Understanding the Propagation of Transient Errors in HPC
Applications

Rizwan A. Ashraf
University of Central Florida
Orlando, FL
rizwan.ashraf@ucf.edu

Ronald F. DeMara
University of Central Florida
Orlando, FL
Ronald.Demara@ucf.edu

ABSTRACT

Resiliency of exascale systems has quickly become an im-
portant concern for the scientific community. Despite its
importance, still much remains to be determined regard-
ing how faults disseminate or at what rate do they impact
HPC applications. The understanding of where and how fast
faults propagate could lead to more efficient implementation
of application-driven error detection and recovery.

In this work, we propose a fault propagation framework
to analyze how faults propagate in MPI applications and
to understand their vulnerability to faults. We employ a
combination of compiler-level code transformation and in-
strumentation, along with a runtime checker. Using the in-
formation provided by our framework, we employ machine
learning technique to derive application fault propagation
models that can be used to estimate the number of cor-
rupted memory locations at runtime.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: [Reliability, Test-
ing, and Fault-Tolerance|; C.4 [Computer Systems Or-
ganization]: Performance of Systems— Fault tolerance

Keywords

Fault Injection, Fault Propagation, Distributed Applications,
Soft Errors, Application Vulnerability, Resiliency

1. INTRODUCTION

Exascale systems promise to deliver 1000-fold more com-
puting capability than current petascale supercomputers.
New low-power and near-threshold voltage (NTV) technolo-
gies, along with higher temperature tolerance, may be em-
ployed in some systems to address the power challenges of

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
SC ’15, November 15-20, 2015, Austin, TX, USA

© 2015 ACM. ISBN 978-1-4503-3723-6/15/11...$15.00

DOI: http://dx.doi.org/10.1145/2807591.2807670

Roberto Gioiosa
Pacific Northwest National Lab
Richland, WA
roberto.gioiosa@pnnl.gov

Chen-Yong Cher
IBM T.J. Watson Research Center
Yorktown Heights, NY
chenyong@us.ibm.com

Gokcen Kestor
Pacific Northwest National Lab
Richland, WA
gokcen.kestor@pnnl.gov

Pradip Bose
IBM T.J. Watson Research Center
Yorktown Heights, NY
pbose@us.ibm.com

exascale computing. Without additional mitigation actions,
these factors, combined with the sheer number of compo-
nents, will considerably increase the number of faults expe-
rienced during the execution of parallel applications, thereby
reducing the mean time to failure (MTTF) and the produc-
tivity of these systems. Moreover, power constraints will
limit the amount of energy and resources that can be dedi-
cated to detect and correct errors [31], thus silent data cor-
ruptions (SDCs) are expected to become more common. Fi-
nally, transistor device aging effects will amplify the signif-
icance of these conditions, further reducing the return of
investment of expensive exascale systems.

Despite the importance and the risks associated with SDCs,
there are limited studies that analyze the impact of transient
errors on high performance computing (HPC) applications
and how these errors propagate in the application data struc-
tures (application state) [10, 14, 17, 23, 27]. Generally, these
studies rely on statistical analysis of the application’s out-
puts performed by injecting faults in the application’s state
at random points during the execution. Although these
works provide important information on the vulnerability
of parallel applications, this “black-box” approach does not
provide insights on the impact of injected faults on the ap-
plication’s internal state. Thus, it becomes difficult to assess
the extent to which a fault has contaminated the applica-
tion’s data structures, the speed at which it propagates, or
which resilience mechanism to employ. In particular, the
analysis of the application’s output state does not distin-
guish cases in which the application’s state is corrupted even
if the final results are correct. This happens, for example,
if the acceptable residual error of a scientific simulation is
large enough to accommodate for the variance introduced
by a transient error. The outcome of the same execution
would be different with stricter error bounds.

We argue that without a comprehensive knowledge of how
transient errors propagate in the application’s state during
its execution, the results of a fault injection analysis may
be incomplete and inaccurate. This may lead to wrong re-
silient mechanism to be employed. In order to collect such
comprehensive knowledge, we propose a new fault propa-
gation framework that accurately tracks the propagation of
faults in distributed MPI applications. Our framework pro-
vides internal application’s vulnerability information beyond
what is generally provided by statistical analysis based on
output variation. Specifically, our fault propagation frame-

work provides information on the speed (i.e., how quickly a
fault propagates into a process state) and depth (i.e., how
many processes are affected) with which a fault propagates
throughout the execution of the application. This informa-
tion is essential to understand the impact of transient errors
in HPC applications and, thus, to select the most appropri-
ate resilience mechanism to employ. We believe that deeper
insights provided by our framework can expose vulnerabili-
ties in the application’s algorithm and implementation that
are oblivious to a “black-box” analysis.

Our framework consists of an LLVM-based instrumen-
tation component and a runtime checker that tracks the
propagation of faults into the application’s state. Although
conceptually straightforward, accurately tracking the prop-
agation of a fault requires a comprehensive and thorough
methodology along with properly-implemented tools. In
fact, the general assumption that the output of an instruc-
tion becomes corrupted, i.e., a fault propagates, if at least
one of the inputs is corrupted could lead to large overesti-
mation of the number of corrupted memory locations. To
avoid such overestimation and to precisely track faults in
a generic operation, we replicate the stream of instructions
to compute both the potentially corrupted outputs and the
pristine outputs. The former are the outputs of the instruc-
tions that may use input values corrupted by an injected
fault or contaminated by previous operands. The latter are
the outputs of instructions that only use non-contaminated
operands, which are not impacted by the error. At store
operations we compare the potentially-corrupted and the
pristine value to determine if a fault propagates to memory.

We use our new framework to analyze the impact of faults
in several commonly-used parallel applications from differ-
ent scientific domains, such as hydrodynamics and molecu-
lar dynamics, taken from various benchmark suites [1] and
DOE proxy applications [3]. We perform our tests on a
32-node cluster with a total of 1,024 cores. First, we show
that the outcomes of statistical analysis based on output
variation may lead to erroneous conclusions. For example,
we show that such “black-box” analysis would conclude that
faults injected in LULESH are masked in over 90% of the
cases. However, a deeper analysis reveals that the faults of-
ten propagate and may corrupt up to 25% of the application
memory state. Second, we show that, given the iterative na-
ture of most HPC applications, faults propagate linearly into
the application’s states. We then employ machine learning
techniques to derive application fault propagation models
that can be used to estimate the number of corrupted mem-
ory locations, once a fault is detected. These models can be
used to estimate the number of corrupted memory locations
and to understand if a roll-back to a previous checkpoint
should be triggered. From the fault propagation models, we
extract the fault propagation speed (FPS) factor, a mea-
sure that indicates how quickly a transient error propagates
into the application’s state. We argue that the FPS is an
insightful metric to express the vulnerability of HPC appli-
cations and can be combined with architectural vulnerability
metrics [32, 36] to assess the system resilience. Finally, we
measure the extent to which transient errors propagate to
MPI processes through message passing.

In summary, this paper makes the following contributions:

e We propose a novel fault propagation framework that
accurately tracks faults within a process and across
MPI processes. To the best of our knowledge, our work

is the first to provide detailed information about fault
propagation in distributed MPI applications.

e We show that, without a comprehensive fault propa-
gation analysis, the conclusions driven from statistical
output variation analysis may be inaccurate.

e We derive application fault propagation models and
compute the fault propagation speed factors.

The rest of this paper is organized as follows: Section 2 de-
scribes the fault model. Section 3 describes our fault propa-
gation framework. Section 4 shows our experimental results.
Section 5 describes our fault propagation models. Section 6
analyzes previous work. Section 7 presents the conclusions.

2. FAULT MODEL

Large supercomputers are mainly built out of commod-
ity off-the-shelf (COTS) components [2]. Although COTS
components may be fairly reliable, for example the MTTF
of a single memory module with double-bit error-correction
capability is over 100 years [16], the sheer number of com-
ponents assembled in current supercomputers dramatically
reduces the net MTTF to a few days. For exascale systems,
the expected MTTF is in the order of hours [22]. Faults
occur at hardware level as the result of physical phenom-
ena such as exposure to alpha particles, transient timing
violations, or localized temperature variations. Generally,
faults are categorized into two main categories: hard and
soft faults. Hard faults are either permanent or intermittent;
they are typically the result of aging effects or malfunction-
ing devices. Soft faults are transient faults typically caused
by environmental conditions, such as radiation effects [13],
that manifest in the form of bit flips. With the development
of NTV technology [15] and the need for higher temperature
tolerance required to achieve exascale efficiency [22], tran-
sient errors are becoming predominant. This work focuses
on transient faults that escape hardware correction and de-
tection and that propagate to the architectural state of the
processor. We analyze the characteristics of how such faults
propagate through the application’s memory state. Tran-
sient errors may occur any time during the execution of an
application and can result in a variety of outcomes. We
extend previously proposed classification [5, 13, 40, 41] for
HPC systems and classify the experiment outcomes in the
following categories:

Vanished (V): Faults are masked at the processor-
level and do not propagate to memory, thus the appli-
cation produces correct outputs and the entire internal
memory’s state is correct.

Output Not Affected (ONA): Faults propagate to
the application’s memory state, but the final results
of the computation are still within the acceptable er-
ror margins and the application terminates within the
number of iterations executed in fault-free runs.

‘Wrong Output (WO): Faults propagate through the
application’s state and corrupt the final output. The
application may take longer to terminate.

Prolonged execution (PEX): Some applications may
be able to tolerate corrupted memory states and still
produce correct results by performing extra work to

refine the current solution. These applications provide
some form of inherent fault tolerance in their algo-
rithms, though at the cost of delaying the output.

Crashed (C): Finally, faults can induce application
crashes. We consider “hangs”, i.e., the cases in which
the application does not terminate, in this class.

Compared to previous classification, SDCs are identified as
ONA, WO and, PEX, depending on their effects on the ap-
plication’s state and output. Analysis based on output vari-
ation, such as fault injection analysis, cannot distinguish
V from ONA, thus we introduce the class Correct Output
(CO) to indicate the sum of V and ONA when the applica-
tion produces correct results within the expected execution
time. Correct results with longer executions are in PEX.

Given that exascale machines do not yet exist and that
analyzing real faults on current systems would require long
periods of time, thus, in this paper, we follow a methodol-
ogy compatible with previous work and perform accelerated
fault injection [23, 42]. This approach allows us to perform
a large number of tests in a relatively short time and explore
a considerable part of the application code and result space.
We randomly inject single-bit flips at the register-level dur-
ing the execution of an application. The faults are injected
into the source register of both arithmetic and load/store
operations, which is the most accurate high-level error in-
jection model [13], besides circuit-level fault injection. Since
our target is to understand the vulnerability of HPC appli-
cations, we only inject faults in the application source code
but not in the MPI and system libraries.

Our primary goal in this work is to analyze the vulnerabil-
ity and sensitivity of HPC applications to transient errors.
It must be remarked that this information alone will not pro-
vide a comprehensive understanding of the resilience of the
entire system. Our analysis focuses on what happens after
a fault, undetected by the hardware, contaminates the pro-
cessor registers. We refer to previous work on understand-
ing how transient errors occurring at circuit level eventually
propagate to architectural level [13, 36]. In order to assess
the resilience of the entire system (hardware and applica-
tion), the user needs to combine the expected hardware fail-
ure in time (FIT) rate with the information provided in this
work. Our work is complementary to the resiliency studies
of hardware systems [4, 5, 24, 32, 36] and is essential to
understand the resilience of the entire system. As we will
explain in Section 6, our work is similar to the program vul-
nerability factor (PVF) [39] and the data vulnerability factor
(DVF) [43], in that it examines the application’s sensitivity
to faults. However, our fault model considers both architec-
tural level, i.e., how faults propagate in processor registers,
not considered by DVF metric, and the MPI communication
level, i.e., how faults propagate among MPI processes, not
considered by PVF metric.

3. FAULT PROPAGATION FRAMEWORK

This section describes our fault propagation framework
for MPI applications. The framework consists of the fault
injection and the fault propagation modules.

3.1 Fault Injection

To understand the propagation of faults in parallel HPC
applications we need to inject faults into the application’s

state. Since we target large parallel applications running
on a cluster of nodes and fault injection at the circuit level
is prohibitively slow and would limit the exploration space,
in this work we opted for accelerated software fault injec-
tion [13]. We also opted for a compiler-level fault injection
strategy because we assume that undetected transient er-
rors will propagate to processor register or functional units
but may be masked at processor level before contaminating
memory locations. Software fault injection tools based on
binary instrumentation, such as [23], instead, directly inject
faults into memory locations. Previous work showed that
this form of fault injection may inaccurately model tran-
sient errors occurring in the hardware [13, 31]. Moreover,
injecting faults directly into the application memory state
has an impact when assessing the resilience of a system. In
fact, it is not possible to use the architectural FIT rate, usu-
ally known, but the user needs to estimate an application-
specific FIT rate that takes into account faults masked at
architectural level and that have not propagated to the ap-
plication’s memory state. Previous work [5] showed that the
application-specific FIT rate is a dominating factor when
assessing overall system resilience and it is not trivial to es-
timate. Injecting faults at register level, on the other hand,
still allows us to use the micro-architectural FIT rate to
evaluate the resilience of a system.

To inject faults at processor level we use LLFI [42], an
LLVM-based fault injection tool that injects faults into the
LLVM Intermediate Representation (IR) of the application
source code. LLFT injects a single fault into live register
at every run of a sequential application in specific program
points, which allows the user to track the effects of the fault
back to the source code. We extend LLFI in two directions:
First, we add the necessary support to inject faults in mul-
tiple MPI processes at different times during the execution.
Second, we extend LLFI to inject zero or more faults into
each MPI process during each execution of the application.
This means that only some MPI processes may experience
direct (injected) faults, while others may experience indirect
faults caused by receiving messages containing errors. In
the rest of this work, we refer to LLFI++ as the extended
version of LLFI for MPI applications. Using LLFI as our
software fault injector has its drawbacks. First, faults are
only injected into live registers, which limits our fault model
to transient errors occurring during an instruction’s opera-
tion, e.g., flip-flop errors in execution units. As shown in
Section 4.3, this has an impact on the percentage of van-
ished faults. Second, as other software fault injectors, LLFI
does not inject faults into non-programmable registers.

3.2 Fault Propagation

Once an error occurs in a hardware register, it might prop-
agate and contaminate other registers or memory locations
in the address space of same process or, in case of distributed
parallel applications, in the address space of other processes.
Understanding the speed (in terms of time) and depth (in
terms of number of contaminated processes) at which a fault
propagates is essential to understand the vulnerability of an
application to faults.

Figure 1 shows an example of how an injected fault may
propagate and contaminate a large part of the memory state
of an application. The example in Figure 1 is an iterative
Matrix-Vector multiplication program that, at each itera-
tion, performs Ax; = b;, where A is a constant input matrix,

Iteration 0 Iteration 1 Iteration 2

12 3 4| 1] |23 1 2 3 4| |23 [232 1 2 3 4| |208| |2436
42 3 12| 17 4 2 3 1||17|_[226 4 2 3 1[,/220|_|2412
2 4 3 3172|725 2 4 3 3|"|25|264 2 4 3 3|7246[|2880
112 6| 3 |25 11 2 6| |25 [240 1 1 2 6||166| |2426
(a) Without fault injected
Iteration 0 Iteration 1 Iteration 2
12 3 4 |1| (23 1 2 3 4| (23] (184 1 2 3 4| |184] |1760
423 12 17 4 2 3 1| [17|_|214] 4 2 3 1|,J214| |1964
2 4 3 3[72| |25 2 4 3 3|25/ |228 2 4 3 3|"|228| |2256
11 2@ 3 [13 11 2 2| [13] [116] 1 1 2 2| |116] |1086
S =

(b) With fault injected

Figure 1: Fault propagation in Matrix-Vector multiplication.

Table 1: Assume a and b to be 8-bit values and initially
a =19 (00010011) and b = 5 (00000101) and that the second
least significant bit of a flips from 1 to 0.

[N]Op [Result (b) [Faulty Result (b’) [Cont.? |
1 b=a-+5 24 22 Yes
2 b=13 13 13 No
3|b=a>>1 9 8 | Yes
4 b=a>>2 4 4 No

Z; = b;—1 is the input vector (zo = [1 2 2 3]is a pro-

gram input) and b; is the iteration output. Figure la shows
three iterations of the program when no fault is injected.
Let’s now assume that, during the execution of iteration 0,
a fault occurs and the third least significant bit of A[3, 3]
flips from 1 to 0, inducing a change of value in A[3, 3] from
6 to 2. The corrupted value in A is then used to compute
bo[3] which, in turn, becomes corrupted. Since by is used as
input vector in iteration 1, the fault keeps propagating and
corrupting other values in the application’s state. As shown
in Figure 1b, in three iterations one single bit flip contami-
nates 37.5% of the application’s memory state, 100% of the
application’s output state by and 100% of the read/write
state z2 and bs. In fact, in just two iterations, 25% of the
application’s state, 100% of the output state and 62.5% of
the read /write state have already been corrupted. This rudi-
mentary example shows how quickly a fault can propagate
and contaminate part of the application’s state and outputs.

The fault propagation module (FPM) for MPI applica-
tions tracks the fault injected by LLFI4++ into a register
as it progressively contaminates the application’s memory
state. The FPM consists of two components: a compiler-
level translation/instrumentation and a runtime checker/
tracker. This double-approach is necessary because accu-
rately tracking faults on real applications running on dis-
tributed systems is not as simple as it may appear at first.
Many false positives may produce inaccurate results and
lead to erroneous conclusions. Table 1 shows several ex-
amples in which the propagation of a fault depends on the
particular operation and the operands involved. As Table 1
shows, whether or not the fault introduced in a propagates to
b depends on the subsequent operations performed on both
a and b. Understanding whether a fault propagates with a
pure compiler-level tool is complicated, thus we integrate it
with a runtime checker/tracker. Table 1 shows that a fault
propagates only if the output of an operation diverges from
its equivalent output when all inputs are pristine. We use
this observation to understand, at runtime, how fault prop-
agates into the application memory state. This means that
we need to compute both the potentially-corrupted results

r4 = add\r2,r3 rdp =‘add r2p,r3p

st rd4,c

Figure 2: Primary and secondary chain of instruction for
the statement ¢ = 2%a + b.

of an operation (b in Table 1), computed with inputs that
might have been contaminated, and the pristine results of
the same operation (b' in Table 1), computed with inputs
that have not been contaminated. The instructions that
contain potentially-corrupted results are part of the Primary
Chain of instructions, i.e., the original program instructions
chain augmented with LLFI++ fault injection instrumenta-
tion, while the replicated original program instructions are
part of the Secondary Chain, as shown in Figure 2. The
pristine values associated with corrupted memory locations
are stored in a hash-table structure in the FPM runtime.
The FPM translation and instrumentation of the state-
ment ¢ = 2*a + b is depicted in Figure 3. Figure 3a shows
an LLVM-like intermediate representation of the code. The
program loads two input values from addresses a and b and
stores the final result at the address c. Figure 3b shows
the first step (fault injection): the code is instrumented
with fault injection functions (fim_inj(x) at lines 3, 5, and
6).! At runtime, the fim_inj(x) function checks if a fault
should be injected and eventually flips a random bit in reg-
ister x (hence the term “potentially-corrupted”). The result
is a potentially-corrupted value stored in register xf, which
will then be used in the primary chain of instructions. The
second step (fault propagation) produces the code shown
in Figure 3c. All arithmetic instructions are replicated by
the source-to-source translator (lines 7 and 11). Hence, the
original instructions in the primary chain use potentially-
corrupted registers (rif, r2f, r3, r3f, and r4), whereas, the
replicated instructions in the secondary chain use pristine
registers (rip, r2p, r3p, and rdp). Load and store opera-
tions are instrumented with runtime functions as follows: at
each load operation the runtime system checks whether the
target memory location has been previously contaminated
and, if so, also fetches the pristine value for that memory
location (fpm_fetch() at lines 2 and 4 in Figure 3c and also
the red dashed lines in Figure 2). If the target memory
location has not been contaminated, the fpm_fetch() re-
turns the same value for both the potentially-corrupted and
the pristine registers. Store instructions are instrumented
to compare the potentially-corrupted value that has to be
stored in memory to the corresponding pristine value com-
puted by the secondary chain of instruction (fpm_store () at
line 13). If the two values differ, the runtime checkers adds
the memory location address to the list of memory locations
contaminated and stores its pristine value (this value will be

In this example, LLFI++ instruments only arithmetic op-
erations, but other class of instructions can be considered.

1: rl = 1d a l1: r1 = 1d a 1: rl = 1d a
2: r2 =1d b 2: r2 =1d b 2: rlp = fpm fetch(a)
3: r3 = mul rl, 2 3: rlf = fim inj(rl) 3: r2 = 1d b
4: r4 = add r2, r3 4: r3 = mul rlf, 2 4: r2p = fpm fetch(b)
5: st r4, c 5: r2f = fim inj(r2) 5: r1f = fim inj(rl)
6: r3f = fim inj(r3) 6: r3 = mul rlf, 2
7: r4 = add r2f, r3f 7: r3p = mul rlp, 2
8: st r4, c 8: r2f = fim inj(r2)
9: r3f = fim inj(r3)
10: r4 = add r2f, r3f
11: r4p = add r2p, r3p
12: st r4, c
13: fpm store(r4,r4dp,c)
(a) LLVM IR (b) LLFI4++ code (c) FPM code

Figure 3: FPM transformation and instrumentation of the
statement ¢ = 2*a + b.

fetched from the next load instructions). Notice, we do not
need to compare the potentially-corrupted and the pristine
value produced by every single instruction but only when a
value is stored to memory. In other words, we maintain a lo-
cal representation of both potentially-corrupted and pristine
registers until the final result is stored to memory.

In the following, we analyze the main challenges.

Store addresses: In the example in Figure 3, transient er-
rors are only injected into registers that contains variables’
values. However, instructions can also manipulate addresses
and use registers to indirectly access memory. A fault propa-
gating to a register that contains a memory address which is
used by a store operation produces a duplicate effect. First,
the actual memory location modified becomes corrupted be-
cause the address used by the store was not supposed to be
written. Second, the memory location that was supposed to
be written is not modified, hence contains a corrupted value.
Consider the following instrumented code:

rif = fim_inj(rl)

st 5, (rif)

if a fault is injected in r1 (thus, r1 !'= rif), the value 5 is
written to a memory location rif that was not supposed to
be written and becomes corrupted. To record this contami-
nation, the FPM runtime adds the pair <rif,x> to the run-
time hash-table, where x is the original value of rif before
the store. The memory location r1 was supposed to contain
the value 5 after the store but it has not been overwritten,
thus FPM also adds the pair <r1,5> to the hash-table.

Function Calls: The input parameters passed to a func-
tion may be contaminated by a previously injected fault and
affect the result computed and returned by the function. For
pure functions it would be enough to execute the function
twice, once with the potentially-corrupted input parameters
and once with the corresponding pristine values. The former
case would produce a potentially-corrupted output while the
latter a pristine output. We use this approach for library
function calls (such as sin() from the math library). How-
ever, in general, a function may also access global variables
during their execution. This means that a generic function
could contaminate a much larger application state than the
returned value. To address this issue, we follow the same
dual-chain approach described previously, but we also mod-
ify the description of each function to accommodate one ex-
tra parameter (the pristine value) for each input parameter.
Moreover, we modified the exit point to return a struct that

HT P1 : HT P2
ai[Pvall
az2[pPval2

cont. loc.
dl__ [pvall
d2 |Pval2

¥ cont. loc.
di___ [pvall
Header d2__ [pval2

al . B1
MPT Cbmm.

original
msg

a2 : B2

Address space of
MPI process Pl

Address space of
MPI process P2

Figure 4: MPI message handling.

consists of two values, the potentially-corrupted computed
by the primary chain and the pristine value computed by
the secondary chain of instructions. Finally, additional code
is inserted to properly retrieve the pristine values associated
to each input parameter and to store the pristine result.
Some functions, such as memory management or I/O op-
erations, impact the address space structure or the interac-
tion with the external world. We do not replicate them to
avoid side effects, such as output values printed twice.

MPI communications: A fault can propagate from the
address space of an MPI process P1 to the address space of
another MPI process P2 if P1 sends a message to P2 con-
taining contaminated data. Neither the sender nor the re-
ceiver process have enough information to accurately track
the propagation of faults through inter-process communica-
tion. The main problem is that a contaminated memory
location in the virtual address space of the sender may be
stored in a completely different memory location in the vir-
tual address space of the receiver. Since neither the sender
nor the receiver has access to each other’s address space, we
embed extra information about the contaminated data in
the message together with the message itself.

Figure 4 illustrates our approach in detail: Assume that
an MPI process P1 sends a message msg to a destination
process P2. In the address space of the sender process msg
is stored at address «, while in the address space of the des-
tination process the message will be copied to address f,
which, in general, is different from «. Also assume that N
memory locations in msg are contaminated and that their
pristine values are stored in the FPM hash-table in the ad-
dress space of P1, HT1. Given that o # [, we cannot use
the addresses of the two contaminated memory locations in
the address space of P1 (al and a2) to derive the addresses
of the memory locations in the address space of P2 (81 and
B2). We use the displacements with respect to the begin-
ning of the msg, which remains constant regardless of the
initial address at which the msg is stored, to communicate
to the receiver which memory locations are contaminated
in the message. Before sending the message, the FPM run-
time routine intercepts the MPI communication functions
and analyzes the message. For each contaminated memory
location, FPM computes the displacement with respect to
the initial address « of the original message and retrieves
the corresponding pristine values from the hash table. FPM
then adds an extra header to the original msg, containing the
number of memory locations contaminated in the message
and one record <displacement,pristine value> for each

20

Number of faults injected

1;“”' s ‘”y'” W ‘]““”m U

0 2.6368e+10
Execution Time

5.2735e+10

Figure 5: Fault injection coverage. Faults are injected uni-
formly throughout the execution of LULESH.

contaminated memory location. On the receiver side, the
destination process extracts the header and uses the first
entry to determine how many contaminated memory loca-
tions are present in the message. The receiver then extracts
the original message msg and stores it at address 8. At this
point, the displacements in each record in the header are
used to compute the addresses of the contaminated memory
locations in the destination address space. Finally, the FPM
runtime on the receiver side adds the addresses of the con-
taminated memory locations and their corresponding pris-
tine values to the HT2 in its address space.

4. EXPERIMENTAL RESULTS

In this section, we analyze the impact of faults in impor-
tant HPC applications and how faults propagate into the
applications’ state. We performed our experiments on a 32-
node cluster equipped with two AMD Interlagos [8] 16-core
sockets, for a total of 32 cores per node and 1,024 cores
per system. We selected several applications from different
benchmark suites: LULESH2 [20] from the ASCR Exascale
Co-Design Center [3], LAMMPS [33], AMG2013 and MCB
from the CORAL program [1], and miniF'E from the DOE
proxy applications. All applications are compiled with LLVM
version 3.4, which internally use GNU gcc 4.8.2, and OpenMPI
1.7.4. All applications use their default input set.

4.1 Fault Injection Coverage

First we analyze the coverage of our fault injection tech-
nique. Ideally, we would like to analyze how faults propagate
in the application’s memory state when injecting faults at
every cycle. This approach, however, is impractical for large
applications such as the ones tested in this work. Herein
statistical fault injection is performed and therefore it is im-
portant to verify that we uniformly inject faults throughout
the execution of the applications. Figure 5 shows that, in-
deed, we inject faults uniformly during the application exe-
cution. The Figure shows the results of 5,000 injections for
LULESH :? the x-axis represents time in cycles divided into
500 bins. The bars represent the number of faults injected
in each bin and the red line represents an ideal uniform dis-
tribution. As evident in the plot, the actual distribution of
injected faults closely matches the ideal uniform distribu-
tion. We also verified the approximation of an ideal uniform
distribution through 2 tests.

2The plots for the other applications follow the same struc-
ture and we omit them because of space constraints.

[(w—CO WO PEX e Crashed |

100

80 [

60 [

40

Percentage Outcome

20

LULESH AMG2013 miniFE LAMMPS MCB

Figure 6: Outcome of fault injection with single fault into a
single MPI process.

4.2 Fault Injection Analysis

In our second set of experiments, we analyze the impact
of injecting random transient errors into registers. These
experiments are similar to the “black box” approaches fol-
lowed in previous work [23, 37, 42] and are based on the
analysis of the application’s output variation. We run each
application 5,000 times and we inject a single fault in each
execution into a randomly selected MPI process. In these
experiments, we inject faults into registers utilized by arith-
metic operations, but other kind of instructions can also be
targeted by LLFI++. The application output is considered
corrupted (WO) if it differs significantly from the fault-free
execution (we use a 5% tolerance) or if the application itself
reports results outside of the error boundaries.

Figure 6 reports the observed results. From the results,
LULESH appears as a robust application with over 90% of
cases resulting in correct results and no performance penal-
ties. Only less than 10% of the executions result in crashes
and less than 5% of the experiments produce wrong results.
On the other extreme, LAMMPS appears to be the most
vulnerable application: about 20% of the experiments re-
sult in crashes and in 40% of cases the result is corrupted by
a single-bit fault (WO). Whereas, the final results are cor-
rect in only 40% of the experiments. MCB shows a behavior
similar to LAMMPS, though 60% of experiments show cor-
rect results. For miniF'E, we notice a considerable number
of cases that produce a correct result, but take more time
to converge to an acceptable solution (PEX). These are in-
teresting cases, as they expose a particular characteristic of
scientific applications that is not necessarily present in other
domains: the user could trade-off the accuracy and correct-
ness of the computed solution for performance. We believe
that these kind of trade-offs will be more important in the
exascale era, when SDCs will be more common. The crashes
we observed are mainly due to bit flips in pointers that cause
the applications to access a part of the address space that
has not been allocated. For LULESH, we notice that some
of the crashes occur because of an internal check on the par-
tial result: if the energy computed at time step ¢ is outside
of the acceptable boundary, the application aborts the exe-
cution calling MPI_Abort () routine. This may explain why
we observed a limited number of WO cases.

4.3 Fault Propagation Analysis

Statistical analysis of the vulnerability of parallel applica-
tions based on output variation provides useful high-level in-

o Masked + Prolonged Execution x Wrong 10

= N
-~ o on o
n w N

6 Masked + Prolonged Execution x Wrong

6 Masked + Prolonged Execution x Wrong

#of Corrupted Memory Locations
#of Corrupted Memory Locations

o

5|
o . P i
0 05 1 15 3 35 4 4.5 0 1

2 25
Time (cycles) 10

I v |

Time (cycles)

#of Corrupted Memory Locations
o 4
= & - & N,

1.‘5 2 25
10t Time (cycles)

(a) LULESH (b) AMG (C) miniFE
60
<10 Masked X Wrong 10° Masked X Wrong 50
12 3.5,
gm E 3 2 40
g P X
S S2 8
z° z 5 30
5 g2 5
% § 1.5 * 20
2 4 2
g g 1
S, 8 10
:g EO.S /_
% 1 2 3 2 y 7 %] 3 4 4 5 s O"LULESH AMG miniFE LAMMPS ~ MCB
Time (cycles) «10° Time (cycles) %10
(d) LAMMPS (e) MCB (f) Percentage of cont. memory state

Figure 7: Fault propagation profiles. In these experiments we randomly inject a single fault per run into a randomly selected
MPI process. Figure 7f shows the percentage of memory locations contaminated at the end of each applications (max).

formation but does not provide insights on the application’s
memory state. In this section, we examine how injected
faults propagate and their characteristics. In particular, we
are interested to discover how fast and with which profile
faults propagate in the memory space of an MPI process
(propagation speed) and how many MPI processes are con-
taminated (propagation depth). As in the previous set of
experiments, we run each application 5,000 times and we
inject a single fault per run. Since, it is not possible to show
all the graphs, we selected representative fault propagation
profiles for each application in Figure 7. We will show how
to use the findings of these experiments in the next section.
Already, the few cases plotted highlight the importance of
the applications’ structure and algorithm in the propagation
of faults. As reported in the previous section, we notice that
crashes generally occur immediately or in proximity of the
injected fault, thus we do not report these cases in Figure 7.
The plots in Figure 7 report two cases for each of the three
remaining classes (CO, WO, and PEX), whenever possible.
We also report the maximum percentage of contaminated
memory state separately in Figure 7f.

We notice that the iterative nature of these scientific ap-
plications produces a deep contamination of their memory
state. When faults contaminate the velocity or position of
a particle P, the interaction of P with other particles and
the forces induced on the latter by P will produce wrong
movement or energy charges. The particles affected by P
will also be contaminated and the process will repeat expo-
nentially in the next time steps. Eventually, given enough
iterations, all the memory state can become contaminated.
In the following, we analyze each application separately.

Figure 7a shows how faults propagate in LULESH [20],
a shock hydrodynamics proxy application developed by the
ASCR ExMatEx Exascale Co-Design Center to model nu-

merical algorithms, data motion, and programming style of
typical scientific applications. The application solves a sim-
ple Sedov blast problem with analytical answers. As de-
picted in the plots, injected faults progressively propagate
into the application’s state. This is the result of the itera-
tive structure of the application wherein the results of a time
step i (speed and position of the fluid) are used as input of
time step ¢ + 1. With a closer look at the graph, it is pos-
sible to identify the time steps. Within each time step the
number of contaminated memory locations remains roughly
constant while between one time step and the next the num-
ber of contaminated memory locations increases. Figure 7a
also shows that the propagation of faults follow the same
trend in all cases, regardless of the correctness of the final
output or if the application takes longer to converge.
LAMMPS [33] is a molecular dynamics code that models
an ensemble of particles in a liquid, solid, or gaseous state.
The application computes Newton’s equations of motion for
system of interacting particles and can model atomic, poly-
meric, biological, metallic, granular, and coarse-grained sys-
tems using a variety of force fields and boundary condi-
tions. We solve the Cu metallic solid with embedded atom
method (EAM) potential which involves the dynamics of
32,000 atoms for 100 time steps. Figure 7d shows that faults
injected in the application progressively propagate through
the memory state at every time step. A fault that corrupts
the velocity or the position of a molecule at time step 7 will
induce wrong forces to the adjacent molecules at time step
i+ 1. Within 100 time steps, more than half of the memory
state becomes contaminated (see Figure 7f), which results
in more than half the case of corrupted results in Figure 6.
An interesting case is represented by the lower profile in Fig-
ures 7d. In this case, the injected fault corrupted a static
data structure that is not used during the computation, thus

the fault does not propagate to the rest of the application’s
memory state. Note that this case was not identified in the
previous experiments based on output variation analysis.
miniFE is a DOE proxy application that implements sev-
eral kernels representative of implicit finite-element appli-
cations. In particular, the application assembles a sparse
linear-system from the steady-state conduction equation on
a brick-shaped problem domain of linear 8-node hex ele-
ments. Next, miniF'E solves the linear-system using a simple

unpreconditioned conjugate-gradient (CG) algorithm and com-

pares the computed solution to an analytical model for steady-
state temperature in a cube. Figure 7c presents fault propa-
gation profiles for miniF'E. We can distinguish in the graph
the assembly of the linear system in the first part (which
mainly consists of scattering element-operators into sparse
matrix and vector) from the CG solving phase (sparse matrix-
vector products). Faults injected in the initialization quickly
propagate and contaminate the sparse matrix and vector (as
in the dense example in Figure 1) and, reach a steady state
maintained in the solving phase. Faults injected in the solv-
ing phase quickly reach a steady state. As we can see from
the graph, the two cases with wrong results cause different
behaviors: for the left-most case, the internal check on the
sparse matrix and vector fails and the application aborts be-
fore starting the solving phase. In the right-most case, the
application does not converge and terminates after reaching
the maximum number of iterations. Given the sparsity of
the matrix and vector, even a small percentage of contami-
nated memory locations (see Figure 7f) can lead to corrupted
results or prolonged executions.

AMG2013 [19] is a parallel algebraic multi-grid solver for
linear systems arising from 3-D problems on unstructured
grids. The communications and computations patterns ex-
hibit the surface-to-volume relationship. We use the default
problem, a 3-D Laplace type problem on an unstructured do-
main with an anisotropy in one part. The fault propagation
results for AMG2013 are shown in Figure 7b. The applica-
tion performs three different phases that can be identified
in the figure, especially when the fault is injected early dur-
ing the execution of the application: Initialization, Setup
of the conjugate gradient pre-conditioner and the Solving
phase. A close look at the data reveals that faults injected
in the early initialization phase propagates slowly at first
and then ramps up when starting the setup phase. During
the setup, the amount of memory location contaminated re-
mains roughly constant, which indicates that the unstruc-
tured grid becomes quickly and completely contaminated.
Finally, in the solving phase, AMG2013 allocates the data
structures required to solve the Laplace problem: as we can
see from the graph, faults quickly propagate in the memory
state of the application contaminating more memory loca-
tions at every iteration of the solver. In two cases, the fault
injected contaminates data structures not involved in the
solving phase. In these cases, the amount of contaminated
memory locations remains stable at the value reached during
the setup phase.

MCB models the solution of a simple heuristic transport
equation using a Monte Carlo technique. The application
employs typical features of Monte Carlo algorithms such as
particle creation, particle tracking, tallying particle infor-
mation, and particle destruction. The heuristic transport
equation models the behavior of particles that are born,
travel with a constant velocity, scatter, and are absorbed.

e LULESH s miiniFE

©
8
S

1000[,J

700

®
8
S

Number of Corrupted MPI ranks

. . .)
X X+20 X+40 X+60 X+80 X+100 X+120 X+140 X+160 X+180 X+200
Time (secs)

Figure 8: This graph shows how an injected fault propagates
across different MPI processes for LULESH and miniFE.

MCB achieves parallelism through domain decomposition
of the physical space and threading. When particles hit the
boundary of a domain, they are buffered and then sent using
a non-blocking MPI call to the processor simulating the do-
main on the other side of the boundary. Figure 7e shows the
typical fault propagation profile that we have seen for other
iterative applications. Faults propagate from one particle to
the other during their movement and from one MPI process
to another when a particle move across domains. Interest-
ingly, even late-injected fault can still corrupt the output.

Propagation through MPI processes: We now analyze
how faults propagate across different MPI processes. As we
explained earlier, we inject a single fault into a randomly
selected MPI process. However, that process may send con-
taminated data to other MPI processes and, thus, corrupt
their address space. Figure 8 shows two examples, LULESH
and miniFE, in which an initial fault injected at a certain
time X into MPI process 4 and 6, respectively, propagates
and contaminates all other MPI processes. For LULESH
faults propagate immediately to all other MPI processes and
spreads very quickly, as MPI exchange data at the end of an
iteration. For miniFE, instead, the fault does not propagate
until very late in the execution, but then spreads quickly to
all other MPI processes.

Categorization Based on Fault Propagation: The re-
sults presented in Figure 6 and 7 are somehow contradic-
tory. Figure 6 shows that the tested applications can tol-
erate the presence of faults during their execution and still
produce correct results. For example, in 90% of the cases
LULESH produces correct results in the presence of a ran-
domly injected fault. Following this data, the user could de-
cide to employ a light-weight resilience mechanism to protect
LULESH, given the relatively robust nature of the applica-
tion. In reality, however, the application is quite sensitive to
transient errors, as LULESH’s memory state might be cor-
rupted even when the final output is correct (Figure 7). This
observation holds for the other applications as well. This
means that only using the results of fault injection experi-
ments may lead to incorrect conclusions and the deployment
of resilience mechanisms that are not adequate.

Using our fault propagation framework, we are able to dis-
tinguish cases in which transient errors propagate through
the application’s memory state from the cases in which a
fault is masked at processor level before contaminating any
memory location. We analyzed the breakdown of the CO

Table 2: Fault propagation speed factors.

[App.]| LULESH | LAMMPS | MOCB | AMG2013 | miniFE |
FPS ” 0.0147 | 0.0025 | 0.0562 | 0.0144 | 0.0035 |

SDev 1.48E-4 0.96E-4 | 26.7E-4 6.82E-4 | 2.89E-4

cases in Figure 6 and divide it into two categories: Vanished
and ONA. A deeper analysis of the internal propagation of
faults reveals that most cases (over 98%) identified as CO in
Section 4.2 present corrupted memory states. The number
of cases in which faults are masked at processor level before
propagating to memory is surprisingly low. We believe that
this may be due to the fact that LLFT injects faults into live
registers and that these faults have a higher probability of
propagating to memory than faults injected into dormant
registers. Previous work has also identified similar discrep-
ancies between circuit- and register-level fault injection [13].
Nevertheless, these results show that it would be dangerous
to assume that the tested applications can tolerate the pres-
ence of faults while, in reality, they may produce incorrect
results in a slightly different execution context.

5. FAULT PROPAGATION MODELING

In Section 4.3, we observed that faults generally propa-
gate linearly in the application’s state during the execution.
In this section, we use this observation to build a fault prop-
agation model that can be used to estimate the number of
corrupted memory locations (CMLs) at a time ¢, once a fault
is detected at time ¢y. From the graphs in Figure 7, it is ev-
ident that each fault propagation profile can be expressed as
a function of the execution time with a piece-wise equation
that is linear in the first sub-domain and constant in the
second. The linear part of the profile is the most interest-
ing because the different profiles characterize the sensitivity
of the applications to faults. We employ machine learning
techniques to derive a generic close form of the fault prop-
agation profile. For each experiment, we can express the
specific fault propagation profile as

CML(t)=a-t+b (1)

where t is the time during the execution, a expresses how
quickly a fault propagates in terms of memory locations cor-
rupted per second, and b indicates the time ¢; where the
fault occurs. We employed standard validation techniques
to verify the accuracy of each model. Our results show that
the errors are within 0.5% of the actual CML values. The
value of b in a particular execution can be derived from the
time ¢; in which the fault occurs.?

b= —a-ty (2)

By applying machine learning techniques to each fault prop-
agation experiment, we obtain a family of linear functions. If
we abstract from the time ¢y where a fault is injected, hence
b, we can compute the fault propagation speed (FPS) factor
for each application as the average of the a factors from each
model. The FPS expresses the rate at which transient er-
rors propagate into the application’s state. The metric can
be used operatively to estimate the number of CMLs within

3We assume that the fault is detected when it occurs. In
reality, there might be a delay between the occurrence and
the detection of the fault At that needs to be taken into
account in the computation of b.

a time interval (¢1,t2), even if the exact time at which the
transient error occurred, ty, is not known. For example, as-
sume that no fault was detected at time ¢; and that a fault
is detected at time t2. The application FPS can then be
used to estimate the maximum number of CMLs, as:

max(CML(tl,tg)) = FPS . (tg — t1) (3)

The above formula is an upper-bound of the maximum num-
ber of CMLs that assumes fault time, ¢y, is close to the lower
extreme of the interval, t;. On average, t;y = (t2 — t1)/2,
hence the average number of CMLs in the time interval
(t1,t2) is avg(CML(t1,t2)) = max(CML(t1,t2)/2), as ex-
pected.? The estimation provided by our model can be used
to decide, at runtime, if a roll-back should be triggered. For
application with low FPS, i.e., relatively robust applications,
the fault-tolerance system could decide to keep the applica-
tion running if the CML at the end of the application is
predicted to be below a safe threshold.

Table 2 reports the FPS computed for each application.
To the contrary of what is indicated in Figure 6, Table 2
shows that, when considering the CML in the application’s
state independently of the final output, LULESH is much
more vulnerable than LAMMPS, as faults propagate at a
rate of 0.0147 CML/sec in the former and 0.0023 CML/sec
in the latter. MCB is the most vulnerable application among
the ones tested. For this application faults propagate at a
rate of 0.0531 CML/sec. We believe that this is a property of
the Monte Carlo method used in the application, which is al-
most embarrassingly parallel. Interestingly, LAMMPS and
miniFE, which are the applications with the largest percent-
age of wrong results in Figure 6, are the applications with
the lowest FPS. This indicates that, compared to the other
applications, faults propagate at a much lower rate in these
two applications but the error margins used to accept the
final solutions are stricter. We believe that FPS is a more
precise way to assess the intrinsic vulnerability of an appli-
cation because it takes into account the entire application’s
structure and not just the final outcome.

6. RELATED WORK

Fault Injection: Fault injection can be performed at vari-
ous abstraction layers, from circuit to application level. Cho
et al. [13] present a study of the accuracy of fault injection
at higher abstraction layers. The authors report that sin-
gle bit-flips at the circuit-level such as those in flip-flops are
difficult to model at the register-file or architecture level.
Fault injections at the circuit-level is considered the most ac-
curate method but it requires sophisticated infrastructures,
such as radiation-exposure to processor chips [11, 12], or
processor RTL simulations [13, 30]. Next, cycle-accurate
microarchitecture-level simulators [24] and architecture-level
simulators [6, 17] have been proven reliable. Both options
might limit the size and scale of the applications and sys-
tems under study. Software-Implemented Fault Injection
(SWIFI) [9, 26, 23, 29, 37, 38, 42] can be used to perform
accelerated fault injection at application level. Li et al. [23]
propose a fault injection system based on Pintool [28] (a
binary instrumentation tool for x86 systems), wherein a sin-
gle fault is randomly injected into data-structures of parallel
scientific applications and the correlation between the fault
outcome and the location of the injected faults is analyzed.

4min(CML(t1, t2)) = 0, assuming ¢y = ta.

MPI Layer

Software/App

«—>
JAQ
sdd

JAY

>
«—
dAd

Architecture

Microarchitecture v

Circuit IE

Figure 9: Fault-Masking levels investigated by related works
as compared to proposed work.

Such fault injection is done directly in the application state,
by corrupting global, heap or stack memory regions and does
not consider faults that may be masked at the architecture
level, before reaching memory.

On the other hand, compiler-level SWIFI tools such as
LLFI [42] and KULFI [37] inject faults at register level,
which provides a chance for the faults to be masked at the
register level before being committed to memory. The ac-
curacy of LLFT in assessing applications resiliency as com-
pared to dynamic instrumentation based fault injection has
also been evaluated [42]. LLFI is found to provide adequate
information about applications vulnerability to soft errors.
We adopt a compiler-level fault injection approach based on
LLFI with extensions to inject multiple faults into an MPI
parallel application. It is noteworthy to mention that simi-
lar extensions for KULFI are proposed by Fliplt [9], which
was developed in parallel to this work.

Vulnerability Metrics: Different metrics at various ab-
stracted layers have been presented in literature with dis-
tinct goals. Figure 9 summarizes some of the resilience and
vulnerability metrics commonly used. At the lowest level
of abstraction, circuit-level masking is quantified using the
timing vulnerability factor (TVF) [36] which is used to de-
termine the probability of a fault occurring within the setup
and hold time windows of the Flip-Flops in the circuit. Mov-
ing upwards to assess the vulnerability of macro hardware
structures inside of a processor like register files, arithmetic
logic units, re-order buffer, the architectural vulnerability
factor (AVF) [32] was proposed to determine the probability
of a fault in each of these structures causing an error in the
final application outcome. In a subsequent work, the pro-
gram vulnerability factor (PVF) [39] was proposed to eval-
uate the software reliability independent of the underlying
microarchitecture so as to propose changes at the software
or application-level. Thus, AVF can be used to determine
both the architecture and microarchitecture level masking
effects on the application outcome, whereas PVF focuses on
architecture-level masking effects. Both AVF and PVF are
computationally-intensive, especially if applied to large par-
allel, distributed-memory applications, such as those tested
in this work. Similarly, instruction categorization is done
based on derating of a single bit flip in architectural regis-
ters [14] and the application derating metric is proposed [5].
PVF or AVF analysis can be done using architecturally cor-
rect execution (ACE) [32] analysis or using fault injection.
On a side note, previous works [40] have pointed out inaccu-
racies of ACE analysis as compared to fault injection studies,
which can lead to overestimation of protection mechanisms.
In a complementary work [18], fault propagation was stud-

ied across MPI boundaries. However as the faults are di-
rectly injected into data structures in distributed memories,
the architecture-level masking effects cannot be quantified.
Similarly, the data vulnerability factor (DVF) [43] is used to
capture the vulnerability of data structures inside of an ap-
plication by estimating the memory access patterns. While
AVF, PVF and DVF are scalar metrics, the methodology
and metric proposed herein provide detailed information
about the internal application memory state within a single
process and across multiple processes in distributed applica-
tions, while providing information about architecture- and
software-level masking similar to PVF metric.

Fault Propagation: Li et al. [23] use application knowl-
edge to analyze the results and qualitatively correlate the
outcomes of injected faults to the locations where fault was
injected. They assess that a fault has propagated if the
final result of the application has been corrupted or the ex-
ecution has been prolonged. In this work, we show that
faults may propagate into the application’s memory state
even if they do not corrupt the final state of the applica-
tion and we show the speed and depth with which faults
propagate. This quantitative analysis is important to un-
derstand the underlying vulnerability characteristics of an
application and to select the most effective fault tolerance
system. Similar application-specific studies have been per-
formed for multi-grid solvers [10] and iterative linear algebra
methods [7]. For example, Casas et al. [10] study the effect of
fault propagation across various phases of AMG by observ-
ing the deviation of known data structures from fault-free
values with the final goal of protecting critical pointers. In
contrast, we seek a generic methodology that allows the user
to study a larger set of applications.

Fault Detection: Fault detection is orthogonal to this
work, yet important for the design of resiliency systems [16,
25]. Faults are detected using a variety of techniques, in-
cluding symptom-based, compiler-assisted, and simulation
techniques [17, 21, 27, 34, 35]. These studies are mostly
done at low-scale, while we target large-scale systems.

7. CONCLUSIONS

Power constraints of exascale systems will encourage use
of technologies like massive parallelism and NTV, which may
result in higher errors and impact the correctness of scien-
tific applications. Despite its importance, the vulnerability
of HPC applications has not received enough attention, pri-
marily because of the lack of tools that allow researchers
to perform accelerated fault injection and analyze how in-
jected faults propagate in the application’s state. In this
work, we introduced a novel fault propagation framework
that is capable of accurately tracking the propagation of
faults into parallel MPI applications. The framework pro-
vides programmers with new insights about the vulnerability
of applications to transient errors and the correlation with
the application structure.

We present an analysis of several mission-critical HPC ap-
plications. Our results indicate that even a single fault intro-
duced at register level can contaminate a consistent part of
the application’s state. We show that faults generally prop-
agate linearly and progressively corrupt the address space
and that errors contaminate other MPI processes through
message passing communication. We used this observation
to derive application fault propagation models that can be
used at runtime to estimate the number of corrupted mem-

ory locations once a fault is detected. We also show that
analyzing the vulnerability of parallel applications with a
“black-box” approach based on output variability analysis
resulting from statistical fault injection may lead to incor-
rect conclusions. In particular, our tool is capable of dif-
ferentiating the cases in which a fault is completely masked
at processor level and does not propagate to memory from
those cases in which the application’s memory state becomes
contaminated, even though the final results appear correct.

Acknowledgements

This work was supported in part by the DOE Office of
Science, Advanced Scientific Computing Research, under
award number 59542 “Performance Health Monitor”; pro-
gram manager Lucille T. Nowell.

8. REFERENCES

[1] Collaboration Oak Ridge, Argonne and Livermore.
https://asc.llnl.gov/CORAL/.

[2] The top500 supercomputers list.
http://www.top500.org.

[3] Advanced Scientific Computing Research (ASCR).
Scientific discovery through advanced computing
(SciDAC) Co-Design.
http://science.energy.gov/ascr/research/scidac/co-
design/.

[4] R. Balasubramanian, Z. York, M. Dorran, A. Biswas,
T. Girgin, and K. Sankaralingam. Understanding the
impact of gate-level physical reliability effects on
whole program execution. In the IEEE 20th
International Symposium on High Performance
Computer Architecture (HPCA), February 2014.

[5] C. Bender, P. Sanda, P. Kudva, R. Mata, V. Pokala,
R. Haraden, and M. Schallhorn. Soft-error resilience of
the IBM POWERSG processor input/output subsystem.
IBM Journal of Research and Development,
52(3):285-292, May 2008.

[6] S. Bohm and C. Engelmann. xSim: The extreme-scale
simulator. In The Int. Conference on High
Performance Computing and Simulation (HPCS), July
2011.

[7] G. Bronevetsky and B. de Supinski. Soft error
vulnerability of iterative linear algebra methods. In
Proceedings of the 22nd Annual International
Conference on Supercomputing, ICS '08, pages
155-164, 2008.

[8] M. Butler, L. Barnes, D. D. Sarma, and B. Gelinas.
Bulldozer: An approach to multithreaded compute
performance. IEEE Micro, 31(2):6-15, Mar. 2011.

[9] J. Calhoun, L. Olson, and M. Snir. Fliplt: An LLVM
based fault injector for HPC. In Furo-Par 2014:
Parallel Processing Workshops, volume 8805 of Lecture
Notes in Computer Science, pages 547-558. Springer
International Publishing, 2014.

[10] M. Casas, B. R. de Supinski, G. Bronevetsky, and
M. Schulz. Fault resilience of the algebraic multi-grid
solver. In Proceedings of the 26th ACM International
Conference on Supercomputing, ICS '12, 2012.

[11] C.-Y. Cher, M. S. Gupta, P. Bose, and K. P. Muller.
Understanding soft error resiliency of BlueGene/Q
compute chip through hardware proton irradiation

and software fault injection. In Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis, SC,
2014.

[12] C.-Y. Cher, K. Muller, R. Haring, D. Satterfield,
T. Musta, T. Gooding, K. Davis, M. Dombrowa,
G. Kopcsay, R. Senger, Y. Sugawara, and
K. Sugavanam. Soft error resiliency characterization
on IBM BlueGene/Q processor. In the 19th Asia and
South Pacific Design Automation Conference
(ASP-DAC), Jan 2014.

[13] H. Cho, S. Mirkhani, C.-Y. Cher, J. Abraham, and
S. Mitra. Quantitative evaluation of soft error
injection techniques for robust system design. In the
50th ACM/EDAC/IEEE Design Automation
Conference (DAC), May 2013.

[14] J. J. Cook and C. B. Zilles. A characterization of
instruction-level error derating and its implications for
error detection. In the International Conference on
Dependable Systems and Networks (DSN), Anchorage,
AK, 2008.

[15] R. Dreslinski, M. Wieckowski, D. Blaauw,

D. Sylvester, and T. Mudge. Near-threshold
computing: Reclaiming moore’s law through energy
efficient integrated circuits. Proceedings of the IEEFE,
98(2):253-266, Feb 2010.

[16] C. Engelmann, H. H. Ong, and S. L. Scott. The Case
for Modular Redundancy in Large-Scale High
Performance Computing Systems. In Proceedings of
the 27th IASTED Int. Conference on Parallel and
Distributed Computing and Networks (PDCN),
Innsbruck, Austria, Feb. 2009.

[17] S. Feng, S. Gupta, A. Ansari, and S. Mahlke.
Shoestring: Probabilistic soft error reliability on the
cheap. In the 15th ACM Architectural Support for
Programming Languages and Operating Systems,
ASPLOS, Pittsburgh, PA, 2010.

[18] D. Fiala, F. Mueller, C. Engelmann, R. Riesen,

K. Ferreira, and R. Brightwell. Detection and
correction of silent data corruption for large-scale
high-performance computing. In Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12,
pages 78:1-78:12, 2012.

[19] V. E. Henson and U. M. Yang. BoomerAMG: A
parallel algebraic multigrid solver and preconditioner.
Applied Numerical Mathematics, 41(1):155-177, Apr.
2002.

[20] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain,
J. Cohen, Z. DeVito, R. Haque, D. Laney, E. Luke,
F. Wang, D. Richards, M. Schulz, and C. Still.
Exploring traditional and emerging parallel
programming models using a proxy application. In
27th IEEE International Parallel & Distributed
Processing Symposium (IPDPS), Boston, May 2013.

[21] D. S. Khudia, G. Wright, and S. Mahlke. Efficient soft
error protection for commodity embedded
microprocessors using profile information. In the 13th
ACM Int. Conf. on Languages, Compilers, Tools and
Theory for Embedded Systems, LCTES, Beijing,
China, 2012.

[22] P. Kogge, K. Bergman, S. Borkar, D. Campbell,

[23]

[25]

[26]

[27]

[28]

[33]

W. Carlson, W. Dally, M. Denneau, P. Franzon,

W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler,

D. Klein, R. Lucas, M. Richards, A. Scarpelli,

S. Scott, A. Snavely, T. Sterling, R. S. Williams, and
K. A. Yelick. Exascale computing study: Technology
challenges in achieving exascale systems. Technical
Report DARPA-2008-13, DARPA IPTO, September
2008.

D. Li, J. S. Vetter, and W. Yu. Classifying soft error
vulnerabilities in extreme-scale scientific applications
using a binary instrumentation tool. In the
International Conference on High Performance
Computing, Networking, Storage and Analysis, SC,
Salt Lake City, Utah, 2012.

M.-L. Li, P. Ramachandran, U. Karpuzcu, S. Hari,
and S. Adve. Accurate microarchitecture-level fault
modeling for studying hardware faults. In the IEEE
15th Int. Symp. on High Performance Computer
Architecture (HPCA), Feb 2000.

C. Lu. Failure data analysis of HPC systems. CoRR,
abs/1302.4779, 2013.

C.-d. Lu and D. A. Reed. Assessing fault sensitivity in
MPT applications. In Proceedings of the 2004
ACM/IEEE Conference on Supercomputing, SC 04,
2004.

Q. Lu, K. Pattabiraman, M. Gupta, and J. Rivers.
SDCTune: A model for predicting the SDC proneness
of an application for configurable protection. In the
International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), pages
1-10, Oct 2014.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and

K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In
Proceedings of the ACM Conf. on Programming
Language Design and Implementation, PLDI, Chicago,
IL, USA, 2005.

R. Maia, L. Henriques, D. Costa, and H. Madeira.
Xception - enhanced automated fault-injection
environment. In the International Conference on
Dependable Systems and Networks (DSN), June 2002.
M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and
Y. Makris. Instruction-level impact analysis of
low-level faults in a modern microprocessor controller.
IEEE Transactions on Computers, 60(9):1260-1273,
Sept 2011.

S. Mitra, P. Bose, E. Cheng, C.-Y. Cher, H. Cho,

R. Joshi, Y. M. Kim, C. R. Lefurgy, Y. Li, K. P.
Rodbell, K. Skadron, J. Stathis, and L. Szafaryn. The
resilience wall: Cross-layer solution strategies. In
Proceedings of International Symposium on VLSI
Technology, Systems and Application (VLSI-TSA),
2014.

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt,
and T. Austin. A systematic methodology to compute
the architectural vulnerability factors for a
high-performance microprocessor. In Proceedings of
the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 36, 2003.

S. Plimpton. Fast parallel algorithms for short-range
molecular dynamics. Journal of Computational

(34]

(35]

(36]

37]

(38]

(39]

(40]

[41]

42]

(43]

Physics, 117(1):1-19, 1995.

S. Sahoo, M.-L. Li, P. Ramachandran, S. Adve,

V. Adve, and Y. Zhou. Using likely program invariants
to detect hardware errors. In the International
Conference on Dependable Systems and Networks
(DSN), June 2008.

S. Sastry Hari, S. Adve, H. Naeimi, and

P. Ramachandran. Relyzer: Application resiliency
analyzer for transient faults. IEEE Micro, 33(3):58-66,
May 2013.

N. Seifert and N. Tam. Timing vulnerability factors of
sequentials. IEEE Transactions on Device and
Materials Reliability, 4(3):516-522, Sept 2004.

V. C. Sharma, A. Haran, Z. Rakamari¢, and

G. Gopalakrishnan. Towards formal approaches to
system resilience. In the 19th IEEE Pacific Rim
International Symposium on Dependable Computing
(PRDC), 2013.

D. Skarin, R. Barbosa, and J. Karlsson. GOOFI-2: A
tool for experimental dependability assessment. In the
International Conference on Dependable Systems and
Networks (DSN), June 2010.

V. Sridharan and D. Kaeli. Eliminating
microarchitectural dependency from architectural
vulnerability. In IEEE 15th International Symposium
on High Performance Computer Architecture (HPCA),
pages 117-128, Feb 2009.

N. J. Wang, A. Mahesri, and S. J. Patel. Examining
ACE analysis reliability estimates using
fault-injection. In Proceedings of the 34th Annual
International Symposium on Computer Architecture,
ISCA 07, pages 460-469, 2007.

N. J. Wang, J. Quek, T. M. Rafacz, and S. J. patel.
Characterizing the effects of transient faults on a
high-performance processor pipeline. In the
International Conference on Dependable Systems and
Networks (DSN), 2004.

J. Wei, A. Thomas, G. Li, and K. Pattabiraman.
Quantifying the accuracy of high-level fault injection
techniques for hardware faults. In the International
Conference on Dependable Systems and Networks
(DSN), June 2014.

L. Yu, D. Li, S. Mittal, and J. S. Vetter.
Quantitatively modeling application resilience with
the data vulnerability factor. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 14,
pages 695-706, 2014.

