
Int. J. Sensor Networks, Vol. 7, No. 3, 2010 127

Copyright © 2010 Inderscience Enterprises Ltd.

Quality-aware sensor data collection

Qi Han* and Doug Hakkarinen
Department of Mathematical and Computer Sciences,
Colorado School of Mines,
1500 Illinois Street,
Golden, CO 80401, USA
Email: qhan@mines.edu
Email: dhakkari@mines.edu
*Corresponding author

Pruet Boonma
Department of Computer Engineering,
Faculty of Engineering,
Chiang Mai University,
Chiang Mai 50200,
Thailand
Email: pruet@eng.cmu.ac.th

Junichi Suzuki
Department of Computer Science,
University of Massachusetts,
Boston, USA
Email: jxs@cs.umb.edu

Abstract: Many sensor applications often require collecting raw sensed values from many sensor
nodes to one centralised server. Sensor data collection typically comes with various quality
requirements, e.g. the level of precision requested for temperature values, the time constraints for
getting the data, or the percentage of data that is needed. This paper presents a quality-aware
sensing framework where characterisations of sensor applications’ quality needs are identified
and different sensor data collection problems are classified. Two problems and their solutions are
then presented as examples to demonstrate how single (or multiple) quality need(s) are satisfied.
The paper concludes with suggestions for future research directions that have the potential to
complete the framework and provide a holistic approach to sensor applications with diverse
quality requirements.

Keywords: wireless sensor networks; sensor data collection; quality of service; quality of data.

Reference to this paper should be made as follows: Han, Q., Hakkarinen, D., Boonma, P. and
Suzuki, J. (2010) ‘Quality-aware sensor data collection’, Int. J. Sensor Networks, Vol. 7, No. 3,
pp.127–140.

Biographical notes: Qi Han is an Assistant Professor at the Department of Mathematical
and Computer Sciences at the Colorado School of Mines. She completed her PhD degree from
University of California, Irvine, in 2005. Her research interests include network-aware data
management, wireless sensor networks, pervasive and mobile computing.

Doug Hakkarinen is a PhD Student at the Colorado School of Mines focusing on Wireless Sensor
Networks (WSNs) in environmental remediation. He is currently working within the SmartGeo
interdisciplinary programme to develop strategies for improving bioremediation of Uranium from
subsurface contaminant plumes through the integration of WSNs. Other areas of research include
fault tolerance in high performance computing and broadening participation in computing.

Pruet Boonma received a PhD in Computer Science from University of Massachusetts, Boston, in
2009. Currently he holds a faculty position in Department of Computer Engineering, Chiang Mai
University, Thailand. His research interests include adaptive distributed systems and biologically-
inspired wireless sensor networks. He received his BE in Computer Engineering from Chiangmai
University, Thailand, and MIT in Computer Science from Monash University, Australia. In 2001,
he received Australian Government Scholarship (AusAID) for his master programme in Australia.
In 2005, he received Thai Government Scholarship for his PhD work in the USA.

128 Q. Han et al.

Junichi Suzuki is an Assistant Professor at the Department of Computer Science at the University
of Massachusetts, Boston. He is interested in fundamental research and empirical analysis in
distributed network computing, in particular the research issues that cross the boundaries among
distributed computing, software engineering and artificial intelligence.

1 Introduction

Our experience collaborating with experts from several
disciplines such as environmental science and engineering
(Porta et al., 2009), hydrology and mining has indicated that
many applications are interested in raw data from sensor
nodes, instead of aggregated data. This motivates us to focus
on a common service that can be applied to many sensor
applications: raw sensor data collection from all nodes to
one centralised server. Our discussion with domain experts
has also revealed that sensor applications may have different
Quality of Service (QoS, e.g. timeliness and reliability) and
Quality of Data (QoD, e.g. data accuracy) requirements for
sensor data collection. As an illustrative example, consider a
network of sensors monitoring ground movement to detect
presence/arrival of enemy forces in a given region in a
command and control application. Timeliness and reliability
of sensing (in the presence of failures) might be of essence
here if the countering manoeuvre requires immediate detection.
Such timeliness and reliability requirements, however, come
at certain costs, namely additional communication overheads,
energy costs, etc. Furthermore, different applications over
a given sensor infrastructure may have differing quality
requirements. For instance, an online monitoring and actuation
application might have real-time requirements, an analysis
application over the same sensor system might only require
that data be collected in a repository (eventually) at a
given level of accuracy or spatial and temporal frequency.
Such differing application requirements may pose competing
requirements on the underlying sensor data collection,
coordination and storage mechanisms. For instance, from the
perspective of the archival application, it might be both
feasible and desirable that the data be collected, temporarily
stored, compressed and then transmitted to the repository.
A real-time monitoring/actuation application, however, may
demand low latency. The differing requirements of the
applications conflict with each other.

Lots of current research has primarily considered
functional aspects of distributed sensor systems focusing on
techniques to sense, capture, communicate and compute
over sensor networks. To support different non-functional
(i.e. quality) needs of sensor data collection, most schemes
are implemented at different layers such as MAC layer,
routing layer or data management layer. In fact, these non-
functional needs are cross cutting issues that are better
addressed by using cross-layer approaches. Further, very
few have considered the tradeoff between multiple quality
needs, which can be quite common as seen in previous
examples.

We have made the following contributions in this paper.

• We have characterised the quality requirements for
wireless sensor applications in a systematic way, which
has not appeared in the existing literature.

• We are among the first to point out the multidimensional
quality requirements for sensor applications. We have
further identified two complementary types of sensor
applications in terms of the tradeoff between quality and
cost.

• We have summarised various ways to specify different
quality requirements.

• We have designed and evaluated an algorithm to support
applications’ data accuracy needs. Our approach
demonstrates how to merge both push and pull strategies
to provide improvements in energy efficiency by adapting
to data change frequency and application request
frequency. Further, our approach is capable of providing
insight into the validity of application data models in an
online fashion.

• We have developed a biologically-inspired mobile agents
approach to exploit the tradeoff between reliability,
timeliness and energy consumption in sensor data
collection. Our approach demonstrates how a joint
consideration of multiple quality needs can be satisfied.

In this paper, we first present a systematic way to characterise
the quality requirements from wireless sensor applications in
Section 2. We then present two studies to showcase how an
application’s single quality need or multiple quality needs can
be satisfied using different techniques. The first case study
uses a simple technique to demonstrate how exploiting an
application’s data accuracy tolerance can help conserve
energy consumption (Section 3), and the second case study
uses mobile agents for joint satisfaction of timeliness and
reliability requirements from sensor applications (Section 4).
We hope to use this paper as a conduit to inspire more
interesting work in this area. We conclude the paper in
Section 5 with a list of suggested areas to ensure a holistic
approach to quality-aware sensing.

2 Characterisation of sensor applications’
requirements

The first step towards the goal of supporting sensor applications
with different quality needs is to fully understand the diverse needs
of monitoring, archiving and forecasting sensor applications.

 Quality-aware sensor data collection 129

This requires a careful analysis of a wide range of performance
requirements, which define the extent to which performance
specifications such as timeliness, reliability and accuracy
may be violated. We explore applications’ quality requirements
from several dimensions as illustrated in Figure 1.

• QoS-timeliness may be specified in the format of
periodicity, deadline, or a certain relative order of different
tasks. For instance, in the subsurface contaminant tracking
scenario, conductivity readings will only be collected
after the temperature readings suggest the existence
of a potential plume. Current sensor systems support a
basic form of time constraints-data collection frequency as
in TAG (Madden et al., 2003) and Cougar (Demers et al.,
2003). It is worthwhile to investigate other timing notions
used in temporal, real-time databases (Tansel et al., 1994;
Ozsoyoglu and Snodgrass, 1995; Ramamritham, 1996)
and active databases (Chakravarthy et al., 1994; Sistla and
Wolfson, 1995), and then develop a variety of timing
semantics appropriate for distributed sensor environments.

• QoS-reliability is most commonly defined as the percentage
of nodes participating in the collection among all the
nodes in the sensor network (Sankarasubramaniam et al.,
2003; Han et al., 2005), or as a set of nodes that cover
the entire sensor network (Park et al., 2004). In addition
to supporting these reliability specifications, we have
developed more informative reliability metrics with well-
defined semantics. For instance, the recall metric used in
information retrieval may be used to indicate the desired
completeness of the answer set, if the application is
gathering all the readings that meet certain conditions
(Lazaridis et al., 2006); reliability can also be specified as
tolerable thresholds on ‘false-alarm’ or ‘missed-event’
probabilities (i.e. bounds on detection or estimation
accuracy) (Hwang et al., 2005).

• QoD (Quality of Data) desired from the sensing
substrate may be imposed on individual sensor values,
or on an answer computed over readings from a set of
sensor reports. QoD requirements may be specified as
desired data freshness, absolute or relative accuracy
bounds. For instance, an application may be satisfied
with a report that is off the true value by ±5 (Han et al.,
2004) (i.e. absolute accuracy) or by 10% (Sharaf et al.,
2004) (i.e. relative accuracy).

• Cost is simply defined as energy consumption since
energy is the most stringent resource constraint in
sensor networks.

For the multidimensional requirements (QoS, QoD, Cost)
from both the application and the system, a sensor
application may have requirements for one of them, or a
combination of them with different preferences towards
different constraints. These preferences will be used to
guide future monitoring, sensing and collection plans. In

practice, it may be very difficult (if not impossible) to
satisfy all the specified requirements simultaneously, to
reach the multi-constraint optimal point in reality given the
dynamic network conditions and severe resource constraints
in the sensor network. Therefore, we allow applications to
specify their preference towards different constraints.

Figure 1 Multidimensional quality requirements from sensor
applications

Cost (Energy Consumption)

QoS−timeliness

QoS−reliability

QoD (Quality of Data)

Wireless sensor networks (WSNs) have typically been built
with a high degree of dependency between applications and the
underlying communication protocols. Such dependency is
justified as necessary to achieve energy efficiency. However, it
generates rigid systems with sensor networks specifically
designed to suit a particular application. While providing a
platform that accommodates all types of sensor applications is
very difficult, we intend to build a middleware architecture that
can support a representative class of sensor applications – those
with multiple performance requirements. We observe that there
exists a fundamental tradeoff between the overhead introduced
in supporting the application and the QoS/QoD achieved. We
refer to this characteristic as the QoS-QoD-Cost tradeoff. If we
consider Cost as one dimension and composite performance as
another dimension, the application fixes the position of one
dimension, and the system is expected to maximise the position
along the other dimension. Therefore, we will support two
complementary types of sensor applications:

• maximise the QoS/QoD without exceeding the energy
budget (Figure 2a): This applies when the lifetime of a
sensor network is known and the application would like
to get as high-quality data as possible. For instance, in
the immediate aftermath of a toxic chemical leakage,
timely and accurate communication of collected data is
much more important than energy efficiency, hence the
application would like to maximise QoS-timeliness and
QoD subject to the constraint of remaining energy.

With the finite remaining energy level on each sensor
node, we are faced with a joint optimisation problem when
the objective of an application is to maximise more than
one metric (i.e. two or three among reliability, timeliness,
accuracy). Existing work has addressed limited subsets
of the problem space. Using decoupled strategies that
optimise each performance goal in separate phases can

130 Q. Han et al.

unfortunately lead to very expensive data collection plans,
since these performance goals are often interdependent.
The decision on achieving one objective affects the
decision on achieving the other. For instance, improving
reliability might entail retransmission of packets, which
may lead to increased latency.

One strategy is to design a new composite evaluation
metric. Most of the existing work focuses on one single
performance metric, such as data freshness (i.e. the
time elapsed from data generation time to the data
collection time) (Lu et al., 2005), data fidelity (i.e. ratio
of nodes participating in the collection to all the nodes
in the area) (Lu et al., 2005), data accuracy measured as
how much the obtained data deviates from the real
value (Han et al., 2004), or as combined spatial and
time distortion (Cristescu and Vetterli, 2005). We
believe it is a better approach if we take into account
pre-specified application preferences towards different
performance goals and define a composite system
performance metric to facilitate the identification of an
‘optimal’ point that would maximise the multiple QoS
or QoD requirements. Alternatively, we can investigate
the tradeoff between these performance goals and

develop a collection plan that optimises all the goals.
More specifically, we might be able to derive
theoretical upper bounds on QoS-timeliness, QoS-
reliability and QoD, given the energy constraint. We can
further design online algorithms that attempt to either
maximise the composite performance metric as
described above, or jointly optimise multiple goals
simultaneously.

• minimise energy consumption while achieving a
minimum acceptable level of QoS/QoD (Figure 2b): This

applies when a sensor network needs to consume as little
energy as possible in order to last longer while ensuring
the satisfaction of application needs. For instance, careful
energy management of sensor nodes is critical to monitor
remnant or new plumes in the days and weeks after the
plume disaster; hence, the application would like to
minimise energy consumption as long as QoD reaches a
certain level.

The multiple constraints can be any combination of
requirements for QoS-timeliness, QoS-reliability and QoD.
To illustrate the complexity involved in meeting multiple
constraints, let us consider an example. An application
might want to minimise energy consumption while ensuring
the minimum data accuracy and maximum tolerable latency.
Since the granularity at which the sensor data is maintained
at the server directly affects the amount of communication,
and a sensor consumes energy even when it is idling, the
total energy consumption is a function of data granularity
and sensor idling time at different power saving states.
Therefore, this is a multi-variable optimisation problem
subject to multiple constraints. An arbitrary combination of
algorithms for satisfying timeliness requirements and those
for meeting data accuracy needs will result in undesirable
system performance, since these constraints are not
orthogonal and varying one will typically affect the others.
Hence, it is crucial to understand the interplay between
different application needs.

This paper will focus on the second case by presenting
two case studies: the first one exploits the applications’ data
accuracy tolerance to conserve energy consumption, and the
second one explores how to address composite reliability
and timeliness needs from applications.

Figure 2 QoS-QoD-Cost tradeoffs in sensor applications

Cost

composite
performance

Cost

composite
performance

(a) maximise performance with bounded cost (b) minimise cost with bounded performance

 Quality-aware sensor data collection 131

3 Case study One: supporting single quality need

In this section, we use data accuracy tolerance of sensor
applications as an example to demonstrate how a single
quality constraint can be met while minimising energy
consumption. WSNs have been used to support a variety of
applications including those that can use approximate rather
than exact sensor values, as long as the values are within a
tolerable range of the true values. Due to the limitation of
sensing technologies or the possibility of miscalibrated
sensors, it is justified to use approximate values. Furthermore,
as sensors do not query every point in the environment,
their samples are already at some level of approximation
(Deshpande et al., 2005). The use of approximate data allows
flexibility on when to send data, creating an opportunity to
decrease the amount of energy used by motes.

Another need in WSNs is to be able to validate data
models. A framework that enables checking whether a
model is accurate would greatly help in selecting and
calibrating a model. One application that has these needs is
the tracking of contaminant plumes in underground water
flows. Researchers in the field have noted that precise value
readings are not specifically required and that data within
a bounded error percentage is useful for modelling the
contaminant flows. For example, a 3% error percentage
would mean that if a specific reading were at 100, any value
between 97 and 103 would be accurate enough. WSNs can
potentially aid the development of contaminant flow models
by verifying and developing models as well as tracking the
contaminant flow.

The above issues will be addressed through a system that
transmits data in both a push and pull fashion. The objective
is to minimise the amount of energy needed by pushing data
from the mote to the base station (i.e. a sensor-driven update)
when more efficient, or to pull data from the mote by query
otherwise (i.e. a query-driven update). Furthermore, our
approach will significantly help application domain experts;
the effectiveness of the data model can now be evaluated in
an online fashion, since a poor model would often mispredict
and result in frequent sensor-driven updates.

Most of the existing work uses either a push or pull
method exclusively for data gathering. In the event-driven
techniques, determining the frequency of updates based upon
the current value and known value at the base station has
been used (Han et al., 2007). In the query-driven techniques,
reductions in energy can be achieved by aggregation of data
in queries to reduce data sent back (Deligiannakis et al.,
2004) or statistically modelling the data at the base station
to reduce queries (Deshpande et al., 2005). In contrast, this
work dynamically switches between push and pull techniques
based on system conditions (Hakkarinen and Han, 2008).

3.1 Problem formulation
A particular mote may have multiple sensors that an
application needs, so systems should be able to handle multiple
types of sensor data. In specific, an application’s data acquisition
requests may be converted to many individual requests for
specific sensors on a mote. The application may allow for a
percentage of error on any value returned. Therefore, an

application request contains an error percentage δ that is tied
to the sensor attribute sought. As the base station will hold
values that are sent by the motes, it must be decided the
length of time that the value is valid. The concept of validity,
or lifetime, takes care of this. If a sensor value is sent to the
base station with a validity τ, then the base station can return
that result with some confidence ε when the application
requests it. Note that the base station will return only the
result, which will implicitly have confidence greater than ε.
Some sensors, such as a contaminant sensor, may vary by a
small amount between two periodic samplings of the sensor,
whereas others may of only be interest when a dramatic
shift occurs, such as the flow. Thus, the needed percentage
differs depending on the type of sensor for a given sampling
schedule. Overall, this means an application request will
consist of a tuple of four fields: request = <mote ID, sensor
ID, error percentage δ, validity confidence ε>. An example of
a request would be <Mote 8, Sensor 1, 3%, 95%>, indicating
that the application is seeking the sensor value of Sensor 1 off
of Mote 8 within 3% of the value at the mote at least 95%
of the time.

Pre-specified data models of the sensor data will be used
to determine whether a sensor-driven update should occur, as
well as help in determining the validity. The data model will
be assumed to be based on the application and programmed
on the motes before the WSN is installed. There will need to
be a sensor data model for each sensor type.

WSNs may be set up with many forms of topology.
Depending on use, an application may require a network as
simple as a single hop network, or multi-hop networks where
motes will have their messages relayed through other motes
to the base station. In terms of flexibility, a data collection
system that is not specific to the network underneath is
desirable. Our approach presented in this paper is irrespective
of network model.

Problem statement: The problem can be stated formally as
follows. Given data models for each sensor type j, error
percentages δj, validity confidence ε, an unknown distribution
of application requests r = <i, j, δj, ε > for mote i, cost to
transmit and receive a query (Cqdu.i), cost to transmit a sensor-
driven update (Csdu.i), the objective is to decrease the summed
cost of responding to all application requests with values
meeting δj and ε for each request. The output back to the
application will be a value that is within δj at least ε percent of
the time. In other words, the objective is to decrease energy
consumption of sensor data collection given data models
and allowed error percentages. To accomplish this, we
develop reasonable and efficient methods to approximate the
probability of receiving a query-driven update as well as to
determining the validity lifetime τ of a sensor value.

3.2 A hybrid push and pull algorithm for
sensor reporting

There are two different ways to get data from sensor networks.
One is to push, i.e. to let motes report their readings; the other
is to pull, i.e. to let the base station send out queries. The
overall objective is to determine whether sending an update or
waiting for a query has a lower expected energy consumption.

132 Q. Han et al.

Theoretically, the desired approach would be to compare
the message cost of a sensor update multiplied by the
probability of a sensor update against the message cost of a
query multiplied by the probability of waiting for a query.
This intuitively makes sense as when the number of queries
from the application is high and the number of sensor
updates is low, motes use sensor-driven updates and save
energy by not updating values that are sufficiently accurate.
Alternatively, when sensors exceed the error bounds
regularly and would require many updates, or when the
application is not requesting data from a sensor frequently,
the mote will wait for queries and only expend energy when
the application actually needs the data. Therefore, if the
following predicate is true, a sensor-driven update is sent,
where Psdu is the probability of sensor-driven updates and
Pqdu is the probability of query-driven updates.

sdu sdu qdu qduP C P C× ≤ × (1)

This decision will be based upon the error percentage given
by the application and changes in sensor values. The error
percentage δj will create error bounds based upon the
current value at the base station VBS.i,j. The error bounds for
a current value v will be within ±δj × v with respect to the
last reported value at the base station. If an update is to be
sent, a mote can calculate the amount of time a reading will
likely remain within the error bounds, and therefore send
an update to the base station with a data validity. This will
allow the base station to return that value on application
request. If the data is no longer valid, the base station will
query the mote.

As we can see from the discussions above, the main idea
of our algorithm revolves around four main factors:
probabilities of query-driven (Pqdu) and sensor-driven updates
(Psdu), and costs of query-driven (Cqdu) and sensor-driven
updates (Csdu).

The probabilities are non-trivial to calculate, specifically
because the number of sensor-driven updates is dependent
on the number of queries, and vice versa. If a sensor-driven
update is sent to the base station, for the time that the data is
valid, no queries will need to be sent. Alternatively, if a
query just obtained data from a sensor, it is likely no sensor-
driven update will be needed until that data is no longer
valid.

For the probability of a query, Pqdu, an approximation
will be used based upon the frequency of queries received at
the mote. The probability of a sensor-driven update, Psdu,
will be approximated by a combination of the sensor data
model provided by the application, the current value VMote.i,j,
VBS.i,j, and δj. Using the data model, we can derive the
probability Pin.i,j,η, that the sensor will stay within δj within
an amount of time η. For instance, a simple data model
may be to assume that the value will change in a Gaussian
fashion with a similar mean and variance to recent history.
The application will provide this data model so any amount
of complexity is possible. Note that Psdu is approximated by
1 – Pin.i,j,η as Pin.i,j,η is the probability when no sensor update
is needed. By looking at equal times for estimation of sensor
update probability and query update probability, the two
approximations can be directly compared.

As the cost of a message is a predominant cost in
wireless networks, we use the number of messages sent as
an approximation of energy cost. For a query, messages
must be sent both from the base station to the mote and
back. For a sensor update, only a message from the sensor
to the base station needs to be sent. In a typical network,
these costs would be calculated as an average number of
messages actually sent, including retransmission messages.
In a multi-hop network this would require tracking the
message cost of using intermediate motes to relay messages
between the base station and the mote of interest.

The amount of time in the future to attempt to perform
this calculation is not obvious, as the model will have higher
uncertainty the further in the future, but the energy savings
would be minimal if the time is too short. A good heuristic
is to perform the calculation until the next scheduled
sampling. This would allow a time in which the model is
still able to predict with reasonable certainty, but long
enough as no additional messages would need to be sent.

Hence, the criterion for sending a sensor-driven update
is as follows, assuming that t is the present time.

() (). , , . , .1 in i j n sdu i i j qdu iP C t C− ⋅ ≤ ⋅ − ⋅ηψ

If it is decided to use a sensor-driven update, the data model
can again be used to predict how long the value would
remain valid. The mote can send the base station a value and
validity time for which the base station can assume that the
data is valid. During this validity lifetime, the base station
will answer any application requests directly rather than
sending a query.

Discussions: The approach is suited to bounding energy
costs as the ratio of query frequency against sensor data
changes grows large or approaches zero. In the former case,
the number of queries coming from the application for a
mote is high and thus the mote will be more likely to send
data via sensor update. This would be effective as all of
those queries will not have to be propagated by messages to
the mote. In the latter case, the algorithm is effective in that
it will not report frequent data changes when the application
is not sending application requests for the mote. When the
expected cost of sensor-driven updates and queries are
roughly equivalent each method will expected to have about
the same cost. Note that our approach is independent of
underlying network structures, i.e. the approach lies in the
data management layer which is above the transport and
network layers.

3.3 Performance evaluation

A performance evaluation was done to examine the viability
of the proposed push and pull hybrid approach in terms
of reducing energy usage. In specific, the evaluation was
developed to determine how much energy, measured in
number of messages, is used through this algorithm (referred
to as ‘HYBRID’) relative to two more traditional approaches.
It also examined what circumstances the algorithm would
perform the best and most poorly compared to traditional
approaches. In specific, the algorithm was compared against

 Quality-aware sensor data collection 133

two standard approaches: a query-driven update only
approach (referred to as ‘QDU-ONLY’) and a sensor-driven
update only approach (referred to as ‘SDU-ONLY’). In the
QDU-ONLY approach, each mote only sends data when a
query is received. This would only occur when an application
request has received by the base station and as such there
is no use for error percentage (δ) or a data model. In the
SDU-ONLY approach, the sensor will send data to the base
station whenever the data at the base station is no longer
valid. Note that this approach does not require a specific
validity τ to be reported as the mote will send the data only
when a new reading is beyond δj.

In order to compare the three approaches a simulation was
created using NesC and TOSSIM 2.0, the most widely
accepted sensor network simulator. The metric used was the
total number of messages sent during equal periods of
simulation. This was measured at various rates of application
requests, sensor change and application error percentages.
Each simulation was run 20 times for 500 simulated seconds.
The application requests were modelled by periodically
choosing a mote and sensor and then requesting that value
from the base station. Additionally, the performance at
various levels of sensor error percentages was evaluated.

Sensor values were created as a random walk with a
parameterised change period. At each interval, the random
walk will move up or down one unit, starting with a uniform
distribution in the range of 150 to 250.

A Normal distribution was used for the data model as a
random walk distribution converges to a Normal distribution
with mean of the initial value and variance of number of
steps multiplied by the square of the step size. The mean was
taken to be the current value and the number of steps
was determined by the range allowed by the sensor error
percentage. In practice, any data model can be used since our
approach does not rely on a specific data model.

Experimental Results: Figure 3 shows the behaviour of the
three methods when the rate of data change is varied. The
simulations showed that HYBRID sends fewer messages
than QDU-ONLY in cases of higher application request
rates and better than SDU-ONLY for faster rates of data
change. As is expected, QDU-ONLY does not change
significantly with the rate of data change, and SDU-ONLY
decreases dramatically as the rate of data change decreases.
HYBRID is affected by this rate of change, but not to the
extent that the SDU-ONLY is affected. As the frequency of
change slows down, there is a point at which SDU-ONLY
will send fewer messages than HYBRID. One reason for
this is that when the sensor data change rate approaches
the point that queries are never more efficient, both SDU-
ONLY and HYBRID will send an update if the sensor value
exceeds the error bounds, but HYBRID additionally sends
an update if the validity expires.

Figure 4 shows the behaviour of three methods when the rate
of application requests is varied. As expected, SDU-ONLY is
not affected by the application request rate, and QDU-ONLY
dramatically decreases messages sent as the frequency
diminishes. HYBRID also decreases greatly as the frequency
diminishes, however not at the same rate as QDU-ONLY.

Shown in this figure is the point where QDU-ONLY will be
more efficient, however the approaches remain competitive
thereafter. Both HYBRID and QDU-ONLY decrease along
an exponential curve as the application request period
increases, however the QDU-ONLY is a steeper exponential
curve. One reason for this is that the HYBRID approach uses
the average number of queries in deciding whether to send an
update or not, the more queries that are sent pushes the
HYBRID approach back toward using sensor-driven updates.

Figure 3 Impact of data change rate on the data collection
overhead (query period = 1 s, application error
percentage = 3%) with 95% confidence interval

Figure 4 Impact of application request frequency on the data
collection overhead (sensor change period = .3 s,
application error percentage = 3%) with 95%
confidence interval

Figure 5 shows the behaviour of the three methods when the
application error percentage is varied. As expected, QDU-
ONLY is not affected by the change. Both SDU-ONLY and
HYBRID are affected by the change in the error percentage,
however similarly to the change in sensor period, the SDU-
ONLY mode is affected more than the HYBRID method.
In fact, the HYBRID method appears to level out as the sensor
percentage grows large. This indicates that for larger error
percentages SDU-ONLY will outperform HYBRID. However,

134 Q. Han et al.

for more stringent percentages, such as 3% or 5%, HYBRID
will outperform or be competitive with SDU-ONLY. For
percentages greater than this, it would be better to use an
approach such as SDU-ONLY. The reason for this is similar to
the reason a longer sensor change period benefits SDU-ONLY
more than HYBRID. Whether a larger error percentage or a
longer average sensor change period, the length of time that the
value will likely remain in range increases.

Figure 5 Impact of application error percentage on the data
collection overhead (query period = 1 s, sensor data
change period = .1 s) with 95% confidence interval

As stated previously, our approach also works for multi-hop
networks. To keep it simple, our evaluation so far has only
been conducted on a one-hop network, intending to merely
validate our approach. In practice, many sensor networks use
clustering based or multi-hop based communication. To
obtain results for non one-hop networks, a few key changes
would need to be made. The relaying nodes could evaluate if
adding their data to relayed packets would be efficient.
Furthermore, nodes that do not communicate directly with the
base station would require either to develop a protocol or to
have a MAC layer that would provide an adequate estimate
of energy used to send a message to or receive a message
from base station. Many strategies are available for such
information; however, they may require additional energy
being spent due to increased packet size or administration
messages. A finished solution to this problem is out of the
scope of this paper, but we would like to use the presented
ideas to demonstrate that exploiting application’s error tolerance
can help conserve energy consumption and also validate
applications’ data models.

4 Case study Two: supporting multiple
quality needs

In this section, we use composite need of reliability
and timeliness as an example to demonstrate how multiple
quality constraints can be met while conserving energy
consumption. WSNs are often deployed to detect events that
are distributed spatially such as fire spreading and oil spills.
Due to the sheer number of sensor nodes and constant

failures in the network, the detection of an event is often
determined when a certain number of nodes report the same
observation. For instance, a potential fire breakout may be
identified when 80% of nodes report their temperature
readings over 100 degrees. Without loss of generality, an
event is identified when a certain percentage (α%) of nodes
report their readings over a threshold. Furthermore, in order
to enable a prompt response to the event, these sensor
reports must reach the base station within a reasonable
timeframe (D time units). Thus, a WSN application requires
α% of sensor reports within D time units for an event
detection while minimising energy consumption.

Existing work mostly considers reliability, timeliness and
energy consumption largely in isolation. Few attempts have
been made to satisfy these requirements simultaneously. This
simultaneous satisfaction imposes several challenges. First,
reliability and timeliness are two competing goals. The
requirement on reliability (i.e. the number of sensor reports)
ensures that the base station can have enough information
to make informed decisions on a detected event. The
requirement on timeliness (i.e. deadline) aids timely decisions
on a detected event. In order to ensure reliable data delivery,
hop-by-hop recovery is often applied; however, this may not
meet a given timeliness requirement. Second, reliability and
energy efficiency conflict with each other. The more data the
base station receives, the more reliable decisions can be made
based on the data; however, more energy is consumed for
extra data retransmissions and recovery actions. Third, there
exists a tradeoff between timeliness and energy efficiency. In
order to detect an event sooner, more energy is drained from
nodes because more data transmissions are required.

We address the above challenge by designing WSN
applications after biological systems. This design strategy is
motivated by an observation that various biological systems
have developed the mechanisms to meet conflicting requirements
simultaneously. For example, a bee colony simultaneously
maximises the amount of collected nectar, maintains the
temperature in a nest, and minimises the number of dead
drones (Seeley, 2005). If bees focus only on foraging, they fail
to ventilate their nest and remove dead drones. Given this
observation, this paper proposes a biologically-inspired
architecture for WSN applications to adaptively balance the
tradeoffs among conflicting requirements.

The proposed architecture models each WSN application
as a group of multiple mobile agents. This is analogous to a
bee colony (application) consisting of bees (agents). Agents
read/collect sensor data (as nectar) on individual nodes (modelled
as flowers), and carry (or push) the data through multiple hops
to the base station, which is modelled as a nest of bees. If they
do not satisfy a desired level of reliability (i.e. the number of
sensor data required for an event detection), extra agents leave
the base station (nest) to the network for collecting (or pulling)
extra sensor data from nodes. Agents perform these push/pull
functionalities by invoking biologically-inspired behaviours
such as migration, swarm formation and replication.

In order for agents to optimally perform their behaviours
in terms of reliability, timeliness and energy efficiency,
agent behaviours are formulated into a well-known NP-hard
problem, the Vehicle Routing Problem (VRP). Agents
perform a decentralised and centralised VRP heuristics to

 Quality-aware sensor data collection 135

push and pull sensor data, respectively. Simulation results
show that the VRP-formulated migration behaviour allows
agents (i.e. WSN applications) to adaptively balance the
tradeoffs among reliability, timeliness and energy efficiency
and outperform an existing similar mechanism.

4.1 Problem formulation
This paper assumes WSN applications, each of which requires
the base station to collect at least NR sensor data within D time
units. NR is referred as the desired reliability. Nrd (the actual
reliability) denotes the actual number of data received by
the deadline. In order to reliably detect an event, Nrd ≥ NR.
In other words, each WSN application requires the normalised

reliability 1rd

R

N
N

≥ while minimising energy consumption.

In order to formally state the problem at hand, we use the
following notations to describe WSNs. A WSN is considered
as a graph G(V, E).

• V = {v0,v1, ...,vn} is a vertex set, where v0 is the base
station. V′ = V − { v0} is a set of n sensor nodes. Each
node periodically generates sensor data.

• E = {(vi,vj)|vi,vj ∈ V;i ≠ j} is an edge set. An edge is
established from the node vi to vj if vi can transmit
a packet to vj. Due to the nature of asymmetric
communication in WSNs, an edge is directed; (vi,vj) ∈ E
does not necessarily mean (vj,vi) ∈ E.

• cij is a non-negative weight associated with the edge
(vi,vj). It represents the cost for moving an agent
between the nodes vi and vj. We will later describe the
cost function to determine cij.

• tij is the latency for an agent to move from the node vi to vj.

• m is the number of agents. Each agent can carry a
limited size S of data due to the limitation of packet
size. This is a constraint on how many nodes an agent
can collect data from.

• Rk is a migration route for the agent k to follow.
kRC is

the cost of moving the agent k along the route

(),
. ;

k k
k R hhh h R

R C C ′′ ∈
= ∑ h′ is the next hop node of the

node h in the route Rk.

•
kRT is the latency for the agent k to move along the

route (),
. .

k k
k R hhh h R

R T t ′′ ∈
= ∑ .

The problem at hand is to, given a set of n nodes, determine

a set of m agents that can satisfy 1rd

R

N
N

≥ and the migration

route (Rk) of each agent such that
kRC∑ is minimised

subject to max
kRT D≤ .

We can reduce this problem to Vehicle Routing Problem
(VRP). VRP can be described as follows. Let there be n
demand points in a given area, each demanding a quantity

of weight Qi(i = 1,2,…, n) of goods to be delivered to it.
The goods are stored at a depot, where a fleet of vehicles is
stationed. Vehicles have the identical maximum weight
capacity and maximum route time (or distance) constraints.
They must all start and finish their routes at the depot. It is
assumed that Qi is less than the maximum weight capacity
of each vehicle and Qi is delivered by a single vehicle. In
VRP, both the required number of vehicles and their routes
are unknown. The objective of VRP is to obtain a set of
routes for vehicles to minimise their total route time. In fact,
VRP is an m-TSP problem with two additional constraints:
the maximum weight capacity and maximum route time for
each vehicle. In our problem, there are n sensor nodes
(demand points) in the network. Each node vi has a sensor
data of size li bytes to be delivered to the base station (the
depot) by an agent (an vehicle). The packet size limitation
in WSNs is analogous to the vehicle weight capacity in
VRP. The timeliness constraint in WSNs is mapped to the
maximum vehicle route time in VRP.

Cost Function: We next define the function to determine the
link cost between the node vi and vj(cij). We use packet loss
rate to determine link cost. To avoid the asymmetric nature
of communication links, the link cost cij is determined as fij
× fji, where fij is the loss rate to transmit packets (agents)
from the node vi to vj. Packet loss rate simultaneously
impacts the reliability, timeliness and energy efficiency of
sensor data transmission (agent transmission). Lower packet
loss rate better meets all of the three requirements.

Packet loss rate is measured when nodes are deployed.
Currently, assuming that WSNs are semi-static (Zhao and
Govindan, 2003; Woo et al., 2003; Meliou et al., 2006),
packet loss rate is measured at the beginning of a WSN
operation. It can be periodically measured and updated;
however, it is out of this paper’s scope. Each node transmits
a set of packets to each neighbouring node. Each packet
contains its sequence number and the total number of
transmitted packets. Upon receiving a set of packets, each
neighbouring node determines packet loss rate based on the
number of received packets.

4.2 Biologically-inspired mobile agents

In order to solve the problem at hand, this paper proposes to
use biologically-inspired mobile agents in a push and pull
hybrid manner. There are two types of agents: event agents
and query agents. An Event Agent (EA) is deployed on each
node. It carries (or pushes) a sensor data to the base station
using multiple hops. On its way to the base station, each EA
swarms with other EAs to aggregate as many sensor data
as possible as long as it meets a given deadline. Due to
inherent failures in WSNs, EAs may not be able to satisfy
the desired reliability (the number of sensor data required
for an event detection). In this case, Query Agents (QAs)
are created at the base station and dispatched to the network
for collecting (or pulling) missing sensor data from nodes.
Agents (EAs and QAs) implement the following behaviours.

136 Q. Han et al.

1 Replication: Agents (EAs and QAs) may make a copy
of themselves. An EA replicates itself on a node when
it detects an event of interest, which is application-
specific and may simply be a sensor reading exceeding
a threshold. A replicated EA contains collected sensor
data can carries to the base station. A QA is replicated
at the base station and dispatched to the network to
collect sensor data from nodes.

2 Swarming: Agents (EAs and QAs) may swarm (or merge)
with other agents on their way to the base station. EAs
swarm with other EAs, and QAs swarm with other QAs.
With this behaviour, multiple agents become a single
agent. The resulting (swarm) agent aggregates sensor data.
This data aggregation saves power consumption of nodes
because in-node data processing requires much less power
consumption than data transmission does.

3 Migration: Agents may move from one node to another.
Migration is used to deliver agents (sensor data) to the
base station. There are two ways for agents to move.

• Chemotaxis walk: The base station periodically
propagates base station pheromones to individual
nodes in the network. Their concentration decays on
a hop-by-hop basis. (Each pheromone evaporates in
a certain time period.) Agents (EAs and QAs) can
locate the base station approximately, and move to
the base station in the shortest paths by sensing
pheromone’s concentration gradient. Base station
pheromones are designed after the Nasonov gland
pheromone, which guides bees to move toward their
nest (Free and Williams, 1972).

• Sidestep walk: In addition to the chemotaxis walk,
each EA may sidestep the shortest migration path
and move to a neighbouring node that has the equal
or longer distance to the base station, as long as the
EA meets a given deadline to reach the base
station. This behaviour encourages EAs to perform
swarming-based data aggregation by increasing the
number of nodes EAs visit. QAs are not allowed to
perform this behaviour.

Agents perform their behaviours with VRP heuristics. We
propose a decentralised VRP heuristics for EAs, and
leverage an existing centralised VRP heuristics for QAs.
Particularly, these VRP heuristics are used to answer the
following questions:

1 Where and how should EAs replicate themselves?

2 How many agents (EAs and QAs) should be created?

3 How should each agent (EA and QA) move?

A decentralised VRP heuristics for Event Agents: EAs
implement a decentralised VRP heuristics to carry sensor
data to the base station by a given deadline. To the best of
our knowledge, there is no existing heuristics to solve VRP
in a decentralised way. We propose a decentralised greedy

algorithm to govern the EA behaviours. The proposed
algorithm uses a cluster-based approach to determine where
and how EAs replicate themselves. Nodes are grouped to
form clusters, and an EA replicates itself on each cluster
head when it detects an event. Each cluster has one-hop
topological radius, and all neighbouring nodes of a cluster
head become its cluster members.

Cluster head election is designed to maximise the number
of cluster members by choosing a sensor node who has
many neighbouring nodes. In this process, each node
becomes idle first for Tidle time units. It calculates Tidle by
randomly choosing a number between zero and Tmax/N. Tmax is
a constant that specifies the bound of cluster head election
period, and N is the number of neighbouring nodes. After this
idle period, each node becomes a cluster head and broadcasts
an ADV (advertisement) message to its neighbouring nodes.
However, if a node receives an ADV message from any of
its neighbouring nodes during the idle period, it becomes
a cluster member of the node who originates the ADV
message. Each cluster member sends a JOIN message to its
cluster head so that the cluster head know who are cluster
members. Through this process, clusters are uniformly
distributed and cover the entire network. Note that each node
always belongs to a single cluster; if it receives multiple ADV
messages during its idle period, it responds to the first ADV
message and ignores subsequent ones.

When an EA detects an event on a cluster head, the EA
replicates itself one or more times. The replicated EAs visit
cluster members to collect sensor data from them. This way,
each EA aggregates sensor data and carries the aggregated
data to the base station. The ideal number of replicated EAs

per cluster is n
s

⎡ ⎤
⎢ ⎥⎢ ⎥

, where n is the expected number of nodes

in a cluster and s is the number of data that a single EA
can carry. If an EA already contains s number of data and
cannot contain any more, the EA is refereed as a fat EA. If
an EA can still contain data, it is referred as a slim EA.

Each fat EA moves toward the base station on a hop-by-
hop basis by selecting the next hop node that minimises the
link cost (cij). This allows fat EAs to increase the chances to
reach the base station by a given deadline.

By default, each slim EA also chooses the next hop node
that minimises link cost as well. However, when it finds a
cluster on its way to the base station and has not visited the
cluster’s head node, the EA sidesteps to the cluster head for
swarming with other slim EAs as far as it meets a timeliness
constraint. If there is no slim EAs on the cluster head, the
EA stays there for a period of time before moving to the
base station again. This period increases the chances for a
waiting EA to swarm with other slim EAs while allowing it
to reach the base station within a given time constraint.

The waiting period of each slim EA is calculated by
each cluster head based on a given deadline and the latency
from the cluster head to the base station. Let Td be the
deadline, and ti,b be the latency from the cluster head i to the
base station, a slim EA at cluster head i can wait for Td − ti,b

 Quality-aware sensor data collection 137

before it starts moving towards the base station. This
waiting time allows slim EA to move to the base station
within the deadline, as long as the deadline is greater than
the longest travelling time. In addition, the waiting time
allows slim EAs to increase the chance to combine with
other slim EAs. For instance, we assume that on its way to
the base station, a slim EA at cluster head i has to visit
cluster head j which also has a slim EA. Let ti,b and tj,b be
the latency from the cluster head i and j to the base station
respectively. The travelling time from the cluster head i to j,
ti,j, is then approximately ti,b, – tj,b. The slim EA at cluster
head i will wait until Td − ti,b, while slim EA at cluster head
j will wait until Td − tj,b. When slim EA at cluster head i
starts moving at Td − ti,b, it will reach cluster head j at time
Td − ti,b + ti,j. This is the same as the time that slim EA in
cluster head j is supposed to leave, which is Td − tj,b. So, the
two EAs will combine and then leave cluster head j. This
waiting and combination process is performed repeatedly
along the way to the base station. In practice, the waiting
time can be considered as an upper bound instead of a hard
deadline. Therefore, an EA may leave a cluster head before
the waiting time expires.

A centralised VRP heuristics for query agents: QAs
implement a centralised VRP heuristics to visit a certain
number of nodes from the base station and collect extra
sensor data on the nodes. To find an optimal number of QAs
and also travelling path of each QA, Clarke-Wright Savings
algorithm (Clarke and Wright, 1964; Lenstra and Kan, 1981),
a well-known VRP solving algorithm, is used with some
modifications. The Clarke-Wright Savings algorithm is an
heuristic algorithm which uses constructive methods to
gradually create a feasible solution with modest computing
cost. Basically, the Clarke-Wright Savings algorithm starts by
assigning one agent per vertex in the graph. The algorithm
then tries to combine two routes so that an agent will serve
two vertices. The algorithm calculates the ‘savings’ of every
pair of routes, where the savings is the reduced total link
cost of an agent after a pair of route is combined. The pair of
routes that have the highest saving will then be combined if
no constraint, time or capacity, is violated.

In this paper, Clarke-Wright Savings algorithm is extended to
consider the time and space constraint. By looking into the data
the base station has received from the EAs, the base station can
determine to which cluster or area a QA should be dispatched
initially.

1 An internal path, Rj, is created within each cluster, Xj
which sensor readings are missing. Consider a set of node
{ }jv v X∈ , Clarke-Wright Saving can be used by

choosing a cluster head, i.e. swarm location, ˆ jv as a depot,

then create a path to visit every { }ˆj jv X v∈ − . The time,

tj, to travel within the cluster is also assigned to the cluster.

2 The cluster head, îv , is selected from the cluster Xj to
represent the location of the cluster.

3 The shortest route Rij between two nodes, îv and ˆ jv
where i ≠ j are calculated using Floyd-Warshall
algorithm. The distance between nodes is measured by
cost, îjc of moving agent between two nodes, which is
the function of packet loss rate.

4 A route R0J is created from base station to each node ˆ jv .

5 The saving of combining a pair of routes between the
base station and two individual nodes (ˆ jv ; cluster
representative) are computed.

0 0ˆ ˆ ˆij i j ijs c c c= + − (2)

The saving must obey two constraints; first, the travelling
time along the combining route must be less than deadline,
t0i + ti + tij + tj + tj0 < D and the number of node in the
route R0ij, |Xi| + |Xj|, is less than space limit, S.

6 The saving is ordered from the largest to smallest into a
saving list

7 Begin at the top of the saving list, a sub-tour is formed
by merging the routes, R0i and R0j, that create the
saving, sij:

• a new route, R0ij is constructed with travelling cost
0ˆ ijc and time 0ijt .

• the route R0i and R0j are removed.

8 The process is repeated from the first step until no more
possible saving.

Finally, a set of routes between clusters is constructed and
an QA is assigned for each route. Also, the travelling route
inside each cluster is given to a QA who is going to visit the
cluster. Then, QAs are dispatched to collect data from each
cluster by visiting the cluster head first. If QA can visit
cluster head and the cluster head still have the sensor
readings from each cluster members, QA can collect sensor
readings from the cluster head and travel back to the base
station immediately. However, if QA cannot visit the cluster
head, e.g. cluster head is missing or running out of battery,
QA then consult the travelling path inside the cluster which
assigned by base station to visiting each cluster member to
collect data and then travel back to base station.

4.3 Performance evaluation

The proposed approach is implemented in NesC and
evaluated using TOSSIM 1.0 (Levis, 2003). A sensor network
is simulated in an area of 200 × 200 square meters. In most of
our experiments, the network consists of 150 sensor nodes
modelled after MICAz mote with communication radius of
about 30 meters, bandwidth of approximately 200 kbps and
128 kB of memory space (Crossbow Technology Inc., 2006).
B-MAC is used as the MAC layer protocol by using CC2420
radio module in TinyOS. The sensor nodes are uniformly
deployed in the area.

138 Q. Han et al.

To the best of our knowledge, only MMSPEED satisfies
reliability and timeliness requirements simultaneously
(Felemban et al., 2005). MMSPEED provides active on-
time reachability of packets by using multiple speed levels
and multi-path routing. It uses SPEED (He et al., 2003) for
the timeliness guarantee and adds probabilistic reliability
guarantee based on probabilities of reliable delivery of packets
at different links. MMSPEED provides the flexibility for
applications to choose several different levels of reliability
and timeliness. However, it does not consider minimising
the energy consumption in routing. Therefore, we
implemented MMSPEED in TinyOS for comparison. In
addition, we use TinyOS’s Drain Data Collection Protocol
(Tolle and Culler, 2005) as a baseline. The application’s
desired reliability is varied from 0.6 to 1.0 and desired
freshness, which is a metric to measure timeliness, is
varied from 60 to 100 seconds. Each sensor node reports
sensing values one at a time and each agent can carry up
to 10 readings. We evaluate the system performance to
demonstrate how proposed approach achieves the desired
reliability, freshness and the energy consumption involved.
For Agentilla, the energy consumed during both the cluster
formation stage and the data collection stage is included in
the measurement. We have also studied how the network
density, the packet size, i.e. the maximum number of sensor
readings an agent can carry, and network fault severity
affect the system performance. More results can be found in
work by Boonma et al. (2007).

Figure 6 shows the actual reliability against the desired
reliability when desired reliability is set to be 0.5 and 1.0. The
results show that for proposed approach, a reliability of 0.74
can be achieved by purely using EAs. When the desired
reliability is greater than 0.74 (i.e. 1.0), QAs are dispatched to
collect additional data in order to archive higher reliability.
However, due to the time constraint imposed by the
application, the actual reliability can be less than the desired
reliability. For example, when the freshness is very short
(60 seconds in the figure), the highest achievable actual
reliability is 0.81, which may be lower than the desired
reliability. However, if the freshness is long enough, i.e.
90–100 seconds, the actual reliability can be equal or higher
than the desired reliability. In contrast, Drain and MMSPEED
cannot improve the actual reliability beyond 0.73 and 0.85
respectively because both of them rely purely on push
mechanism. Figure 7 shows the average energy consumption
when the desired reliability is set to be 0.5 and 1.0. When the
desired reliability is greater than 0.7, data collected by EAs
cannot satisfy the desired reliability, so the QAs are dispatched
to gather additional data; hence, the increase in the total
energy consumption. Compared with Drain and MMSPEED
which consume similar amount of energy irrespective of any
reliability requirement, our approach consumes less energy
when the desired reliability is low (i.e. 0.5). Moreover, when
the desired reliability is high (i.e. 1.0) proposed approach
has lower energy consumption due to the data aggregation
mechanism used in proposed approach. Figure 8 shows that
the energy consumption of MMSPEED is constant regarding
the desired reliability. Nevertheless, proposed approach can
reduce the energy consumption when the desired reliability is
low, i.e. by using only EAs.

Figure 6 Impact of desired reliability on the actual reliability
with varied deadline

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 60 70 80 90 100

D
e
a
d
l
i
n
e
(
s
e
c
o
n
d
)

Actual Reliability

Reliability by Deadline

Agentilla - 0.5
Agentilla - 1.0
Baseline - 0.5
Baseline-1.0

MMSPEED - 0.5
MMSPEED-1.0

Figure 7 Impact of desired reliability on energy consumption
with varied deadline

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 60 70 80 90 100

D
e
a
d
l
i
n
e
(
s
e
c
o
n
d
)

Average Energy Consumption (mJ)

Energy Consumption by Deadline

Agentilla - 0.5
Agentilla - 1.0
Baseline - 0.5
Baseline-1.0

MMSPEED - 0.5
MMSPEED-1.0

Figure 8 Impact of desired freshness on energy consumption
with desired reliability

 350

 400

 450

 500

 550

 600

 650

 700

 750

 0.5 0.6 0.7 0.8 0.9 1

A
v
e
r
a
g
e

E
n
e
r
g
y

C
o
n
s
u
m
p
t
i
o
n

(
m
J
)

Reliability

Energy Consumption by Reliability

Agentilla - 0.5
Agentilla - 1.0
Baseline - 0.5
Baseline-1.0

MMSPEED - 0.5
MMSPEED-1.0

5 Suggestions for future research directions

Existing work has largely been limited to studying the
tradeoff between energy consumption and each individual
quality need. The techniques developed differ in their
assumptions about the observed phenomena, the network
properties, and the stringency of application needs. Some

 Quality-aware sensor data collection 139

schemes are implemented at the data management layer,
completely oblivious of underlying network routing or node
duty cycling issues. Other schemes, in contrast, provide a
universal routing protocol that does not take into account
applications’ specific characteristics. We believe that all the
non-functional needs (reliability, timeliness and accuracy)
are cross-cutting issues that are best addressed by cross-
layer approaches. The dynamic and uncertain nature of
sensor environments caused by varying network conditions,
system loads and application traffic implies that data
collection techniques must be adaptive and customisable
to provide desired QoS and QoD. Collection of raw or
derived data should take into account (a) the non-functional
requirements of applications, (b) the underlying observed
physical phenomena, whose properties may suggest a
processing strategy, and (c) the characteristics and current
state of the sensor network, e.g. its scale, degree of
heterogeneity, processing/memory/energy capabilities of
sensors. Considering the wide use of sensor data collection
protocols as a building block for many sensor applications,
the sensor network community needs to standardise a common
methodology that evaluates these protocols. Despite a
considerable number of proposed sensor data collection
protocols in the literature, no comprehensive comparative
analysis has been previously conducted. Those protocols are
often designed with different assumptions and evaluated
under different network and system conditions. The lack of
a thorough and fair comparison among these protocols
makes it very difficult for application developers to select
an appropriate protocol for their applications. There is an
urgent need to design a platform that allows both functional
and non-functional (timeliness, accuracy, reliability)
requirements of applications to be specified, simulates
various network conditions and application workloads to be
used for evaluation, and provides well-defined interfaces
for easy plug-in of various schemes. This motivation is
derived from the premise that choosing between competing
execution strategies should be hidden from the user. Instead,
user tasks will be submitted in a high-level language
appropriate to the application domain. These will be
mapped to appropriate data management primitives by the
application software which will then be posed to the sensor
database management system in a declarative (e.g. SQL-
like) language. The language will specify not only what they
need, but also in what manner they need the data.
Subsequently, the application needs will then be evaluated
by sensor data collection schemes.

With the evaluation framework in place, we would be
able to provide fair comparisons of existing sensor data
collection protocols and thorough evaluation of any newly
proposed techniques. The framework can also provide an
end-to-end support of sensor data collection with varying
QoS and QoD needs. A full-fledged framework can be built
on initial work on data quality specification (Bisdikian
et al., 2009) and our previous work on Quality-aware
Sensing Architecture (QUASAR) (Lazaridis et al., 2004).

Acknowledgements

We would like to thank Iosif Lazaridis, Sharad Mehrotra
and Nalini Venkatasubramanian for early discussions on
related topics that have inspired the work presented here.
This work is supported in part by NSF grants CNS-0720875
and CNS-0855060.

References
Bisdikian, C., Kaplan, L.M., Srivastava, M.B., Thornley, D.J.,

Verma, D. and Young, R.I. (2009) ‘Building principles for a
quality of information specification for sensor information’,
Proceedings of the 12th International Conference on
Information Fusion.

Boonma, P., Han, Q. and Suzuki, J. (2007) ‘Leveraging
biologically-inspired mobile agents supporting composite
needs of reliability and timeliness in sensor applications’,
Proceedings of IEEE International Conference on Frontiers
in the Convergence of Bioscience and Information
Technologies (FBIT), pp.851–860.

Chakravarthy, S., Krishnaprasad, V., Anwar, E. and Kim, S.
(1994) ‘Composite events for active databases: semantics,
contexts and detection’, Proceedings of the International
Conference on Very Large Data Bases (VLDB).

Clarke, G. and Wright, J.W. (1964) ‘Scheduling of vehicles from a
central depot to a number of delivery points’, INFORMS
Operations Research, Vol. 12, No. 4, pp.568–581.

Crossbow Technology Inc. (2006) Micaz datasheet.
Deligiannakis, A., Kotidis, Y. and Roussopoulos, N. (2004)

‘Hierarchical in-network data aggregation with quality
guarantees’, Proceedings of International Conference on
Extending Database Technology (EDBT), pp.658–675.

Demers, A., Gehrke, J., Rajaraman, R., Trigoni, N. and Yao, Y.
(2003) ‘The cougar project: a work-in-progress report’,
ACM SIGMOD Record, Vol. 32, No. 4.

Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J. and Hong, W.
(2005) ‘Model-based approximate querying in sensor networks’,
The VLDB Journal, Vol. 14, No. 4, pp.417–443.

Felemban, E., Lee, C., Ekici, E., Boder, R. and Vural, S. (2005)
‘Probabilistic QoS guarantee in reliability and timeliness
domains in wireless sensor networks’, Proceedings of the
24th Annual IEEE Conference on Computer Communications.

Free, J.B. and Williams, I.H. (1972) ‘The role of the nasonov gland
pheromone in crop communication by honey bees’, International
Journal of Behavioural Biology, Vol. 41, pp.314–318.

Hakkarinen, D. and Han, Q. (2008) ‘Data quality driven sensor
reporting’, Proceedings of the IEEE International Conference
on Mobile Ad Hoc and Sensor Systems (MASS), pp.772–777.

Han, Q., Lazaridis, I., Mehrotra, S. and Venkatasubramanian, N.
(2005) ‘Sensor data collection with expected reliability
guarantees’, Proceedings of the 1st IEEE International
Workshop on Sensor Networks and Systems for Pervasive
Computing.

Han, Q., Mehrotra, S. and Venkatasubramanian, N. (2004) ’Energy
efficient data collection in distributed sensor environments’,
Proceedings of IEEE International Conference on Distributed
Computing Systems (ICDCS), pp.590–597.

140 Q. Han et al.

Han, Q., Mehrotra, S. and Venkatasubramanian, N. (2007)
‘Application-aware integration of data collection and power
management in wireless sensor networks’, Journal of Parallel
Distribution Computing, Vol. 67, No. 9, pp.992–1006.

He, T., Stankovic, J.A., Lu, C. and Abdelzaher, T.F. (2003)
‘Speed: a stateless protocol for real-time communication in
sensor networks’, Proceedings of the 23rd IEEE International
Conference on Distributed Computing Systems.

Hwang, I., Han, Q. and Misra, A. (2005) ’MASTAQ: a middleware
architecture for sensor applications with statistical quality
constraints’, Proceedings of IEEE International Workshop on
Sensor Networks and Systems for Pervasive Computing
(PerSeNS), pp.390–395.

Lazaridis, I., Han, Q., Mehrotra, S. and Venkatasubramanian, N.
(2006) ’Fault-tolerant queries over sensor data’, Proceedings
of International Conference on Management of Data
(COMAD).

Lazaridis, I., Han, Q., Yu, X., Mehrotra, S., Venkatasubramanian,
N., Kalashnikov, D. and Yang, W. (2004) ’Quasar: quality
aware sensing architecture’, ACM SIGMOD Record, Vol. 33,
No. 1, pp.26–31.

Lenstra, J.K. and Kan, A.R. (1981) ‘Complexity of vehicle routing
and scheduling problems’, Wiley Networks, Vol. 11, No. 2.

Levis, P. (2003) ‘Tossim: accurate and scalable simulation of
entire tinyos applications’, Proceedings of the 1st ACM
Conference on Embedded Networked Sensor Systems.

Lu, C., Xing, G., Chipara, O., Fok, C.L. and Bhattacharya, S.
(2005) ‘A spatiotemporal query service for mobile users in
sensor networks’, Proceedings of International Conference on
Distributed Computing Systems (ICDCS).

Madden, S.R., Franklin, M.J., Hellerstein, J.M. and Hong, W.
(2003) ‘The design of an acquisitional query processor for
sensor networks’, Proceedings of ACM International
Conference on Management of Data (SIGMOD).

Meliou, A., Chu, D., Guestrina, C., Hellerstein, J. and Hong, W.
(2006) ‘Data gathering tours in sensor networks’,
Proceedings of International Conference on Info Processing
in Sensor Nets.

Ozsoyoglu, G. and Snodgrass, R.T. (1995) ‘Temporal and real-time
databases: a survey’, Proceeding of IEEE Transactions on
Knowledge and Data Engineering (TKDE), Vol. 7, No. 4.

Park, S.J., Vedantham, R., Sivakumar, R. and Akyildiz, I.F. (2004)
‘A scalable approach for reliable downstream data delivery in
wireless sensor networks’, Proceedings of ACM International
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc).

Porta, L., Illangasekare, T.H., Loden, P., Han, Q. and Jayasumana,
A.P. (2009) ‘Continuous plume monitoring using wireless
sensors: proof of concept in intermediate scale tank’, ASCE’s
Journal of Environmental Engineering.

Cristescu, R. and Vetterli, M. (2005) ‘On the optimal density for
real-time data gathering of spatio-temporal processes in
sensor networks’, International Symposium on Information
Processing in Sensor Networks.

Ramamritham, K. (1996) ‘Real-time databases’, International
Journal of Distributed and Parallel Databases, Vol. 1, No. 2.

Sankarasubramaniam, Y., Akan, O.B. and Akyildiz, I.F. (2003)
‘Esrt: event-to-sink reliable transport in wireless sensor
networks’, Proceedings of the 4th ACM International
Symposium on Mobile Ad Hoc Networking and Computing.

Seeley, T. (2005) The Wisdom of the Hive, Harvard University Press.
Sharaf, M., Beaver, J., Labrinidis, A. and Chrysanthis, P. (2004)

‘Balancing energy efficiency and quality of aggregate data
in sensor networks’, The VLDB Journal, Vol. 13, No. 4,
pp.384–403.

Sistla, A. and Wolfson, O. (1995) ‘Temporal conditions and
integrity constraints in active database systems’, Proceedings
of ACM International Conference on Management of Data
(SIGMOD).

Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A. and
Snodgrass, R. (1994) Temporal Databases: Theory, Design
and Implementation, Benjamin/Cummings.

Tolle, G. and Culler, D. (2005) ‘Design of an application-cooperative
management system for wireless sensor networks’, Proceedings
of European Workshop on Wireless Sensor Work.

Woo, A., Tong, T. and Culler, D. (2003) ‘Taming the underlying
challenges of reliable multihop routing in sensor networks’,
Proceedings of International Conference on Embedded
Networked Sensor System.

Zhao, J. and Govindan, R. (2003) ‘Understanding packet delivery
performance in dense wireless sensor networks’, Proceedings of
International Conference on Embedded Networked Sensor System.

