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Abstract: Many sensor applications often require collecting raw sensed values from many sensor 
nodes to one centralised server. Sensor data collection typically comes with various quality 
requirements, e.g. the level of precision requested for temperature values, the time constraints for 
getting the data, or the percentage of data that is needed. This paper presents a quality-aware 
sensing framework where characterisations of sensor applications’ quality needs are identified 
and different sensor data collection problems are classified. Two problems and their solutions are 
then presented as examples to demonstrate how single (or multiple) quality need(s) are satisfied. 
The paper concludes with suggestions for future research directions that have the potential to 
complete the framework and provide a holistic approach to sensor applications with diverse 
quality requirements. 
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1 Introduction 

Our experience collaborating with experts from several 
disciplines such as environmental science and engineering 
(Porta et al., 2009), hydrology and mining has indicated that 
many applications are interested in raw data from sensor 
nodes, instead of aggregated data. This motivates us to focus 
on a common service that can be applied to many sensor 
applications: raw sensor data collection from all nodes to  
one centralised server. Our discussion with domain experts 
has also revealed that sensor applications may have different 
Quality of Service (QoS, e.g. timeliness and reliability) and 
Quality of Data (QoD, e.g. data accuracy) requirements for 
sensor data collection. As an illustrative example, consider a 
network of sensors monitoring ground movement to detect 
presence/arrival of enemy forces in a given region in a 
command and control application. Timeliness and reliability 
of sensing (in the presence of failures) might be of essence 
here if the countering manoeuvre requires immediate detection. 
Such timeliness and reliability requirements, however, come 
at certain costs, namely additional communication overheads, 
energy costs, etc. Furthermore, different applications over  
a given sensor infrastructure may have differing quality 
requirements. For instance, an online monitoring and actuation 
application might have real-time requirements, an analysis 
application over the same sensor system might only require 
that data be collected in a repository (eventually) at a  
given level of accuracy or spatial and temporal frequency.  
Such differing application requirements may pose competing 
requirements on the underlying sensor data collection, 
coordination and storage mechanisms. For instance, from the 
perspective of the archival application, it might be both 
feasible and desirable that the data be collected, temporarily 
stored, compressed and then transmitted to the repository.  
A real-time monitoring/actuation application, however, may 
demand low latency. The differing requirements of the 
applications conflict with each other. 

Lots of current research has primarily considered 
functional aspects of distributed sensor systems focusing on 
techniques to sense, capture, communicate and compute 
over sensor networks. To support different non-functional 
(i.e. quality) needs of sensor data collection, most schemes 
are implemented at different layers such as MAC layer, 
routing layer or data management layer. In fact, these non-
functional needs are cross cutting issues that are better 
addressed by using cross-layer approaches. Further, very 
few have considered the tradeoff between multiple quality 
needs, which can be quite common as seen in previous 
examples. 

 
 
 

We have made the following contributions in this paper. 

• We have characterised the quality requirements for 
wireless sensor applications in a systematic way, which 
has not appeared in the existing literature. 

• We are among the first to point out the multidimensional 
quality requirements for sensor applications. We have 
further identified two complementary types of sensor 
applications in terms of the tradeoff between quality and 
cost. 

• We have summarised various ways to specify different 
quality requirements. 

• We have designed and evaluated an algorithm to support 
applications’ data accuracy needs. Our approach 
demonstrates how to merge both push and pull strategies 
to provide improvements in energy efficiency by adapting 
to data change frequency and application request 
frequency.  Further, our approach is capable of providing 
insight into the validity of application data models in an 
online fashion. 

• We have developed a biologically-inspired mobile agents 
approach to exploit the tradeoff between reliability, 
timeliness and energy consumption in sensor data 
collection. Our approach demonstrates how a joint 
consideration of multiple quality needs can be satisfied. 

In this paper, we first present a systematic way to characterise 
the quality requirements from wireless sensor applications in 
Section 2. We then present two studies to showcase how an 
application’s single quality need or multiple quality needs can 
be satisfied using different techniques. The first case study 
uses a simple technique to demonstrate how exploiting an 
application’s data accuracy tolerance can help conserve 
energy consumption (Section 3), and the second case study 
uses mobile agents for joint satisfaction of timeliness and 
reliability requirements from sensor applications (Section 4). 
We hope to use this paper as a conduit to inspire more 
interesting work in this area. We conclude the paper in 
Section 5 with a list of suggested areas to ensure a holistic 
approach to quality-aware sensing. 

2 Characterisation of sensor applications’ 
requirements 

The first step towards the goal of supporting sensor applications 
with different quality needs is to fully understand the diverse needs 
of monitoring, archiving and forecasting sensor applications.  
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This requires a careful analysis of a wide range of performance 
requirements, which define the extent to which performance 
specifications such as timeliness, reliability and accuracy  
may be violated. We explore applications’ quality requirements 
from several dimensions as illustrated in Figure 1. 

• QoS-timeliness may be specified in the format of 
periodicity, deadline, or a certain relative order of different 
tasks. For instance, in the subsurface contaminant tracking 
scenario, conductivity readings will only be collected  
after the temperature readings suggest the existence  
of a potential plume. Current sensor systems support a 
basic form of time constraints-data collection frequency as 
in TAG (Madden et al., 2003) and Cougar (Demers et al., 
2003). It is worthwhile to investigate other timing notions 
used in temporal, real-time databases (Tansel et al., 1994; 
Ozsoyoglu and Snodgrass, 1995; Ramamritham, 1996) 
and active databases (Chakravarthy et al., 1994; Sistla and 
Wolfson, 1995), and then develop a variety of timing 
semantics appropriate for distributed sensor environments. 

• QoS-reliability is most commonly defined as the percentage 
of nodes participating in the collection among all the 
nodes in the sensor network (Sankarasubramaniam et al., 
2003; Han et al., 2005), or as a set of nodes that cover  
the entire sensor network (Park et al., 2004). In addition  
to supporting these reliability specifications, we have 
developed more informative reliability metrics with well-
defined semantics. For instance, the recall metric used in 
information retrieval may be used to indicate the desired 
completeness of the answer set, if the application is 
gathering all the readings that meet certain conditions 
(Lazaridis et al., 2006); reliability can also be specified as 
tolerable thresholds on ‘false-alarm’ or ‘missed-event’ 
probabilities (i.e. bounds on detection or estimation 
accuracy) (Hwang et al., 2005). 

• QoD (Quality of Data) desired from the sensing 
substrate may be imposed on individual sensor values, 
or on an answer computed over readings from a set of 
sensor reports. QoD requirements may be specified as 
desired data freshness, absolute or relative accuracy 
bounds. For instance, an application may be satisfied 
with a report that is off the true value by ±5 (Han et al., 
2004) (i.e. absolute accuracy) or by 10% (Sharaf et al., 
2004) (i.e. relative accuracy). 

• Cost is simply defined as energy consumption since 
energy is the most stringent resource constraint in 
sensor networks. 

For the multidimensional requirements (QoS, QoD, Cost) 
from both the application and the system, a sensor 
application may have requirements for one of them, or a 
combination of them with different preferences towards 
different constraints. These preferences will be used to 
guide future monitoring, sensing and collection plans. In  
 
 
 
 

practice, it may be very difficult (if not impossible) to  
satisfy all the specified requirements simultaneously, to  
reach the multi-constraint optimal point in reality given the 
dynamic network conditions and severe resource constraints 
in the sensor network. Therefore, we allow applications to 
specify their preference towards different constraints. 

Figure 1 Multidimensional quality requirements from sensor 
applications 

Cost (Energy Consumption)

QoS−timeliness

QoS−reliability

QoD (Quality of Data)  

Wireless sensor networks (WSNs) have typically been built 
with a high degree of dependency between applications and the 
underlying communication protocols. Such dependency is 
justified as necessary to achieve energy efficiency. However, it 
generates rigid systems with sensor networks specifically 
designed to suit a particular application. While providing a 
platform that accommodates all types of sensor applications is 
very difficult, we intend to build a middleware architecture that 
can support a representative class of sensor applications – those 
with multiple performance requirements. We observe that there 
exists a fundamental tradeoff between the overhead introduced 
in supporting the application and the QoS/QoD achieved. We 
refer to this characteristic as the QoS-QoD-Cost tradeoff. If we 
consider Cost as one dimension and composite performance as 
another dimension, the application fixes the position of one 
dimension, and the system is expected to maximise the position 
along the other dimension. Therefore, we will support two 
complementary types of sensor applications: 

• maximise the QoS/QoD without exceeding the energy 
budget (Figure 2a): This applies when the lifetime of a 
sensor network is known and the application would like 
to get as high-quality data as possible. For instance, in 
the immediate aftermath of a toxic chemical leakage, 
timely and accurate communication of collected data is 
much more important than energy efficiency, hence the 
application would like to maximise QoS-timeliness and 
QoD subject to the constraint of remaining energy. 

With the finite remaining energy level on each sensor 
node, we are faced with a joint optimisation problem when 
the objective of an application is to maximise more than 
one metric (i.e. two or three among reliability, timeliness, 
accuracy). Existing work has addressed limited subsets  
of the problem space. Using decoupled strategies that  
optimise each performance goal in separate phases can  
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unfortunately lead to very expensive data collection plans, 
since these performance goals are often interdependent.  
The decision on achieving one objective affects the 
decision on achieving the other. For instance, improving 
reliability might entail retransmission of packets, which 
may lead to increased latency. 

One strategy is to design a new composite evaluation 
metric. Most of the existing work focuses on one single 
performance metric, such as data freshness (i.e. the 
time elapsed from data generation time to the data 
collection time) (Lu et al., 2005), data fidelity (i.e. ratio 
of nodes participating in the collection to all the nodes 
in the area) (Lu et al., 2005), data accuracy measured as 
how much the obtained data deviates from the real 
value (Han et al., 2004), or as combined spatial and 
time distortion (Cristescu and Vetterli, 2005). We 
believe it is a better approach if we take into account 
pre-specified application preferences towards different 
performance goals and define a composite system 
performance metric to facilitate the identification of an 
‘optimal’ point that would maximise the multiple QoS 
or QoD requirements. Alternatively, we can investigate 
the tradeoff between these performance goals and 

develop a collection plan that optimises all the goals. 
More specifically, we might be able to derive 
theoretical upper bounds on QoS-timeliness, QoS-
reliability and QoD, given the energy constraint. We can 
further design online algorithms that attempt to either 
maximise the composite performance metric as 
described above, or jointly optimise multiple goals 
simultaneously. 

• minimise energy consumption while achieving a 
minimum acceptable level of QoS/QoD (Figure 2b): This  
 

applies when a sensor network needs to consume as little 
energy as possible in order to last longer while ensuring 
the satisfaction of application needs. For instance, careful 
energy management of sensor nodes is critical to monitor 
remnant or new plumes in the days and weeks after the 
plume disaster; hence, the application would like to 
minimise energy consumption as long as QoD reaches a 
certain level. 

The multiple constraints can be any combination of 
requirements for QoS-timeliness, QoS-reliability and QoD. 
To illustrate the complexity involved in meeting multiple 
constraints, let us consider an example. An application 
might want to minimise energy consumption while ensuring 
the minimum data accuracy and maximum tolerable latency. 
Since the granularity at which the sensor data is maintained 
at the server directly affects the amount of communication, 
and a sensor consumes energy even when it is idling, the 
total energy consumption is a function of data granularity 
and sensor idling time at different power saving states. 
Therefore, this is a multi-variable optimisation problem 
subject to multiple constraints. An arbitrary combination of 
algorithms for satisfying timeliness requirements and those 
for meeting data accuracy needs will result in undesirable 
system performance, since these constraints are not 
orthogonal and varying one will typically affect the others. 
Hence, it is crucial to understand the interplay between 
different application needs. 

This paper will focus on the second case by presenting 
two case studies: the first one exploits the applications’ data 
accuracy tolerance to conserve energy consumption, and the 
second one explores how to address composite reliability 
and timeliness needs from applications. 
 

Figure 2 QoS-QoD-Cost tradeoffs in sensor applications 
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3 Case study One: supporting single quality need 

In this section, we use data accuracy tolerance of sensor 
applications as an example to demonstrate how a single 
quality constraint can be met while minimising energy 
consumption. WSNs have been used to support a variety of 
applications including those that can use approximate rather 
than exact sensor values, as long as the values are within a 
tolerable range of the true values. Due to the limitation of 
sensing technologies or the possibility of miscalibrated 
sensors, it is justified to use approximate values. Furthermore, 
as sensors do not query every point in the environment,  
their samples are already at some level of approximation 
(Deshpande et al., 2005). The use of approximate data allows 
flexibility on when to send data, creating an opportunity to 
decrease the amount of energy used by motes. 

Another need in WSNs is to be able to validate data 
models. A framework that enables checking whether a 
model is accurate would greatly help in selecting and 
calibrating a model. One application that has these needs is 
the tracking of contaminant plumes in underground water 
flows. Researchers in the field have noted that precise value 
readings are not specifically required and that data within  
a bounded error percentage is useful for modelling the 
contaminant flows. For example, a 3% error percentage 
would mean that if a specific reading were at 100, any value 
between 97 and 103 would be accurate enough. WSNs can 
potentially aid the development of contaminant flow models 
by verifying and developing models as well as tracking the 
contaminant flow. 

The above issues will be addressed through a system that 
transmits data in both a push and pull fashion. The objective 
is to minimise the amount of energy needed by pushing data 
from the mote to the base station (i.e. a sensor-driven update) 
when more efficient, or to pull data from the mote by query 
otherwise (i.e. a query-driven update). Furthermore, our 
approach will significantly help application domain experts; 
the effectiveness of the data model can now be evaluated in 
an online fashion, since a poor model would often mispredict 
and result in frequent sensor-driven updates. 

Most of the existing work uses either a push or pull 
method exclusively for data gathering. In the event-driven 
techniques, determining the frequency of updates based upon 
the current value and known value at the base station has 
been used (Han et al., 2007). In the query-driven techniques, 
reductions in energy can be achieved by aggregation of data 
in queries to reduce data sent back (Deligiannakis et al., 
2004) or statistically modelling the data at the base station  
to reduce queries (Deshpande et al., 2005). In contrast, this 
work dynamically switches between push and pull techniques 
based on system conditions (Hakkarinen and Han, 2008). 

3.1 Problem formulation 
A particular mote may have multiple sensors that an 
application needs, so systems should be able to handle multiple 
types of sensor data. In specific, an application’s data acquisition 
requests may be converted to many individual requests for 
specific sensors on a mote. The application may allow for a 
percentage of error on any value returned. Therefore, an 

application request contains an error percentage δ that is tied 
to the sensor attribute sought. As the base station will hold 
values that are sent by the motes, it must be decided the 
length of time that the value is valid. The concept of validity, 
or lifetime, takes care of this. If a sensor value is sent to the 
base station with a validity τ, then the base station can return 
that result with some confidence ε when the application 
requests it. Note that the base station will return only the 
result, which will implicitly have confidence greater than ε. 
Some sensors, such as a contaminant sensor, may vary by a 
small amount between two periodic samplings of the sensor, 
whereas others may of only be interest when a dramatic  
shift occurs, such as the flow. Thus, the needed percentage 
differs depending on the type of sensor for a given sampling 
schedule. Overall, this means an application request will 
consist of a tuple of four fields: request = <mote ID, sensor 
ID, error percentage δ, validity confidence ε>. An example of 
a request would be <Mote 8, Sensor 1, 3%, 95%>, indicating 
that the application is seeking the sensor value of Sensor 1 off 
of Mote 8 within 3% of the value at the mote at least 95%  
of the time. 

Pre-specified data models of the sensor data will be used 
to determine whether a sensor-driven update should occur, as 
well as help in determining the validity. The data model will 
be assumed to be based on the application and programmed 
on the motes before the WSN is installed. There will need to 
be a sensor data model for each sensor type. 

WSNs may be set up with many forms of topology. 
Depending on use, an application may require a network as 
simple as a single hop network, or multi-hop networks where 
motes will have their messages relayed through other motes 
to the base station. In terms of flexibility, a data collection 
system that is not specific to the network underneath is 
desirable. Our approach presented in this paper is irrespective 
of network model. 

Problem statement: The problem can be stated formally as 
follows. Given data models for each sensor type j, error 
percentages δj, validity confidence ε, an unknown distribution 
of application requests r = <i, j, δj, ε > for mote i, cost to 
transmit and receive a query (Cqdu.i), cost to transmit a sensor-
driven update (Csdu.i), the objective is to decrease the summed 
cost of responding to all application requests with values 
meeting δj and ε for each request. The output back to the 
application will be a value that is within δj at least ε percent of 
the time. In other words, the objective is to decrease energy 
consumption of sensor data collection given data models  
and allowed error percentages. To accomplish this, we 
develop reasonable and efficient methods to approximate the 
probability of receiving a query-driven update as well as to 
determining the validity lifetime τ of a sensor value. 

3.2 A hybrid push and pull algorithm for  
sensor reporting 

There are two different ways to get data from sensor networks. 
One is to push, i.e. to let motes report their readings; the other 
is to pull, i.e. to let the base station send out queries. The 
overall objective is to determine whether sending an update or 
waiting for a query has a lower expected energy consumption. 
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Theoretically, the desired approach would be to compare 
the message cost of a sensor update multiplied by the 
probability of a sensor update against the message cost of a 
query multiplied by the probability of waiting for a query. 
This intuitively makes sense as when the number of queries 
from the application is high and the number of sensor 
updates is low, motes use sensor-driven updates and save 
energy by not updating values that are sufficiently accurate. 
Alternatively, when sensors exceed the error bounds 
regularly and would require many updates, or when the 
application is not requesting data from a sensor frequently, 
the mote will wait for queries and only expend energy when 
the application actually needs the data. Therefore, if the 
following predicate is true, a sensor-driven update is sent, 
where Psdu is the probability of sensor-driven updates and 
Pqdu is the probability of query-driven updates. 

sdu sdu qdu qduP C P C× ≤ ×  (1) 

This decision will be based upon the error percentage given 
by the application and changes in sensor values. The error 
percentage δj will create error bounds based upon the 
current value at the base station VBS.i,j. The error bounds for 
a current value v will be within ±δj × v with respect to the 
last reported value at the base station. If an update is to be 
sent, a mote can calculate the amount of time a reading will 
likely remain within the error bounds, and therefore send  
an update to the base station with a data validity. This will 
allow the base station to return that value on application 
request. If the data is no longer valid, the base station will 
query the mote. 

As we can see from the discussions above, the main idea 
of our algorithm revolves around four main factors: 
probabilities of query-driven (Pqdu) and sensor-driven updates 
(Psdu), and costs of query-driven (Cqdu) and sensor-driven 
updates (Csdu). 

The probabilities are non-trivial to calculate, specifically 
because the number of sensor-driven updates is dependent 
on the number of queries, and vice versa. If a sensor-driven 
update is sent to the base station, for the time that the data is 
valid, no queries will need to be sent. Alternatively, if a 
query just obtained data from a sensor, it is likely no sensor-
driven update will be needed until that data is no longer 
valid. 

For the probability of a query, Pqdu, an approximation 
will be used based upon the frequency of queries received at 
the mote. The probability of a sensor-driven update, Psdu, 
will be approximated by a combination of the sensor data 
model provided by the application, the current value VMote.i,j, 
VBS.i,j, and δj. Using the data model, we can derive the 
probability Pin.i,j,η, that the sensor will stay within δj within 
an amount of time η. For instance, a simple data model  
may be to assume that the value will change in a Gaussian 
fashion with a similar mean and variance to recent history. 
The application will provide this data model so any amount 
of complexity is possible. Note that Psdu is approximated by 
1 – Pin.i,j,η as Pin.i,j,η is the probability when no sensor update 
is needed. By looking at equal times for estimation of sensor 
update probability and query update probability, the two 
approximations can be directly compared. 

As the cost of a message is a predominant cost in 
wireless networks, we use the number of messages sent as 
an approximation of energy cost. For a query, messages 
must be sent both from the base station to the mote and 
back. For a sensor update, only a message from the sensor 
to the base station needs to be sent. In a typical network, 
these costs would be calculated as an average number of 
messages actually sent, including retransmission messages. 
In a multi-hop network this would require tracking the 
message cost of using intermediate motes to relay messages 
between the base station and the mote of interest. 

The amount of time in the future to attempt to perform 
this calculation is not obvious, as the model will have higher 
uncertainty the further in the future, but the energy savings 
would be minimal if the time is too short. A good heuristic 
is to perform the calculation until the next scheduled 
sampling. This would allow a time in which the model is 
still able to predict with reasonable certainty, but long 
enough as no additional messages would need to be sent. 

Hence, the criterion for sending a sensor-driven update 
is as follows, assuming that t is the present time. 

( ) ( ). , , . , .1 in i j n sdu i i j qdu iP C t C− ⋅ ≤ ⋅ − ⋅ηψ  

If it is decided to use a sensor-driven update, the data model 
can again be used to predict how long the value would 
remain valid. The mote can send the base station a value and 
validity time for which the base station can assume that the 
data is valid. During this validity lifetime, the base station 
will answer any application requests directly rather than 
sending a query. 

Discussions: The approach is suited to bounding energy 
costs as the ratio of query frequency against sensor data 
changes grows large or approaches zero. In the former case, 
the number of queries coming from the application for a 
mote is high and thus the mote will be more likely to send 
data via sensor update. This would be effective as all of 
those queries will not have to be propagated by messages to 
the mote. In the latter case, the algorithm is effective in that 
it will not report frequent data changes when the application 
is not sending application requests for the mote. When the 
expected cost of sensor-driven updates and queries are 
roughly equivalent each method will expected to have about 
the same cost. Note that our approach is independent of 
underlying network structures, i.e. the approach lies in the 
data management layer which is above the transport and 
network layers. 

3.3 Performance evaluation 

A performance evaluation was done to examine the viability 
of the proposed push and pull hybrid approach in terms  
of reducing energy usage. In specific, the evaluation was 
developed to determine how much energy, measured in 
number of messages, is used through this algorithm (referred 
to as ‘HYBRID’) relative to two more traditional approaches. 
It also examined what circumstances the algorithm would 
perform the best and most poorly compared to traditional 
approaches. In specific, the algorithm was compared against 
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two standard approaches: a query-driven update only 
approach (referred to as ‘QDU-ONLY’) and a sensor-driven 
update only approach (referred to as ‘SDU-ONLY’). In the 
QDU-ONLY approach, each mote only sends data when a 
query is received. This would only occur when an application 
request has received by the base station and as such there  
is no use for error percentage (δ) or a data model. In the  
SDU-ONLY approach, the sensor will send data to the base 
station whenever the data at the base station is no longer 
valid. Note that this approach does not require a specific 
validity τ to be reported as the mote will send the data only 
when a new reading is beyond δj. 

In order to compare the three approaches a simulation was 
created using NesC and TOSSIM 2.0, the most widely 
accepted sensor network simulator. The metric used was the 
total number of messages sent during equal periods of 
simulation. This was measured at various rates of application 
requests, sensor change and application error percentages. 
Each simulation was run 20 times for 500 simulated seconds. 
The application requests were modelled by periodically 
choosing a mote and sensor and then requesting that value 
from the base station. Additionally, the performance at 
various levels of sensor error percentages was evaluated. 

Sensor values were created as a random walk with a 
parameterised change period. At each interval, the random 
walk will move up or down one unit, starting with a uniform 
distribution in the range of 150 to 250. 

A Normal distribution was used for the data model as a 
random walk distribution converges to a Normal distribution 
with mean of the initial value and variance of number of  
steps multiplied by the square of the step size. The mean was 
taken to be the current value and the number of steps  
was determined by the range allowed by the sensor error 
percentage. In practice, any data model can be used since our 
approach does not rely on a specific data model. 

Experimental Results: Figure 3 shows the behaviour of the 
three methods when the rate of data change is varied. The 
simulations showed that HYBRID sends fewer messages 
than QDU-ONLY in cases of higher application request 
rates and better than SDU-ONLY for faster rates of data 
change. As is expected, QDU-ONLY does not change 
significantly with the rate of data change, and SDU-ONLY 
decreases dramatically as the rate of data change decreases. 
HYBRID is affected by this rate of change, but not to the 
extent that the SDU-ONLY is affected. As the frequency of 
change slows down, there is a point at which SDU-ONLY 
will send fewer messages than HYBRID. One reason for 
this is that when the sensor data change rate approaches  
the point that queries are never more efficient, both SDU-
ONLY and HYBRID will send an update if the sensor value 
exceeds the error bounds, but HYBRID additionally sends 
an update if the validity expires. 

Figure 4 shows the behaviour of three methods when the rate 
of application requests is varied. As expected, SDU-ONLY is 
not affected by the application request rate, and QDU-ONLY 
dramatically decreases messages sent as the frequency 
diminishes. HYBRID also decreases greatly as the frequency 
diminishes, however not at the same rate as QDU-ONLY. 

Shown in this figure is the point where QDU-ONLY will be 
more efficient, however the approaches remain competitive 
thereafter. Both HYBRID and QDU-ONLY decrease along 
an exponential curve as the application request period 
increases, however the QDU-ONLY is a steeper exponential 
curve. One reason for this is that the HYBRID approach uses 
the average number of queries in deciding whether to send an 
update or not, the more queries that are sent pushes the 
HYBRID approach back toward using sensor-driven updates. 

Figure 3 Impact of data change rate on the data collection 
overhead (query period = 1 s, application error 
percentage = 3%) with 95% confidence interval 

 

Figure 4 Impact of application request frequency on the data 
collection overhead (sensor change period = .3 s, 
application error percentage = 3%) with 95% 
confidence interval 

 

Figure 5 shows the behaviour of the three methods when the 
application error percentage is varied. As expected, QDU-
ONLY is not affected by the change. Both SDU-ONLY and 
HYBRID are affected by the change in the error percentage, 
however similarly to the change in sensor period, the SDU-
ONLY mode is affected more than the HYBRID method.  
In fact, the HYBRID method appears to level out as the sensor 
percentage grows large. This indicates that for larger error 
percentages SDU-ONLY will outperform HYBRID. However, 
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for more stringent percentages, such as 3% or 5%, HYBRID 
will outperform or be competitive with SDU-ONLY. For 
percentages greater than this, it would be better to use an 
approach such as SDU-ONLY. The reason for this is similar to 
the reason a longer sensor change period benefits SDU-ONLY 
more than HYBRID. Whether a larger error percentage or a 
longer average sensor change period, the length of time that the 
value will likely remain in range increases. 

Figure 5 Impact of application error percentage on the data 
collection overhead (query period = 1 s, sensor data 
change period = .1 s) with 95% confidence interval 

 

As stated previously, our approach also works for multi-hop 
networks. To keep it simple, our evaluation so far has only 
been conducted on a one-hop network, intending to merely 
validate our approach. In practice, many sensor networks use 
clustering based or multi-hop based communication. To 
obtain results for non one-hop networks, a few key changes 
would need to be made. The relaying nodes could evaluate if 
adding their data to relayed packets would be efficient. 
Furthermore, nodes that do not communicate directly with the 
base station would require either to develop a protocol or to 
have a MAC layer that would provide an adequate estimate  
of energy used to send a message to or receive a message 
from base station. Many strategies are available for such 
information; however, they may require additional energy 
being spent due to increased packet size or administration 
messages. A finished solution to this problem is out of the 
scope of this paper, but we would like to use the presented 
ideas to demonstrate that exploiting application’s error tolerance 
can help conserve energy consumption and also validate 
applications’ data models. 

4 Case study Two: supporting multiple  
quality needs 

In this section, we use composite need of reliability  
and timeliness as an example to demonstrate how multiple 
quality constraints can be met while conserving energy 
consumption. WSNs are often deployed to detect events that 
are distributed spatially such as fire spreading and oil spills. 
Due to the sheer number of sensor nodes and constant 

failures in the network, the detection of an event is often 
determined when a certain number of nodes report the same 
observation. For instance, a potential fire breakout may be 
identified when 80% of nodes report their temperature 
readings over 100 degrees. Without loss of generality, an 
event is identified when a certain percentage (α%) of nodes 
report their readings over a threshold. Furthermore, in order 
to enable a prompt response to the event, these sensor 
reports must reach the base station within a reasonable 
timeframe (D time units). Thus, a WSN application requires 
α% of sensor reports within D time units for an event 
detection while minimising energy consumption. 

Existing work mostly considers reliability, timeliness and 
energy consumption largely in isolation. Few attempts have 
been made to satisfy these requirements simultaneously. This 
simultaneous satisfaction imposes several challenges. First, 
reliability and timeliness are two competing goals. The 
requirement on reliability (i.e. the number of sensor reports) 
ensures that the base station can have enough information  
to make informed decisions on a detected event. The 
requirement on timeliness (i.e. deadline) aids timely decisions 
on a detected event. In order to ensure reliable data delivery, 
hop-by-hop recovery is often applied; however, this may not 
meet a given timeliness requirement. Second, reliability and 
energy efficiency conflict with each other. The more data the 
base station receives, the more reliable decisions can be made 
based on the data; however, more energy is consumed for 
extra data retransmissions and recovery actions. Third, there 
exists a tradeoff between timeliness and energy efficiency. In 
order to detect an event sooner, more energy is drained from 
nodes because more data transmissions are required. 

We address the above challenge by designing WSN 
applications after biological systems. This design strategy is 
motivated by an observation that various biological systems 
have developed the mechanisms to meet conflicting requirements 
simultaneously. For example, a bee colony simultaneously 
maximises the amount of collected nectar, maintains the 
temperature in a nest, and minimises the number of dead 
drones (Seeley, 2005). If bees focus only on foraging, they fail 
to ventilate their nest and remove dead drones. Given this 
observation, this paper proposes a biologically-inspired 
architecture for WSN applications to adaptively balance the 
tradeoffs among conflicting requirements. 

The proposed architecture models each WSN application 
as a group of multiple mobile agents. This is analogous to a  
bee colony (application) consisting of bees (agents). Agents 
read/collect sensor data (as nectar) on individual nodes (modelled 
as flowers), and carry (or push) the data through multiple hops 
to the base station, which is modelled as a nest of bees. If they 
do not satisfy a desired level of reliability (i.e. the number of 
sensor data required for an event detection), extra agents leave 
the base station (nest) to the network for collecting (or pulling) 
extra sensor data from nodes. Agents perform these push/pull 
functionalities by invoking biologically-inspired behaviours 
such as migration, swarm formation and replication. 

In order for agents to optimally perform their behaviours 
in terms of reliability, timeliness and energy efficiency, 
agent behaviours are formulated into a well-known NP-hard 
problem, the Vehicle Routing Problem (VRP). Agents 
perform a decentralised and centralised VRP heuristics to 



 Quality-aware sensor data collection 135 

push and pull sensor data, respectively. Simulation results 
show that the VRP-formulated migration behaviour allows 
agents (i.e. WSN applications) to adaptively balance the 
tradeoffs among reliability, timeliness and energy efficiency 
and outperform an existing similar mechanism. 

4.1 Problem formulation 
This paper assumes WSN applications, each of which requires 
the base station to collect at least NR sensor data within D time 
units. NR is referred as the desired reliability. Nrd (the actual 
reliability) denotes the actual number of data received by  
the deadline. In order to reliably detect an event, Nrd ≥ NR.  
In other words, each WSN application requires the normalised 

reliability 1rd

R

N
N

≥  while minimising energy consumption.  

In order to formally state the problem at hand, we use the 
following notations to describe WSNs. A WSN is considered 
as a graph G(V, E). 

• V = {v0,v1, ...,vn} is a vertex set, where v0 is the base 
station. V′ = V − { v0} is a set of n sensor nodes. Each 
node periodically generates sensor data. 

• E = {( vi,vj)|vi,vj ∈ V;i ≠ j} is an edge set. An edge is 
established from the node vi to vj if vi can transmit  
a packet to vj. Due to the nature of asymmetric 
communication in WSNs, an edge is directed; (vi,vj) ∈ E 
does not necessarily mean (vj,vi) ∈ E. 

• cij is a non-negative weight associated with the edge 
(vi,vj). It represents the cost for moving an agent 
between the nodes vi and vj. We will later describe the 
cost function to determine cij. 

• tij is the latency for an agent to move from the node vi to vj. 

• m is the number of agents. Each agent can carry a 
limited size S of data due to the limitation of packet 
size. This is a constraint on how many nodes an agent 
can collect data from. 

• Rk is a migration route for the agent k to follow. 
kRC  is  

the cost of moving the agent k along the route 

( ),
. ;

k k
k R hhh h R

R C C ′′ ∈
= ∑  h′ is the next hop node of the 

node h in the route Rk. 

• 
kRT  is the latency for the agent k to move along the 

route ( ),
. .

k k
k R hhh h R

R T t ′′ ∈
= ∑ . 

The problem at hand is to, given a set of n nodes, determine 

a set of m agents that can satisfy 1rd

R

N
N

≥  and the migration 

route (Rk) of each agent such that 
kRC∑  is minimised 

subject to max
kRT D≤ . 

We can reduce this problem to Vehicle Routing Problem 
(VRP). VRP can be described as follows. Let there be n 
demand points in a given area, each demanding a quantity  
 

of weight Qi(i = 1,2,…, n) of goods to be delivered to it.  
The goods are stored at a depot, where a fleet of vehicles is 
stationed. Vehicles have the identical maximum weight 
capacity and maximum route time (or distance) constraints. 
They must all start and finish their routes at the depot. It is 
assumed that Qi is less than the maximum weight capacity 
of each vehicle and Qi is delivered by a single vehicle. In 
VRP, both the required number of vehicles and their routes 
are unknown. The objective of VRP is to obtain a set of 
routes for vehicles to minimise their total route time. In fact, 
VRP is an m-TSP problem with two additional constraints: 
the maximum weight capacity and maximum route time for 
each vehicle. In our problem, there are n sensor nodes 
(demand points) in the network. Each node vi has a sensor 
data of size li bytes to be delivered to the base station (the 
depot) by an agent (an vehicle). The packet size limitation 
in WSNs is analogous to the vehicle weight capacity in 
VRP. The timeliness constraint in WSNs is mapped to the 
maximum vehicle route time in VRP. 

Cost Function: We next define the function to determine the 
link cost between the node vi and vj(cij). We use packet loss 
rate to determine link cost. To avoid the asymmetric nature 
of communication links, the link cost cij is determined as fij 
× fji, where fij is the loss rate to transmit packets (agents) 
from the node vi to vj. Packet loss rate simultaneously 
impacts the reliability, timeliness and energy efficiency of 
sensor data transmission (agent transmission). Lower packet 
loss rate better meets all of the three requirements. 

Packet loss rate is measured when nodes are deployed. 
Currently, assuming that WSNs are semi-static (Zhao and 
Govindan, 2003; Woo et al., 2003; Meliou et al., 2006), 
packet loss rate is measured at the beginning of a WSN 
operation. It can be periodically measured and updated; 
however, it is out of this paper’s scope. Each node transmits 
a set of packets to each neighbouring node. Each packet 
contains its sequence number and the total number of 
transmitted packets. Upon receiving a set of packets, each 
neighbouring node determines packet loss rate based on the 
number of received packets. 

4.2 Biologically-inspired mobile agents 

In order to solve the problem at hand, this paper proposes to 
use biologically-inspired mobile agents in a push and pull 
hybrid manner. There are two types of agents: event agents 
and query agents. An Event Agent (EA) is deployed on each 
node. It carries (or pushes) a sensor data to the base station 
using multiple hops. On its way to the base station, each EA 
swarms with other EAs to aggregate as many sensor data  
as possible as long as it meets a given deadline. Due to 
inherent failures in WSNs, EAs may not be able to satisfy 
the desired reliability (the number of sensor data required 
for an event detection). In this case, Query Agents (QAs) 
are created at the base station and dispatched to the network 
for collecting (or pulling) missing sensor data from nodes. 
Agents (EAs and QAs) implement the following behaviours. 
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1 Replication: Agents (EAs and QAs) may make a copy 
of themselves. An EA replicates itself on a node when 
it detects an event of interest, which is application-
specific and may simply be a sensor reading exceeding 
a threshold. A replicated EA contains collected sensor 
data can carries to the base station. A QA is replicated 
at the base station and dispatched to the network to 
collect sensor data from nodes. 

2 Swarming: Agents (EAs and QAs) may swarm (or merge) 
with other agents on their way to the base station. EAs 
swarm with other EAs, and QAs swarm with other QAs. 
With this behaviour, multiple agents become a single 
agent. The resulting (swarm) agent aggregates sensor data. 
This data aggregation saves power consumption of nodes 
because in-node data processing requires much less power 
consumption than data transmission does. 

3 Migration: Agents may move from one node to another. 
Migration is used to deliver agents (sensor data) to the 
base station. There are two ways for agents to move. 

• Chemotaxis walk: The base station periodically 
propagates base station pheromones to individual 
nodes in the network. Their concentration decays on 
a hop-by-hop basis. (Each pheromone evaporates in 
a certain time period.) Agents (EAs and QAs) can 
locate the base station approximately, and move to 
the base station in the shortest paths by sensing 
pheromone’s concentration gradient. Base station 
pheromones are designed after the Nasonov gland 
pheromone, which guides bees to move toward their 
nest (Free and Williams, 1972). 

• Sidestep walk: In addition to the chemotaxis walk, 
each EA may sidestep the shortest migration path 
and move to a neighbouring node that has the equal 
or longer distance to the base station, as long as the 
EA meets a given deadline to reach the base 
station. This behaviour encourages EAs to perform 
swarming-based data aggregation by increasing the 
number of nodes EAs visit. QAs are not allowed to 
perform this behaviour. 

Agents perform their behaviours with VRP heuristics. We 
propose a decentralised VRP heuristics for EAs, and 
leverage an existing centralised VRP heuristics for QAs. 
Particularly, these VRP heuristics are used to answer the 
following questions: 

1 Where and how should EAs replicate themselves? 

2 How many agents (EAs and QAs) should be created? 

3 How should each agent (EA and QA) move? 

A decentralised VRP heuristics for Event Agents: EAs 
implement a decentralised VRP heuristics to carry sensor 
data to the base station by a given deadline. To the best of 
our knowledge, there is no existing heuristics to solve VRP 
in a decentralised way. We propose a decentralised greedy  
 
 

algorithm to govern the EA behaviours. The proposed 
algorithm uses a cluster-based approach to determine where 
and how EAs replicate themselves. Nodes are grouped to 
form clusters, and an EA replicates itself on each cluster 
head when it detects an event. Each cluster has one-hop 
topological radius, and all neighbouring nodes of a cluster 
head become its cluster members. 

Cluster head election is designed to maximise the number 
of cluster members by choosing a sensor node who has  
many neighbouring nodes. In this process, each node 
becomes idle first for Tidle time units. It calculates Tidle by 
randomly choosing a number between zero and Tmax/N. Tmax is 
a constant that specifies the bound of cluster head election 
period, and N is the number of neighbouring nodes. After this 
idle period, each node becomes a cluster head and broadcasts 
an ADV (advertisement) message to its neighbouring nodes. 
However, if a node receives an ADV message from any of  
its neighbouring nodes during the idle period, it becomes  
a cluster member of the node who originates the ADV 
message. Each cluster member sends a JOIN message to its 
cluster head so that the cluster head know who are cluster 
members. Through this process, clusters are uniformly 
distributed and cover the entire network. Note that each node 
always belongs to a single cluster; if it receives multiple ADV 
messages during its idle period, it responds to the first ADV 
message and ignores subsequent ones. 

When an EA detects an event on a cluster head, the EA 
replicates itself one or more times. The replicated EAs visit 
cluster members to collect sensor data from them. This way, 
each EA aggregates sensor data and carries the aggregated 
data to the base station. The ideal number of replicated EAs 

per cluster is n
s

⎡ ⎤
⎢ ⎥⎢ ⎥

, where n is the expected number of nodes 

in a cluster and s is the number of data that a single EA  
can carry. If an EA already contains s number of data and 
cannot contain any more, the EA is refereed as a fat EA. If 
an EA can still contain data, it is referred as a slim EA. 

Each fat EA moves toward the base station on a hop-by-
hop basis by selecting the next hop node that minimises the 
link cost (cij). This allows fat EAs to increase the chances to 
reach the base station by a given deadline. 

By default, each slim EA also chooses the next hop node 
that minimises link cost as well. However, when it finds a 
cluster on its way to the base station and has not visited the 
cluster’s head node, the EA sidesteps to the cluster head for 
swarming with other slim EAs as far as it meets a timeliness 
constraint. If there is no slim EAs on the cluster head, the 
EA stays there for a period of time before moving to the 
base station again. This period increases the chances for a 
waiting EA to swarm with other slim EAs while allowing it 
to reach the base station within a given time constraint. 

The waiting period of each slim EA is calculated by 
each cluster head based on a given deadline and the latency 
from the cluster head to the base station. Let Td be the 
deadline, and ti,b be the latency from the cluster head i to the 
base station, a slim EA at cluster head i can wait for Td − ti,b  
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before it starts moving towards the base station. This 
waiting time allows slim EA to move to the base station 
within the deadline, as long as the deadline is greater than 
the longest travelling time. In addition, the waiting time 
allows slim EAs to increase the chance to combine with 
other slim EAs. For instance, we assume that on its way to 
the base station, a slim EA at cluster head i has to visit 
cluster head j which also has a slim EA. Let ti,b and tj,b be 
the latency from the cluster head i and j to the base station 
respectively. The travelling time from the cluster head i to j, 
ti,j, is then approximately ti,b, – tj,b. The slim EA at cluster 
head i will wait until Td − ti,b, while slim EA at cluster head 
j will wait until Td − tj,b. When slim EA at cluster head i 
starts moving at Td − ti,b, it will reach cluster head j at time 
Td − ti,b + ti,j. This is the same as the time that slim EA in 
cluster head j is supposed to leave, which is Td − tj,b. So, the 
two EAs will combine and then leave cluster head j. This 
waiting and combination process is performed repeatedly 
along the way to the base station. In practice, the waiting 
time can be considered as an upper bound instead of a hard 
deadline. Therefore, an EA may leave a cluster head before 
the waiting time expires. 

A centralised VRP heuristics for query agents: QAs 
implement a centralised VRP heuristics to visit a certain 
number of nodes from the base station and collect extra 
sensor data on the nodes. To find an optimal number of QAs 
and also travelling path of each QA, Clarke-Wright Savings 
algorithm (Clarke and Wright, 1964; Lenstra and Kan, 1981), 
a well-known VRP solving algorithm, is used with some 
modifications. The Clarke-Wright Savings algorithm is an 
heuristic algorithm which uses constructive methods to 
gradually create a feasible solution with modest computing 
cost. Basically, the Clarke-Wright Savings algorithm starts by 
assigning one agent per vertex in the graph. The algorithm 
then tries to combine two routes so that an agent will serve 
two vertices. The algorithm calculates the ‘savings’ of every 
pair of routes, where the savings is the reduced total link  
cost of an agent after a pair of route is combined. The pair of 
routes that have the highest saving will then be combined if 
no constraint, time or capacity, is violated. 

In this paper, Clarke-Wright Savings algorithm is extended to 
consider the time and space constraint. By looking into the data 
the base station has received from the EAs, the base station can 
determine to which cluster or area a QA should be dispatched 
initially. 

1 An internal path, Rj, is created within each cluster, Xj 
which sensor readings are missing. Consider a set of node 
{ }jv v X∈ , Clarke-Wright Saving can be used by 

choosing a cluster head, i.e. swarm location, ˆ jv  as a depot, 

then create a path to visit every { }ˆj jv X v∈ − . The time, 

tj, to travel within the cluster is also assigned to the cluster.  

2 The cluster head, îv , is selected from the cluster Xj to 
represent the location of the cluster. 

3 The shortest route Rij between two nodes, îv  and ˆ jv  
where i ≠ j are calculated using Floyd-Warshall 
algorithm. The distance between nodes is measured by 
cost, îjc  of moving agent between two nodes, which is 
the function of packet loss rate. 

4 A route R0J  is created from base station to each node ˆ jv . 

5 The saving of combining a pair of routes between the 
base station and two individual nodes ( ˆ jv ; cluster 
representative) are computed. 

0 0ˆ ˆ ˆij i j ijs c c c= + −  (2) 

The saving must obey two constraints; first, the travelling 
time along the combining route must be less than deadline, 
t0i + ti + tij + tj + tj0 < D and the number of node in the 
route R0ij, |Xi| + |Xj|, is less than space limit, S. 

6 The saving is ordered from the largest to smallest into a 
saving list 

7 Begin at the top of the saving list, a sub-tour is formed 
by merging the routes, R0i and R0j, that create the 
saving, sij: 

• a new route, R0ij is constructed with travelling cost 
0ˆ ijc  and time 0ijt . 

• the route R0i and R0j are removed. 

8 The process is repeated from the first step until no more 
possible saving. 

Finally, a set of routes between clusters is constructed and 
an QA is assigned for each route. Also, the travelling route 
inside each cluster is given to a QA who is going to visit the 
cluster. Then, QAs are dispatched to collect data from each 
cluster by visiting the cluster head first. If QA can visit 
cluster head and the cluster head still have the sensor 
readings from each cluster members, QA can collect sensor 
readings from the cluster head and travel back to the base 
station immediately. However, if QA cannot visit the cluster 
head, e.g. cluster head is missing or running out of battery, 
QA then consult the travelling path inside the cluster which 
assigned by base station to visiting each cluster member to 
collect data and then travel back to base station. 

4.3 Performance evaluation 

The proposed approach is implemented in NesC and 
evaluated using TOSSIM 1.0 (Levis, 2003). A sensor network 
is simulated in an area of 200 × 200 square meters. In most of 
our experiments, the network consists of 150 sensor nodes 
modelled after MICAz mote with communication radius of 
about 30 meters, bandwidth of approximately 200 kbps and 
128 kB of memory space (Crossbow Technology Inc., 2006). 
B-MAC is used as the MAC layer protocol by using CC2420 
radio module in TinyOS. The sensor nodes are uniformly 
deployed in the area. 
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To the best of our knowledge, only MMSPEED satisfies 
reliability and timeliness requirements simultaneously 
(Felemban et al., 2005). MMSPEED provides active on-
time reachability of packets by using multiple speed levels  
and multi-path routing. It uses SPEED (He et al., 2003) for  
the timeliness guarantee and adds probabilistic reliability 
guarantee based on probabilities of reliable delivery of packets 
at different links. MMSPEED provides the flexibility for 
applications to choose several different levels of reliability 
and timeliness. However, it does not consider minimising 
the energy consumption in routing. Therefore, we 
implemented MMSPEED in TinyOS for comparison. In 
addition, we use TinyOS’s Drain Data Collection Protocol 
(Tolle and Culler, 2005) as a baseline. The application’s 
desired reliability is varied from 0.6 to 1.0 and desired 
freshness, which is a metric to measure timeliness, is  
varied from 60 to 100 seconds. Each sensor node reports 
sensing values one at a time and each agent can carry up  
to 10 readings. We evaluate the system performance to 
demonstrate how proposed approach achieves the desired 
reliability, freshness and the energy consumption involved. 
For Agentilla, the energy consumed during both the cluster 
formation stage and the data collection stage is included in 
the measurement. We have also studied how the network 
density, the packet size, i.e. the maximum number of sensor 
readings an agent can carry, and network fault severity 
affect the system performance. More results can be found in 
work by Boonma et al. (2007). 

Figure 6 shows the actual reliability against the desired 
reliability when desired reliability is set to be 0.5 and 1.0. The 
results show that for proposed approach, a reliability of 0.74 
can be achieved by purely using EAs. When the desired 
reliability is greater than 0.74 (i.e. 1.0), QAs are dispatched to 
collect additional data in order to archive higher reliability. 
However, due to the time constraint imposed by the 
application, the actual reliability can be less than the desired 
reliability. For example, when the freshness is very short  
(60 seconds in the figure), the highest achievable actual 
reliability is 0.81, which may be lower than the desired 
reliability. However, if the freshness is long enough, i.e.  
90–100 seconds, the actual reliability can be equal or higher 
than the desired reliability. In contrast, Drain and MMSPEED 
cannot improve the actual reliability beyond 0.73 and 0.85 
respectively because both of them rely purely on push 
mechanism. Figure 7 shows the average energy consumption 
when the desired reliability is set to be 0.5 and 1.0. When the 
desired reliability is greater than 0.7, data collected by EAs 
cannot satisfy the desired reliability, so the QAs are dispatched 
to gather additional data; hence, the increase in the total 
energy consumption. Compared with Drain and MMSPEED 
which consume similar amount of energy irrespective of any 
reliability requirement, our approach consumes less energy 
when the desired reliability is low (i.e. 0.5). Moreover, when 
the desired reliability is high (i.e. 1.0) proposed approach  
has lower energy consumption due to the data aggregation 
mechanism used in proposed approach. Figure 8 shows that 
the energy consumption of MMSPEED is constant regarding 
the desired reliability. Nevertheless, proposed approach can 
reduce the energy consumption when the desired reliability is 
low, i.e. by using only EAs. 

Figure 6 Impact of desired reliability on the actual reliability 
with varied deadline 

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 60  70  80  90  100

D
e
a
d
l
i
n
e
(
s
e
c
o
n
d
)

Actual Reliability

Reliability by Deadline

Agentilla - 0.5
Agentilla - 1.0
Baseline - 0.5
Baseline-1.0

MMSPEED - 0.5
MMSPEED-1.0

 

Figure 7 Impact of desired reliability on energy consumption 
with varied deadline 
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Figure 8 Impact of desired freshness on energy consumption 
with desired reliability 
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5 Suggestions for future research directions 

Existing work has largely been limited to studying the 
tradeoff between energy consumption and each individual 
quality need. The techniques developed differ in their 
assumptions about the observed phenomena, the network 
properties, and the stringency of application needs. Some 
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schemes are implemented at the data management layer, 
completely oblivious of underlying network routing or node 
duty cycling issues. Other schemes, in contrast, provide a 
universal routing protocol that does not take into account 
applications’ specific characteristics. We believe that all the 
non-functional needs (reliability, timeliness and accuracy) 
are cross-cutting issues that are best addressed by cross-
layer approaches. The dynamic and uncertain nature of 
sensor environments caused by varying network conditions, 
system loads and application traffic implies that data 
collection techniques must be adaptive and customisable  
to provide desired QoS and QoD. Collection of raw or 
derived data should take into account (a) the non-functional 
requirements of applications, (b) the underlying observed 
physical phenomena, whose properties may suggest a 
processing strategy, and (c) the characteristics and current 
state of the sensor network, e.g. its scale, degree of 
heterogeneity, processing/memory/energy capabilities of 
sensors. Considering the wide use of sensor data collection 
protocols as a building block for many sensor applications, 
the sensor network community needs to standardise a common 
methodology that evaluates these protocols. Despite a 
considerable number of proposed sensor data collection 
protocols in the literature, no comprehensive comparative 
analysis has been previously conducted. Those protocols are 
often designed with different assumptions and evaluated 
under different network and system conditions. The lack of 
a thorough and fair comparison among these protocols 
makes it very difficult for application developers to select 
an appropriate protocol for their applications. There is an 
urgent need to design a platform that allows both functional 
and non-functional (timeliness, accuracy, reliability) 
requirements of applications to be specified, simulates 
various network conditions and application workloads to be 
used for evaluation, and provides well-defined interfaces  
for easy plug-in of various schemes. This motivation is 
derived from the premise that choosing between competing 
execution strategies should be hidden from the user. Instead, 
user tasks will be submitted in a high-level language 
appropriate to the application domain. These will be 
mapped to appropriate data management primitives by the 
application software which will then be posed to the sensor 
database management system in a declarative (e.g. SQL-
like) language. The language will specify not only what they 
need, but also in what manner they need the data. 
Subsequently, the application needs will then be evaluated 
by sensor data collection schemes. 

With the evaluation framework in place, we would be 
able to provide fair comparisons of existing sensor data 
collection protocols and thorough evaluation of any newly 
proposed techniques. The framework can also provide an 
end-to-end support of sensor data collection with varying 
QoS and QoD needs. A full-fledged framework can be built 
on initial work on data quality specification (Bisdikian  
et al., 2009) and our previous work on Quality-aware 
Sensing Architecture (QUASAR) (Lazaridis et al., 2004). 
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