance matrix by a con-
stant matrix W,

C = 1

m
XXT + αW, (18)

as Bayes estimate of the covariance matrix, where W is the
essential part of a prior. The parameter α > 0 controls the
amount of regularization, but has no impact on the interpre-
tation of (18) as a Bayes estimate, and henceforth we will
assume that α = 1.

Targeting a Gaussian likelihood we pre multiply (18)
with 1

2mC−1(dC)C−1, rearranging terms, and taking the
trace, which gives

0 = −1

2
tr(mC−1dC − C−1(dC)C−1XXT

− mC−1(dC)C−1W) (19a)

= −1

2
tr(mC−1dC − C−1XXT C−1dC

− mC−1(dC)C−1W). (19b)
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Comparing with (12) we realize that the first two terms may
be attributed the Gaussian likelihood, and we thus choose to
attribute the last term to the prior. This yet unknown prior
must have the differential,

d logP(C) = −1

2
tr(−mC−1(dC)C−1W) (20a)

= −1

2
tr(−mWC−1(dC)C−1) (20b)

= −1

2
tr(mWdC−1). (20c)

Thus, the prior must be a linear function in C−1, and we
conclude that

P(C) = exp

(
−1

2
tr(mWC−1 + B)

)
(21a)

= k exp

(
−m

2
tr(WC−1)

)
, (21b)

for a suitable, constant matrix B normalizing the integral
of P(C) by k = exp(− 1

2 tr(B)). When W is positive semi-
definite, this is identified to be an inverted Wishart distri-
bution [22, Chap. 7.7]. A Wishart distribution W(�,n), is
the distribution of matrices XT X, where the p columns of X
are random n-dimensional vectors identically but indepen-
dently drawn from a normal distribution with mean value x

and covariance �, N(x,�). If C is distributed as W(�,n),
then C−1 is distributed as (21), where W = �−1.

Our matrix W defined in (2) has non-negative eigen-
values and therefore is positive semi-definite, when f (dab)

is diagonally dominant. This is proven by the following 3
steps:

1. If � has non-negative eigenvalues then so does W: Given
two matrices R and S with eigenvalues λi and μj , their
Kronecker product R ⊗ S have eigenvalues λiμj [20,
Theorem 2.1]. Since 13×3 has eigenvalues μ1 = 3,μ2 =
μ3 = 0, then W = � ⊗ 13×3 has non-negative eigenval-
ues, when � has non-negative eigenvalues.

2. The matrix � has positive eigenvalues when it is di-
agonally dominant: Since � has positive diagonal, and
according to Gershgorin’s theorem [24, as presented in
[25]] all diagonally dominant matrices with positive di-
agonals have positive eigenvalues.

3. The matrix � is diagonally dominant, when f (dab) is
diagonally dominant, i.e. for all a = 1 . . . n

|f (daa)| ≥
m∑

a=1, a �=b

|f (dab)| : (22)

Using the Hadamard product, R � S = {RabSab}, and
Fab = f (dab), we may rewrite (2) as,

� = 1

2
F � (NT N + 1n×n), (23)

where N = [n1 | n2 | . . . | nn]. The matrix F has a pos-
itive diagonal, since f (dii) = 1. Further, assuming that
F is diagonally dominant, we find that F � NT N is di-
agonally dominant, since the element of |ni · nj | ≤ 1
and 1 along the diagonal. The sum, F � (NT N + 1n×n),
has 2 along the diagonal, and its off diagonal is at most
f (dij )(|ni · nj | + 1), hence the sum is also diagonally
dominant, and hence � is diagonally dominant.

We conclude, that � is positive-definite, when F is diago-
nally dominant, in which case W is positive semi-definite.

4 Reconstruction with Elasticity

For the practical construction of a missing tooth, e.g. when a
dentist needs to design a crown, we need to align the patients
teeth with our statistical model for the non-missing teeth.
This is a missing data problem, which we solve again using
Bayes estimation.

Let y be an incomplete shape vector with l < n points,
and x be the corresponding full shape. Then, we wish to
find a linear transformation L : R

n �→ R
l such that

y = Lx. (24)

This system is an overdetermined system of equations. Since
we cannot expect to find a linear combination of the training
samples that solves (24) exactly. Instead the values of x can
be found by minimizing an energy functional,

E(x) = ‖Lx − y‖2, (25)

which may be solved using the linear least squares method.
Assume now that y has been subtracted with the (dimen-
sion reduced) mean x, so that a model approximation can be
calculated as x = �b. Inserting this into (25) we get

E(b) = ‖L(�b) − y‖2. (26)

However, a fundamental problem with least square fitting of
a model to data is that of over-fitting. Hence, we formulate
the problem in the Bayes setting: Given an incomplete shape
vector y, the reconstruction problem consist of finding the
optimal model coefficients b for y. In terms of probability:

P(b | y) = P(y | b)P (b)

P (y)
∝ P(y | b)P (b). (27)

This states that the optimal coefficients b will be the ones
with maximum probability, conditioned to y. Both the prior
probability P(b) and the likelihood P(y | b) can be derived
from the shape model definition. We use a normally distrib-
uted on b with a zero mean and covariance matrix equal to
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the identity, b ∼ N(0, I), the probability density can then be
written as:

P(b) = (2π)−dim(b)/2 exp

(
−‖b‖2

2

)
, (28)

where dim(b) is the dimensionality of vector b, and the
probability density of the likelihood

P(y | b) = (2πσ 2)−l/2 exp

(
−‖(L(�b) − y‖2

2σ 2

)
. (29)

Using an eigenvalue decomposition L� = U�VT , where
� is a diagonal matrix, the point of maximum posterior is
found to be [26]

x = x + �V�(�2 + σ 2I)−1UT (y − Lx) (30)

where I is the identity matrix of appropriate dimensions. The
reconstruction error for various missing landmarks is shown
in Table 2. The reduced elastic model results in a signifi-
cantly better reconstruction, compared to the normal covari-
ance reconstruction.

The reconstruction with the elastic models showed that
some kind of regularization is necessary, due to the in-
creased number of eigenmodes and the effect of the neigh-
borhood relations on the reconstruction. As the complexity
of the reconstruction problem increases, the resulting shape
quickly becomes very distorted. This brought us to a gen-
eral regularizing expression, where the number of least sig-
nificant elastic eigenmodes to be removed increases with the

Table 2 Mean reconstruction error of molar training sample for the
normal model and the elastic model that includes regularized elasticity

Removed landmarks Normal model Elastic model

out of 44 total Errec Errec

1 0.0016 0.00075

5 0.022 0.0068

12 0.049 0.017

36 0.66 0.66

36 distr 0.20 0.12

number of landmarks to be reconstructed vs. the indata. Our
experiments showed that only a small number of artificial
eigenmodes should be used for optimal reconstruction, as
illustrated in Fig. 4, and in complicated cases up to 90%
are removed for the best result. With this approach we are
now able to reconstruct hitherto unseen teeth structure such
as shown in Figs. 5 and 6. Figure 6 illustrates the idea of
adding more teeth to the shape model, and thus taking ad-
vantage of the bite information; For reconstruction a tooth,
we can add landmarks from e.g. its antagonist, neighboring
teeth and (in this case) opposite tooth, gaining a reconstruc-
tion that conforms better to the surroundings.

5 Bite Constrained Reconstruction

One of the limitations of a point-based shape model is the
undefined limit of shape variation in each eigenmode. We
assume limits of three standard deviations of the mean, as-
suming a Gaussian data distribution. In PCA, when fitting
the data to an affine subspace, we cannot guarantee the dis-
placement vectors in some eigenmode not to overlap. The
approximated limits on the modes of variation makes it
a common problem that the point-based models produces
shapes with illegal border-overlaps. This is a problem of
particular importance when modeling multiple tooth shapes
with one model, since the surfaces of neighboring and an-
tagonist teeth in a natural bite are not only close, they also
share one or more contact points, and thus inter-model bor-
der overlapping is very likely.

In the reconstruction, we wish to maximize the posterior
probability of the model parameters b given the incomplete
shape vector y, by minimizing ||(L�)b−y||2. Let py be the
landmark in y that was just given a new position away from
the collision, and let pm be the corresponding landmark in
the model to approximate py . Let n be a normal vector in
the direction of the penetration. Then, by minimizing the
distance between the landmarks as

||nT pm − nT py ||2 (31)

the distance between the landmarks is only measured in the
direction of n. This expression increases the possibility of

Fig. 4 (Color online) Reconstruction molar training sample with elastic model, and different amount of elastic eigenmodes removed. Three sets
of landmarks are shown: original (green), the reconstructed (blue), and the ground truth (yellow). The number of eigenmodes removed are: (a) 0%,
(b) 50%, (c) 60%, and (d) 80%
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Fig. 5 (Color online) Reconstruction molar from elastic shape model. (a) Original tooth with surface part to be reconstructed. (b) Landmarks to
reconstruct from. (c) Reconstructed landmarks (blue). (d) Reconstruction with surface mesh

Fig. 6 (Color online) Reconstruction of part of the lower left molar (46) from the elastic model containing lower 1st molar (36) and (46), (36)
supplying main cusp feature landmarks as illustrated. (b) shows the original “Ground Truth”; (a) and (c) the part removed including the landmarks
used for reconstruction; (d) the guessed surface points; and (e) the reconstructed surface

Fig. 7 (Color online) Reconstruction of upper right molar (26) from the elastic model containing the upper right premolar (25), molar (26) and
lower right molar (36), handling collisions between antagonists (26) and (36). Iterations in the collision response algorithm. (a) Overview. (b)–(d)
iterative reduction in collisions
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estimating a pm in a non-collision position, by relaxing the
movement of pm in the plane through py with the normal
n, thus motivating the most probably pm close to this plane.
We will also refer to this as a plane constraint. To respond
to collisions, we apply an iterative algorithm, where we in
each step, seek the landmark of deepest penetration. This
landmark is then pushed out along the surface normal and
apply the plane constraint, i.e. require, that this landmark
no longer can move in the normal direction. Steps from this
algorithm is illustrated in Fig. 7.

6 Conclusion

We have presented a system for reconstructing teeth based
on an extension of the Principal Component Analysis on
shape models containing selected teeth in the human bite.
Our extensions include both an elasticity term for the co-
variance matrix and collision avoidance for antagonist teeth,
and we have given conditions under which the elasticity is
a Bayes estimate. The conclusion is, that the reconstruction
generalize well in terms of missing data, collisions are min-
imized for improved biting, and preliminary clinical evalu-
ation indicate that the resulting models visualized by varia-
tional implicit surfaces are more natural looking than stan-
dard reconstructions.

One difficulty in point-based shape model is implement-
ing hard constraints such as collisions with antagonist teeth.
We have extended our system with a simple collision detec-
tion mechanism, where we respond to collisions by apply-
ing an iterative algorithm, that seek the landmark of deepest
penetration. This may be considered a projection method,
and future work includes finding better ways to incorporate
of hard constraints in the Principle Component Analysis re-
construction.
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