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Abstract―The anti-system adversarial community is 
characterized as a self-organizing system-of-systems, noted 
collectively for its leadership in rapid evolution and innovative 
advancement; widening the gap between security cost and 
security losses. It appears that system security strategy 
cannot hope to even achieve parity without a comparable self-
organizing strategy. Toward that end a project is underway to 
catalog re-usable patterns of self-organizing security of many 
kinds, principally found in natural systems, but also seen in 
recent computational approaches. One class of pattern of 
special interest involves discovery of previously unseen 
threats and attacks. In general this class of pattern has 
aspects of learning, innovation, and evolution as capability 
objectives. The genetic algorithm is one such pattern. Another 
such pattern is seen in artificial neural networks. Combining 
the two into a Genetic Algorithm augmented Neural Network, 
often called GANN, has considerable recent history in the 
literature. Not many of these are directly related to security 
applications. Some security-application work shows GANNs 
employed for feature selection provide enhanced learning 
performance and accuracy, and avoidance of local minimum 
traps. This paper adds the GANN pattern to the self-
organizing security pattern catalog, and applies the pattern to 
a self-organizing security application under development.  
 

 
Index Terms―GANN, intrusion detection, SAREPH. 
 

I. INTRODUCTION 
 
This paper is part of an on-going open effort started in 2010 

[1]  to develop a pattern catalog and pattern language for self-
organizing security strategies. The project is motivated by the 
observation that the adversarial community is leading the 
generally-reactive security community in both attack 
innovation and rapid evolution; accomplishing this with 
effective self-organizing behaviors. Six characteristics 
(described later) that underpin adversarial evolutionary and 
innovative behavior have been abstracted and shown in Table 
I, for use in qualifying candidate self-organizing security 
patterns that may level the playing field.  

The effort at this stage is developing a preliminary set of 
candidate patterns, and using them to refine an established 
pattern description form and the set of pattern qualifying 
characteristics [2, 3]. Refinement has not yet found a need to 
alter the basic architecture of the pattern form or the qualifying 

characteristics  – but is rather clarifying fine distinctions 
between the qualifying characteristics and refining the 
descriptive nature of the pattern form elements. 

TABLE I 
PATTERN QUALIFICATION SAREPH FILTERS 

 
Neither the pattern project nor this paper proposes new 

patterns, but rather finds patterns in repetitive use that can be 
abstracted and described in a manner that facilitates 
understanding of the essence of the pattern, benefits 
conveyed by employment of the pattern, and a context in 
which it is appropriate for employment consideration. The 
descriptive method attempts to be comfortably 
understandable to systems engineers, security engineers, and 
decision makers involved in considering pattern employment. 

The ultimate goal of the project is a pattern language for 
self-organizing security strategies. Using spoken language as 
a metaphor, identifying candidate patterns is akin to 
developing a vocabulary, and structuring a pattern language is 
akin to developing a grammar for combining patterns 
syntactically into semantically meaningful sentences [4]. 

This paper is the second foray into pattern combination, 
and here combines a basic genetic algorithm pattern [5] with 
an artificial neural network (ANN) as a candidate combination 
pattern (sentence, or perhaps sentence fragment in the 
pattern language). A basic ANN pattern has not yet been 
published as a stand-alone pattern, but shall be as a follow-on 
to this paper, which makes its nature obvious. The first 
combination of patterns employed the Bow Tie [2] pattern 
within the Proactive Anomaly Search [3] pattern. 

In the literature the combination of a GA with an ANN is 
referred to as a GANN (genetic algorithm – neural network). 

[S] Self-organizing – with humans embedded in the loop, 
or with systemic mechanisms. 

[A] Adapting to unpredictable situations – with 
reconfigurable, readily employed resources. 

[R] Reactively resilient – able to continue, perhaps with 
reduced functionality, while recovering. 

[E] Evolving with a changing environment – driven by 
situation and fitness evaluation. 

[P] Proactively innovative – acting preemptively, 
perhaps unpredictably, to gain advantage. 

[H] Harmonious with system purpose – aiding rather than 
degrading system/user productivity. 
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GANNs are applicable when it is necessary to learn or 
discover globally optimal solutions in complex situations and 
environments, beyond human capability for discovery and 
mathematical reduction. GANNs evolve innovative responses 
to cope effectively in complex and changing environments, 
and are likely to be an important strategy for dealing with 
zero-day attacks and advanced persistent threats – where 
prior attack knowledge is lacking.  

The purpose for the pattern project was reviewed above. 
Next, the general nature of an ANN and a GA is introduced. 
Then an application example of GANN employment is 
reviewed and used to abstract the elements of a Basic GANN 
pattern. The GANN pattern is then applied to a self-organizing 
security example under current development. 

 
II. ANN INTRODUCTION 

 
An ANN is a computational construct, inspired by the 

parallelism of biological nervous systems, that can often 
discover and resolve complex relationships between many 
inputs in combination, to arrive at an optimal output for a 
specific and  bounded problem space. An ANN is generally 
useful when the complexity of the relationships between input 
values and optimal outputs is beyond human ability to define – 
thus an ANN is used to learn the optimal relationships in a trial 
and error training/learning series that converges. 

Briefly, and simplifying: ANNs consist of nodes (often called 
neurons) and node connections (often called synapses). 
Nodes are of three types: input layer, output layer, and 
intermediate (hidden layer) nodes. Connections between 
nodes may be feedforward only, or may include some looping 
feedback connections in a multi-layer ANN. ANNs have 
synapse connections between neurons that weight the value 
sent from a connected neuron.  Weights may take on positive, 
negative, or zero values, and may be integer or real value 
depending on the application. In either case a weight value of 
zero is effectively a null connection and a weight value of 1 is 
a direct pass-on. The neuron is a transform function that 
passes on the sum of the weighted values of all of its inputs 
as its output, and may also apply a bias, as shown in Fig. 1. 
Inputs to a neuron are typically numerical values, or strings of 
features composing a pattern.  

Topology of an ANN is expressed in the structure of nodes 
and connections, which may be fixed or evolving. A simple 
evolution implementation can be accomplished by alternating 
connection weights between zero value and some value. 
More complex topology evolutions will also change the 
number and location of nodes. Feedforward ANNs adjust 
node output values typically in waves, a wave moving 
synchronously through the ANN one layer of nodes at a time. 
A simple feedforward ANN has only input and output nodes, 
and calculates the output value in a single wave. A still basic 
ANN has feedforward connections through multiple layers of 
nodes, and completes a cycle when the calculation waves 
reach the final output nodes. An ANN with feedback loops is 
more expensive in computation, may take a while to settle a 
stable output set, and may also require some special settling 
computations to avoid infinite re-calculation loops. 

An ANN produces outputs based on a fixed set of learned 
or trained neuron parameters. If it is a dynamic ANN it will 
have an internal ability to adjust these parameters in 
continuous incremental learning, generally driven by an 

external source of feedback that provides an error measure of 
fitness that is back propagated through the ANN layers. There 
are other forms of feedback learning as well.  

A very basic ANN is feedforward only, with fixed 
parameters in one set of weighted synapses between inputs 
and outputs. A more generalized version of a basic ANN 
remains feedforward only, with additional “hidden” neuron 
layers between inputs and outputs.  

 

 
Fig. 1 – Components and transfer function of a single-hidden-

layer feedforward artificial neural network (ANN) 
 

III. GA INTRODUCTION 
 
Briefly and simplifying: a genetic algorithm converges on a 

solution to an optimization problem by using a “fitness 
function” to evaluate how well candidate solutions address the 
problem. In natural evolution, fitness is the organism’s ability 
to survive and reproduce. Computing applications, on the 
other hand, abstract fitness to match the problem at hand. In 
robotics, for example, fitness may represent a robot’s ability to 
navigate around obstacles successfully. In security, fitness 
may represent the ability to detect never-seen-before 
intrusions with low false-positive and false-negative rates.  

In keeping with the evolutionary metaphor, embodied 
candidate solutions may be called “individuals,”  the encoding 
of each candidate solution is called a “chromosome” or 
“genotype”, and each distinct element within a chromosome is 
called a “gene”.  

With a chromosome structure established, the GA applies 
“operators”, based on natural evolution, to evolve an initial 
randomly-generated (un-fit) population of individuals into more 
fit individuals, until a suitably fit individual emerges. The GA 
creates new generations of individuals from previous 
generations, evolving their chromosomes until a time limit is 
reached or until sufficient fitness is achieved. 

To create a new generation of chromosomes, the fitness of 
the individuals in the current generation is evaluated using the 
fitness function. The GA then selects the fittest individuals 
stochastically, i.e., with some randomization, for carryover and 
modification for the next generation . The fittest individuals are 
selected for carryover as well as for breeding new individuals 
for the next generation with the GA crossover operator, 
Crossover mimics sexual reproduction in nature – two 
individuals are selected to breed, and their children’s 
chromosomes are created by swapping a portion from each 
parents’ chromosome at a randomly-selected location. Some 
other moderately fit individuals in the current generation are 
allowed to survive to the next generation, and the least fit 
individuals are replaced by the new products of crossover to 
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maintain the overall population size. The other commonly 
applied GA operator is mutation – occasionally, a random 
gene (bit or string of bits) of a chromosome is changed for the 
next generation.  

 
IV. BASIC GANN PATTERN 

 
A self-training ANN can be computationally expensive. The 

excellent paper by Montana and Davis [6] provide an example 
of using a GA to optimize ANN parameters, noting: “It not only 
succeeds in its task but it outperforms back propagation, the 
standard training algorithm, on a difficult example. This 
success comes from tailoring the genetic  algorithm to the 
domain of training neural networks.”  Floreano Dürr, and 
Mattiussi [7] adds good breadth and depth to understanding 
GANNS, with numerous applications cited.  

Dewri [8] provided the basis for Fig. 2. with terminology 
modified for consistency here. Dewri notes in his discourse on 
evolutionary algorithms (EA): “The evolution of connection 
weights introduces an adaptive and global approach to 
training. Unlike gradient-based training methods, viz. back 
propagation, EAs [GAs included] rely on probabilistic search 
techniques and so, even though their search space is bigger, 
they can ensure that better solutions are being generated over 
generations. Optimal network architectures can also be 
evolved to fit a given task at hand.” 

 

 
Fig. 2 – ANN network evolution with GA learning assistance 

(modified graphic from [8]) 
 

The GANN pattern is applicable to many problem domains, 
including security related applications. Some examples are 
cited in the bottom of the pattern form shown in Table III. 

Here the model for the basic GANN pattern uses  the 
evolution of predator-prey behaviors from Floreano and Keller 
[9] as a grounded example, combining a feedforward ANN 
through potentially multiple layers, with the basic GA pattern 
that employs crossover and mutation operators as described 
in [10].  

Floreano and Keller provide many examples of complex 
behaviors emerging from GANN employment in robot mobility 
controllers: collision avoidance, cooperative behavior, prey 
stalking, and predator avoidance. Here the focus is on their 
predator-prey experiments. A population of predator robots 
and a population of prey robots were constructed on the same 
basic hardware platform, with the same neural network 
controller software, but differing in the physical limitations of 
their top maximum speed and vision capabilities. The prey 
could outrun the predator, but the predator had superior 
detection range. 

Self-Organization – The GA for each robot self-organizes 
new chromosomes for robots that do not exhibit sufficiently fit 
behavior, using crossover and mutation GA operators. The 
fitness of robotic behavior is determined by the effectiveness 

of the ANN in successive generations of predator-prey co-
evolution. The GAs also reorganize the population of ANN 
behaviors by loading new chromosomes into ANN connection 
weight parameters. Feedforward ANNs, as used in the 
predator-prey example, are not by themselves self organizing, 
and rely on the GA to provide the self-organization of the ANN 
structure. 

Adapting to unpredictable situations – Adaptation 
occurs within the GA when it reconfigures chromosomes with 
crossover and mutation operators, working on stochastically 
selected chromosomes from among those with high and 
promising fitness. This adaptation can accommodate changes 
in the environment (performance of opponents). As the prey 
became more adept at avoiding predation, the predators 
adapt to their own less-fit condition and cause new behavior 
strategies to evolve, which in turn caused the co-evolutionary 
cycle. In all cases the behavior-evaluation of the ANNs 
established the fitness measure for the GAs. 

Reactively Resilient – The GA generates new 
chromosomes with crossover and mutation operators rather 
than wholesale random replacement – using redundant gene 
fragments and diversity among gene fragments to enable 
recovery from a degraded average fitness rather than a 
catastrophic failure of the population . This has the effect of 
maintaining some prior history in new chromosomes, which 
lends resilience when chromosome changes are less fit in a 
new generation than in a prior generation. The GA feeds the 
ANN with new chromosomes to try. In combination the GANN 
exhibits resilient behavior through generations – recovering 
from setbacks as the environment changes.  

Evolvable Strategies – Evolution occurs across 
generations, is directed toward more fitness as opposed to 
random change, and relies on memory of prior generation 
genetic fragments and chromosomes to move average 
population fitness in the optimal direction. The predator-prey 
GANN example demonstrate an evolution of strategies that 
are generated and selected to take advantage of an 
adversary’s weaknesses, while exploiting the protagonist’s 
strengths. Initial populations of both types of robots had 
members wandering at random and at varying speeds. Under 
selective pressure, members of the prey population who failed 
to use their speed advantage to avoid losing a pursuit by a 
predator died off and were replaced; while the predator 
population developed members who used sophisticated visual 
tracking and motion control behaviors to intercept prey from 
outside the prey’s sensory field of view. In time, the predators 
became so adept at catching prey in the open, that they lost 
their wall avoidance behavior. As the prey evolved to become 
harder to catch, the predators re-evolved their wall avoidance 
behavior. After several generations of being hunted by 
predators who largely avoided walls, the prey evolved a 
strategy of escaping by zooming along the walls. This induced 
a predator counter strategy of backing up against a wall, and 
waiting for the relatively blind prey to run into a predator. 

Proactively innovative – A properly implemented GA is 
by nature proactively innovative; it creates speculative 
chromosomes in a search of superior chromosomes, and if 
permitted by the system designer, will continue to do so even 
after acceptable chromosomes are found. GA’s that continue 
to search can avoid local and temporary optima. In the 
predator-prey example of co-evolution, the GANN reacts to a 
clearly unfit chromosome (behavior strategy), but is proactive 
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in the way the GA searches for solutions as well as in the 
GANN’s ability to continue searching for better solutions 
beyond acceptable – design goals permitting. If a new 
chromosome is neither advantageous nor disadvantageous, it 
may persist in a percentage of a population for some time. If 
the fitness landscape shifts to confer a selective advantage on 
the new genotype, this can also be viewed as proactive 
innovation, held in reserve until useful. 

Harmonious with system purpose – A properly designed 
GANN is inherently in harmony with the needs of its parent 
system, robot population survival in this example. Harmony 
between generations of predator or prey is preserved to the 
extent that GA operators of mutation and crossover evolve the 
incrementally toward more fitness.  

TABLE III 
BASIC GANN PATTERN 

Name - Basic GANN 
Context – A complex relationship, perhaps dynamic, between sensed environmental input and appropriate environmental 
response, beyond human capability to reduce to an algorithm, but appropriate for an evolutionary (self learning) algorithm. 
Problem – An evolutionary algorithm that needs to converge rapidly, avoid local optima, and perhaps deal with a changing 
environment.  
Forces - Complexity of the environment vs. capacity (size) of the ANN; speed of learning a static environment vs. 
generalization for new environments; speed of learning vs. cost of learning; suitability of fitness function vs. cost of evaluation; 
capability of the ANN (for classification) vs. suitability of the GA (genome structure) [10]. 
Solution – Combining a genetic algorithm that employs crossover and mutation operators to feed speculative parameters to a 
feedforward (only) single or multilayer ANN. 

 
GANN continuous loop from panel 4 back to panel 1 for successive generations. 100 robots per generation. Predators and 

prey converge from initially-random neuron genes to best-strategy genes in 300 generations. Fitness determined in fixed time 
limit by how close a predator got to a prey. Modified graphics from [9, 11]. 

[S]elf organization – occurs as GAs reorganize genes in chromosomes, and as ANN loading reorganizes the nature of the 
ANNs in the population. 

[A]daptation – GAs adapt to fitness evaluations, applying crossover and mutation operators to reconfigure chromosomes at a 
varying rate determined by the average fitness of the ANN population, permitting adaptation to a changed environment. 

[R]eactive resilience – is enabled by redundancy and diversity in GA chromosome fragments, so that an environmental 
change (superior opponent capability evolution) only degrades but does not destroy average fitness of the ANN population. 
Recovery is then enabled by GA adaptation and ANN evolution. 

[E]volution – ANNs evolve toward an optimal fit with a stable environment, caused by the GAs selectively retaining 
(remembering) chromosomes and chromosome fragments that contribute to better than average fitness. 

[P]roactive innovation – Horizontal gene transfer, a prime source of innovation [2],  occurs with the GA crossover operator, 
stochastically combining gene fragments from selected successful chromosomes for insertion in next generation 
chromosomes. Mutation of gene fragments also contributes, by retaining most of a successful gene and proactively 
experimenting with small chromosome changes. Stochastic retention of gene fragments and moderately-fit GAs also 
contributes, by generating chromosomes and gene fragments that may be highly-fit when the environment changes. 
Finally, continued GA adaptation after a population has sufficient fitness proactively searches for opportunistic fitness. 

[H]armonious operation – Predator and prey GANNs are in harmony with the survival needs of their respective populations, 
evolving toward higher average survival fitness without retaining population-threatening survival obstacles.   

Example – Co-evolution of predator and prey behaviors in robots [9, 11] 
Example – Very informative in GANN generality, with a sonar example [6]. 
Example – Very informative in GANN generality, with examples cited from many domains [7]. 
Example – Network backdoor intrusion detection [12] 
Example – GANN short-term forecasting framework for database intrusion prediction system [13]. 
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V. GANN SECURITY APPLICATION 

 
Anomaly detection promises to find elements of abnormality 

in a field of data. High end applications include finding 
patterns in unstructured data, identifying emergent behaviors 
in multi-agent systems, illuminating insider threats in progress, 
and detecting cyber attack vectors unseen previously. 

Anomalous behavior detection promises a way around the 
limitations of looking only for known attack patterns, but it has 
raised issues of higher false positive rates and questionable 
normal-behavior stability. The difficulty stems from current 
technology approaches that cannot cover the entire field of 
possible anomalies; making compromises on pattern 
specificity and pattern capacity. Described here and depicted 
in Fig. 3 is an architecture that doesn’t suffer from those 
compromises. 

The example provided here is an extension-in-process of 
prior work conducted under a DHS S&T contract completed in 
2011, and described in Self-Organizing Resilient Network 
Sensing (SornS) with Very Large Scale Anomaly Detection 
[14].  

 

 
Fig. 3 – A 4-layer GANN. The GA at each layer receives 
fitness feedback from the next higher ANN layer, as guidance 
for evolving genes in same-layer ANN neurons. Feed-side 
collaboration among endpoint GAs improves learning speed 
at similar endpoints.  
 

Above the GANN at L5, a human in diminishing supervised-
leaning trains the GANN  by evaluating what the GANN’s 
fourth layer presents as suspicious, which causes primitive 
ANN layers to evolve into ones customized to the specific 
environment. A GANN layer at L4, similar to an L3 correlative 

endpoint GANN layer learns to correlate network wide 
anomalies and relieve the human of repetitive decisions and 
interventions. A human also retrains the GANN when changes 
in network resources, operational practices, or policy changes 
cause new lower layer anomalies. A human also trains lower 
level GANN layers to distinguish when anomalies do and do 
not need to trigger immediate automated action.  

Contents of an ANN “neuron” are GA-provided “genes”, 
composed of some maximum but small number n (perhaps 6 
or so) 8-bit feature bytes received from the next lower level, 
where n will be established and fixed after additional 
experimentation. Genes may have trailing features set to null 
(don’t care) when shorter genes are appropriate. If an ANN 
neuron has all non-null gene features satisfied, the neuron’s 
output is a single feature passed to all neurons at the next 
ANN level. 

Relevance (fitness) feedback propagates from the top layer 
down, helping a layer-specific GA determine what genes to 
keep and whet genes to replace at that level. The GA never 
stops generating some percentage of new genes, even when 
an optimal set appears to be present at the companion ANN 
layer, avoiding local minima traps and accommodating 
changing environmental conditions. This GANN relationship is 
bi-directional – the GA provides the ANN neuron content and 
the ANN provides the fitness function for the GA. It is 
expected that convergence on sparse (minimally-overlapping) 
ANN-layer genes will come from continued GA speculative 
gene generation, which should increase average fitness 
across an ANN layer as overlap is reduced. 

The ANN neurons will be implemented in an inexpensive 
massively parallel VLSI chip, soon to market but currently 
being emulated, which will provide propagation through the 
ANN levels at input data-stream speed. Speed is important in 
the ANN as this is where learned attacks and suspicious 
behavior will be recognized immediately for recommended or 
automated action. Learning, driven by the GA, is not as time 
critical. Initially useful dictionaries at each level will take some 
time (unknown as yet) to converge, though seeding the ANN 
with known gene relevance can hasten initial convergence for 
a the local-application environment. In any event, the ANN 
can converge on useful content through in-actionable 
observation of real-time data before it is permitted to cause 
action with its conclusions.   

The GA learning objective is to converge upon an optimal 
fixed-number of genes (the genetic dictionary) at each ANN 
level, where optimal fitness is a function of relevance to the 
next higher ANN level with minimal overlap at this level 
(sparse  coverage within a very large range of potential 
genes). The GA loads each ANN neuron with a specific 
different gene. 

Taking a lesson from reverse engineered and computer 
modeled mammalian visual cortex, it appears that very good 
“immediate” object classification occurs in the first four neural 
layers, with a dictionary of about 100 features in each of the 
first two layers. Subsequent-layer dictionary-size has not been 
seen in the literature by this author, but the regular repetitive 
nature of cortex leads a working assumption that they may be 
in the same size range.  

As a benchmark, a four-layer GANN with 100 genes at 
each layer, would make 100 million classifications at the 
fourth layer. Human expertise in a given domain is thought to 
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require 200,000 to 1 million pattern classifications. Even if 99 
percent of the GANN’s top level classifications are non-sense, 
expertise appears possible.  

The first layer of one portion of modeled visual cortex looks 
only for edges, composed of adjacent retinal pixels in various 
orientations and sizes, numbering approximately 100. The 
classified edges are then sent to the next higher layer that 
looks for certain (on the order of 100) adjacent edge 
configurations that are classified as (so-called) glyphs. Certain 
configurations of adjacent glyphs are classified at the next 
level as (so called) geons, with the fourth layer able to identify 
general object classes, such as a car, a face, a house, etc. It 
appears that cortex looks for anomalies at each of these 
levels – those configurations that are relatively rare but also 
useful for distinguishing relevance from the large field of 
possible input data. Here anomalies are not bad things, but 
rather good things which afford optimal incremental sense 
making. 

Genes for GA replacement speculations are not exclusively 
(or necessarily) generated by mutation and crossover 
operators acting on parent (prior generation) genes, but rather 
chosen from a very large (10 to the power 15) dynamic 
catalog of known anomalous 6-feature candidates (not-
normally-seen-recently gene configurations). This is enabled 
at full data stream speed by the VLSI pattern processor and a 
special anomalous-gene detection architecture referred to as 
a Gang Detector (GD) [14]. The GD is a massively parallel GA 
mutation operator, of a specialized nature, that provides pre-
qualification on speculative gene candidates by weeding out 
often recently seen “normal” candidates. Crossover may have 
some use in temporal detector genes, but not in correlative 
detectors, and probably not in spatial detectors as the GD 
operator will explore the spatial configuration space more 
effectively. The GD is a GA that can establish anomaly-fitness 
of 10 to the power 15 genes simultaneously, and can cover 
the entire space of genetic possibility simultaneously at data-
stream speed. GD creation and management is modeled on 
the immune system inspired Proactive Anomaly Search 
pattern [3] coupled with the BowTie pattern [2]. 

By themselves, the vast coverage of GDs can reduce false 
negatives, but not false positives, and may increase the 
occurrence of false positives due to greater coverage of 
anomalous pattern space. False positive reduction will be 
accomplished by two aspects of the overall architecture: (1) 
non-repetitive human evaluation and training at L5, and (2) 
human evaluation feedback will propagate as learning in lower 
ANN layers (memory) with companion immediate-action 
triggering at any level where appropriate.  

The issue of normal-behavior stability in typical, but not all, 
cyber networks is addressed by at least two aspects of the 
overall architecture: (1) continuous re-generation of new GDs 
that will track normal behavior through changes in the 
environment; and (2) feedback directives from L5 that can 
temporarily suspend ANN memory changes and action 
triggers when temporary changes to the environment are 
made.  

This GANN example is self-adaptive to local dynamics and 
provides custom anomaly detection with no two installations 
alike in learned pattern content, adding difficulty to an attack 
strategy that relies on pattern-detection knowledge across 
widespread monolithic installations. 

The next phase of the SornS project is building and testing 
a VLSI-chip emulation of the example shown here, with an 
endpoint bump-on-the-wire prototype for network endpoints 
when the chip is available.  

 
VI. CONCLUSION AND FURTHER WORK 

 
A basic genetic algorithm was combined with a simple 

feedforward artificial neural network to produce a basic GANN 
pattern; described in the pattern-form (Table III) first in generic 
terms and then grounded with an illustrative predator-pray co-
evolution example. Examples cited at the bottom of Table III 
provide additional instances of GANN applications in security 
as well as other domains. GANN pattern employment was 
then described in a self-organizing security architecture 
currently under development [14], as a way to make sense of 
anomalies in a vast “big-data” intrusion detection space, with 
low false positives and low false negatives.  

The effort that developed the GANN pattern described in 
this paper followed immediately upon the work that developed 
the basic GA pattern [3], and as a result, contributed to a 
refinement of self-organizing pattern qualification description, 
evident in comparing [3] with this paper.   

The SornS project [14] has and will employ a number of the 
patterns developed to date by the pattern project. GDs 
(described earlier) are modeled on the immune system 
inspired Proactive Anomaly Search pattern [3], coupled with 
the BowTie pattern [2], and are now in early stages of 
coupling in SornS with the Basic GANN pattern (this paper), 
the Basic Genetic Algorithm  pattern [5], the Hierarchical 
Sense Making pattern [3], the Horizontal Meme Transfer 
pattern [2], and the Quorum Sensing pattern [15]; and it is 
anticipated that the Peer Behavior Monitoring pattern [1] and 
the Dynamic Phalanx Defense pattern will be subsequent 
additions. 

Future pattern-project work anticipates developing the basic 
ANN pattern formally, adding advanced versions of GA and 
ANN patterns, and adding many more relevant patterns, such 
as fractal architectures, autocatalysis, and weak tied networks 
to name only a few. Another anticipated pattern-project effort 
will take evolved refinements in SAREPH descriptive 
approaches and update previously patterns for descriptive 
consistency. 
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