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completely addressed, either in the deterministic scheduling literature 

ABSTRACT or in the multiprocessor systems literature. This paper will attempt to 
define these. 

Real-time digital signal processing often requires multiple processors. We assume the description of the program to be scheduled is a 
Unfortunately, in most practical situations, partitioning of DSP applica- dataflow graph, signal flow graph, or block diagram. Language classes 
tions for execution on multiple programmable Processors is ad-hoc. that are efficiently translated into dataflow graphs include functional, 
Automatic schedulers either (1) add unacceptable Cost to the imple- applicative, and single-assignment. In a dataflow graph the nodes, or 
mentation Or (2) address only a subset of applications. This Paper actors, are functions that operate on data passed through the arcs. The 
explores the possibilities for automatic schedulers that result in IOW model is data-driven, in that actors fire (or perform their computation), 
imP1emenQfion Cost and Can target a broad class of DSP applications. when sufficient data is available on their input arcs. The role of the 
We Can define four classes of scheduling strategies, (1) fully dynamic, scheduler is simply to determine when to fire actors and on which pro- 
(2) static assiPment, (3) self-timed, and (4) fully static. Moving from cessor. The actors may have arbitrary granularity, meaning that they 
(1) to (4). more scheduling activity is Performed at compile time and may represent atomic operations, such as addition and multiplication, 
less at run time. This Paper argues that for most DSP applications, or much more elaborate operations, such as transforms or digital filters. 
self-timed scheduling is the most attractive. We assume that no attempt will be made to exploit concurrency within 

an actor, so that the scheduler only needs to operate on the dataflow 
graph. 

1. MOTIVATION 
Use of multiple programmable processors has become an attrac- 2. A SCHEDULING TAXONOMY 

tive alternative to custom VLSI for many real-time digital signal pro- Scheduling consists of assigning actors to processors, specifying 
cessing appfiCatiOnS. Widespread use Of this alternative, however, Will the order in which actors fire on each processor, and specifying the 
depend on the development of effective Software and hardware time at which they fire. each of which can be done either at compile 
development environments. Fortunately, such software is being time or at run time. Depending on which operations are done when, we 
actively pursued in both research and industrial settings. Interesting define four classes of scheduling, depicted in figure 1. The first type is 
systems are currently commercially available for implementing DSP fully dynamic, where actors are scheduled at run time only. When all 
algorithms on single Processors, while Some experimental systems input operands for a given actor are available, the actor is assigned to 
emphasize real-time computation on multiple Processors. An example an idle processor and fired. The second type is static allocation, where 
is Gabriel, which translates block-diagram algorithm descriptions into an actor is assigned to a processor at compile time and a local run-time 
real-time code for multiple programmable DSPs Lee891. scheduler invokes actors assigned to the processor based on data avai- 

Problems behind such systems is scheduling for lability. In the third type of scheduling, the compiler determines the 
parallel computation. Compile-time scheduling promises near-optimal order in which actors fire as well as assigning them to the processors. 
performance at low cost for the final system, but is Only suitable for a At run-time, the processor waits for data to be available for the next 
subset of applications. Run-time scheduling can address a wider actor in its ordered list, and then fires that actor. We call this selftimed 
variety of applications, at greater system Cost. Digital signal process- scheduling because of its similarity to self-timed circuits. The fourth 
ing provides unique opportunities and constraints that have not been type of scheduling is fully static; here the compiler determines the exact 

firing time of actors, as well as their assignment and ordering. This is 
The authors gratefully acknowledge the support of Motorola, in analogous to synchronous circuits. As with monomy, the bow- 

cooperation with the state of California Micro program, and D q a ,  dary between these categories is not rigid. 
under grant no. N00039-87-C-0182. We can give familiar examples of each of the four strategies 

applied in practice. Systolic arrays, SIMD (single instruction, multiple 
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Figure 1. The time which the scheduling activities "assignment", "ordering", and "timing" are performed is shown for four 
classes of schedulers. The scheduling activities are listed on top and the strategies on the left. 
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data), and VLIW (very large instruction word) computations [Fis&] 
are fully staticly scheduled. Similarly, wavefront arrays [Kun88] and 
asynchronous circuits use self-timed scheduling. In general purpose 
parallel processors, when there is no hardware support for scheduling 
(except synchronization primitives), self-timed scheduling is usually 
used. Hence, most applications of today's general purpose multipro- 
cessor systems use some form of self-timed scheduling, using for 
example CSP principles [Hoa78] for synchronization. In these cases. it 
is often up to the programmer, with meager help from a compiler, to 
perform the scheduling. 

Examples of static-assignment scheduling include many dataflow 
machines [Sri86]. Dataflow machines evaluate dataflow graphs at run 
time, but a commonly adopted practical compromise is to allocate the 
actors to processors at compile time. To use an example targeted at 
DSP, the NEC uPD7281 [Cha84] uses static-assignment scheduling 
based on the tagged-token concept [Arv82]. Another example is TI'S 
data-driven processor (DDP), designed for executing Fortran programs 
that are translated into dataflow graphs by a compiler [Cor79]. The 
cost of implementing tagged-token architectures has recently been 
dramatically reduced using the "explicit token store" concept [Pap88]. 
Another example of an architecture that assumes static-assignment is 
the proposed "argument-fetching dataflow architecture" [Gao88], 
which is based on the argument-fetching data-driven principle of 
Dennis and Gao [Den88]. A machine that has a mixture of fully 
dynamic and static assignment scheduling is the Manchester dataflow 
machine Wat821. Here, a number (15) of processing elements are col- 
lected in a ring. Actors are assigned to PES at run time within the ring, 
but there are many such rings. To communicate between rings, tokens 
are transmitted over a communication network. Thus, assignment is 
dynamic within rings, but static across rings. Fully dynamic scheduling 
has been applied in the MIT static dataflow architecture [Dengo], the 
LAU system, from the Department of Computer Science, 
ONERA/CERT, France [Pla76], COSSAP [Kun87], and the DDMl 
[Dav78]. 

Although obviously attractive in principle, automatic schedulers 
today either (1) add unacceptable cost to the implementation by operat- 
ing near the fully-dynamic end of the spectrum or (2) work well with 
only a subset of algorithms. The basic premise of this paper, ela- 
borated in the following sections, has three parts. 
(1) In order to reduce implementation costs and make it possible to 

reliably meet real-time constraints, the more that is done at com- 
pile time the better. 
Schedulers that work well with only a subset of applications can 
be acceptable, but the subset should be large enough that reason- 
able applications can be implemented in their entirety. 
Automatic scheduling is better than manual. 

(2) 

(3) 

3. DOMAIN AND RANGE 
The domain of a scheduling strategy can be loosely defined as 

the set of algorithms for which the scheduling strategy does well. The 
range is the set of architectures that the strategy can target well. Most 
practical scheduling strategies have a limited domain or range. 

Of the classes we have defined, fully static scheduling has the 
narrowest domain. The subclass of dataflow graphs for which fully 
static scheduling works best is synchronous dura flow [Lee87]. SDF 
graphs consist only of actors where the number of tokens (units of data) 
produced or consumed when the actor fires is fixed and known at com- 
pile time. With the further restriction that execution times of the actors 
are exactly known, optimal fully static scheduling is possible. Unfor- 
tunately, even in this restricted domain, algorithms that accomplish 
such optimal scheduling have combinatorial complexity, except in cer- 
tain trivial cases [Cof76][Cap84]. Fortunately, good heuristic methods 
have been developed over the years, many being critical path methods 
[Cof76]. The range depends on the sophistication of these methods, 
although most straightforward implementations target homogeneous 
tightly coupled multiprocessors with full interconnectivity. The 

requirement for full interconnectivity limits the range to machines with 
modest parallelism. 

A subclass of fully static scheduling is the set of techniques 
based on projecting dependence graphs for regular iterative algorithms 
onto systolic arrays Fun881 IRao851. These techniques have a very 
limited domain (RIA'S) and range (systolic mays), but do extremely 
well within these constraints. 

The domain of static scheduling specifically does not include 
dataflow graphs with actors that have data-dependent execution times 
or actors that may or may not fire, depending on the value of some data 
somewhere in the graph. These restrictions are severe, since they 
exclude both conditionals and data-dependent iteration within an actor 
or involving several actors. The restrictions can be relaxed, however, 
at the expense of optimality in the resulting schedule. For example, an 
actor with a data-dependent execution time can be padded so that it 
always executes in worst-case time, an approach that is well suited to 
real-time computation. As another example, to implement the synchro- 
nous dataflow equivalent of if-then-else, both branches of the condi- 
tional may be computed, and the desired result may be selected. There 
are again applications where this option is acceptable, for example 
when one of the two conditional branches is trivial, but most of the 
time the cost will be high. 

Static scheduling has been extended to handle limited forms of 
data-dependent firing of actors [Lee88]. For example, consider the 
graph in figure 2. This is not a synchronous dataflow graph because it 
is not possible to state at compile time how many tokens the switch and 
select actors will produce or consume on each input each time they fire. 
Nonetheless, quasi-static scheduling is possible, where a small amount 
of run-time control is inserted to determine which subgraph, f(.) or 
g(), to invoke next. Again, the execution times are padded so that 
each processor involved in the if-then-else clause finishes at a fixed 
time, independent of which branch was executed. 

Self-timed scheduling has a slightly broader application domain. 
Although the order of execution of actors is fixed for each processor at 
compile time, the exact firing times are not. Consequently, the 
schedule can automatically compensate for certain fluctuations in exe- 
cution times. For example, if one actor finishes earlier than expected, 
the following actor can fire immediately, as long as its data is available. 
Compared to using worst-case execution times, self-timed scheduling 
will always do at least as well, as long as the overhead for synchroniza- 
tion is negligible. Self-timed scheduling is also more robust, in that 
minor fluctuations in execution times will not affect the correctness of 
the execution, and will have little effect on its performance. For exam- 
ple, interrupts are often useful for handling 1/0 operations, but their 
introduction introduces uncertainty in the execution of any actor that 
may be interrupted. The Gabriel system Lee891 uses self-timed 
scheduling. 

.IY 

Figure 2. Dataflow representation for an if-then-else 
clause. A token x is routed to one of two functions, f (.) or 
g (.), depending on the value of the condition token c .  
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It is clear that self-timed scheduling does well with synchronous 
datafiow when when there is little variability in the execution times of 
the actors. In the presence of limited amounts of data-dependent firing 
of actors, such as found in figure 2, it will also do well. We have more 
recently discovered that it also looks promising for certain types of 
data-dependent iteration [Ha89]. Loosely, it appears that the domain 
can be stated simply as the set of algorithms that are "mostly" static. It 
is not clear just how much dynamic behavior must be present before 
enough time is spent idling, waiting for data tokens to arrive, that a 
more dynamic scheduling technique would have been more effective. 
Nonetheless, this domain seems like a good match to signal processing, 
for which practical implementations of most well-known algorithms 
occasionally require data dependencies. 

Static assignment scheduling, in principle, has still broader 
range, because it can adjust the ordering of execution of actors. An 
example is shown in figure 3. In that example, one of six actors has a 
data-dependent execution time. Depending on the outcome, it may be 
better to schedule the actors using the ordering in (b) or in (c). While it 
is possible to reduce the total execution time by rearranging the order 
of execution, it is not always easy to determine at run time which actor 
should be fired next when there is more than one possibility. For 
example, in figure 3c, after A completes on the second processor, either 
B or E can be fired. For the implementation to be cost effective, the 
decision would have to be made on the basis of local or static 
(compile-time) information. 

Fully dynamic scheduling has the broadest application domain, 
since it can in principle subsume all functions in the previous models, 
and perform them at run time. Furthermore, it has the flexibility to 
redirect the computational load in response to changing conditions in 
the algorithm. Unfortunately, scheduling mechanisms for accomplish- 
ing this are not very well understood, except in situation where the 
scheduling could be equally well done at compile time (section 5). 
Furthermore, the run time cost of fully dynamic scheduling is too high 
(section 4). 

4. OVERHEAD 
Real-time DSP applications typically involve vast amounts of 

computation at run time, so considerable effort at compile time can be 
justified. Often a system is designed to perform only a single function 
in its lifetime. Furthermore, run-time overhead in the form of extra 
hardware is not acceptable for cost-sensitive applications, and run-time 
overhead in the form of extra software only makes it more difficult to 
meet real-time constraints. 

Fully dynamic scheduling involves considerable run-time over- 
head, even when simplistic scheduling strategies such as randomized 
scheduling are used. It is difficult to exploit communication locality in 
a dataflow graph, since all tokens traverse the communication network. 
In one of the better known realizations, the MIT static dataflow 
machine [Den80], Dennis proposes using a high-speed packet switch 
for instruction delivery. A useful multiprocessor for DSP must have a 
very high instruction delivery rate, so this packet switch will have to 
have high bandwidth. Furthermore, the packet switch must perform 

scheduling functions and buffer instructions when they cannot be exe- 
cuted immediately. The cost of such a packet switch wouId have to be 
very carefully justified, and probably can only be justified when more 
static scheduling strategies break down due to excessive data- 
dependency in the algorithms. Most signal processing applications and 
scientific computation are unlikely to fall in this category. 

Static-assignment scheduling is more commonly used in dataflow 
machines because of the high cost of shipping code around the 
machine. The run-time overhead reduces to that of scheduling actors 
within one processor. This involves determining when actors can be 
fired and arbitrating between actors that simultaneously become ready 
to fire. Some implementations are based on tagged-token principles 
[Arv82], for example the NEC uPD7281 [Cha84], the cost of which 
has recently been reduced through the token store (ETS) scheme 
Pap881. 

In self-timed scheduling, there is no need to determine at run 
time which actor to invoke next. The ordering is specified at compile 
time. The only run-time scheduling function is to determine whether 
the actor that goes next is ready to be fired by checking its input data. 
If it is not, then the machine is idled until it is. It is up to the compile- 
time scheduler to find the ordering that minimizes the idling time. As 
shown in figure 3, restricting the firing order can result in poor 
schedules when execution time of actors varies. 

Fully static scheduling has the lowest run-time cost: no hardware 
and no software. Since behavior is completely known at compile time, 
there is no need to check to see when actors can be fired. The compiler 
can figure it out, so actors simply fire at the designated time, and are 
assured that their data is available. The main drawback of this tech- 
nique is its very narrow domain, since it is completely intolerant of ran- 
dom behavior. 

5. AN OVERVIEW OF SCHEDULING STRA- 
TEGIES 

The goal of scheduling is find an assignment, ordering, and tim- 
ing for actors that optimizes some performance measure. Typical per- 
formance measures are minimum mean flow time, makespan, or itera- 
tion period. Mean flow time is the average of the firing times of all 
actors; minimizing this measure might be appropriate when actors 
involve interaction with human operators. The makespan is the max- 
imum completion time for all actors; minimizing this measure is often 
appropriate for finite programs. The iteration period is the time to exe- 
cute one cycle of a periodic program; this performance measure is most 
appropriate for real-time DSP. It is common to compromise on the per- 
formance measure. For example, instead of minimizing the iteration 
period, a scheduler might construct a blocked schedule, in which each 
cycle of a periodic computation must finish on all processors before the 
next cycle can begin on any. With this constraint, minimizing the itera- 
tion period is the same as minimizing the makespan of one cycle. We 
assume non-preemptive scheduling. 

For any finite program with data-independent behavior, the solu- 
tion space of the scheduling problem is enumerable, so optimal 
schedules can be found in principle. Unfortunately, most deterministic 

(a )  precedence relation (b) no execution order change (c)  execution order change 

Figure 3. Two static-assignment schedules for two processors are shown for the precedence graph in (a). The execution time 
of actor D is data-dependent and is longer for the schedule in (b) than for the schedule in (c). Note that the ordering of the 
firing of actors is determined at r u n  time and is different in (b) and (c). 

35.2.3. 
1281 



scheduling problems are NP-hard [Cof76], so optimal solutions can 
only be found for small problems. A more practical approach is to use 
heuristic algorithms, based for examde on the critical nath rnerhnrl 
[Cof76]. We have applied one such method, Hu-level scheduling 
[Cof76I, to the programming of systems with multiple programmable 
DSPs Fee891. Unfortunately, even for reasonably static DSP applica- 
tions, the restriction to data-independent behavior is too severe. 

When data-dependent behavior is included, for example condi- 
tionals and iteration, then the optimal scheduling problem becomes 
hopeless, except in degenerate cases. In principle, stochastic modeling 
of the program could be used to make compile-time decisions, but only 
the most grossly oversimplified stochastic models yield to optimization. 
Equally lacking are policies that can be applied at run-time to make 
optimal decisions. 

One heuristic technique is to use the expecred execution time of 
data-dependent subgraphs to guide the run-time scheduling. Based on 
the work of Martin and Estrin [Mar67], Granski, et. al. describe an 
experiment in which a fully dynamic scheduler is guided by priorities 
computed at compile time [Gra87]. The target machine is the MIT 
static dataflow machine [Den80]. A modified Hu-level algorithm 
(using approximate expected execution times) determines the priorities. 
Since the priorities indicate the preferred ordering of actor firing, this 
technique could almost be viewed as a fifth category in figure 1 ,  where 
assignment and timing are done at run-time, but ordering is done at 
compile-time. However, the priorities are not strictly enforced, so this 
technique remains a fully dynamic scheduling technique. Unfor- 
tunately, practical implementation of this method increases the 
hardware cost of the dataflow machine, and the authors conclude that 
the marginal performance improvement over random scheduling does 
not justify the increased cost. Furthermore, they conclude that it is the 
presence of data-dependent behavior that precludes better performance. 
Of course, without the data-dependent behavior, we would be in the 
domain of fully static or self-timed scheduling, and there would be lit- 
tle reason to use a machine that relies on a fully dynamic scheduler. 

Fully dynamic schedulers often take the simpler approach of ran- 
domly assign actors that are ready to fire to processors as the proces- 
sors become idle. This scheme, which can make no pretence to 
optimality, removes the burden of run-time decision making, but still 
leaves considerable run-time cost. For example in the packet-switched 
network for instruction delivery proposed by Dennis for the static 
dataflow architecture Pen801, the packet processing is simplified by 
random scheduling, but the network is still costly. Finally, the perfor- 
mance of this architecture will depend somewhat on the assignment of 
actors to memory, since multiple parallel memory units are used to get 
the requisite bandwidth. The compiler should strive to minimize 
conflicts, but we have seen no discussion of this problem. Is random 
assignment adequate? 

Static-assignment schedulers have an easier time at run-time 
because there is no need to determine how to assign actors to proces- 
sors. Control becomes localized, because each processor only has to 
worry about the actors that have been assigned to it. A simple "greedy" 
scheduling algorithm simply fires an actor immediately when the pro- 
cessor becomes free, assuming there is an actor ready to be fired. This 
is not optimal because it is sometimes better to leave the processor idle 
until another actor is ready to fire. However, this compromise is com- 
mon, even in fully static schedulers. When more than one actor is 
ready to be fired, the scheduler must determine which one to fire. A 
typical approach that is far from optimal is to randomly order the list of 
actors and apply a "fairness" principle, in which no actor will be tried 
twice before all other actors have been tried [Gao83]. Another alterna- 
tive would be to use compile-time analysis of the dataflow graph to 
assign priorities to the actors. It seems to us that this idea should work 
much better in this static-assignment context than in fully dynamic 
scheduling as investigated by Granski, et. al. [Gra87], because the run- 
time implementation cost would be trivial. 

The question remains how to accomplish the assignment in 

static-assignment scheduling. One simple approach is random assign- 
ment. This tends to balance the load. Another approach is clustering, 
where actors which communicate a great deal are grouped and mapped 
onto one processor in order to reduce interprocessor communication. 
Numerous authors have proposed techniques that compromize between 
interprocessor communication cost and load balance 
[Muh87][Chu80] [Zis87] [Ma821 [Efe82]&u86]. But none of these con- 
sider precedence relations between actors. To compensate for ignoring 
the precedence relations, some researchers propose using a dynamic 
load balancing scheme in which processors exchange actors dynami- 
cally as they monitor their computational loads at runtime 
[Ke184][Bur811[1qb861. Unfortunately, the cost can be high, and may 
be difficult to justify for many applications. In particular, for applica- 
tions with relatively little data dependency, for instance DSP or 
scientific computation, the compiler can do a much better job of assign- 
ment in the first place if it considers the precedences, so dynamic load 
balancing becomes unnecessary. 

We make the following observation; if the dataflow graph has no 
data dependencies, then we can do a much better job of assignment 
(compared to random assignment) by constructing a static schedule and 
discarding the ordering and timing information, retaining only the 
assignment. Hueristic techniques can be incorporated to simultane- 
ously perform clustering and optimization of the performance measure, 
as done for example in [Kim88]. If small data-dependencies are intro- 
duced, the effectiveness of this approach will hardly be affected. To be 
able to construct a static schedule, we could simply use expected Hu- 
levels, as done in IGra871. If larger amounts of data dependency are 
introduced, at some point, this approach will break down, and will not 
perform significantly better than random assignment. However, the 
data dependencies can be taken into account more directly in the static 
scheduling, using for example the quasi-static scheduling strategies in 
IDe88l. Such a scheme is proposed by [Ha89], who also extends the 
quasi-static scheduling strategies in b 8 8 ]  to include data-dependent 
iteration. The details of these proposals are beyond the scope of this 
paper, but we can state their conclusion: For dataflow graphs with some 
data-dependent behavior, reasonable static schedules can be con- 
structed. The quality of the resulting static schedules degrades as the 
amount of data-dependency increases, but the assignment part of the 
schedules may still be useful. This assignment may yield significantly 
better performance than random assignment. 

A reasonable self-timed scheduling strategy follows the same 
principle; construct a fully static schedule using the best available 
information about execution times, etc., and discard the timing infor- 
mation, retaining both the assignment and the ordering. This is the 
approach taken in Gabriel De891 as well as other related systems 
(Zis873. 

Fully static scheduling can now be seen to be a useful technique 
even if it only solves part of the problem for self-timed and static 
assignment scheduling. 

6. CONCLUSION 
In order to reduce implementation costs and make it possible to 

reliably meet real-time constraints, the more scheduling that is done at 
compile time the better. Unfortunately, in order to automatically do 
more at compile time, it appears to be necessary to restrict the system 
to a narrower range of applications. However, real-time DSP is a range 
of applications that appears to be a good match with the self-timed 
scheduling strategy. In this strategy, the assignment of actors to pro- 
cessors, and the ordering of the firing of actors, is determined by a 
compiler. Only the timing of the firing is determined at run-time. The 
run-time cost of this determination is minimal. Furthermore, automatic 
scheduling techniques that fit this model are growing in generality and 
efficiency. We conclude research in multiprocessor real-time DSP 
should focus on solving the remaining compile-time scheduling prob- 
lems for the self-timed scheduling strategy. 
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