
SCHEDULING STRATEGIES FOR
MULTIPROCESSOR REAL-TIME DSP '

Edward Ashford Lee
Soonhoi Ha

U. C. Berkeley
Berkeley, CA 94720

GLOBECOM, Dallas, Texas, November I989
completely addressed, either in the deterministic scheduling literature

ABSTRACT or in the multiprocessor systems literature. This paper will attempt to
define these.

Real-time digital signal processing often requires multiple processors. We assume the description of the program to be scheduled is a
Unfortunately, in most practical situations, partitioning of DSP applica- dataflow graph, signal flow graph, or block diagram. Language classes
tions for execution on multiple programmable Processors is ad-hoc. that are efficiently translated into dataflow graphs include functional,
Automatic schedulers either (1) add unacceptable Cost to the imple- applicative, and single-assignment. In a dataflow graph the nodes, or
mentation Or (2) address only a subset of applications. This Paper actors, are functions that operate on data passed through the arcs. The
explores the possibilities for automatic schedulers that result in IOW model is data-driven, in that actors fire (or perform their computation),
imP1emenQfion Cost and Can target a broad class of DSP applications. when sufficient data is available on their input arcs. The role of the
We Can define four classes of scheduling strategies, (1) fully dynamic, scheduler is simply to determine when to fire actors and on which pro-
(2) static assiPment, (3) self-timed, and (4) fully static. Moving from cessor. The actors may have arbitrary granularity, meaning that they
(1) to (4). more scheduling activity is Performed at compile time and may represent atomic operations, such as addition and multiplication,
less at run time. This Paper argues that for most DSP applications, or much more elaborate operations, such as transforms or digital filters.
self-timed scheduling is the most attractive. We assume that no attempt will be made to exploit concurrency within

an actor, so that the scheduler only needs to operate on the dataflow
graph.

1. MOTIVATION
Use of multiple programmable processors has become an attrac- 2. A SCHEDULING TAXONOMY

tive alternative to custom VLSI for many real-time digital signal pro- Scheduling consists of assigning actors to processors, specifying
cessing appfiCatiOnS. Widespread use Of this alternative, however, Will the order in which actors fire on each processor, and specifying the
depend on the development of effective Software and hardware time at which they fire. each of which can be done either at compile
development environments. Fortunately, such software is being time or at run time. Depending on which operations are done when, we
actively pursued in both research and industrial settings. Interesting define four classes of scheduling, depicted in figure 1. The first type is
systems are currently commercially available for implementing DSP fully dynamic, where actors are scheduled at run time only. When all
algorithms on single Processors, while Some experimental systems input operands for a given actor are available, the actor is assigned to
emphasize real-time computation on multiple Processors. An example an idle processor and fired. The second type is static allocation, where
is Gabriel, which translates block-diagram algorithm descriptions into an actor is assigned to a processor at compile time and a local run-time
real-time code for multiple programmable DSPs Lee891. scheduler invokes actors assigned to the processor based on data avai-

Problems behind such systems is scheduling for lability. In the third type of scheduling, the compiler determines the
parallel computation. Compile-time scheduling promises near-optimal order in which actors fire as well as assigning them to the processors.
performance at low cost for the final system, but is Only suitable for a At run-time, the processor waits for data to be available for the next
subset of applications. Run-time scheduling can address a wider actor in its ordered list, and then fires that actor. We call this selftimed
variety of applications, at greater system Cost. Digital signal process- scheduling because of its similarity to self-timed circuits. The fourth
ing provides unique opportunities and constraints that have not been type of scheduling is fully static; here the compiler determines the exact

firing time of actors, as well as their assignment and ordering. This is
The authors gratefully acknowledge the support of Motorola, in analogous to synchronous circuits. As with monomy, the bow-

cooperation with the state of California Micro program, and D q a , dary between these categories is not rigid.
under grant no. N00039-87-C-0182. We can give familiar examples of each of the four strategies

applied in practice. Systolic arrays, SIMD (single instruction, multiple

One Of the

assignment ordering timing

fully dynamic I run ~ run I run I

compile compile compile

static-assignment

self-timed

fully static

Figure 1. The time which the scheduling activities "assignment", "ordering", and "timing" are performed is shown for four
classes of schedulers. The scheduling activities are listed on top and the strategies on the left.

35.2.1.
CH2682-318910000-1279 $1 .OO 0 1989 IEEE 1279

data), and VLIW (very large instruction word) computations [Fis&]
are fully staticly scheduled. Similarly, wavefront arrays [Kun88] and
asynchronous circuits use self-timed scheduling. In general purpose
parallel processors, when there is no hardware support for scheduling
(except synchronization primitives), self-timed scheduling is usually
used. Hence, most applications of today's general purpose multipro-
cessor systems use some form of self-timed scheduling, using for
example CSP principles [Hoa78] for synchronization. In these cases. it
is often up to the programmer, with meager help from a compiler, to
perform the scheduling.

Examples of static-assignment scheduling include many dataflow
machines [Sri86]. Dataflow machines evaluate dataflow graphs at run
time, but a commonly adopted practical compromise is to allocate the
actors to processors at compile time. To use an example targeted at
DSP, the NEC uPD7281 [Cha84] uses static-assignment scheduling
based on the tagged-token concept [Arv82]. Another example is TI'S
data-driven processor (DDP), designed for executing Fortran programs
that are translated into dataflow graphs by a compiler [Cor79]. The
cost of implementing tagged-token architectures has recently been
dramatically reduced using the "explicit token store" concept [Pap88].
Another example of an architecture that assumes static-assignment is
the proposed "argument-fetching dataflow architecture" [Gao88],
which is based on the argument-fetching data-driven principle of
Dennis and Gao [Den88]. A machine that has a mixture of fully
dynamic and static assignment scheduling is the Manchester dataflow
machine Wat821. Here, a number (15) of processing elements are col-
lected in a ring. Actors are assigned to PES at run time within the ring,
but there are many such rings. To communicate between rings, tokens
are transmitted over a communication network. Thus, assignment is
dynamic within rings, but static across rings. Fully dynamic scheduling
has been applied in the MIT static dataflow architecture [Dengo], the
LAU system, from the Department of Computer Science,
ONERA/CERT, France [Pla76], COSSAP [Kun87], and the DDMl
[Dav78].

Although obviously attractive in principle, automatic schedulers
today either (1) add unacceptable cost to the implementation by operat-
ing near the fully-dynamic end of the spectrum or (2) work well with
only a subset of algorithms. The basic premise of this paper, ela-
borated in the following sections, has three parts.
(1) In order to reduce implementation costs and make it possible to

reliably meet real-time constraints, the more that is done at com-
pile time the better.
Schedulers that work well with only a subset of applications can
be acceptable, but the subset should be large enough that reason-
able applications can be implemented in their entirety.
Automatic scheduling is better than manual.

(2)

(3)

3. DOMAIN AND RANGE
The domain of a scheduling strategy can be loosely defined as

the set of algorithms for which the scheduling strategy does well. The
range is the set of architectures that the strategy can target well. Most
practical scheduling strategies have a limited domain or range.

Of the classes we have defined, fully static scheduling has the
narrowest domain. The subclass of dataflow graphs for which fully
static scheduling works best is synchronous dura flow [Lee87]. SDF
graphs consist only of actors where the number of tokens (units of data)
produced or consumed when the actor fires is fixed and known at com-
pile time. With the further restriction that execution times of the actors
are exactly known, optimal fully static scheduling is possible. Unfor-
tunately, even in this restricted domain, algorithms that accomplish
such optimal scheduling have combinatorial complexity, except in cer-
tain trivial cases [Cof76][Cap84]. Fortunately, good heuristic methods
have been developed over the years, many being critical path methods
[Cof76]. The range depends on the sophistication of these methods,
although most straightforward implementations target homogeneous
tightly coupled multiprocessors with full interconnectivity. The

requirement for full interconnectivity limits the range to machines with
modest parallelism.

A subclass of fully static scheduling is the set of techniques
based on projecting dependence graphs for regular iterative algorithms
onto systolic arrays Fun881 IRao851. These techniques have a very
limited domain (RIA'S) and range (systolic mays), but do extremely
well within these constraints.

The domain of static scheduling specifically does not include
dataflow graphs with actors that have data-dependent execution times
or actors that may or may not fire, depending on the value of some data
somewhere in the graph. These restrictions are severe, since they
exclude both conditionals and data-dependent iteration within an actor
or involving several actors. The restrictions can be relaxed, however,
at the expense of optimality in the resulting schedule. For example, an
actor with a data-dependent execution time can be padded so that it
always executes in worst-case time, an approach that is well suited to
real-time computation. As another example, to implement the synchro-
nous dataflow equivalent of if-then-else, both branches of the condi-
tional may be computed, and the desired result may be selected. There
are again applications where this option is acceptable, for example
when one of the two conditional branches is trivial, but most of the
time the cost will be high.

Static scheduling has been extended to handle limited forms of
data-dependent firing of actors [Lee88]. For example, consider the
graph in figure 2. This is not a synchronous dataflow graph because it
is not possible to state at compile time how many tokens the switch and
select actors will produce or consume on each input each time they fire.
Nonetheless, quasi-static scheduling is possible, where a small amount
of run-time control is inserted to determine which subgraph, f(.) or
g(), to invoke next. Again, the execution times are padded so that
each processor involved in the if-then-else clause finishes at a fixed
time, independent of which branch was executed.

Self-timed scheduling has a slightly broader application domain.
Although the order of execution of actors is fixed for each processor at
compile time, the exact firing times are not. Consequently, the
schedule can automatically compensate for certain fluctuations in exe-
cution times. For example, if one actor finishes earlier than expected,
the following actor can fire immediately, as long as its data is available.
Compared to using worst-case execution times, self-timed scheduling
will always do at least as well, as long as the overhead for synchroniza-
tion is negligible. Self-timed scheduling is also more robust, in that
minor fluctuations in execution times will not affect the correctness of
the execution, and will have little effect on its performance. For exam-
ple, interrupts are often useful for handling 1/0 operations, but their
introduction introduces uncertainty in the execution of any actor that
may be interrupted. The Gabriel system Lee891 uses self-timed
scheduling.

.IY

Figure 2. Dataflow representation for an if-then-else
clause. A token x is routed to one of two functions, f (.) or
g (.), depending on the value of the condition token c .

35.2.2.
1280

It is clear that self-timed scheduling does well with synchronous
datafiow when when there is little variability in the execution times of
the actors. In the presence of limited amounts of data-dependent firing
of actors, such as found in figure 2, it will also do well. We have more
recently discovered that it also looks promising for certain types of
data-dependent iteration [Ha89]. Loosely, it appears that the domain
can be stated simply as the set of algorithms that are "mostly" static. It
is not clear just how much dynamic behavior must be present before
enough time is spent idling, waiting for data tokens to arrive, that a
more dynamic scheduling technique would have been more effective.
Nonetheless, this domain seems like a good match to signal processing,
for which practical implementations of most well-known algorithms
occasionally require data dependencies.

Static assignment scheduling, in principle, has still broader
range, because it can adjust the ordering of execution of actors. An
example is shown in figure 3. In that example, one of six actors has a
data-dependent execution time. Depending on the outcome, it may be
better to schedule the actors using the ordering in (b) or in (c). While it
is possible to reduce the total execution time by rearranging the order
of execution, it is not always easy to determine at run time which actor
should be fired next when there is more than one possibility. For
example, in figure 3c, after A completes on the second processor, either
B or E can be fired. For the implementation to be cost effective, the
decision would have to be made on the basis of local or static
(compile-time) information.

Fully dynamic scheduling has the broadest application domain,
since it can in principle subsume all functions in the previous models,
and perform them at run time. Furthermore, it has the flexibility to
redirect the computational load in response to changing conditions in
the algorithm. Unfortunately, scheduling mechanisms for accomplish-
ing this are not very well understood, except in situation where the
scheduling could be equally well done at compile time (section 5).
Furthermore, the run time cost of fully dynamic scheduling is too high
(section 4).

4. OVERHEAD
Real-time DSP applications typically involve vast amounts of

computation at run time, so considerable effort at compile time can be
justified. Often a system is designed to perform only a single function
in its lifetime. Furthermore, run-time overhead in the form of extra
hardware is not acceptable for cost-sensitive applications, and run-time
overhead in the form of extra software only makes it more difficult to
meet real-time constraints.

Fully dynamic scheduling involves considerable run-time over-
head, even when simplistic scheduling strategies such as randomized
scheduling are used. It is difficult to exploit communication locality in
a dataflow graph, since all tokens traverse the communication network.
In one of the better known realizations, the MIT static dataflow
machine [Den80], Dennis proposes using a high-speed packet switch
for instruction delivery. A useful multiprocessor for DSP must have a
very high instruction delivery rate, so this packet switch will have to
have high bandwidth. Furthermore, the packet switch must perform

scheduling functions and buffer instructions when they cannot be exe-
cuted immediately. The cost of such a packet switch wouId have to be
very carefully justified, and probably can only be justified when more
static scheduling strategies break down due to excessive data-
dependency in the algorithms. Most signal processing applications and
scientific computation are unlikely to fall in this category.

Static-assignment scheduling is more commonly used in dataflow
machines because of the high cost of shipping code around the
machine. The run-time overhead reduces to that of scheduling actors
within one processor. This involves determining when actors can be
fired and arbitrating between actors that simultaneously become ready
to fire. Some implementations are based on tagged-token principles
[Arv82], for example the NEC uPD7281 [Cha84], the cost of which
has recently been reduced through the token store (ETS) scheme
Pap881.

In self-timed scheduling, there is no need to determine at run
time which actor to invoke next. The ordering is specified at compile
time. The only run-time scheduling function is to determine whether
the actor that goes next is ready to be fired by checking its input data.
If it is not, then the machine is idled until it is. It is up to the compile-
time scheduler to find the ordering that minimizes the idling time. As
shown in figure 3, restricting the firing order can result in poor
schedules when execution time of actors varies.

Fully static scheduling has the lowest run-time cost: no hardware
and no software. Since behavior is completely known at compile time,
there is no need to check to see when actors can be fired. The compiler
can figure it out, so actors simply fire at the designated time, and are
assured that their data is available. The main drawback of this tech-
nique is its very narrow domain, since it is completely intolerant of ran-
dom behavior.

5. AN OVERVIEW OF SCHEDULING STRA-
TEGIES

The goal of scheduling is find an assignment, ordering, and tim-
ing for actors that optimizes some performance measure. Typical per-
formance measures are minimum mean flow time, makespan, or itera-
tion period. Mean flow time is the average of the firing times of all
actors; minimizing this measure might be appropriate when actors
involve interaction with human operators. The makespan is the max-
imum completion time for all actors; minimizing this measure is often
appropriate for finite programs. The iteration period is the time to exe-
cute one cycle of a periodic program; this performance measure is most
appropriate for real-time DSP. It is common to compromise on the per-
formance measure. For example, instead of minimizing the iteration
period, a scheduler might construct a blocked schedule, in which each
cycle of a periodic computation must finish on all processors before the
next cycle can begin on any. With this constraint, minimizing the itera-
tion period is the same as minimizing the makespan of one cycle. We
assume non-preemptive scheduling.

For any finite program with data-independent behavior, the solu-
tion space of the scheduling problem is enumerable, so optimal
schedules can be found in principle. Unfortunately, most deterministic

(a) precedence relation (b) no execution order change (c) execution order change

Figure 3. Two static-assignment schedules for two processors are shown for the precedence graph in (a). The execution time
of actor D is data-dependent and is longer for the schedule in (b) than for the schedule in (c). Note that the ordering of the
firing of actors is determined at r u n time and is different in (b) and (c).

35.2.3.
1281

scheduling problems are NP-hard [Cof76], so optimal solutions can
only be found for small problems. A more practical approach is to use
heuristic algorithms, based for examde on the critical nath rnerhnrl
[Cof76]. We have applied one such method, Hu-level scheduling
[Cof76I, to the programming of systems with multiple programmable
DSPs Fee891. Unfortunately, even for reasonably static DSP applica-
tions, the restriction to data-independent behavior is too severe.

When data-dependent behavior is included, for example condi-
tionals and iteration, then the optimal scheduling problem becomes
hopeless, except in degenerate cases. In principle, stochastic modeling
of the program could be used to make compile-time decisions, but only
the most grossly oversimplified stochastic models yield to optimization.
Equally lacking are policies that can be applied at run-time to make
optimal decisions.

One heuristic technique is to use the expecred execution time of
data-dependent subgraphs to guide the run-time scheduling. Based on
the work of Martin and Estrin [Mar67], Granski, et. al. describe an
experiment in which a fully dynamic scheduler is guided by priorities
computed at compile time [Gra87]. The target machine is the MIT
static dataflow machine [Den80]. A modified Hu-level algorithm
(using approximate expected execution times) determines the priorities.
Since the priorities indicate the preferred ordering of actor firing, this
technique could almost be viewed as a fifth category in figure 1 , where
assignment and timing are done at run-time, but ordering is done at
compile-time. However, the priorities are not strictly enforced, so this
technique remains a fully dynamic scheduling technique. Unfor-
tunately, practical implementation of this method increases the
hardware cost of the dataflow machine, and the authors conclude that
the marginal performance improvement over random scheduling does
not justify the increased cost. Furthermore, they conclude that it is the
presence of data-dependent behavior that precludes better performance.
Of course, without the data-dependent behavior, we would be in the
domain of fully static or self-timed scheduling, and there would be lit-
tle reason to use a machine that relies on a fully dynamic scheduler.

Fully dynamic schedulers often take the simpler approach of ran-
domly assign actors that are ready to fire to processors as the proces-
sors become idle. This scheme, which can make no pretence to
optimality, removes the burden of run-time decision making, but still
leaves considerable run-time cost. For example in the packet-switched
network for instruction delivery proposed by Dennis for the static
dataflow architecture Pen801, the packet processing is simplified by
random scheduling, but the network is still costly. Finally, the perfor-
mance of this architecture will depend somewhat on the assignment of
actors to memory, since multiple parallel memory units are used to get
the requisite bandwidth. The compiler should strive to minimize
conflicts, but we have seen no discussion of this problem. Is random
assignment adequate?

Static-assignment schedulers have an easier time at run-time
because there is no need to determine how to assign actors to proces-
sors. Control becomes localized, because each processor only has to
worry about the actors that have been assigned to it. A simple "greedy"
scheduling algorithm simply fires an actor immediately when the pro-
cessor becomes free, assuming there is an actor ready to be fired. This
is not optimal because it is sometimes better to leave the processor idle
until another actor is ready to fire. However, this compromise is com-
mon, even in fully static schedulers. When more than one actor is
ready to be fired, the scheduler must determine which one to fire. A
typical approach that is far from optimal is to randomly order the list of
actors and apply a "fairness" principle, in which no actor will be tried
twice before all other actors have been tried [Gao83]. Another alterna-
tive would be to use compile-time analysis of the dataflow graph to
assign priorities to the actors. It seems to us that this idea should work
much better in this static-assignment context than in fully dynamic
scheduling as investigated by Granski, et. al. [Gra87], because the run-
time implementation cost would be trivial.

The question remains how to accomplish the assignment in

static-assignment scheduling. One simple approach is random assign-
ment. This tends to balance the load. Another approach is clustering,
where actors which communicate a great deal are grouped and mapped
onto one processor in order to reduce interprocessor communication.
Numerous authors have proposed techniques that compromize between
interprocessor communication cost and load balance
[Muh87][Chu80] [Zis87] [Ma821 [Efe82]&u86]. But none of these con-
sider precedence relations between actors. To compensate for ignoring
the precedence relations, some researchers propose using a dynamic
load balancing scheme in which processors exchange actors dynami-
cally as they monitor their computational loads at runtime
[Ke184][Bur811[1qb861. Unfortunately, the cost can be high, and may
be difficult to justify for many applications. In particular, for applica-
tions with relatively little data dependency, for instance DSP or
scientific computation, the compiler can do a much better job of assign-
ment in the first place if it considers the precedences, so dynamic load
balancing becomes unnecessary.

We make the following observation; if the dataflow graph has no
data dependencies, then we can do a much better job of assignment
(compared to random assignment) by constructing a static schedule and
discarding the ordering and timing information, retaining only the
assignment. Hueristic techniques can be incorporated to simultane-
ously perform clustering and optimization of the performance measure,
as done for example in [Kim88]. If small data-dependencies are intro-
duced, the effectiveness of this approach will hardly be affected. To be
able to construct a static schedule, we could simply use expected Hu-
levels, as done in IGra871. If larger amounts of data dependency are
introduced, at some point, this approach will break down, and will not
perform significantly better than random assignment. However, the
data dependencies can be taken into account more directly in the static
scheduling, using for example the quasi-static scheduling strategies in
IDe88l. Such a scheme is proposed by [Ha89], who also extends the
quasi-static scheduling strategies in b 8 8] to include data-dependent
iteration. The details of these proposals are beyond the scope of this
paper, but we can state their conclusion: For dataflow graphs with some
data-dependent behavior, reasonable static schedules can be con-
structed. The quality of the resulting static schedules degrades as the
amount of data-dependency increases, but the assignment part of the
schedules may still be useful. This assignment may yield significantly
better performance than random assignment.

A reasonable self-timed scheduling strategy follows the same
principle; construct a fully static schedule using the best available
information about execution times, etc., and discard the timing infor-
mation, retaining both the assignment and the ordering. This is the
approach taken in Gabriel De891 as well as other related systems
(Zis873.

Fully static scheduling can now be seen to be a useful technique
even if it only solves part of the problem for self-timed and static
assignment scheduling.

6. CONCLUSION
In order to reduce implementation costs and make it possible to

reliably meet real-time constraints, the more scheduling that is done at
compile time the better. Unfortunately, in order to automatically do
more at compile time, it appears to be necessary to restrict the system
to a narrower range of applications. However, real-time DSP is a range
of applications that appears to be a good match with the self-timed
scheduling strategy. In this strategy, the assignment of actors to pro-
cessors, and the ordering of the firing of actors, is determined by a
compiler. Only the timing of the firing is determined at run-time. The
run-time cost of this determination is minimal. Furthermore, automatic
scheduling techniques that fit this model are growing in generality and
efficiency. We conclude research in multiprocessor real-time DSP
should focus on solving the remaining compile-time scheduling prob-
lems for the self-timed scheduling strategy.

35.2.4.
1282

- . .

REFERENCES
[Ada741 T. L. Adam, K. M. Chandy, and J. R. Dickson, "A Comparison

of List Schedules for Parallel Processing Systems" Comm. ACM, 17 (12) pp.
685-690. Dec., 1974.
[Am821 &id and K. P. Gostelow, "The U-Interpreter". Computer 15(2),
February 1982.
Bur811 F. W. Burton and M. R. Sleep, "Executing Fuctional Programs on A
Virtual Tree of Processors", Proc. ACM C o g . Fuctional Progrnmming Long.
Comput.Arch., pp. 187-194, 1981.
[Cap841 P. R. Cappello and K. Steiglitz. "Some Complexity Issues in Digital
Signal Processing" IEEE Tram. on ASSP ASSP-32 (5), October 1984.
[Cha84] M. Chase, "A Pipeliied Data Flow Architecture for Signal Processing:
the NEC uPD7281" VU1 Signal Processing, IEEE Press, New York (1984)
[ChuSO] W. W. Chu, L. J. Holloway. M. T. Lan, and K. Efe, 'Task Allocation
in Distributed Data Processing", IEEE Computer, pp. 57-69, November. 1980.
[Cot761 E. G. Cofhan. Jr., Computer and Job Scheduling Theory Wiley. New
York (1976)
[Cor791 M. Cornish D. W. Hogan, and J. C. Jensen, "The Texas Instruments
Distributed Data Processor", Proc. Louisiana Computer Exposition. Lafayette.
La., March 1979, pp. 189-193.
[Dav78] A. L. Davis, "The Architecture and System Method of DDM1: A
Recursively Structured Data Driven Machine", Proc. Fifh A m . Symp. Com-
puter Architecture, April, 1978, pp. 210-215.
[Den801 J. B. Dennis, "Data Flow Supercomputers" Computer, U (11).
November 1980.

[Den881 J. B. Dennis and G. R. Gao "An Efficient Pipelined Dataflow Proces-
sor Architecture" To appear in Proceedings of the IEEE. also in the Proc. ACM
SIGARCH Conf. on Supercomputing. Florida, Nov., 1988.
[Efe82] K. Efe, "Heuristic Models of Task Assignment Scheduling in Distri-
buted Systems", IEEE Computer. pp. 50-56. June, 1982.
[Fisk341 J. A. Fisher, "The VLIW Machine: A Multiprocessor for Compiling
Scientific Code", Computer, July, 1984,17(7).
[Ciao831 A Pipelined Code Mapping Scheme for Static Datafow Computers,
PhD dissertation. Laboratory for Computer Science, MlT. Cambridge, MA
(1983).
[Gao88] G. R. Gao, R. Tio, and H. H. J. Hum, "Design of an Efficient Dataflow
Architecture without Data Flow", Proc. Int. CO@. on Fifth Generation Com-
puter System, 1988.
[Go11771 M. J. Gonzalez. Deterministic Processor Scheduling, Computing Sur-
veys, 9(3), September, 1977.
[Gra87] M. Granski, I. Kom. and G. M. Silberman, 'The Effect of Operation
Scheduling on the Performance of a Data Flow Computer". IEEE Trans. on
Computers, C-36 (9), September, 1987.
[Ha891 S . Ha and E. A. Lee, "Compile-time Scheduling of Data-Dependent
Iteration". paper in preparation.
[Hoa78] C. A. R. Hoare, "Communicating Sequential Processes", Communica-
tions of the ACM, August 1978,21(8)
IJqb861 M. A. Iqbal. J. H. Saltz. and S . H. Bokhari. "A Comparative Analysis
of Static and Dynamic Load Balancing Strategies", Int. Confi on Parallel Pro-
cessing. pp. 1040-1045, 1986.
[Ke184] R. M. Keller, F. C. H. L- and J. Tanaka, "Rediiow Multiprocessing",
Proc. IEEE COMPCON, pp. 410417. February, 1984.
[Kim881 S . I. Kim and J. C. Browne, "A General Approach to Mapping of
Parallel Computations upon Multiprocessor Architectures", Proc. lnt. C o q . on
Distributed Computing Systems, 1988.
[Kun87] J. Kunkel, "Parallelism in COSSAF"', Internal Memorandum, Aachen
University of Technology, Fed. Rep. of Germany, 1987.
[Kun88] S . Y. Kung, VU1 Array Processors Prentice-Hall, Englewood Cliffs,
NJ (1988).

[Lee871 E. A. Lee and D. G. Messerschmitt, "Static Scheduling of Synchonous
Data Flow Programs for Digital Signal Processing", IEEE Tram. on Comput-
ers, January 1987, C-36(2)
[Lee881 E. A. Lee, "Recurrences. Iteration, and Conditionals in Statically
Scheduled Block Diagram Languages", in VLSI Signal Processing Ill. Ed. R.
W. Brodersen and H. S . Moscovitz, IEEE Press, New York. 1988.
[he891 E. A. Lee, W.-H. Ho, E. Goei. J. Bier, and S . Bhattacharyya, "Gabriel:
A Design Environment for DSP IEEE Tram. on ASSP, To Appear (1989).
[Lu86] H. Lu and M. J. Carey. "Load-Balanced Task Allocation in Locally Dis-
tributed Computer Systems", Int. Conf on Parallel Processing, pp. 1037-1039,
1986.
[Ma821 P. R. Ma, E. Y. S . Lee and M. Tsuchiya, "A Task Allocation Model for
Distributed Computing Systems". IEEE Trans. on Computers, Vol. C-31, NO.
1, pp. 41-47, January, 1982.
[Mar671 D. F. Martin and G. Estrin, "Models of Computations and Systems -
Cyclic to Acyclic Graph Transformations" IEEE Trans. on Electron. Comput..
EC-16 pp. 70-79, February 1967.
[Muh87] H. Muhlenbeii, M. Gorges-Schleuter, and 0. Kramer. "New Solu-
tions to the Mapping Problem of Parallel Systems : The Evolution Approach".
Parallel Computing, 4. pp. 269-279, 1987.
[Pap881 G. M. Papadopoulos. Implementation of a General Purpose Dat@ow
Multiprocessor, Dept. of Electrical Engineering and Computer Science. MIT,
PhDThesis, Auguss 1988.
[€'la761 A. Plas, et. al., "LAU System Architecture: A Parallel Data-driven Pro-
cessor Based on Single Assignment", Proc. I976 lnt. Con8 Parallel Process-
ing, pp. 293-302.
FRao851 S. K. Rao Regular Iterative Algorithm and their Implementatiom on
Processor Arrays, Information System Laboratory, Stanford University,
October, 1985, PhD Dissertation.
[Sri861 V. P. Srini. "An Architectural Comparison of Dataflow Systems", Com-
puter, 19(3) March 1986.
Wat821 I. Watson and J. Gurd. "A Practical Data Flow Computer". Computer
15 (2). February 1982.
CZis871 M. A. Zissman and G. C. O'Leary. "A Block Diagram Compiler for a
Digital Signal Processing MIMD Computer". IEEE Int. C o g . on ASSP. pp.
1867-1870. 1987.

35.2.5.
1283

