
1
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012

Basic Genetic-Algorithm-Neural-Network (GANN) Pattern with a
Self-Organizing Security Example

Copyright Material IEEE

Paper No. ICCST-2012-42

 David Streisand Rick Dove
 Stevens Institute of Technology Member, IEEE
 Castle Point on Hudson Stevens Institute of Technology
 Hoboken, NJ 07030 Castle Point on Hudson
 USA Hoboken, NJ 07030
 USA

Abstract―The anti-system adversarial community is
characterized as a self-organizing system-of-systems, noted
collectively for its leadership in rapid evolution and innovative
advancement; widening the gap between security cost and
security losses. It appears that system security strategy
cannot hope to even achieve parity without a comparable self-
organizing strategy. Toward that end a project is underway to
catalog re-usable patterns of self-organizing security of many
kinds, principally found in natural systems, but also seen in
recent computational approaches. One class of pattern of
special interest involves discovery of previously unseen
threats and attacks. In general this class of pattern has
aspects of learning, innovation, and evolution as capability
objectives. The genetic algorithm is one such pattern. Another
such pattern is seen in artificial neural networks. Combining
the two into a Genetic Algorithm augmented Neural Network,
often called GANN, has considerable recent history in the
literature. Not many of these are directly related to security
applications. Some security-application work shows GANNs
employed for feature selection provide enhanced learning
performance and accuracy, and avoidance of local minimum
traps. This paper adds the GANN pattern to the self-
organizing security pattern catalog, and applies the pattern to
a self-organizing security application under development.

Index Terms―GANN, intrusion detection, SAREPH.

I. INTRODUCTION

This paper is part of an on-going open effort started in 2010

[1] to develop a pattern catalog and pattern language for self-
organizing security strategies. The project is motivated by the
observation that the adversarial community is leading the
generally-reactive security community in both attack
innovation and rapid evolution; accomplishing this with
effective self-organizing behaviors. Six characteristics
(described later) that underpin adversarial evolutionary and
innovative behavior have been abstracted and shown in Table
I, for use in qualifying candidate self-organizing security
patterns that may level the playing field.

The effort at this stage is developing a preliminary set of
candidate patterns, and using them to refine an established
pattern description form and the set of pattern qualifying
characteristics [2, 3]. Refinement has not yet found a need to
alter the basic architecture of the pattern form or the qualifying

characteristics – but is rather clarifying fine distinctions
between the qualifying characteristics and refining the
descriptive nature of the pattern form elements.

TABLE I
PATTERN QUALIFICATION SAREPH FILTERS

Neither the pattern project nor this paper proposes new

patterns, but rather finds patterns in repetitive use that can be
abstracted and described in a manner that facilitates
understanding of the essence of the pattern, benefits
conveyed by employment of the pattern, and a context in
which it is appropriate for employment consideration. The
descriptive method attempts to be comfortably
understandable to systems engineers, security engineers, and
decision makers involved in considering pattern employment.

The ultimate goal of the project is a pattern language for
self-organizing security strategies. Using spoken language as
a metaphor, identifying candidate patterns is akin to
developing a vocabulary, and structuring a pattern language is
akin to developing a grammar for combining patterns
syntactically into semantically meaningful sentences [4].

This paper is the second foray into pattern combination,
and here combines a basic genetic algorithm pattern [5] with
an artificial neural network (ANN) as a candidate combination
pattern (sentence, or perhaps sentence fragment in the
pattern language). A basic ANN pattern has not yet been
published as a stand-alone pattern, but shall be as a follow-on
to this paper, which makes its nature obvious. The first
combination of patterns employed the Bow Tie [2] pattern
within the Proactive Anomaly Search [3] pattern.

In the literature the combination of a GA with an ANN is
referred to as a GANN (genetic algorithm – neural network).

[S] Self-organizing – with humans embedded in the loop,
or with systemic mechanisms.

[A] Adapting to unpredictable situations – with
reconfigurable, readily employed resources.

[R] Reactively resilient – able to continue, perhaps with
reduced functionality, while recovering.

[E] Evolving with a changing environment – driven by
situation and fitness evaluation.

[P] Proactively innovative – acting preemptively,
perhaps unpredictably, to gain advantage.

[H] Harmonious with system purpose – aiding rather than
degrading system/user productivity.

2
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012

GANNs are applicable when it is necessary to learn or
discover globally optimal solutions in complex situations and
environments, beyond human capability for discovery and
mathematical reduction. GANNs evolve innovative responses
to cope effectively in complex and changing environments,
and are likely to be an important strategy for dealing with
zero-day attacks and advanced persistent threats – where
prior attack knowledge is lacking.

The purpose for the pattern project was reviewed above.
Next, the general nature of an ANN and a GA is introduced.
Then an application example of GANN employment is
reviewed and used to abstract the elements of a Basic GANN
pattern. The GANN pattern is then applied to a self-organizing
security example under current development.

II. ANN INTRODUCTION

An ANN is a computational construct, inspired by the

parallelism of biological nervous systems, that can often
discover and resolve complex relationships between many
inputs in combination, to arrive at an optimal output for a
specific and bounded problem space. An ANN is generally
useful when the complexity of the relationships between input
values and optimal outputs is beyond human ability to define –
thus an ANN is used to learn the optimal relationships in a trial
and error training/learning series that converges.

Briefly, and simplifying: ANNs consist of nodes (often called
neurons) and node connections (often called synapses).
Nodes are of three types: input layer, output layer, and
intermediate (hidden layer) nodes. Connections between
nodes may be feedforward only, or may include some looping
feedback connections in a multi-layer ANN. ANNs have
synapse connections between neurons that weight the value
sent from a connected neuron. Weights may take on positive,
negative, or zero values, and may be integer or real value
depending on the application. In either case a weight value of
zero is effectively a null connection and a weight value of 1 is
a direct pass-on. The neuron is a transform function that
passes on the sum of the weighted values of all of its inputs
as its output, and may also apply a bias, as shown in Fig. 1.
Inputs to a neuron are typically numerical values, or strings of
features composing a pattern.

Topology of an ANN is expressed in the structure of nodes
and connections, which may be fixed or evolving. A simple
evolution implementation can be accomplished by alternating
connection weights between zero value and some value.
More complex topology evolutions will also change the
number and location of nodes. Feedforward ANNs adjust
node output values typically in waves, a wave moving
synchronously through the ANN one layer of nodes at a time.
A simple feedforward ANN has only input and output nodes,
and calculates the output value in a single wave. A still basic
ANN has feedforward connections through multiple layers of
nodes, and completes a cycle when the calculation waves
reach the final output nodes. An ANN with feedback loops is
more expensive in computation, may take a while to settle a
stable output set, and may also require some special settling
computations to avoid infinite re-calculation loops.

An ANN produces outputs based on a fixed set of learned
or trained neuron parameters. If it is a dynamic ANN it will
have an internal ability to adjust these parameters in
continuous incremental learning, generally driven by an

external source of feedback that provides an error measure of
fitness that is back propagated through the ANN layers. There
are other forms of feedback learning as well.

A very basic ANN is feedforward only, with fixed
parameters in one set of weighted synapses between inputs
and outputs. A more generalized version of a basic ANN
remains feedforward only, with additional “hidden” neuron
layers between inputs and outputs.

Fig. 1 – Components and transfer function of a single-hidden-

layer feedforward artificial neural network (ANN)

III. GA INTRODUCTION

Briefly and simplifying: a genetic algorithm converges on a

solution to an optimization problem by using a “fitness
function” to evaluate how well candidate solutions address the
problem. In natural evolution, fitness is the organism’s ability
to survive and reproduce. Computing applications, on the
other hand, abstract fitness to match the problem at hand. In
robotics, for example, fitness may represent a robot’s ability to
navigate around obstacles successfully. In security, fitness
may represent the ability to detect never-seen-before
intrusions with low false-positive and false-negative rates.

In keeping with the evolutionary metaphor, embodied
candidate solutions may be called “individuals,” the encoding
of each candidate solution is called a “chromosome” or
“genotype”, and each distinct element within a chromosome is
called a “gene”.

With a chromosome structure established, the GA applies
“operators”, based on natural evolution, to evolve an initial
randomly-generated (un-fit) population of individuals into more
fit individuals, until a suitably fit individual emerges. The GA
creates new generations of individuals from previous
generations, evolving their chromosomes until a time limit is
reached or until sufficient fitness is achieved.

To create a new generation of chromosomes, the fitness of
the individuals in the current generation is evaluated using the
fitness function. The GA then selects the fittest individuals
stochastically, i.e., with some randomization, for carryover and
modification for the next generation . The fittest individuals are
selected for carryover as well as for breeding new individuals
for the next generation with the GA crossover operator,
Crossover mimics sexual reproduction in nature – two
individuals are selected to breed, and their children’s
chromosomes are created by swapping a portion from each
parents’ chromosome at a randomly-selected location. Some
other moderately fit individuals in the current generation are
allowed to survive to the next generation, and the least fit
individuals are replaced by the new products of crossover to

3
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012

maintain the overall population size. The other commonly
applied GA operator is mutation – occasionally, a random
gene (bit or string of bits) of a chromosome is changed for the
next generation.

IV. BASIC GANN PATTERN

A self-training ANN can be computationally expensive. The

excellent paper by Montana and Davis [6] provide an example
of using a GA to optimize ANN parameters, noting: “It not only
succeeds in its task but it outperforms back propagation, the
standard training algorithm, on a difficult example. This
success comes from tailoring the genetic algorithm to the
domain of training neural networks.” Floreano Dürr, and
Mattiussi [7] adds good breadth and depth to understanding
GANNS, with numerous applications cited.

Dewri [8] provided the basis for Fig. 2. with terminology
modified for consistency here. Dewri notes in his discourse on
evolutionary algorithms (EA): “The evolution of connection
weights introduces an adaptive and global approach to
training. Unlike gradient-based training methods, viz. back
propagation, EAs [GAs included] rely on probabilistic search
techniques and so, even though their search space is bigger,
they can ensure that better solutions are being generated over
generations. Optimal network architectures can also be
evolved to fit a given task at hand.”

Fig. 2 – ANN network evolution with GA learning assistance

(modified graphic from [8])

The GANN pattern is applicable to many problem domains,
including security related applications. Some examples are
cited in the bottom of the pattern form shown in Table III.

Here the model for the basic GANN pattern uses the
evolution of predator-prey behaviors from Floreano and Keller
[9] as a grounded example, combining a feedforward ANN
through potentially multiple layers, with the basic GA pattern
that employs crossover and mutation operators as described
in [10].

Floreano and Keller provide many examples of complex
behaviors emerging from GANN employment in robot mobility
controllers: collision avoidance, cooperative behavior, prey
stalking, and predator avoidance. Here the focus is on their
predator-prey experiments. A population of predator robots
and a population of prey robots were constructed on the same
basic hardware platform, with the same neural network
controller software, but differing in the physical limitations of
their top maximum speed and vision capabilities. The prey
could outrun the predator, but the predator had superior
detection range.

Self-Organization – The GA for each robot self-organizes
new chromosomes for robots that do not exhibit sufficiently fit
behavior, using crossover and mutation GA operators. The
fitness of robotic behavior is determined by the effectiveness

of the ANN in successive generations of predator-prey co-
evolution. The GAs also reorganize the population of ANN
behaviors by loading new chromosomes into ANN connection
weight parameters. Feedforward ANNs, as used in the
predator-prey example, are not by themselves self organizing,
and rely on the GA to provide the self-organization of the ANN
structure.

Adapting to unpredictable situations – Adaptation
occurs within the GA when it reconfigures chromosomes with
crossover and mutation operators, working on stochastically
selected chromosomes from among those with high and
promising fitness. This adaptation can accommodate changes
in the environment (performance of opponents). As the prey
became more adept at avoiding predation, the predators
adapt to their own less-fit condition and cause new behavior
strategies to evolve, which in turn caused the co-evolutionary
cycle. In all cases the behavior-evaluation of the ANNs
established the fitness measure for the GAs.

Reactively Resilient – The GA generates new
chromosomes with crossover and mutation operators rather
than wholesale random replacement – using redundant gene
fragments and diversity among gene fragments to enable
recovery from a degraded average fitness rather than a
catastrophic failure of the population . This has the effect of
maintaining some prior history in new chromosomes, which
lends resilience when chromosome changes are less fit in a
new generation than in a prior generation. The GA feeds the
ANN with new chromosomes to try. In combination the GANN
exhibits resilient behavior through generations – recovering
from setbacks as the environment changes.

Evolvable Strategies – Evolution occurs across
generations, is directed toward more fitness as opposed to
random change, and relies on memory of prior generation
genetic fragments and chromosomes to move average
population fitness in the optimal direction. The predator-prey
GANN example demonstrate an evolution of strategies that
are generated and selected to take advantage of an
adversary’s weaknesses, while exploiting the protagonist’s
strengths. Initial populations of both types of robots had
members wandering at random and at varying speeds. Under
selective pressure, members of the prey population who failed
to use their speed advantage to avoid losing a pursuit by a
predator died off and were replaced; while the predator
population developed members who used sophisticated visual
tracking and motion control behaviors to intercept prey from
outside the prey’s sensory field of view. In time, the predators
became so adept at catching prey in the open, that they lost
their wall avoidance behavior. As the prey evolved to become
harder to catch, the predators re-evolved their wall avoidance
behavior. After several generations of being hunted by
predators who largely avoided walls, the prey evolved a
strategy of escaping by zooming along the walls. This induced
a predator counter strategy of backing up against a wall, and
waiting for the relatively blind prey to run into a predator.

Proactively innovative – A properly implemented GA is
by nature proactively innovative; it creates speculative
chromosomes in a search of superior chromosomes, and if
permitted by the system designer, will continue to do so even
after acceptable chromosomes are found. GA’s that continue
to search can avoid local and temporary optima. In the
predator-prey example of co-evolution, the GANN reacts to a
clearly unfit chromosome (behavior strategy), but is proactive

4
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012

in the way the GA searches for solutions as well as in the
GANN’s ability to continue searching for better solutions
beyond acceptable – design goals permitting. If a new
chromosome is neither advantageous nor disadvantageous, it
may persist in a percentage of a population for some time. If
the fitness landscape shifts to confer a selective advantage on
the new genotype, this can also be viewed as proactive
innovation, held in reserve until useful.

Harmonious with system purpose – A properly designed
GANN is inherently in harmony with the needs of its parent
system, robot population survival in this example. Harmony
between generations of predator or prey is preserved to the
extent that GA operators of mutation and crossover evolve the
incrementally toward more fitness.

TABLE III
BASIC GANN PATTERN

Name - Basic GANN
Context – A complex relationship, perhaps dynamic, between sensed environmental input and appropriate environmental
response, beyond human capability to reduce to an algorithm, but appropriate for an evolutionary (self learning) algorithm.
Problem – An evolutionary algorithm that needs to converge rapidly, avoid local optima, and perhaps deal with a changing
environment.
Forces - Complexity of the environment vs. capacity (size) of the ANN; speed of learning a static environment vs.
generalization for new environments; speed of learning vs. cost of learning; suitability of fitness function vs. cost of evaluation;
capability of the ANN (for classification) vs. suitability of the GA (genome structure) [10].
Solution – Combining a genetic algorithm that employs crossover and mutation operators to feed speculative parameters to a
feedforward (only) single or multilayer ANN.

GANN continuous loop from panel 4 back to panel 1 for successive generations. 100 robots per generation. Predators and

prey converge from initially-random neuron genes to best-strategy genes in 300 generations. Fitness determined in fixed time
limit by how close a predator got to a prey. Modified graphics from [9, 11].

[S]elf organization – occurs as GAs reorganize genes in chromosomes, and as ANN loading reorganizes the nature of the
ANNs in the population.

[A]daptation – GAs adapt to fitness evaluations, applying crossover and mutation operators to reconfigure chromosomes at a
varying rate determined by the average fitness of the ANN population, permitting adaptation to a changed environment.

[R]eactive resilience – is enabled by redundancy and diversity in GA chromosome fragments, so that an environmental
change (superior opponent capability evolution) only degrades but does not destroy average fitness of the ANN population.
Recovery is then enabled by GA adaptation and ANN evolution.

[E]volution – ANNs evolve toward an optimal fit with a stable environment, caused by the GAs selectively retaining
(remembering) chromosomes and chromosome fragments that contribute to better than average fitness.

[P]roactive innovation – Horizontal gene transfer, a prime source of innovation [2], occurs with the GA crossover operator,
stochastically combining gene fragments from selected successful chromosomes for insertion in next generation
chromosomes. Mutation of gene fragments also contributes, by retaining most of a successful gene and proactively
experimenting with small chromosome changes. Stochastic retention of gene fragments and moderately-fit GAs also
contributes, by generating chromosomes and gene fragments that may be highly-fit when the environment changes.
Finally, continued GA adaptation after a population has sufficient fitness proactively searches for opportunistic fitness.

[H]armonious operation – Predator and prey GANNs are in harmony with the survival needs of their respective populations,
evolving toward higher average survival fitness without retaining population-threatening survival obstacles.

Example – Co-evolution of predator and prey behaviors in robots [9, 11]
Example – Very informative in GANN generality, with a sonar example [6].
Example – Very informative in GANN generality, with examples cited from many domains [7].
Example – Network backdoor intrusion detection [12]
Example – GANN short-term forecasting framework for database intrusion prediction system [13].

5
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012

V. GANN SECURITY APPLICATION

Anomaly detection promises to find elements of abnormality

in a field of data. High end applications include finding
patterns in unstructured data, identifying emergent behaviors
in multi-agent systems, illuminating insider threats in progress,
and detecting cyber attack vectors unseen previously.

Anomalous behavior detection promises a way around the
limitations of looking only for known attack patterns, but it has
raised issues of higher false positive rates and questionable
normal-behavior stability. The difficulty stems from current
technology approaches that cannot cover the entire field of
possible anomalies; making compromises on pattern
specificity and pattern capacity. Described here and depicted
in Fig. 3 is an architecture that doesn’t suffer from those
compromises.

The example provided here is an extension-in-process of
prior work conducted under a DHS S&T contract completed in
2011, and described in Self-Organizing Resilient Network
Sensing (SornS) with Very Large Scale Anomaly Detection
[14].

Fig. 3 – A 4-layer GANN. The GA at each layer receives
fitness feedback from the next higher ANN layer, as guidance
for evolving genes in same-layer ANN neurons. Feed-side
collaboration among endpoint GAs improves learning speed
at similar endpoints.

Above the GANN at L5, a human in diminishing supervised-
leaning trains the GANN by evaluating what the GANN’s
fourth layer presents as suspicious, which causes primitive
ANN layers to evolve into ones customized to the specific
environment. A GANN layer at L4, similar to an L3 correlative

endpoint GANN layer learns to correlate network wide
anomalies and relieve the human of repetitive decisions and
interventions. A human also retrains the GANN when changes
in network resources, operational practices, or policy changes
cause new lower layer anomalies. A human also trains lower
level GANN layers to distinguish when anomalies do and do
not need to trigger immediate automated action.

Contents of an ANN “neuron” are GA-provided “genes”,
composed of some maximum but small number n (perhaps 6
or so) 8-bit feature bytes received from the next lower level,
where n will be established and fixed after additional
experimentation. Genes may have trailing features set to null
(don’t care) when shorter genes are appropriate. If an ANN
neuron has all non-null gene features satisfied, the neuron’s
output is a single feature passed to all neurons at the next
ANN level.

Relevance (fitness) feedback propagates from the top layer
down, helping a layer-specific GA determine what genes to
keep and whet genes to replace at that level. The GA never
stops generating some percentage of new genes, even when
an optimal set appears to be present at the companion ANN
layer, avoiding local minima traps and accommodating
changing environmental conditions. This GANN relationship is
bi-directional – the GA provides the ANN neuron content and
the ANN provides the fitness function for the GA. It is
expected that convergence on sparse (minimally-overlapping)
ANN-layer genes will come from continued GA speculative
gene generation, which should increase average fitness
across an ANN layer as overlap is reduced.

The ANN neurons will be implemented in an inexpensive
massively parallel VLSI chip, soon to market but currently
being emulated, which will provide propagation through the
ANN levels at input data-stream speed. Speed is important in
the ANN as this is where learned attacks and suspicious
behavior will be recognized immediately for recommended or
automated action. Learning, driven by the GA, is not as time
critical. Initially useful dictionaries at each level will take some
time (unknown as yet) to converge, though seeding the ANN
with known gene relevance can hasten initial convergence for
a the local-application environment. In any event, the ANN
can converge on useful content through in-actionable
observation of real-time data before it is permitted to cause
action with its conclusions.

The GA learning objective is to converge upon an optimal
fixed-number of genes (the genetic dictionary) at each ANN
level, where optimal fitness is a function of relevance to the
next higher ANN level with minimal overlap at this level
(sparse coverage within a very large range of potential
genes). The GA loads each ANN neuron with a specific
different gene.

Taking a lesson from reverse engineered and computer
modeled mammalian visual cortex, it appears that very good
“immediate” object classification occurs in the first four neural
layers, with a dictionary of about 100 features in each of the
first two layers. Subsequent-layer dictionary-size has not been
seen in the literature by this author, but the regular repetitive
nature of cortex leads a working assumption that they may be
in the same size range.

As a benchmark, a four-layer GANN with 100 genes at
each layer, would make 100 million classifications at the
fourth layer. Human expertise in a given domain is thought to

6
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012

require 200,000 to 1 million pattern classifications. Even if 99
percent of the GANN’s top level classifications are non-sense,
expertise appears possible.

The first layer of one portion of modeled visual cortex looks
only for edges, composed of adjacent retinal pixels in various
orientations and sizes, numbering approximately 100. The
classified edges are then sent to the next higher layer that
looks for certain (on the order of 100) adjacent edge
configurations that are classified as (so-called) glyphs. Certain
configurations of adjacent glyphs are classified at the next
level as (so called) geons, with the fourth layer able to identify
general object classes, such as a car, a face, a house, etc. It
appears that cortex looks for anomalies at each of these
levels – those configurations that are relatively rare but also
useful for distinguishing relevance from the large field of
possible input data. Here anomalies are not bad things, but
rather good things which afford optimal incremental sense
making.

Genes for GA replacement speculations are not exclusively
(or necessarily) generated by mutation and crossover
operators acting on parent (prior generation) genes, but rather
chosen from a very large (10 to the power 15) dynamic
catalog of known anomalous 6-feature candidates (not-
normally-seen-recently gene configurations). This is enabled
at full data stream speed by the VLSI pattern processor and a
special anomalous-gene detection architecture referred to as
a Gang Detector (GD) [14]. The GD is a massively parallel GA
mutation operator, of a specialized nature, that provides pre-
qualification on speculative gene candidates by weeding out
often recently seen “normal” candidates. Crossover may have
some use in temporal detector genes, but not in correlative
detectors, and probably not in spatial detectors as the GD
operator will explore the spatial configuration space more
effectively. The GD is a GA that can establish anomaly-fitness
of 10 to the power 15 genes simultaneously, and can cover
the entire space of genetic possibility simultaneously at data-
stream speed. GD creation and management is modeled on
the immune system inspired Proactive Anomaly Search
pattern [3] coupled with the BowTie pattern [2].

By themselves, the vast coverage of GDs can reduce false
negatives, but not false positives, and may increase the
occurrence of false positives due to greater coverage of
anomalous pattern space. False positive reduction will be
accomplished by two aspects of the overall architecture: (1)
non-repetitive human evaluation and training at L5, and (2)
human evaluation feedback will propagate as learning in lower
ANN layers (memory) with companion immediate-action
triggering at any level where appropriate.

The issue of normal-behavior stability in typical, but not all,
cyber networks is addressed by at least two aspects of the
overall architecture: (1) continuous re-generation of new GDs
that will track normal behavior through changes in the
environment; and (2) feedback directives from L5 that can
temporarily suspend ANN memory changes and action
triggers when temporary changes to the environment are
made.

This GANN example is self-adaptive to local dynamics and
provides custom anomaly detection with no two installations
alike in learned pattern content, adding difficulty to an attack
strategy that relies on pattern-detection knowledge across
widespread monolithic installations.

The next phase of the SornS project is building and testing
a VLSI-chip emulation of the example shown here, with an
endpoint bump-on-the-wire prototype for network endpoints
when the chip is available.

VI. CONCLUSION AND FURTHER WORK

A basic genetic algorithm was combined with a simple

feedforward artificial neural network to produce a basic GANN
pattern; described in the pattern-form (Table III) first in generic
terms and then grounded with an illustrative predator-pray co-
evolution example. Examples cited at the bottom of Table III
provide additional instances of GANN applications in security
as well as other domains. GANN pattern employment was
then described in a self-organizing security architecture
currently under development [14], as a way to make sense of
anomalies in a vast “big-data” intrusion detection space, with
low false positives and low false negatives.

The effort that developed the GANN pattern described in
this paper followed immediately upon the work that developed
the basic GA pattern [3], and as a result, contributed to a
refinement of self-organizing pattern qualification description,
evident in comparing [3] with this paper.

The SornS project [14] has and will employ a number of the
patterns developed to date by the pattern project. GDs
(described earlier) are modeled on the immune system
inspired Proactive Anomaly Search pattern [3], coupled with
the BowTie pattern [2], and are now in early stages of
coupling in SornS with the Basic GANN pattern (this paper),
the Basic Genetic Algorithm pattern [5], the Hierarchical
Sense Making pattern [3], the Horizontal Meme Transfer
pattern [2], and the Quorum Sensing pattern [15]; and it is
anticipated that the Peer Behavior Monitoring pattern [1] and
the Dynamic Phalanx Defense pattern will be subsequent
additions.

Future pattern-project work anticipates developing the basic
ANN pattern formally, adding advanced versions of GA and
ANN patterns, and adding many more relevant patterns, such
as fractal architectures, autocatalysis, and weak tied networks
to name only a few. Another anticipated pattern-project effort
will take evolved refinements in SAREPH descriptive
approaches and update previously patterns for descriptive
consistency.

VII. REFERENCES

[1] Rick Dove and Laura Shirey, “On Discovery and Display

of Agile Security Patterns,” Conference on System
Engineering Research, Hoboken, NJ (US), 17-19 Mar.
2010. www.parshift.com/Files/PsiDocs/Pap100317Cser-
OnDiscoveryAndDisplayOfAgileSecurityPatterns.pdf

[2] Rick Dove, “Pattern Qualifications and Examples of Next-
Generation Agile System-Security Strategies,” IEEE
International Carnahan Conference on Security
Technology (ICCST), San Jose, CA (US), 5-8 Oct. 2010.
www.parshift.com/Files/PsiDocs/PatternQualificationsFor
AgileSecurity.pdf

[3] Rick Dove, “Patterns of Self-Organizing Agile Security for
Resilient Network Situational Awareness and
Sensemaking’” 8th International Conference on
Information Technology: New Generations (ITNG), Las

7
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012

Vegas, NV (US), 11-13 Apr, 2011.
www.parshift.com/s/110411PatternsForSORNS.pdf

[4] Christopher Alexander, A Pattern Language: Towns,
Buildings, Constructio, Oxford University Press, 1977.

[5] Rich Messenger and Rick Dove, “Basic Genetic Algorithm
Pattern for Use In Self-Organizing Agile Security”, IEEE
International Carnahan Conference on Security
Technology (ICCST), Boston, MA (US),15-18 Oct. 2012.

[6] David Montana and Lawrence Davis, “Training
Feedforward Neural Networks Using Genetic Algorithms.”
In International Joint Conference on Artificial Intelligence,
pp 762-767, Detroit, MI (US), 20-25 Aug. 1989.

[7] Dario Floreano, Peter Dürr, Claudio Mattiussi,
Neuroevolution: from architectures to learning,
Evolutionary Intelligence 1(1): 47–62, 2008.

[8] Rinku Dewri, Evolutionary Neural Networks: Design
Methodologies, Published online by ai-depot, 24 Mar.
2003. http://ai-depot.com/articles/evolutionary-neural-
networks-design-methodologies/

[9] Dario Floreano and Laurent Keller, “Evolution of Adaptive
Behaviour in Robots by Means of Darwinian Selection,”
PLoS Biol 8(1): e1000292, Jan. 2010.

[10] Dong Ling Tong and Robert Mintram, “Genetic
Algorithm-Neural Network (GANN): a study of neural
network activation functions and depth of genetic
algorithm search applied to feature selection,”
International Journal of Machine Learning and
Cybernetics, 1:75–87, 2010.

[11] Dario Floreano and Stefano Nolfi, “God save the red
queen! Competition in co-evolutionary robotics,” In Koza,
Kalyanmoy, Dorigo, Fogel, Garzon, Iba & Riolo (Eds.),
Genetic Programming: Proceedings of the Second
Annual Conference, pp. 398-406, San Francisco, CA
(US), 13-16 Jul. 1997.

[12] E. Salimi and N. Arastouie, “Backdoor Detection System
Using Artificial Neural Network and Genetic Algorithm.” In
Procedings International Conference on Computational
and Information Sciences (ICCIS) pp 817-820. Chengdu,
China, 21-23 Oct. 2011.

[13] P. Ramasubramanian , A. Kannan, “A genetic-algorithm
based neural network short-term forecasting framework
for database intrusion prediction system,” Soft Computing
10(8): 699–714, May 2006.

[14] Rick Dove, “Self-Organizing Resilient Network Sensing
(SornS) with Very Large Scale Anomaly Detection,”
Proceedings 2011 IEEE International Conference on
Technologies for Homeland Security, Waltham, MA (US),
15-17 Nov. 2011.
www.parshift.com/s/111115VeryLargeScaleAnomalyDete
ctionSorns.pdf.

[15] Jeff Hamar and Rick Dove, “A Quorum Sensing Pattern
for Multi-Agent Self-Organizing Security Systems ”, IEEE
International Carnahan Conference on Security
Technology (ICCST), Boston, MA (US),15-18 Oct. 2012.

VIII. VITA

David Streisand is a systems engineer in the U.S. defense

industry, and during the past 33 years has been a software
and systems engineer on defense and commercial systems,
including unmanned aircraft systems, mission planning
systems, and precision navigation and targeting systems. He

holds a BS in Computer Science from California State
University at Northridge, and is working on an ME in Systems
Engineering from Stevens Institute of Technology.

Rick Dove develops agile self-organizing systems as a
principle investigator and application program manager at
Paradigm Shift International, and chairs the INCOSE working
group for Systems Security Engineering. He is an adjunct
professor at Stevens Institute of Technology in the School of
Systems and Enterprises where he teaches basic and
advanced courses in agile systems, and is author of
Response Ability – the Language, Structure, and Culture of
the Agile Enterprise (Wiley 2001). He co-led the OSD/Navy-
funded project that identified systems agility as the new
competitive frontier, and then led the research at the
DARPA/NSF-funded Agility Forum. He holds a BSEE from
Carnegie Mellon University, with graduate work in Computer
Science at U.C. Berkeley.

IX. ACKNOWLEDGEMENTS

Some of the work covered in this paper was funded by the

Department of Homeland Security under contract
D10PC20039. The content of the material contained herein
does not necessarily reflect the position or policy of the
Government, and no official endorsement is implied.

James H. Burkhard, of Paradigm Shift International, built
the SornS simulator and VLSI pattern-processor emulator ,
created test sets, and ran repeated tests to probe the
operational characteristics of the Very Large Scale Anomaly
Detector (gang detector).

	I. INTRODUCTION
	II. ANN INTRODUCTION
	III. GA INTRODUCTION
	IV. BASIC GANN PATTERN
	V. GANN SECURITY APPLICATION
	VI. CONCLUSION AND FURTHER WORK
	VII. REFERENCES
	VIII. VITA
	IX. ACKNOWLEDGEMENTS

