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Cavity control of a single-electron quantum cyclotron: Measuring the electron magnetic moment
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Measurements with a one-electron quantum cyclotron determine the electron magnetic moment, given by
g/2 = 1.001 159 652 180 73(28)[0.28ppt], and the fine structure constant, α−1 = 137.035 999 084(51)[0.37ppb].
Announcements of these measurements [Phys. Rev. Lett. 97, 030801 (2006); 100, 120801 (2008)] are
supplemented here with a more complete description of the one-electron quantum cyclotron and the
measurement methods, a discussion of the cavity control of the radiation field, a summary of the analysis of the
measurements, and a fuller discussion of the uncertainties.
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I. INTRODUCTION

A. The electron magnetic moment

Measurements of the electron magnetic moment µ probe
the interaction of the electron with the fluctuating vacuum,
allow the highest accuracy determination of the fine structure
constant, and sensitively test quantum electrodynamics (QED).
For an eigenstate of spin S,

µ = −g

2
µB

S
h̄/2

, (1)

where g/2 is the magnitude of µ scaled by the Bohr magneton
µB = eh̄/(2m).

For angular momentum arising from orbital motion, g/2
depends on the relative distribution of charge and mass and
equals 1/2 if they coincide, for example cyclotron motion in a
magnetic field. For a point particle in a renormalizable Dirac
description, g/2 = 1, and deviations from this value probe a
particle’s interactions with the vacuum as well as the nature of
the particle itself, as with the proton whose g/2 ≈ 2.8 arises
from its quark-gluon composition.

B. New measurements of the electron moment

Our new measurements, announced in 2006 [1] and 2008
[2], used a one-electron quantum cyclotron [3] to determine
the electron g/2 to a 0.76 ppt and then to a 0.28 ppt accuracy.
The latter result,

g/2 = 1.001 159 652 180 73(28) [0.28ppt], (2)

has an uncertainty that is 2.7 and 15 times smaller than the
2006 and 1987 measurements (Fig. 1), the latter being a
measurement that stood for nearly 20 years [4]. The electron
g is measured with an uncertainty that is 2300 times smaller
than has been achieved for the heavier muon lepton [5].

The central feature of the new measurements is the quantum
jump spectroscopy of completely resolved cyclotron and spin
levels of a one-electron quantum cyclotron [3]. A number of
new methods were introduced to make this possible.

(1) A cylindrical Penning trap cavity that was invented for
these experiments [6] imposes boundary conditions upon the
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radiation field as well as providing an electrostatic quadrupole
potential in which a single particle can be suspended and
observed [7].

(2) The resulting cavity-inhibited spontaneous emission, at
a rate 10 to 50 times below the radiation rate in free space, gives
the averaging time required to resolve one-quantum transitions
that are made when all detection systems are turned off.

(3) Stored electron plasmas [8–10] and the damping of a
single electron in this cavity [2] are used together to determine
cavity frequency shifts and eliminate cavity shifts as a major
uncertainty [2].

(4) Blackbody photons that would cause unwanted quan-
tum jumps are eliminated by lowering the cavity temperature
to 100 mK with a dilution refrigerator [3].

(5) Quantum nondemolition measurements of the cy-
clotron and spin energy level are realized using a one-particle
self-excited oscillator [11].

(6) The stored electron serves as its own magnetometer,
allowing the accumulation of lineshape statistics over days,
revealing that a broadening of the expected lineshapes is the
major remaining uncertainty [2].

Following sections will discuss the quantum cyclotron and
the new methods. Still further details appear in a thesis [12].

C. A long history

As befits one of the few properties of the electron that
can be accurately measured, the Harvard magnetic moment
measurements detailed here are only the latest in a long history
of measurements that make use of different methods. The early
history [13] established that g/2 ≈ 1. A series of more precise
measurements followed at the University of Michigan, by
measuring the difference of the cyclotron and spin precession
frequencies of keV electrons traveling on helical orbits in a
magnetic field, concluding with a 3500 ppt measurement of
g/2 [13]. (Here ppt refers to 1 part in 1012, and ppb refers to 1
part in 109.) Research groups at the University of Mainz and
the University of Washington (UW) next developed methods to
measure the electron magnetic moment using a large number
of electrons stored in a Penning trap [14–17]. Out of these
efforts came the capability to suspend and detect a single
electron in a Penning trap [18] at the UW. A few years
later a measurement was made with one electron [19]. Over
the next decade these methods were refined, culminating in

052122-11050-2947/2011/83(5)/052122(26) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.97.030801
http://dx.doi.org/10.1103/PhysRevLett.100.120801
http://dx.doi.org/10.1103/PhysRevA.83.052122


D. HANNEKE, S. FOGWELL HOOGERHEIDE, AND G. GABRIELSE PHYSICAL REVIEW A 83, 052122 (2011)

(g / 2 - 1.001 159 652 000)  / 10-12

180 185 190

ppt = 10-12

0 5 10

UW (1987)
Harvard (2006)
Harvard (2008)

FIG. 1. Measurements [1,2,4] of the dimensionless magnetic
moment of the electron, g/2, which is the electron magnetic moment
in Bohr magnetons.

the celebrated 1987 measurement already mentioned [4] that
reported an uncertainty of 4 ppt.

D. The fine structure constant

The fine structure constant,

α = e2

4πε0h̄c
, (3)

gives the strength of the electromagnetic coupling in the low-
energy limit. The energy scales for atoms are set by powers of
α times the electron rest energy, mc2. For hydrogen atoms the
binding energy scale is α2mc2, the fine structure splitting scale
is α4mc2, and Lamb shift scale is α5mc2. The quantum Hall
conductance is proportional to the fine structure constant. The
fine structure constant is already a crucial ingredient in our
system of fundamental constants [20,21] and it will acquire
a more prominent role if plans to redefine the SI system of
units [22] go forward.

Section VII B shows how the new measurements of the
electron g/2 determine α to be [2,23,24]

α−1 = 137.035 999 084(51) [0.37ppb]. (4)

The uncertainty in α is now limited a bit more by the need
for a higher-order QED calculation (underway [25]) than
by the measurement uncertainty in g/2. The total 0.37 ppb
uncertainty in α is now about 12 times smaller than that of the
next-most-precise independent method (Fig. 2).

II. ONE-ELECTRON QUANTUM CYCLOTRON

A. Electron in a magnetic field

For an electron in a magnetic field, g/2 is specified by its
spin and cyclotron frequencies, νs and νc,

g

2
= νs

νc

= 1 + νs − νc

νc

= 1 + νa

νc

, (5)

or equivalently by their difference (the anomaly frequency
νa ≡ νs − νc) and νc. Because νs and νc differ by only a part-
per-thousand, measuring νa and νc to a precision of 1 part in
1010 gives g/2 to 1 part in 1013.

Although we cannot measure accurately with one electron
in free space because the electron would not stay in one place
long enough, two features of determining g/2 are already
apparent in Eq. (5). First, one can determine g/2 by measuring
a ratio of frequencies. This is fortunate because there is
nothing in physics that can be measured more accurately than

a frequency (the art of time keeping being developed being so
highly developed) except for a ratio of frequencies. Second,
although both of these frequencies depend upon the magnetic
field, the field dependence drops out of the ratio. The magnetic
field thus needs to be stable only on the time scale on which
both frequencies can be measured, and no absolute calibration
of the magnetic field is required.

B. Electron in a Penning trap

An ideal Penning trap confines an electron using a magnetic
field B ẑ with an additional electrostatic quadrupole potential
V ∼ z2 − ρ2/2 [29]. This potential confines the electron
axially with frequency ν̄z and shifts the cyclotron frequency
from the free-space value νc to ν̄c. The latter frequency is also
slightly shifted by the unavoidable leading imperfections of
a real laboratory trap—a misalignment of the symmetry axis
of the electrostatic quadrupole and the magnetic field, and
quadratic distortions of the electrostatic potential.

The lowest cyclotron energy levels (with quantum numbers
n = 0,1, . . .) and the spin energy levels (with quantum
numbers ms = ±1/2) (Fig. 3 ) are given by

E(n,ms) = g

2
hνcms +

(
n + 1

2

)
hν̄c − 1

2
hδ

(
n + 1

2
+ ms

)2

.

(6)

The third term in Eq. (6) is the leading relativistic correction
[29] to the energy levels. Special relativity makes the transition
frequency between two cyclotron levels |n,ms〉 ↔ |n + 1,ms〉
decrease from ν̄c to ν̄c + �ν̄c, with the shift

�ν̄c = −δ(n + 1 + ms) (7)

depending upon the spin state and cyclotron state. This very
small shift, with

δ/νc ≡ hνc/(mc2) ≈ 10−9, (8)

is nonetheless significant at our precision. However, an essen-
tially exact treatment of the relativistic shift is possible because
single quantum transitions are resolved. The relativistic shift
thus contributes no uncertainty to our measurement. This is a
key advantage of the quantum cyclotron over previous mea-
surements [4], in which an unknown distribution of cyclotron
states was excited [30], each with a different relativistic shift.

To determine g/2, we must rewrite Eq. (5) in terms of
measurable frequencies of an electron bound in the trap. The
needed free-space cyclotron frequency, νc = eB/(2πm), is

Cs 2006

Rb 2008

Harvard g/2 2006
Harvard g/2 2008

UW g/2 1987

Rb 2006

599.80 599.85 599.90 599.95 600.00 600.05 600.10

10 5 0 5 10 15

α 1 137.03 10 5

ppb 10 9

FIG. 2. The most precise α determinations [1,2,26–28].
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FIG. 3. (Color online) Lowest cyclotron and spin levels of an
electron in a Penning trap.

deduced by use of the Brown-Gabrielse invariance theorem
[31],

(νc)2 = (ν̄c)2 + (ν̄z)
2 + (ν̄m)2. (9)

The three measurable eigenfrequencies on the right include the
cyclotron frequency ν̄c for the quantum cyclotron motion we
have been discussing. The second measurable eigenfrequency
is the axial oscillation frequency ν̄z for the nearly harmonic,
classical electron motion along the direction of the magnetic
field. The third measurable eigenfrequency is the magnetron
oscillation frequency for the classical magnetron motion along
the circular orbit for which the electric field from the trap
electrodes cancels the motional electric field (so the total radial
Lorentz force vanishes).

The invariance theorem applies for a perfect Penning trap,
but also in the presence of the unavoidable imperfection shifts
of the eigenfrequencies for a real trap. This theorem, together
with the well-defined hierarchy of trap eigenfrequencies,
ν̄c � ν̄z � ν̄m � δ, yields an approximate expression that is
sufficient at our accuracy. We thus determine the electron g/2
using

g

2
= ν̄c + ν̄a

νc

� 1 + ν̄a − ν̄2
z /(2f̄c)

f̄c + 3δ/2 + ν̄2
z /(2f̄c)

+ �gcav

2
. (10)

The two frequencies that must be measured to the highest
precision are the cyclotron and anomaly transition frequencies,

f̄c ≡ ν̄c − 3

2
δ, (11)

ν̄a ≡ g

2
νc − ν̄c, (12)

shown in Fig. 3. A lower precision measurement of the axial
frequency ν̄z is also required, as is a cavity shift �gcav/2 (from
the interaction of the cyclotron motion and the trap cavity,
discussed in Sec. V).

III. EXPERIMENTAL REALIZATION

A. Cylindrical Penning trap

A cylindrical Penning trap (Fig. 4) is the key device that
makes these measurements possible. It was invented [6] and
demonstrated [7] to provide boundary conditions that produce
a controllable and understandable radiation field within the trap
cavity. Spontaneous emission can be significantly inhibited
at the same time as corresponding shifts of the electron’s
oscillation frequencies are avoided. The latter has not been
possible [32] with the hyperbolic Penning traps of earlier

top endcap

electrode

compensation

electrode

compensation

electrode

field emission

point

bottom endcap

electrode

nickel
rings

microwave inlet

ring electrode

quartz
spacer

trap cavity electron

0.5 cm

FIG. 4. (Color) Section view of the cylindrical Penning trap cav-
ity used to confine a single electron and inhibit spontaneous emission.
The electrodes facing the electron are cylindrically symmetric except
for the compensation electrodes, each of which are split vertically in
half. Microwaves with a 2 mm wavelength enter the trap through the
squeezed tube that is the microwave inlet.

experiments [4], which have electrodes approximating the
equipotentials of an electrostatic quadrupole.

The first function of the trap electrodes is to produce
a very good approximation to an electrostatic quadrupole
potential. This requires careful choice of the relative geometry
of the electrodes [6]. The electrodes of the cylindrical trap
are symmetric under rotations about the center axis (ẑ), which
is parallel to the spatially uniform magnetic field (B ẑ). The
potential applied between the endcap electrodes and the ring
electrode provides the basic trapping potential and sets the
axial frequency ν̄z of the nearly harmonic oscillation of the
electron parallel to the magnetic field. (See Table I for typical
parameters and frequencies.) The potential applied to the
compensation electrodes is adjusted to tune the shape of the
potential, to make the oscillation as harmonic as possible.
The tuning does not change ν̄z very much owing to an
orthogonalization [6,33] that arises from the geometry choice.
What we found was that one electron could be observed within
a cylindrical Penning trap with as good or better signal-to-noise
ratio than was realized in hyperbolic Penning traps.

B. Radiation field in a cylindrical trap

The second function of the trap electrodes is to form
a microwave cavity whose radiation properties are well
understood and controlled. The resonant radiation modes of
a perfect right circular cylinder are the familiar transverse
electric (TE) and transverse magnetic (TM) radiation modes
for such a geometry. In the real trap cavity, the perturbation
caused by the small space between the electrodes is minimized
by the use of “choke flanges”—small channels that tend to
reflect the radiation leaking out of the trap back to cancel itself,
and thus to minimize the losses from the trap. The measured
radiation modes (Fig. 10) are close enough to the calculated
frequencies for a perfect cylindrical cavity that we have been
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able to identify more than 100 different radiation modes for
such trap cavities [8]. The spatial properties of the electric and
magnetic field for the radiation that builds up within the cavity
are thus quite well understood. Some of the modes couple to
cyclotron motion of an electron centered in the cavity, others
couple to the spin of a centered electron, and still others have
the symmetry that we hope will one day allow us to sideband
cool the axial motion [12].

A right circular cylinder of diameter 2ρ0 and height
2z0 admits two classes of electromagnetic fields, transverse
electric TEmnp and transverse magnetic TMmnp, each identified
by three indices that describe their specific geometry (see, e.g.,
[34], Sec.8.7). These TE and TM modes have characteristic
frequencies,

TE : ωmnp = c

√(
x ′

mn

ρ0

)2

+
(

pπ

2z0

)2

(13a)

TM : ωmnp = c

√(
xmn

ρ0

)2

+
(

pπ

2z0

)2

, (13b)

that are indexed with integers

m = 0,1,2, . . . ,

n = 1,2, . . . , (14)

p = TE : 1,2, . . . ; TM : 0,1, . . . ,

and are functions of the nth zeros of Bessel functions and their
derivatives

Jm(xmn) = 0, (15)

J ′
m(x ′

mn) = 0. (16)

The zeros force the boundary conditions at the cylindrical wall.
All but the m = 0 modes are doubly degenerate.

Of primary concern is the magnitude of the transverse
electric fields since only these components couple to cyclotron
motion. For both TE and TM modes, the transverse compo-
nents of E are proportional to

sin

[
pπ

2

(
z

z0
+ 1

)]
=

{
(−1)p/2 sin

(
pπz

2z0

)
for even p,

(−1)(p−1)/2 cos
(

pπz

2z0

)
for odd p.

(17)

For an electron close to the cavity center, (z ≈ 0), only modes
with odd p thus have any appreciable coupling.

The transverse components of the electric fields are also
proportional to either the order-m Bessel function times m/ρ

or to the derivative of the order-m Bessel function. Close to
the cavity center (ρ ≈ 0),

m

ρ
Jm

(
x(′)

mn

ρ

ρ0

)
∼

⎧⎨
⎩

ρm−1

(m−1)!

(
x

(′)
mn

2ρ0

)m

for m > 0

0 for m = 0
, (18a)

x(′)
mn

ρ0
J ′

m

(
x(′)

mn

ρ

ρ0

)
∼

⎧⎨
⎩

ρm−1

(m−1)!

(
x

(′)
mn

2ρ0

)m

for m > 0

− x
(′)2
0n

2ρ2
0
ρ for m = 0

. (18b)

In the limit ρ → 0, all but the m = 1 modes vanish.

For a perfect cylindrical cavity the only radiation modes
that couple to an electron perfectly centered in the cavity are
TE1n(odd) and TM1n(odd). If the electron is moved slightly off
center axially it will begin to couple to radiation modes with
mnp = 1n(even). If the electron is moved slightly off-center
radially it similarly begins to couple to modes with m 
= 1.

C. 100 mK and 5 T

The trap cavity is cooled to 0.1 K or below via thermal
contact with the mixing chamber of an Oxford Instruments
Kelvinox 300 dilution refrigerator (Fig. 5). They are housed
within a separate vacuum enclosure that is entirely at the base
temperature. Measurements on an apparatus with a similar
design but at 4.2 K found the vacuum in the enclosure to be
better than 5 × 10−17 torr [35]. Our much lower temperature
should make our background gas pressure much lower. We are
able to keep one electron suspended in our apparatus for as long
as desired—regularly months at a time. Substantial reservoirs
for liquid helium and liquid nitrogen make it possible to keep
the trap cold for five to seven days before the disruption of
adding more cryogens is required.

The trap electrodes and their vacuum container are located
within a superconducting solenoid (Fig. 5) that makes a
very homogeneous magnetic field over the interior volume
of the trap cavity. A large dewar sitting on top of the
solenoid dewar provides the helium needed around the dilution
refrigerator below. The superconducting solenoid is entirely
self-contained, with a bore that can operate from room
temperature down to 77 K. It possesses shim coils capable
of creating a field homogeneity better than a part in 108 over
a 1cm diameter sphere and has a passive “shield” coil that
reduces fluctuations in the ambient magnetic field [36,37].
When properly energized (and after the steps described in the
next section have been taken) it achieves field stability better
than a part in 109 per hour. We regularly observe drifts below
10−9 per night.

D. Attaining high stability

Measuring the electron g/2 with a precision of parts in
1013 requires careful attention to making a stable trapping
potential. Even more important is a stable magnetic field since
the frequencies f̄c and ν̄a that we measure are both proportional
to B, and we are not able to measure these frequencies at
exactly the same time.

A major defense against external field fluctuations is a high
magnetic field. This makes fluctuations from outside sources
relatively smaller. The largest source of ambient magnetic
noise is a subway that produces 50 nT (0.5 mG, 10 ppb)
fluctuations in our laboratory and that would limit us to four
hours of data taking per day (when the subway stops running)
if we did not shield the electron from them. Eddy currents
in the high-conductivity aluminum and copper cylinders
of the Dewars and the magnet bore shield high-frequency
fluctuations [38]. For slower fluctuations, the aforementioned
shelf-shielding solenoid [36] has the correct geometry to make
the central field always equal to the average field over the
solenoid cross-section. This translates flux conservation into
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FIG. 5. (Color) An overview of the apparatus (a), including a
10-times enlarged view (b) of the vacuum enclosure for the Penning
trap electrodes. The solenoid and electrodes are in red. The dilution
refrigerator is in blue. Cryogen spaces are hatched.

central-field conservation, shielding external fluctuations by
more than a factor of 150 [37].

Stabilizing the field produced by the solenoid requires that
care is taken when the field value is changed, since changing

TABLE I. Typical trap parameters as well as frequencies and
damping rates for each degree of freedom. The damping rates include
coupling to a detection circuit for γz and inhibited spontaneous
emission for γc. To sample the radiation modes of the electrode cavity,
we change B, and hence ν̄c, γc, and νs (see Sec. V).

magnetic field B 5.36 T
electrode potential V0 101.4 V
electrode cavity radius ρ0 4.5 mm
electrode cavity height 2z0 7.7 mm

magnetron ν̄m 133 kHz γ −1
m 4 Gyr

axial ν̄z 200 MHz γ −1
z 0.2 s

cyclotron ν̄c 150.0 GHz γ −1
c 3.7 s

spin νs 150.2 GHz γ −1
s 2 yr

the current in the solenoid alters the forces between windings.
Resulting stresses can take months to stabilize if the coil is
not prestressed by “over-currenting” the magnet. Our recipe is
to overshoot the target value by a few percent of the change,
undershoot by a similar amount, and then move to the desired
field, pausing several minutes after each change.

The apparatus in Fig. 5 evolved historically rather than be-
ing designed for maximum magnetic field stability in the final
configuration. Because the solenoid and the trap electrodes are
suspended from widely separated support points, temperature
and pressure changes can cause the electrodes to move
relative to the solenoid. Apparatus vibrations can do the same.
Insofar as the magnetic field is not perfectly homogeneous,
despite careful adjusting of the persistent currents in ten
superconducting shim coils, such relative motion changes the
field seen by the electron.

To counteract this, we regulate the five He and N2 pressures
in the cryostats to ≈50 ppm to maintain the temperature of
both the bath and the solenoid itself [39,40]. Recently we also
relocated the dilution refrigerator vacuum pumps to an isolated
room at the end of a 12 m pipe run. This reduced vibration by
more than an order of magnitude at frequencies related to the
pump motion and reduced the noise level for the experimenters
but did not obviously improve the g/2 data.

Because some of the structure establishing the relative
location of the trap electrodes and the solenoid is at room
temperature, changes in room temperature can move the
electron in the magnetic field. The laboratory temperature
routinely cycles 1–2 K daily, so we house the apparatus in
a large, insulated enclosure within which we actively regulate
the air temperature to 0.1 K. A refrigerated circulating bath
(ThermoNeslab RTE-17) pumps water into the regulated zone
and through an automobile transmission fluid radiator, heating
and cooling the water to maintain constant air temperature.
Fans couple the water and air temperatures and keep a uniform
air temperature throughout.

The choice of materials for the trap electrodes and its
vacuum container is also crucial to attaining high field
stability [1,41]. Copper trap electrodes, for example, have a
nuclear paramagnetism at 0.1 K that makes the electron see
a magnetic field that changes at an unacceptable level with
very small changes in trap temperature. We thus use only
low-Curie-constant materials such as silver, quartz, titanium,
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and molybdenum at the refrigerator base temperature and we
regulate the mixing chamber temperature to better than 1 mK.

A stable axial frequency is also extremely important since
small changes in the measured axial frequency are the detected
consequences of the one-quantum transitions of the cyclotron
and spin energy (as will be discussed in Sec. III F). A trapping
potential without thermal fluctuations is provided by a charged
capacitor (10µF). Fluctuations in its very low leakage current,
in its capacitance, and in the mechanical strain across the
capacitor are minimized by thermally coupling the capacitor to
the well-regulated low temperature of the dilution refrigerator.
We add to or subtract from the charge on the capacitor using
50 ms current pulses sent to the capacitor through a 100 M
 re-
sistor as needed to keep the measured axial frequency constant.
Because of the orthogonalized trap design [6] already dis-
cussed, the potential applied to the compensation electrodes (to
make the electron see as close to a pure electrostatic quadrupole
potential as possible) has little effect upon the axial frequency.

E. One electron: Its motions and damping

We load a single electron using an electron beam from an
atomically sharp tungsten field-emission tip. A hole in the
bottom endcap electrode admits the beam, which hits the top
endcap electrode and releases gas atoms cryopumped on the
surface. Collisions between the beam and gas atoms allows an
electron to fall into the trap. Adjusting the beam energy and
the time it is left on controls the number of electrons loaded.

The electron has three motions in the Penning trap formed
by the B = 5.4 T magnetic field, and the electrostatic
quadrupole potential. The cyclotron motion in the trap has
a frequency ν̄c ≈ 150 GHz. The axial frequency, for the
harmonic oscillator parallel to the magnetic field direction, is
ν̄z ≈ 200 MHz. A circular magnetron motion, perpendicular
to B, has an oscillation frequency, ν̄m ≈ 133 kHz. The spin
precession frequency, which we do not measure directly,
is a part-per-thousand higher than the cyclotron frequency.
The frequency difference is the anomaly frequency, ν̄a ≈
174 MHz, which we do measure directly.

The undamped spin motion is essentially uncoupled from
its environment [29]. The cyclotron motion is only weakly
damped. By controlling the cyclotron frequency relative to that
of the cavity radiation modes, we alter the density of radiation
states and inhibit the spontaneous emission of synchrotron
radiation [29,42] by 10 to 50 times the (90 ms)−1 free-space
rate. Blackbody photons that could excite the electron from the
cyclotron ground state are eliminated because the trap cavity
is cooled by the dilution refrigerator to 100 mK [3]. The axial
motion is cooled by a resonant circuit at a rate γz ≈ (0.2s)−1

to as low as 230 mK (from 5 K) when the detection amplifier
is off. The magnetron radius is minimized with axial sideband
cooling [29].

F. QND detection

Quantum nondemolition (QND) detection has the property
that repeated measurements of the energy of the system will
not change the quantum state of the system [43]. This is crucial
for our detection of one-quantum transitions in the cyclotron
motion, where we do not want the detection system to produce

the transitions that we observe. In this section we discuss the
QND coupling and in the next section our readout system.

Detecting a single 150 GHz photon from the decay of one
cyclotron energy level to the level below is very difficult.
One photon detectors are not readily available at this high
microwave frequency, and it would be difficult to cover the
solid angle into which the photon could be emitted. Instead
we get the single-photon sensitivity by coupling the cyclotron
motion to the orthogonal axial motion at 200 MHz, a frequency
at which we are able to make sensitive detection electronics
[44]. The QND nature of the detection means the thermally
driven axial motion of the electron does not change the state
of the cyclotron motion.

We use a magnetic bottle gradient that is familiar from
plasma physics and from earlier electron measurements [4,45],

�B = B2[(z2 − ρ2/2) ẑ − zρρ̂], (19)

with B2 = 1540 T/m2. The gradient arises from a pair of
thin nickel rings (Fig. 4) that are completely saturated in
the strong field from the superconducting solenoid. To lowest
order the rings modify B by ≈ −0.7%—merely changing the
magnetic field that the electron experiences without affecting
our measurement.

The formal requirement for a QND measurement is that
the Hamiltonian of the quantum system (i.e., the cyclotron
Hamiltonian) and the Hamiltonian describing the interaction
of the quantum system and the classical measurement system
must commute. The Hamiltonian that couples the quantum
cyclotron and spin motions to the axial motion does so.
It has the form −µB, where µ is the magnetic moment
associated with the cyclotron motion or the spin. The coupling
Hamiltonian thus has a term that goes as µz2. This term has
the same spatial symmetry as does the axial Hamiltonian,
H = 1

2m(2πν̄z)2z2. A change in the magnetic moment that
takes place from a one-quantum change in the cyclotron or spin
magnetic moment thus changes the observed axial frequency
of the suspended electron.

The result is that the frequency of the axial motion ν̄z shifts
by

�ν̄z = δB(n + ms), (20)

in proportion to the cyclotron quantum number n and the spin
quantum number ms . Figure 6 shows the �ν̄z = 4 Hz shift in
the 200 MHz axial frequency that takes place for one-quantum
changes in cyclotron Fig. 6(a) and spin energy Fig. 6(b). The
20 ppb shift is typically observed with a 0.25 s averaging
time.
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FIG. 6. A one-quantum cyclotron transition (a) and a spin flip
(b) observed with a QND measurement through shifts in the axial
frequency.
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G. One-electron self-excited oscillator

Cyclotron excitations and spin flips are generally induced
while the detection system is off, as will be discussed. After
an attempt to excite the cyclotron motion or to flip the spin has
been made, the detection system is then turned on to detect
the state of the system. Spontaneous emission of synchrotron
radiation from the cyclotron motion is inhibited (Sec. III H) to
give the time that is needed. The small axial frequency shifts
which signal changes in cyclotron quantum number or spin
are measured at the required precision using a one-electron
self-excited oscillator [11] that turns on rapidly.

The 200 MHz axial frequency lies in the radio-frequency
(rf) range which is more experimentally accessible than the
microwave range of the 150 GHz cyclotron and spin frequen-
cies, as mentioned. Nevertheless, standard rf techniques must
be carefully tailored for our low-noise, cryogenic experiment.
The electron axial oscillation induces image currents in the
trap electrodes that are proportional to the axial velocity
of the electron [29,46]. An inductor is placed in parallel
with the capacitance between two trap electrodes to cancel
the reactance of the capacitor which would otherwise short
out the induced signal. The rf loss in the tuned circuit that
is formed is an effective resistance that damps the axial
motion.

The voltage that the electron motion induces across this
effective resistance is amplified with two cryogenic amplifiers
[44]. The heart of each amplifier is a single-gate high electron
mobility transistor (Fujitsu FHX13LG).

The first amplifier is at the 100 mK dilution refrigerator
base temperature. Operating this amplifier without crashing
the dilution refrigerator requires operating with a power
dissipation in the field-effect transistor (FET) that is three
orders of magnitude below the transistor’s 10 mW design
dissipation. The effective axial temperature for the elec-
tron while current is flowing through the FET is about 5
K, well above the ambient temperature. Very careful heat
sinking reduces the temperature of the circuit when the
current is stopped, cooling the effective axial temperature
of the electron below 350 mK in approximately 1 s. Cy-
clotron excitations and spin flips are induced only when
the axial motion is so cooled, since the electron is then
making the smallest possible excursion in the magnetic field
gradient.

The second amplifier is mounted on the nominally 600 mK
still of the dilution refrigerator. This amplifier counteracts
the attenuation of thermally isolating but lossy stainless
steel transmission line that carries the amplified signal out
of the refrigerator. The second amplifier boosts the signal
above the noise floor of the following room-temperature
amplifier.

We feed this signal back to trap electrodes as a drive.
Because the induced signal is proportional to the electron’s
axial velocity, this feedback alters the axial damping force,
a force that is also proportional to the electron velocity.
Changing the feedback gain thus changes the damping rate. As
the gain increases, the damping rate decreases if the feedback
phase is appropriately adjusted, as does the effective axial
temperature of the electron, in accord with the fluctuation
dissipation theorem [47]. The invariant ratio of the separately

measured damping rate and the effective temperature has
been demonstrated [48], thereby also demonstrating that the
amplifier adds very little noise to the feedback.

Setting the feedback gain to make the drive exactly cancel
the damping in the attached circuit could sustain a large axial
oscillation amplitude, in principle. However, the gain cannot
be perfectly adjusted and noise fluctuations will always drive
the axial oscillation exponentially away from equilibrium. We
thus stabilize the oscillation amplitude using a digital signal
processor (DSP) that Fourier transforms the signal, and adjusts
the feedback gain in real time to keep the signal at a fixed
value. The corresponding oscillation amplitude was selected
to minimize the dependence of the oscillation frequency upon
the oscillation amplitude [11].

This one-particle self-excited oscillator is turned on after
an attempt has been made to increase the cyclotron energy by
one quantum, or to flip the spin. The frequency of the axial
oscillation that rapidly stabilizes at a large and easily detected
amplitude is then measured. Small shifts in this frequency
reveal whether the cyclotron motion has been excited or
whether the spin has flipped, as illustrated in Fig. 6.

H. Inhibited spontaneous emission

One of the early papers in what has come to be known
as cavity electrodynamics was an observation of inhibited
spontaneous emission within a Penning trap [42]—the first
time that inhibited spontaneous emission was observed within
a cavity and with only one particle—as anticipated earlier
[49,50]. As already mentioned, the cylindrical Penning trap
[6] was invented to provide boundary conditions that would
allow the control of the electron–cavity coupling, using an
understandable geometry that allows the calculation of cavity
shifts to the electron’s cyclotron frequency.

The spontaneous emission rate can be easily measured
directly, by making a histogram of the time the electron spends
in the first excited state after being excited by a microwave
drive injected into the trap cavity. Figure 7 shows a sample
histogram which fits well to an exponential (solid curve) with
a lifetime of 3.4 s in this example.

Stimulated emission is avoided by making these obser-
vations only when the cavity is at low temperature so that
effectively no black body photons are present. The detector
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FIG. 7. Histogram of the time that the electron spends in the first
excited state with an exponential fit. The decay time, 3.4(1) s in
this example, depends on how close the cyclotron frequency is to
neighboring radiation modes of the trap cavity. Lifetimes as long as
16 s have been observed.
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makes thermal fluctuations of the axial oscillation amplitude,
and these in turn make the cyclotron frequency fluctuate. For
measuring the cyclotron decay time, however, this does not
matter because the fluctuations in axial amplitude are small
compared to the 2 mm wavelength of the radiation that excites
the cyclotron motion.

The spontaneous emission rate into free space is [29]

γc0 = 1

4πε0

4e2

3mc3

ω̄3
c

ω̄c − ω̄m

≈ 1

89 ms
. (21)

The measured rate in the example of Fig. 7 is thus suppressed
by a factor of 38. The density of states within a finite cylindrical
trap cavity is not that of free space. The continuous free-space
density of states is generally calculated by considering the
limit of a cavity whose boundary conditions are extended to
infinity. For a finite cavity the density of states for the radiation
remains peaked at the resonance frequencies of the resonant,
electromagnetic radiation modes of the cavity, and falls to
very low values between the modes. We attain the inhibited
spontaneous emission by tuning the magnetic field so that the
cyclotron frequency is far from radiation modes. (Adjusting
the magnetic field in a way that most rapidly restores field
stability is discussed earlier.) With the right choice of magnetic
field we have increased the lifetime to 16 s, which is a cavity
suppression of spontaneous emission by a factor of 180.

In Sec. V D we report on using the direct measurements of
the radiation rate for electron cyclotron motion to probe the
radiation modes of the cavity, with the radiation rate increasing
sharply at frequencies that approach a resonant mode of the
cavity.

I. Quantum jump spectroscopy

We probe the cyclotron and anomaly resonances with
quantum jump spectroscopy, in which we apply a drive in
discrete frequency steps, checking between applications for a
one-quantum transition and building a histogram of the ratio
of excitations to attempts at each frequency. Figure 8 shows
the observed lineshapes upon which our best measurement is
based. We discuss how the measured points are obtained first,
and then discuss theoretical lineshapes in Sec. IV.

A typical data run consists of alternating scans of the
cyclotron and anomaly lines and occurs at night, with daytime
runs only possible on Sundays and holidays when the ambient
magnetic field noise is lower. Interleaved every three hours
among these scans are periods of magnetic field monitoring
to track long-term drifts using the electron itself as the
magnetometer. In addition, we continuously monitor over fifty
environmental parameters such as refrigerator temperatures,
cryogen pressures and flows, and the ambient magnetic field
in the laboratory so that we may screen data for abnormal
conditions and troubleshoot problems.

Cyclotron transitions are driven by injecting microwaves
into the cavity. The microwaves originate as a 15 GHz drive
from a signal generator (Agilent E8251A) whose low-phase-
noise, 10 MHz oven-controlled crystal oscillator serves as the
time base for all frequencies in the experiment. After passing
through a waveguide that removes all subharmonics, the signal
enters a microwave circuit that includes an impact ionization
avalanche transit-time (IMPATT) diode, which multiplies the
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FIG. 8. Quantum-jump spectroscopy lineshapes for cyclotron
(left) and anomaly (right) transitions with maximum-likelihood fits
to broadened lineshape models (solid) and inset resolution functions
(solid) and edge-tracking data (histogram). Vertical lines show the 1-σ
uncertainties for extracted resonance frequencies. Corresponding un-
broadened lineshapes are dashed. Gray bands indicate 1-σ confidence
limits for distributions about broadened fits. All plots share the same
relative frequency scale.

frequency by ten and outputs the f̄c drive at a power of 2 mW.
Voltage-controlled attenuators provide control of the strength
of the drive. The microwaves from a room temperature horn
travel through a series of several teflon lenses, each about ten
wavelengths in diameter. The microwaves enter a horn at 100
mK (Fig. 5) and travel though a cylindrical wave guide that is
gradually deformed to be a thin oval to better match the cross
sectional area of a gap between two trap electrodes (Fig. 4).

Anomaly transitions are driven by a potential oscillating
near ν̄a that is applied between the endcap and ring electrodes
to drive off-resonant axial motion through the magnetic bottle
gradient [Eq. (19)]. The gradient’s zρρ̂ term mixes the driven
oscillation of z at ν̄a with that of ρ at f̄c to produce an
oscillating magnetic field perpendicular to B as needed to
flip the spin. The axial amplitude required to produce the
desired transition probability is too small to affect the lineshape
(Sec. VI); nevertheless, we apply a detuned drive of the same
strength during cyclotron attempts so the electron samples
the same magnetic gradient.

Quantum jump spectroscopy of each resonance follows the
same procedure. With the electron prepared in the spin-up
ground state |0, 1

2 〉, the magnetron radius is reduced with 1.5 s
of strong sideband cooling at ν̄z + ν̄m with the self-excited
oscillator (SEO) turned off immediately and the detection
amplifiers turned off after 0.5 s. After an additional 1 s to
allow the axial motion to thermalize with the tuned circuit,
we apply a 2 s pulse of either a cyclotron drive near f̄c

or an anomaly drive near ν̄a with the other drive applied
simultaneously but detuned far from resonance. The detection
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electronics and SEO are turned back on; after waiting 1 s to
build a steady-state axial amplitude, we measure ν̄z and look
for a 20 ppb shift up (from a cyclotron transition) or down (from
an anomaly transition followed by a spontaneous decay to
|0, − 1

2 〉) in frequency. The inhibition of spontaneous emission
by the cavity provides the time needed to observe cyclotron
transitions before decay. The several-cyclotron lifetimes wait
for a spontaneous decay after an anomaly attempt is the
rate-limiting step in the spectroscopy. After a successful
anomaly transition and decay, simultaneous cyclotron and
anomaly drives pump the electron back to |0, 1

2 〉. All timing
is done in hardware with a pulse generator. We probe each
resonance line with discrete excitation attempts spaced in
frequency by approximately 10% of the linewidth. We step
through each drive frequency on the f̄c line, then each on the
ν̄a line, and repeat.

J. The electron as magnetometer

Slow drifts of the magnetic field are corrected using
the electron itself as a magnetometer. Accounting for these
drifts allows the combination of data taken over many days,
giving a lineshape signal-to-noise that allows the systematic
investigation of lineshape uncertainties at each field. For a
half-hour at the beginning and end of a run and again every
three hours throughout, we alter our cyclotron spectroscopy
routine by applying a stronger drive at a frequency below
f̄c. Using the same timing as above but a ten-times-finer
frequency step, we increase the drive frequency until observing
a successful transition. We then jump back 60 steps and begin
again. Fitting a polynomial to such cyclotron-edge tracking
data allows the normalization of the raw cyclotron and anomaly
data to a common magnetic field.

K. Measuring the axial frequency

Our expression for g/2 [Eq. (10)] requires a measurement
of the axial frequency ν̄z. For a relative uncertainty in g below
0.1 ppt, we must know ν̄z to better than 50 ppb, or 10 Hz. This
is easily done.

While we routinely measure ν̄z during QND detection
of cyclotron and spin states, this self-excited oscillation
frequency includes an amplitude-dependent anharmonic shift
from the low-amplitude, thermally excited axial motion during
cyclotron and anomaly excitation attempts. The shift is
typically a few hertz. We account for this shift by directly
measuring the thermal axial frequency with the amplifiers on;
the axial resonance appears as a narrow dip where the electron
has “shorted-out” the amplifier noise [46]. This dip frequency
is negligibly different than the slightly lower-amplitude one
that pertains during cyclotron and anomaly excitation, which
occurs with the amplifiers off. All additional shifts from
interaction with the amplifier or anomaly-drive-induced power
shifts [51] are negligible at our precision. The uncertainty
arising from the measurement of ν̄z is not significant.

IV. CYCLOTRON AND ANOMALY FREQUENCIES
FROM RESONANCES

Quantum jump spectroscopy gives a measurement of the
number of single-quantum jumps as a function of the frequency
of the driving force that makes transitions between two

distinct quantum states. From such resonance lineshapes (e.g.,
Fig. 8) we must deduce some values of the cyclotron and
anomaly frequencies that can be used to determine g/2 from
Eq. (10). These lineshapes (Sec. IV A) are primarily due
to thermal fluctuations of the electron’s position within the
magnetic bottle gradient. The observed lines are slightly
broader than would be expected from thermal fluctuations
alone—consistent with a small additional fluctuation in the
frequencies (as if there is an additional random fluctuation in
the effective magnetic field).

The frequencies that we extract from the observed line-
shapes, using a weighted mean method (Sec. IV B), are
averages over the values observed in the lineshapes. Insofar
as cyclotron and anomaly frequencies are both essentially
proportional to the magnetic field, any fluctuations in the
effective magnetic field (due to a fluctuating electron position
or any other fluctuation in the magnetic field) would average
the two frequencies in much the same way. We further argue
that the lineshape-weighted mean frequencies are not shifted
with respect to each other by the axial dissipative force,
quantified by γz.

As a extensive consistency check, we also determine
g/2 and uncertainties using frequencies extracted from the
lineshapes with a variety of fitting procedures (Sec. IV C).
The uncertainty in g/2 is increased to cover the range of values
that come from various fits since the slight broadening of the
observed lineshapes is not yet understood (Sec. IV D). The
lineshape uncertainty is the largest uncertainty contribution to
the g/2 for the most precise of our measurements.

A. Lineshape model

Detailed discussion of the cyclotron and anomaly resonance
lineshapes are available [29,44,52]. Here we give a summary,
stressing what must be assumed and calculated to enable
the measurement of the electron magnetic moment and the
uncertainties in the measurement.

For cyclotron and anomaly drives left on for a time much
longer than the inverse-linewidth and inverse-axial-damping
rate γ −1

z , the probability P for a transition to occur after a time
T is [52]

P = 1
2 {1 − exp[−πT 
2χ (ω)]}, (22)

which depends on the Rabi frequency 
 and the lineshape
function χ (ω) and saturates at 1/2 for strong drives. The
radiative decay of cyclotron excitations reduces the cyclotron
lineshape saturation value. For a delay t between the end of the
drive and the beginning of the state measurement, the lineshape
saturates at exp(−γct)/2.

In general, the lineshape χ (ω) is the Fourier transform of
a correlation function χ̃ (t), which is related to the statistical
average of any fluctuations in the magnetic field, ω(t) [52]:

χ̃(t) =
〈
exp

[
−i

∫ t

0
dt ′ω(t ′)

]〉
. (23)

1. During quantum jump spectroscopy—Brownian axial motion

The same magnetic bottle that makes a QND coupling of
the cyclotron and spin energies to the axial frequency couples
the axial energy to the cyclotron and anomaly frequencies and
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is the primary source of the observed lineshape. For an electron
on axis (ρ = 0), it adds a z2 dependence to the magnetic
field and thus to the cyclotron and anomaly frequencies, here
collectively ω:

ω(z) = ω0

(
1 + B2

B
z2

)
. (24)

When probing the cyclotron or anomaly resonance for
quantum jump spectroscopy, the axial motion is in thermal
equilibrium with the detection amplifier circuit, since the
amplifier power is turned off. Thus, the axial position z

undergoes Brownian motion. The lineshape χ (ω) is a statistical
average of these Brownian fluctuations and takes various
forms depending on the relative lengths of the fluctuation
timescale—the inverse-axial-damping time γ −1

z —and the
inverse-linewidth coherence time. This linewidth roughly
corresponds to the frequency shift at the root-mean-square
thermal axial amplitude,

�ω = ω0
B2

B
z2

rms = ω0
B2

B

kTz

mω2
z

. (25)

The contribution of inhibited cyclotron decay width to the
cyclotron linewidth (discussed below) is much smaller, but is
still significant for the anomaly linewidth.

The relevant correlation function χ̃ (t) is found by inserting
Eq. (24), whose time-dependence is in the axial Brownian
motion, into Eq. (23) to get

χ̃(t) = e−iω0t

〈
exp

[
−iω0

B2

B

∫ t

0
dt ′z(t ′)2

]〉
. (26)

Taking the statistical average gives three equivalent solutions
for the lineshape [52],

χ (ω) = 4

π
Re

[
γ ′γz

∫ ∞

0
dt

ei(ω−ω0)t e− 1
2 (γ ′−γz)t e− 1

2 γct

(γ ′ + γz)2 − (γ ′ − γz)2e−γ ′t

]
(27a)

= 4

π
Re

[
γ ′γz

(γ ′ + γz)2

∞∑
n=0

(γ ′ − γz)2n(γ ′ + γz)−2n

(n + 1
2 )γ ′ + 1

2 (γc − γz) − i(ω − ω0)

]

(27b)

= − 4

π
Re

[
γz

K(γz + γ ′)2 2F1

(
1, − K; 1 − K;

(γz − γ ′)2

(γz + γ ′)2

) ]
,

(27c)

where

γ ′ =
√

γ 2
z + 4iγz�ω, (28)

K = 2i(ω − ω0) + γz − γ ′ − γc

2γ ′ , (29)

“Re” denotes the real part, and 2F1(a,b; c; z) is a hypergeo-
metric function. Examples of the lineshape for various values
of γz/�ω and γz/γc are shown in Fig. 9.

In contrast to some previous presentations of the lineshape
[29,44], we have not taken the limit of low cyclotron damping.1

1Brown does keep a nonzero cyclotron damping rate when deriving
the anomaly line, with a result ([52], Eq. 6.12) identical to that
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FIG. 9. (Color online) The theoretical Brownian-motion line-
shape for various γz/�ω and γc/γz. Our cyclotron line has γz/�ω ≈
10−2. Our anomaly line has γz/�ω ≈ 10. For our γz, γc/γz = 10−1–
10−2 correspond to lifetimes of 1.6 s–16 s. The infinite-lifetime limit
is γc/γz = 0.

Our resolution of the anomaly line is fine enough that we must
include the broadening from the finite lifetime of the |1, − 1

2 〉
state.

The cyclotron and anomaly lines are in two limits of this
lineshape. For the cyclotron line, γz/�ω ≈ 10−2 � 1 and the
axial motion is essentially decoupled from the amplifier during
the inverse-linewidth coherence time. During that time, the
electron retains its axial oscillation amplitude. The lineshape
is a Lorentzian with the natural linewidth, γc, and centered on
the frequency given by Eq. (24) with the rms axial amplitude
of that state as z. We do not know the axial amplitude,
however, and since excitation attempts occur on timescales
longer than γ −1

z , subsequent attempts will have different axial
amplitudes. The composite lineshape after many attempts is
thus the convolution of the instantaneous lineshape (the narrow
Lorentzian) and the Boltzmann distribution of axial oscillation
amplitudes. That is, the lineshape is a decaying exponential
with a sharp edge at ω0 and a width of �ω. The cyclotron line
is close to this “exponential” limit and should have a sharp
edge at the zero-axial-amplitude cyclotron frequency that is
useful for quick field measurements such as tracking drifts.

In contrast, the anomaly line has γz/�ω ≈ 10 � 1. The
axial motion is strongly coupled to the amplifier on a time scale
corresponding to the linewidth coherence time, during which
time the axial amplitude averages to the thermal zrms. The
resulting lineshape approaches a natural-linewidth Lorentzian
offset from ω0 by �ω through a Lorentzian with a width of
γc + 2�ω2/γz.

2. During cyclotron lifetime measurements—driven axial motion

The axial motion is in thermal equilibrium with the detec-
tion circuit during the resonance probes of a g/2 measurement,
but it is necessarily driven during QND detection. Probing
the lineshape with this detection drive on adds a coherent
oscillation of z to the Brownian motion considered above. The

presented here. The derivation assumes an anomaly excitation
technique that differs from ours (Sec. III I), but the only effect is
a redefinition of the Rabi frequency [51].
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magnetic bottle coupling again translates this motion into a
lineshape that depends on the amplitude of the axial oscillation.
In the weak-coupling limit (γz/�ω � 1) that corresponds to
our cyclotron line, the lineshape is ([52], Eq. 7.18)

χd (ω) = I0

(
2
√

(ω − ω0)�dω

�ω

)
θ (ω − ω0)

× 1

�ω
exp

(
−ω − ω0 + �dω

�ω

)
, (30)

where

�dω = ω0
B2

B

A2

2
, (31)

A is the driven axial amplitude, θ (x) is the Heaviside step
function, and I0(x) is the order-zero modified Bessel function.
We make extensive use of this driven lineshape in calibrating
the axial oscillation amplitude in Sec. V D.

3. Other magnetic field fluctuations

Although the cyclotron line is in the exponential lineshape
limit (γz/�ω � 1) and should have a sharp low-frequency
edge, all our data show an edge width of 0.5–1 ppb (Fig.
8). We model this discrepancy as additional fluctuations in
the magnetic field. (Some potential sources are discussed at
the end of this section.) Such fluctuations can be described
by adding a noise term η(t) to the Brownian motion axial
fluctuations of Eq. (24),

ω(t) = ω0

(
1 + B2

B
z(t)2 + η(t)

)
, (32)

so that the lineshape is given by the Fourier transform of

χ̃ (t) =
〈
exp

[
−i

∫ t

0
dt ′ω0

(
1 + B2

B
z(t ′)2 + η(t ′)

)]〉
. (33)

For magnetic field noise that is not correlated with the axial
fluctuations, the average factors into

χ̃(t) = e−iω0t

〈
exp

[
−iω0

B2

B

∫ t

0
dt ′z(t ′)2

]〉

×
〈
exp

[
−iω0

∫ t

0
dt ′η(t ′)

]〉
. (34)

The first two factors are the Brownian-motion lineshape and
the third is an additional noise broadening. Because of the
Fourier transform convolution theorem, the resulting noisy
lineshape is the noise-free lineshape of Eq. (27) convolved
with a noise function.

4. Invariance of the mean frequency

An important feature of the Brownian-motion lineshape,
which we use in our primary line-splitting technique, is the
independence of its mean and γz. For the low drive strengths
used in this measurement, we may expand Eq. (22) to lowest
order,

P = 1
2πT 
2χ (ω), (35)

such that the excitation probability is linear in the lineshape
function. Then, the average frequency of the lineshape,
〈ω〉 = ∫ ∞

−∞ ωχ (ω)dω, always corresponds to that given by

the thermal zrms in the magnetic bottle field [Eq. (24)]. That is
([52], Eq. 1.29),

〈ω〉 = ω0 + �ω. (36)

This mean is easily verified in the exponential and Lorentzian
limits described above, but applies for all γz/�ω.

Importantly, any additional magnetic field noise η affects
both cyclotron and anomaly lines identically [Eq. (34)]. If the
noise fluctuates symmetrically, that is, the mean frequency of
the noise function is zero, then the mean frequencies of the
lines are unchanged. A nonzero noise function average would
shift both lines by proportionally the same amount; this shift
would then cancel in the calculation of g/2 [Eq. (10)].

Since the large-drive saturation of Eq. (22) invalidates this
mean-frequency invariance, the excitation probabilities are
kept below 20% to keep saturation shifts of the mean frequency
smaller than the statistical uncertainty.

B. The weighted mean method to extract
frequencies from lineshapes

As justified above, the preferred method is to use the
lineshape-weighted mean values of the cyclotron and anomaly
frequencies in Eq. (10). Insofar as the two frequencies are
essentially proportional to the magnetic field, any effective
fluctuations in the magnetic field would average the two
frequencies in much the same way.

In detail, we extract f̄c and ν̄a from their resonance lines by
binning the excitation attempts into histograms and calculating
the weighted-mean frequency of each line using a trapezoid-
rule integration. The uncertainty in determining f̄c and ν̄a

comes from binomial uncertainties in the number of successes
in each histogram bin, and we assign it as the “statistical”
uncertainty.

The assumptions for the weighted-mean method are un-
saturated lines as well as identical temperature and drive
conditions during cyclotron and anomaly excitations. A further
assumption is a fluctuation spectrum that either is symmetric
(and thus does not shift the means) or is identical during
cyclotron and anomaly excitations (and thus gives shifts that
cancel in the calculation of g/2).

The values of g/2 that are the result of our weighted mean
procedure, for four different values of the magnetic field, are
reported in Table V. We defer further discussion of these values
until we first discuss the statistical and then the systematic
uncertainties in the following sections.

C. Lineshape model uncertainties

To test these assumptions, and to check the uncertainties,
we use maximum-likelihood fits of the data to a lineshape
that includes a specific model of the field-noise spectrum:
the Brownian-motion lineshape convolved with a Gaussian
whose width is left as a fit parameter. These fits determine the
zero-axial-amplitude f̄c and ν̄a , which are used in Eq. (10) to
calculate g/2. The agreement between this line fit g/2 and that
from the weighted mean is our primary check on the lineshape
model, and quantifying this agreement provides a systematic
“lineshape” uncertainty.
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Specifically, we compare the agreement of two weighted-
mean and four fitted determinations of g/2. Because the
weighted-mean method requires binning the data into a
histogram, we check that our result is independent of bin
width by using two different numbers of bins (50 and 100)
at each field. We conduct four maximum-likelihood fits to
the data. The first fit treats each excitation attempt separately
and fits the two lines sequentially—cyclotron then anomaly.
The second is a sequential fit to histogrammed data. The
third is a simultaneous fit of both cyclotron and anomaly
lines to histogrammed data. The fourth is a sequential fit to
histogrammed data with reduced axial damping.

Each fit involves six free parameters. There are the
cyclotron and anomaly frequencies, the two corresponding
Rabi frequencies, the axial temperature, and the width of
the convolved Gaussian. Fitting in four different ways gives
different sensitivities to the fit parameters. In three cases, we
use sequential fits of the two lines—cyclotron then anomaly—
because the cyclotron line better differentiates between the
two main broadening mechanisms: axial temperature and
the Gaussian noise function. Both broaden the anomaly line
symmetrically. The cyclotron line is broadened symmetrically
by the Gaussian noise function and asymmetrically by thermal
axial motion. We include one fit with a reduced axial
damping because γz is difficult to measure precisely. The
fits are much faster when using histogrammed data, but we
include one with no binning to eliminate a possible binning
systematic.

At each field, we thus have six analyses of the g value.
We quantify their agreement as a “g-value range” by taking
half the difference between the lowest and highest error bars
(one-standard-deviation confidence) of the six. We treat the
50-bin weighted-mean result as the measurement of g/2 and
its uncertainty as the statistical uncertainty. The difference
(in quadrature) between the g-value range and the statistical
uncertainty is assigned as a “lineshape model” uncertainty.
To be cautious, we avoid a reduction of the lineshape model
uncertainty when averaging the g/2 measurements at four
magnetic fields by treating the lowest uncertainty (that at
149.2 GHz) as a correlated one. It corresponds to our
best understanding of the lineshape model. Any additional
uncertainty is added as an uncorrelated uncertainty. Thus,
at each field the original g-value range is broken into three
uncertainties and is equal to their sum in quadrature. These
uncertainties are summarized in Table V.

Figure 8 displays the data set used to determine the anomaly
and cyclotron frequencies, with 37 nighttime runs at four
magnetic fields. The data, binned into histograms (points),
fit well to a convolution (solid curve) of a Gaussian resolution
function (solid inset curve) and a Brownian-motion lineshape
(dashed curve), as indicated by one-standard-deviation confi-
dence limits for distributions of measurements about the fits
(gray bands). The vertical lines indicate the weighted-mean
frequencies and their uncertainties from both statistics and
lineshape model. An additional probe of the broadening comes
from histograms (inset) of the edge-tracking data, which is
used for drift normalization as described in Sec. III J. Although
the precise distribution of this data depends on the details
of the edge-tracking procedure, simulations of our procedure
indicate that it should be distributed with a width comparable

to—within a factor of two of—the Gaussian broadening width.
As shown in Fig. 8, the two agree well.

The resonance lines at 147.5 GHz and 151.3 GHz are
broader than those at the other two fields, consistent with a
higher axial temperature. The broader lines naturally con-
tribute more lineshape uncertainty to the determination of
g/2. The temperature differences are also not understood, and
we have not been able to identify corresponding differences
in the measurement procedure used at the four field values.
In fact, whether it is noise, residual heat in the amplifier
circuit, or some other effect that makes Tz higher than the
trap temperature is also not yet understood.

The weighted-mean and line-fit methods should yield a
g/2 that is independent of axial temperature. Nevertheless, we
check for any systematic trends related to axial temperature
by taking an additional set of data at 149.2 GHz with the
refrigerator operating at 500 mK instead of 100 mK. Whereas
the 100 mK data fit to Tz = 0.23(3) K, the 500 mK data fit to
0.55(2) K, consistent with our deliberate heating. The higher-
temperature weighted-mean calculation has a statistical uncer-
tainty of 0.30 ppt, and the maximum-likelihood-fit checks give
an uncorrelated lineshape model uncertainty of 0.46 ppt, both
larger than those of the lower-temperature data at 149.2 GHz in
agreement with the temperature-uncertainty correlation noted
above. Including the statistical and uncorrelated lineshape
model uncertainties, the difference between the 149.2 GHz,
500 mK g/2 and the 100 mK g/2 is 0.5(6) ppt, which is
consistent with zero.

D. Possible broadening sources

What could cause the additional line-broadening? We have
modeled this effect above as fluctuations in the magnetic field.
Attributing the line broadening to field noise assumes that
the fluctuation timescale is not so fast that the noise averages
away during an excitation attempt. The relevant comparison
timescale is the inverse-linewidth coherence time (200 µs for
the cyclotron line and 200 ms for the anomaly line), and any
line-broadening noise must fluctuate near to or slower than
these timescales. Noise broadening from slow fluctuations
is analogous to the exponential limit (γz/�ω � 1) of the
noise-free cyclotron line, which takes its shape from the long
axial fluctuation time and the distribution of axial energies. Our
edge-tracking data provide an upper timescale of minutes for
the noise timescale because we see no correlation between
adjacent edge-tracking points, which come at intervals of
several minutes. This range of allowed timescales constrains
the possible fluctuation mechanisms.

We have considered and ruled out several possible sources.
Section III D includes several known producers of field noise—
the local subway, cryostat pressure changes, ambient temper-
ature changes, and temperature-dependent paramagnetism—
and our efforts to reduce them. Phase noise on the cyclotron
and anomaly drives would mimic field fluctuations, though the
similar broadening observed on each line is not what one would
expect given the vastly different drive frequencies. Estimates
based on the microwave signal generator’s specified phase
noise and additional noise from an ideal multiplier suggest any
frequency deviations should be over two orders of magnitude
below the level required to explain the cyclotron broadening.
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Remaining candidates include relaxation of stresses in the
solenoid windings or vibration of the trap electrodes in an
inhomogeneous magnetic field. Even with the magnetic field
tuned to its specified homogeneity, a 100 µm motion of the
trap electrodes would cause a 0.1 ppb field variation. Such a
motion could be caused by vibrations that drive the dilution
refrigerator like a 2.2-m-long pendulum.

One additional source of broadening is a distribution of
magnetron radii in the −ρ2ẑ/2 portion of the magnetic
bottle [Eq. (19)]. Ideally, our sideband cooling procedure will
produce a thermal distribution of magnetron energies with a
temperature related to the axial temperature by [29]

Tm = − ν̄m

ν̄z

Tz. (37)

(The negative sign indicates that the magnetron degree of
freedom is unbound.) Such an ideal distribution would broaden
the cyclotron line by ν̄m/ν̄z times the axial broadening �ω,
which is 102–103 times too small to account for the observed
width. Nevertheless, we have checked that the broadening is
not due to a thermal distribution of magnetron energies by
deliberately sideband cooling with the amplifiers on (Tz =
5 K) before damping the axial energy to 230 mK; we found no
change in the broadening. Sideband cooling with the coherent
distribution of axial states found during self-excitation would
produce a coherent distribution of magnetron states with a
width that could explain the broadening, but the electron is
not self-excited during sideband cooling. Interestingly, prior
studies of sideband cooling could only achieve cooling to
energies 400 times the ideal limit [29]. If this nonideal energy
limit corresponds to a distribution of energies as well, it could
explain the observed broadening; though, it is unclear what
mechanism limits the cooling and whether it applies to our
setup as well.

Our knowledge of the lineshape model provides the
largest uncertainty in recent g/2 measurements [1,2]. Future
efforts will focus on explaining or eliminating the lineshape
broadening.

V. CAVITY CONTROL

A. Overview

The averaging time needed to observed one-quantum
cyclotron transitions is obtained by inhibiting [42,49] the
spontaneous emission of synchrotron radiation. Inhibition by
factors of 100 and more is accomplished with a cylindrical
Penning trap cavity that was invented for this purpose [6]. The
cylindrical trap shapes the radiation field within the interior of
a conducting right circular cylinder, modifying the density of
radiation states in a way that can be studied and understood,
at the same time as it provides the high quality electrostatic
quadrupole potential needed to detect one trapped electron
with good signal-to-noise [7].

The extremely useful inhibition of spontaneous emission
comes at a cost insofar as coupled oscillators—the cyclotron
oscillator and the radiation mode oscillators—pull each other’s
frequency. The challenge that thus arises is that the interaction
of the electron and the cavity modes also shifts the cyclotron
frequency [1,53]. Typical cavity shifts are at the ppt-level
in the cyclotron frequency and ppb-level in the anomaly

frequency—large enough to unacceptably shift the value of
g/2. The cylindrical trap geometry was selected to provide
familiar and well understood boundary conditions within
which the properties of the radiation field, and hence the shifts
that these fields produce, could be calculated and understood.

The Penning trap establishes the boundary conditions of
a right circular cylinder for microwaves within the trap—
determining the electric and magnetic field of the transverse
electric and magnetic modes. Of course, the boundaries are
not perfect because the electrodes are deliberately slit so that
sections of the cavity can be separately biased trap electrodes,
because the electrodes contract as the trap is cooled from 300
to 0.1 K, and the electrodes are not perfectly machined and
aligned. The result is that the resonant frequency and damping
factor for each radiation mode are slightly shifted and must be
measured within the cold trap cavity.

We used two independent methods to investigate the radia-
tion modes of the cylindrical trap cavity in situ. For our 2006
measurement, the synchronization of the collective motion
of many electrons [8,9] was used to trace out the cyclotron
damping rate as a function of the electron cyclotron frequency,
allowing us to identify and label the transverse electric and
transverse magnetic modes. For the 2008 measurement, the
one-electron cyclotron damping rate was directly measured as
a function of both the cyclotron frequency and the amplitude
of the axial oscillation through the standing wave field of
the cavity modes. We demonstrate a 165(4) µm axial offset
between the electrostatic center of the trap and the center
as defined by the standing wave fields, and place a limit of
ρ < 10 µm on any radial offset.

The electric and magnetic fields of these modes are used as
input for an analytic calculation that is properly renormalized
to avoid self-energy infinities [10,54]. The calculation is then
adapted in a semiempirical way to better describe the way
that the electron cyclotron frequency is shifted and damped.
For the 2006 measurement we were able to reduce the cavity
shift uncertainty to 0.39 ppt [1]. For the 2008 measurement the
cavity shift uncertainty was reduced by an additional factor of
six, to 0.06 ppt [2].

B. Mode detection with synchronized electrons

Our first technique for probing the radiation modes of the
not-quite-ideal trap cavity uses the synchronized axial motion
of approximately 2 × 104 electrons trapped near its center.
When we first developed this method [8], we were able to use
it to identify more than 100 radiation mode of a cylindrical
trap cavity, with frequencies between 20 GHz and 160 GHz,
with those of an ideal right circular cylinder. The cavity used
then was nearly identical to the one used for the 2006 and 2008
measurements. The method seemed ideal in that it produced
in situ a spectrum with peaks at the frequency of radiation
modes (Fig. 10), and with lineshapes that were Lorentzian
and independent of the number of electrons used (as long
as saturation and strongly coupled regimes were avoided). We
thus interpreted these widths as the inverse of the mode quality
or Q factors.

The electrons are excited by modulating the potential
applied to the bottom endcap electrode at a frequency that
is nearly twice the axial oscillation frequency of the electrons,
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FIG. 10. (Color) Modes of the trap cavity as observed with
synchronized electrons in three separate sweeps. The calibration
frequencies are indicated with symbols above the plots. The striking
difference between maps B and C and map A is discussed in the text.

2ν̄z. This parametric modulation of the trapping potential heats
the electrons. The axial oscillation of their center-of-mass
grows exponentially but this growth is limited to a steady-state
value because the trapping potential is anharmonic for large
oscillation amplitudes. Our prior work [8,9] showed that the
measured oscillation amplitude was large when the cyclotron
damping rate was high – when the cyclotron frequency of
the electrons was resonant with a radiation mode in Fig. 10.
The shape of the spectrum was remarkably independent of the
number of electrons N , which could be varied to change the
cyclotron damping rate of the center-of-mass motion Nγc. In
the strong coupling regime, where Nγc exceeded the damping
rate of the cavity modes, the observed peaks split into two. The
axial motion of the electrons also generates motional sidebands
in the observed cavity spectra. The method was very robust and
reproducible.

We learned a great deal about how this method worked
by varying the number of electrons used from 105 electrons
[8,9] down to only 2 [55], and by varying electrostatic
anharmonicity, the parametric drive strength and the slow rate
at which the cyclotron frequency swept through resonance
with the radiation modes. For electrons driven at twice their
preferred oscillation frequency, the resulting axial oscillations
can have either of two oscillation phases that differ by π .
Between resonances with the cavity radiation modes, where
the cyclotron damping was very small, the electrons oscillated
in equal numbers with both of the two axial oscillation phases,
so that the detected signal from the axial center-of-mass is
very small. On resonance with the cavity radiation modes, with
very strong cyclotron center-of-mass damping, the electrons
synchronize into axial oscillations with predominately one
of the two possible phases, producing a large detected
signal.

This method is not yet fully understood despite boundary
conditions that are very carefully controlled. We have written
down what we believe are the full equations of motion for
the N electrons [9], but have not obtained a solution that

represents the simple and striking behavior that is observed.
One additional clue may be that the method worked robustly
over a long time in an apparatus for which the trap’s vacuum
enclosure and the detection electronics were submerged in
liquid helium. In a brief trial, we did not succeed in getting
robust performance in an apparatus in which the trap vacuum
container and the detection electronics were cooled by thermal
contact to a liquid helium dewar. Perhaps the temperature
and noise of the detectors are more important than initially
supposed.

In the apparatus used for the g/2 measurements, cooled
to 0.1 K rather than to 4.2 K and with improved detection
electronics, the interpretation of these cavity mode spectra
has become much less clear. For causes that we have not yet
discerned, we sometimes measure spectra that are like what
we measured in the first studies of the cavity spectra [9] (blue
and black traces in Fig. 10). However, much more often we
measure severely broadened spectra (red trace in Fig. 10).

The observed cavity spectra nonetheless give us an impor-
tant in situ probe into the spectrum of the cavity radiation
modes. It takes several hours to measure a spectrum. In light
of the striking difference (mentioned above and discussed in
more detail below) the broadened spectra marked A in Fig. 10
is not used in the cavity shift analysis. The 2008 measurements
uses the same trap cavity and measured spectra as in 2006 [1],
but our understanding has improved due to the addition of a
new probe of the cavity spectra (next section) and through
more thorough analysis.

The frequency axis for the cavity spectra is calibrated
during the sweep by applying a strong cyclotron drive at
discrete frequencies (symbols in Fig. 10). When resonant with
ν̄c, the magnetic-bottle coupling shifts ν̄z and the parametric
drive is no longer resonant, producing a sharp dip in the
signal such as that on TE241 near 139.6 GHz. The cyclotron
frequencies for the remainder of the map are assigned with a
linear interpolation function between these discrete calibration
points. (Map A is calibrated with an earlier technique that
involved stopping the magnetic field where marked and
measuring ν̄c directly.) Comparing the mode frequencies with
those of an ideal cylinder with dimensions similar to the trap
dimensions allows us to identify and label the TE and TM
modes.

Three features aid the interpretation of the cavity spectra
[9].

(1) Strong cloud–mode coupling can split the Lorentzian
response into a pair of normal modes. The Q of the split peaks
is higher than that of the mode, making it difficult to estimate
the mode Q from parametric mode maps alone.

(2) The large axial motion of the cloud during the mea-
surement (limited only by trap anharmonicity) probes the
electric-field profiles of the modes and amplitude-modulates
γc, producing axial-frequency sidebands at ±ν̄z for modes with
a node at the trap center (e.g., TE144 at 145.0 GHz) and ±2ν̄z

for modes with an antinode at the trap center. These motional
sidebands are further explored below for the single-electron
case.

(3) Nonzero cloud size or a relative offset between the
electrostatic center and the mode center allows coupling to
modes with nodes at the mode center (e.g., TE136 at 146.4 GHz
and TE243 at 149.7 GHz).

052122-14



CAVITY CONTROL OF A SINGLE-ELECTRON QUANTUM . . . PHYSICAL REVIEW A 83, 052122 (2011)

TABLE II. Comparison of the mode parameters from the multi-
electron parametric mode maps and the single-electron lifetime fits.

parametric lifetime

TE127 νc(GHz) 146.289(7) 146.322(13)
Q 4600(900) 4900(300)

TE136 νc(GHz) 146.436(7) 146.415(2)
Q 2200(60) 4800(200)

TM143 νc(GHz) 151.865(4) 151.811(16)
Q 890(10) 1270(70)

For the four magnetic fields at which we measure g/2, the
modes with the largest influence on the cavity shift are TE127,
TE136, and TM143. Table II summarizes the mode frequencies
and Q values obtained from Lorentzian fits to the cavity spectra
B and C of Fig. 10 after accounting for any normal-mode
splitting. The listed uncertainties are what is estimated as part
of the nonlinear least squares fitting to Lorentzian peaks, and
does not include any additional systematics contribution.

In light of the differences between the cavity spectra
measured when this method was first developed, and what
we now are able to observe, and because we are not currently
always able to robustly produce such spectra, we have carefully
reflected upon our measurement technique. Early studies on
mode detection with synchronized electrons [9] found the
center-of-mass amplitude closely followed γc for wide ranges
of parameters, yielding Lorentzian mode profiles except in
cases of normal-mode splitting or motional sidebands. With
our current apparatus we find three classes of behavior:

(1) Convincing cavity spectra with the detected center-of-
mass signal tracking γc with Lorentzian mode profiles and no
center-of-mass motion far from modes, as seen in B and C of
Fig. 10.

(2) Broadened cavity spectra in which the signal never
disappears but increases and decreases with γc, as seen in A.

(3) No cavity spectrum at all. With nominally the same
parameters as for the previous two cases we do not see the
detected signal change as the magnetic field is varied to sweep
the cyclotron frequency. This is the most common behavior.

There are substantial differences between the earlier appa-
ratus (Ref. [9]) and that used for the 2006–2008 measurements,
even though the trap electrodes themselves are essentially the
same.

(1) 40-times lower cavity temperature should increase
the interparticle Coulomb interaction and enhance collective
motion [56,57].

(2) 10-times deeper axial potential should have a similar
effect.

(3) Improved detection electronics [44] should offer
greater detection sensitivity while producing less noise to heat
the trapped electrons.

(4) 10-times larger electron clouds are used because we
find that smaller clouds rapidly saturate, with all electrons in
one of the two oscillation phases.

(5) More heavily filtered and noise-free electrical envi-
ronment should reduce noise driven transitions between the
bistable states.

The three maps of Fig. 10 were taken using the same
trap cavity over the course of 18 mos, during which time the

electrodes were thermally cycled to room temperature several
times, the refrigerator was inserted and removed, and the
magnet was quenched with the electrodes inside. At no point
were the electrodes themselves disassembled or adjusted. The
general alignment of the features and the precise alignment of
the calibration points in Fig. 10 indicate that the trap cavity
and its resonant modes are robust against stresses and thermal
cycles. Any misalignments in the location of a particular mode
may be attributed to the calibration process, specifically to
nonlinear charging rates from the power supplies, rather than to
real shifts in the mode frequencies. This consistency suggests
that the cavity itself is stable, though the variety of parametric
behaviors discussed in the previous paragraph motivates
our use of an independent, one-electron mode detection
technique.

C. Cavity coupling to a single electron

1. Overview

The expressions describing the coupling of a single electron
to the electromagnetic modes lie at the heart of our cavity
analysis. Their importance is twofold: First, they are required
for the calculation of the cyclotron frequency shifts, �ωc, and
second, measurements of the cyclotron damping rate, γc, allow
a characterization of the cavity mode structure independent
of the multi-electron technique of the previous section. In
this section, we present two formulas for the cavity-induced
cyclotron frequency shift and damping rate. They differ in their
treatment of the electron’s axial motion. Equation (40) applies
for an electron with negligible axial motion, corresponding to
the cold thermal axial distribution during cyclotron or anomaly
excitation. Equation (58) applies for a larger axial motion that
begins to probe the mode’s standing wave, corresponding to
the self-excited axial state during detection and measurement
of γc.

2. Single-mode approximation

Before beginning a full calculation of the cyclotron motion–
cavity coupling, it is worth modeling the interaction between
the electron and a single nearby mode, here denoted M, to give
an indication of the character of the electron–mode coupling.
This approximation will eventually aid in modeling the
coupling including axial motion in Sec. V C 5. The interaction
may be approximated as that of two coupled oscillators with
the resulting electron frequency shift and damping rate given
by [10]

�ωc = γM

2

δ

1 + δ2
, (38a)

γc = γM
1

1 + δ2
. (38b)

Here, γM is the cyclotron damping rate when the electron is
exactly resonant with the mode and δ is the relative detuning,
defined as

δ = ω̄c − ωM

�M/2
. (39)

The mode full-width at half-maximum, �M, arises because
of losses in the cavity and may be written in terms of a
quality factor, QM, with the definition: QM = ωM/�M. The
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cyclotron frequency is maximally shifted by ±γM/4 at δ = ±1.
Furthermore, provided the cyclotron frequency is detuned
far enough from a mode that δ � 1, i.e., (ω̄c − ωM)/ωM �
1/(2QM), the shift �ωc is Q independent.

It is tempting to expand on the single-mode approximation
above by adding the contributions of many modes. This
mode-sum approach is fundamentally flawed because the
real part is infinite [54]. A linear divergence arises from
the inclusion of the electron self-field contribution to the
cavity radiation rather than only the field reflected from
the walls. A calculation that explicitly removes the electron
self-field from the cavity standing wave, i.e., “renormalizes”
the field, yields a finite result and is the subject of the next
section.

3. Renormalized calculation of cyclotron–cavity coupling

While it is possible to tackle the full cylindrical cavity
directly, removing the electron self-field from such a cal-
culation is difficult. It simplifies when first analyzing the
interaction of the electron with two parallel plates then adding
the contribution of interactions with the cylindrical wall. The
calculation is quite involved. It is presented for a centered
particle (z,ρ = 0) in Ref. [54]. We extend the calculation
to any position in the cavity. This extension is required
for two reasons: our electrostatic quadrupole suspends the
electron slightly offset axially from the cavity mode center
(see Sec. V D), and the electron’s axial motion modulates
the electron–cavity coupling when measuring the cyclotron
damping rate (see Sec. V C 5). The derivation for arbitrary
position is nearly identical to that in Ref. [54] except we
keep the terms that vanish for z,ρ = 0. Rather than repeat
the lengthy calculation, we state the results and discuss some
important characteristics.

For two parallel conducting plates, i.e., the cylindrical
cavity with ρ0 → ∞, the boundary conditions may be satisfied
with a series of image charges. Renormalizing this sum is
trivial—simply omit the electron’s contribution and leave that
of the image charges, a result we describe below and call �P .
Proceeding to the calculation of the full cylindrical cavity and
omitting the contribution from the endcaps leaves only the
correction from the cylindrical wall, a result we call �S . The
final result is the sum of the contributions from the endcaps
and the wall.

At a cavity-shifted cyclotron frequency ω, the frequency
shift �ωc = ω − ω̄c and damping rate γc is given in terms of
these two contributions (�P , �S), the free space damping rate
γc0, and a quality factor Q for all modes:

�ωc − i

2
γc = − i

2
γc0 + ω

{
�S

[(
1 + i

2Q

)
ω,z,ρ

]

+�P

[(
1 + i

2Q

)
ω,z

]}
. (40)

The correction to g/2 [Eq. (10)] is equal to the relative shift
of the cyclotron frequency:

�gcav

2
= �ωc

ω
. (41)

We use this formula in a slightly modified form to calculate
the cavity shifts of the cyclotron frequency (see the discussion
in the next subsection).

The renormalized calculation begins by modeling the effect
of the cavity on the electron as an electric field E′(r) arising
from image charges in the walls. It modifies the transverse
equation of motion to read

v̇ − ωc × v + e

m
∇V (r) + 1

2
γc0v = e

m
E′(r). (42)

The longitudinal part of E′(r) gives a negligible correction
to the trapping potential V (r) [54], but the transverse part
generates the anticipated effects. Using the radiation gauge,
∇ · A = 0, the electric field may be written as the time
derivative of the vector potential. This vector potential satisfies
the wave equation with a transverse current source and thus
may be written as the convolution of that source—the moving
electron—and a Green’s function subject to the appropriate
boundary conditions, see, e.g., [34], Secs.6.3–6.4. Combining
the two transverse velocity components as v = vx − ivy =
v0e

−iωt , one can then write Eq. (42) as Eq. (40), where �P

and �S are proportional to Fourier transforms of the part of
the Green’s function that arises due to the presence of the
cavity walls. Note that �P and �S are in general complex,
with the real portion corresponding to a frequency shift and
the imaginary portion to a modified damping rate.

As mentioned above, the method of images gives the
parallel-plate contribution to the cyclotron frequency shift and
damping rate. As a function of axial position z and cyclotron
frequency ω, it is

�P (ω,z) = −r0

[
2

∞∑
j=1

F (4jz0) −
∞∑

j=1

F [2(2j − 1)z0 + 2z]

−
∞∑

j=1

F [2(2j − 1)z0 − 2z]

]
, (43)

where r0 = e2/(4πε0mc2) is the classical electron radius and
F (z) is the Fourier transform of the aforementioned Green’s
function a distance |z| from an electron or image charge:

F (z) = 1

|z|
[
eiω|z|/c

(
1 + ic

ω |z| − c2

ω2z2

)
+ c2

ω2z2

]
. (44)

The j = 0 term has been removed from the first sum; this ex-
clusion of the electron self-field is the explicit renormalization
required to avoid an infinite result.

�P depends on an axial offset but not a radial one because of
the transverse symmetry of two parallel plates. Its imaginary
part—cyclotron damping—has a sawtooth form with sharp
teeth where the frequency corresponds to an integral number
of half-wavelengths between the two endcaps (only the odd
integers for z = 0 since the even integers have a node there).
The real part—cyclotron frequency shifts—shows peaks at
similar intervals. The nearest such frequency corresponds to
eight half-wavelengths at 154.5 GHz, far enough away that
the parallel-plate contribution is smooth in our experimental
region of interest.
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The contribution from the cylindrical wall is

�S(ω,z,ρ) = − r0

z0

∞∑
p=1

sin2

[
pπ

2

(
z

z0
+ 1

)] ∞∑
m=0

[1 + sgn(m)]

[
K ′

m(µpρ0)

I ′
m(µpρ0)

RI (m; µpρ)

+
(

pπc

2ωz0

)2(
Km(µpρ0)

Im(µpρ0)
RI (m; µpρ) −

Km

(
pπρ0

2z0

)
Im

(
pπρ0

2z0

) RI

(
m;

pπρ

2z0

))]
(45)

with

µp =
√(

pπ

2z0

)2

−
(ω

c

)2
, (46)

RI (m; x) = m2

x2
Im(x)2 + I ′

m(x)2, (47)

sgn(m) =
⎧⎨
⎩

−1 for m < 0
0 for m = 0
1 for m > 0

. (48)

The sums include modified Bessel functions of the first and
second kinds,

Iν(x) = i−νJν(ix), (49)

Kν(x) = (π/2){[I−ν(x) − Iν(x)]/ sin(νπ )} (50)

as well as their derivatives. The K ′
m(µpρ0)/I ′

m(µpρ0) term
comes from the boundary conditions of the TE modes, while
the Km(µpρ0)/Im(µpρ0) term comes from the TM modes. For
ρ → 0, the RI functions all go to zero except when m = 1,
when it goes to 1/2. For z → 0, only the odd-p terms survive.
Combined, these limits reproduce Eq. 4.28 of Ref. [54].

The frequency shifts and damping from individual modes
can be seen by looking at the Bessel functions in the denomi-
nators. For a given p, an increasing ω will eventually cross a
threshold at which µp becomes zero and then imaginary. At
that point, we may use the definition of Im(x) to substitute

Im(µpρ0) = i−mJm(µ̃pρ0), (51)

where µ̃p is the now-real quantity iµp. Since Jm(x) and J ′
m(x)

have a number of zeros, after ω exceeds the pth threshold the
sum has poles that may be approximated as

�S(ω,z,ρ) ≈ λ2
mnp

ω2 − ω2
mnp

. (52)

For TE modes, the poles occur when J ′
m(µ̃pρ0) has a zero; for

TM modes, when J ′
m(µ̃pρ0) has a zero. That is, there are poles

when ω = ωmnp of Eq. (13). Expanding the Bessel functions
about their zeros yields mode coupling strengths

TE :λ2
mnp = 2r0c

2

z0ρ
2
0

−[1 + sgn(m)]

J ′′
m(x ′

mn)Jm(x ′
mn)

× sin2

[
pπ

2

(
z

z0
+ 1

)]
RJ

(
m; x ′

mn

ρ

ρ0

)
(53a)

TM :λ2
mnp = 2r0c

2

z0ρ
2
0

1 + sgn(m)

J ′
m(xmn)2

(
pπ

2z0

c

ωmnp

)2

× sin2

[
pπ

2

(
z

z0
+ 1

)]
RJ

(
m; xmn

ρ

ρ0

)
,

(53b)

where xmn and x ′
mn are the previously mentioned zeros of

the Bessel functions and their derivatives. The entire radial
dependence of the coupling is contained in the RJ function,
defined by

RJ (m; x) = m2

x2
Jm(x)2 − J ′

m(x)2. (54)

For zero radius, RJ equals 1/2 if m = 1 and zero otherwise.
Given the above, we can see that the summation indices p

and m in Eq. (45) correspond directly to those in the mode
indices mnp, and the addition of the m,pth term of the sums
adds the contributions from all modes of that m and p. The
threshold above which µp is imaginary corresponds to the
frequency whose half-wavelength fits between the endcaps p

times. The single-mode approximation of Eq. (52) shows the
interaction between the electron and a single mode is that of
two weakly coupled oscillators.

4. Using the renormalized calculation

The combination of �P and �S in Eq. (40) is the result of
the renormalized calculation. There, we have included cavity
dissipation in the from of a mode Q with the replacement
ω → [1 + i/(2Q)]ω. It is possible to include different quality
factors for the TE and TM mode classes by using QTE in the
denominator functions I ′

m(µpρ0) and QTM everywhere else
[54]. It is not possible to include a Q for each mode separately.

The strength of the renormalized calculation is its removal
of the electron self-energy. It has an important drawback in
that the entire calculation has only four input parameters: ρ0,
z0, QTM, and QTE. It does not allow the input of arbitrary
mode frequencies and Qs. If the dominant mode couplings are
to one TE and one TM mode, then the two mode frequencies
and Qs can determine the four input parameters. The addition
of a third mode, however, overconstrains the problem; unless
the three modes happen to have frequencies that correspond
to those of an ideal cavity and two happen to share Qs, the
renormalized calculation will give an incorrect result.

In this measurement, three modes have the largest influence
on the electron–cavity coupling: TE127, TM143, and TE136.
Because we can identify the terms in Eq. (45) that correspond
to a given mode, we modify the renormalized calculation to
better approximate our observed mode structure. Since the
electron is close to (but not precisely in) the mode center,
the two modes with antinodes at the center (odd p) dominate
the coupling, and we set the four input parameters of the
renormalized calculation with the frequencies and Qs of
TE127 and TM143. These input parameters give an ideal
frequency and Q for TE136, which we correct to the observed
values by subtracting the term in Eq. (45) that includes
the contribution from TE136, −(2r0/z0) sin2[3π (z/z0 + 1)]
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[K ′
1(µ6ρ0)/I ′

1(µ6ρ0)]RI (1; µ6ρ), and adding it back with the
observed values. Although this moves all modes with TE1n6

the next-nearest ones are far away: ωTE126/(2π ) ≈ 129 GHz
and ωTE146/(2π ) ≈ 169 GHz, while ωTE136/(2π ) ≈ 146 GHz.
If this were a concern, we could do a similar subtraction with
the single-mode approximation of Eq. (52), but at the cost of
artifacts of uncanceled higher-order terms.

5. Coupling modulated by axial motion

When the SEO is running, the axial motion through the
cavity mode field will modulate the coupling at ωz. This
motion is present, for example, during cyclotron or spin
state-detection; it is not present during cyclotron or anomaly
excitation, the relevant period for any systematic shift in g/2.
Since measurements of the cyclotron damping rate involve
continuous detection of the cyclotron state waiting for a
decay, we must account for this modulation and any amplitude
dependence of the damping rate when using measurements
of γc to determine the input parameters to the g/2 cavity
corrections. This accounting is a nontrivial task, which is
intractable for the full renormalized calculation but doable
for the single-mode coupling of Eq. (52) provided that the
axial amplitude A is much lower than a quarter-wavelength of
the mode’s axial standing wave (A � z0/p), a condition met
for typical A.

All of the z dependences in the mode-coupling parameters
λmnp of Eq. (53) come in a single sine function:

λmnp = sin

[
pπ

2

(
z

z0
+ 1

)]
λ̃M, (55)

where we define λ̃M to be the non-z-dependent part of the
coupling. For an electron offset z from the center of the modes
and oscillating at frequency ωz with amplitude A � z0/p,
we may expand the mode axial dependence in terms of axial
harmonics,

sin

[
pπ

2

(
z + A cos(ωzt)

z0
+ 1

)]
=

∞∑
j=0

fj (z,A) cos(jωzt),

(56)

where the fj (z,A) are functions of the axial offset and
amplitude. The first three are

f0(z,A) = sin

[
pπ

2

(
z

z0
+ 1

)][
1 −

(
pπA

4z0

)2

+ O(A4)

]
,

(57a)

f1(z,A) = cos

[
pπ

2

(
z

z0
+ 1

)][
pπA

2z0
− O(A3)

]
, (57b)

f2(z,A) = sin

[
pπ

2

(
z

z0
+ 1

)][
−

(
pπA

4z0

)2

+ O(A4)

]
.

(57c)

Including this expansion of the axial oscillation in the
transverse equation of motion ( [12], Appendix A) yields an

amplitude dependence to the single-mode coupling strength as
well as a series of axial harmonics to the mode frequency, ωM:

�ωc − i
γc

2
= λ̃2

Mω

2

∞∑
j=0

fj (z,A)2

[
1

ω2 − (ωM − jωz)2

+ 1

ω2 − (ωM + jωz)2

]
. (58)

As before, we may include a damping width by substituting
ω → [1 + i/(2Q)]ω in the two fractions within the brackets.
Note that taking the A → 0 limit recovers the usual single-
mode coupling of Eq. (52).

D. Single-electron mode detection

Using the above descriptions of electron–cavity coupling,
we measure the cyclotron damping rate as a function of
cyclotron frequency and of position in the trap to determine
the location and Q of the three closest coupled modes and
to characterize the alignment of the electrostatic and mode
centers. Since we are able to perform a QND measurement
on the cyclotron state, measuring the cyclotron damping
rate simply consists of making many (typically hundreds
of) jumps and fitting the distribution of jump lengths to a
decaying exponential with time-constant γ −1

c , as in Fig. 11(a).
Because the axial motion is self-excited during detection, we
must measure the damping rate as a function of amplitude.
The amplitude dependence goes as even powers of A [Eqs.
(57) and (58)], and since the amplitude is much less than a
quarter-wavelength for the relevant modes, terms of higher
order in A get progressively smaller, allowing approximation
as a quadratic function,

γ (A) = γ0 + γ2A
2. (59)

We measure the axial amplitude with the driven cyclotron
lineshape of Eq. (30), where the driven axial motion in the
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FIG. 11. Measurement of the cyclotron damping rate at 146.70
GHz, near the upper sideband of TE136. The cyclotron damping rate as
a function of axial amplitude (c) extrapolates to the desired lifetime.
Each point in (c) consists of a damping rate measured from a fit to a
histogram of cyclotron jump lengths (a) as well as an axial amplitude
measured from a driven cyclotron line (b).
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magnetic bottle causes the electron to see a higher average
magnetic field, resulting in a cyclotron frequency shift as in
Fig. 11(b). Figure 11(c) shows an example of the measured
damping rate as a function of amplitude close to the upper
axial sideband of TE136 (νTE136 + νz). It displays a large
amplitude dependence in γc because of the proximity of ν̄c and
the sideband, which becomes more prominent as larger axial
oscillations increase the modulation of the mode coupling.

After repeating such measurements at many cyclotron
frequencies, we amass two sets of data, the zero-amplitude cy-
clotron decay rates γ0 and the quadratic amplitude-dependence
coefficients γ2, as functions of ν̄c. From these data, we extract
the frequencies of the three nearest coupled modes: TE127,

TE136, and TM143. Since the lifetimes are heavily Q dependent,
we must include three Qs, bringing the total number of fit
parameters to six.

The renormalized calculation provides the model for fitting
the zero-amplitude cyclotron decay rates. As described above,
we use its four free parameters to determine the frequencies
and Qs of TE127 and TM143 and add the TE136 parameters by
subtracting the TE1n6 term in the renormalized calculation for
the calculated frequency and Q and adding it back in with the
frequency and Q as fit parameters.

For the quadratic-amplitude-dependence data, we use the
A2 term in the single-mode coupling expansion of Eq. (58) to
write

γ2 = −2
∑

M

Im

{
λ̃2

Mω

2

[
sin2

[
pπ

2

(
z

z0
+ 1

)](
pπ

4z0

)2 −4

ω2 + i ωωM
QM

− ω2
M

+ cos2

[
pπ

2

(
z

z0
+ 1

)](
pπ

2z0

)2

×
(

1

ω2 + i
ω(ωM−ωz)

QM
− (ωM − ωz)2

+ 1

ω2 + i
ω(ωM+ωz)

QM
− (ωM + ωz)2

)]}
, (60)

where the sum is over the three modes of interest.
We form a χ2

γ0
using the zero-amplitude data and the

renormalized calculation and a χ2
γ2

using the quadratic-
amplitude-dependence data and Eq. (60). Since the electron
is close to centered axially (we discuss the offset below and
include the measured offset in the fits), the zero-amplitude data
are more sensitive to the two modes with central antinodes
(TE127 and TM143) and the amplitude-dependence data to the
sidebands of TE136, which has a central node. The fit consists
of minimizing the two χ2s; though the proper weighting of
the two is not clear a priori, it makes little difference to the
results.

Figures 12(b) and 12(c) display the lifetime data and fits,
and Table II lists the results and compares them to those from
the parametric mode maps. The two independent methods
should agree but do not. When calculating the cavity shifts,
we assign uncertainties large enough to include both results
for the mode frequencies (see Table III). For the mode Qs,
to which the cavity shifts are largely insensitive, we use the

TABLE III. Parameters used in calculating the cavity shifts. For
comparison, we include earlier estimates from the 2006 measurement,
which used the same trap cavity.

2006 this
measurement [1] measurement

TE127 νc(GHz) 146.350(200) 146.309(27)
Q >500 4900(300)

TE136 νc(GHz) – 146.428(15)
Q – 4800(200)

TM143 νc(GHz) 151.900(200) 151.832(37)
Q >500 1270(70)

electrostatic z(µm) 0 165(4)
offset ρ (µm) 0 <10

results from the lifetime fits because of the strong-coupling
ambiguity in the parametric mode map values.

1. Electron position in the cavity

Knowledge of the electron position relative to the cavity
modes is important for calculating the electron–mode coupling
and thus the cyclotron frequency shift. We determine the axial
misalignment by measuring the cyclotron damping rate as a
function of z, using antisymmetric endcap potentials to move
the electron along the trap axis [6]. Figure 13 plots such
a measurement with the cyclotron frequency tuned midway
between TE136 and its upper sideband—close enough to TE136

to give a large z dependence but far enough detuned that the
cyclotron lifetime is long enough to see single excitations.
Since the mode couplings are even functions of z, the damping
rate should go as z2 with an extremum at z = 0 for the modes.
Figure 13 shows this extremum, which fits to a misalignment
of 165(4) µm. In addition, since the extremum is a minimum,
the nearest coupled mode must have a node at the mode
center (even p), demonstrating that the TE127 and TE136

identifications in Fig. 10 are correct.
The cause of this offset is not known, though the consistent

presence of TE136 in the parametric mode maps suggests that
it is stable. Measurement of a third trap “center,” the minimum
of the magnetic bottle, agrees with the electrostatic center.
Attempts to model the observed offset as asymmetric spacing
between electrodes does not yield a convincing explanation
and more exotic trap deformations such as a tilted endcap or a
compensation electrode that protrudes slightly into the cavity
are difficult to model. Because both the parametric mode maps
and Fig. 13 indicate an offset, we include it when calculating
the cavity shifts. We build our confidence in this procedure
by measuring g/2 at four cyclotron frequencies with different
cavity shifts and showing the agreement between the predicted
and measured shifts.
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We estimate the radial alignment of a single electron
by tuning its cyclotron frequency into resonance with three
modes that have nodes at the radial center, i.e., have m 
= 1,
and comparing the measured cyclotron damping rate to that
predicted by the renormalized model with ρ = 0. Since the
m 
= 1 modes do not couple to a radially centered electron,
a measured cyclotron damping rate that is faster than the
calculated damping rate could indicate a radial misalignment.
For the cases where we observe such a discrepancy, we use
the full, ρ-dependent renormalized calculation to estimate the
range of radial offsets that could explain the observed damping
rates (all calculations include the axial offset of the previous
paragraphs). In each of the three cases (TE035, TM027, TE043),
we measure damping rates close to that predicted for ρ = 0,
and we set the limit ρ < 10 µm.

E. Cavity-shift results

We calculate the cavity shifts and uncertainties from the
mode parameters and their uncertainties (Table III) via the
renormalized calculation. The cavity shifts are independent
of mode Q for cyclotron frequencies with relative detunings
(ω̄c − ωM)/ωM � 1/(2QM). Because all our g/2 measure-
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FIG. 12. Cavity-shift results come from synchronized electrons
(a) and from direct measurements with one electron of γc (b)
and its dependence on axial amplitude (c). Together, they provide
uncertainties in the frequencies of coupled cavity modes (gray) that
translate into an uncertainty band of cavity shifts �gcav/2 (d) whose
half-width, i.e., the cavity-shift uncertainty, is plotted in (e). The
diamonds at the top indicate the cyclotron frequencies of the four g/2
measurements.

ments meet this requirement easily, the cavity shift uncertainty
comes only from the errors in mode frequencies. Because
of the axial offset, mode TE136 affects the shifts, and we
calculate with this mode at its observed frequency using the
mode-moving technique described in Sec. V C 4. Because
fits to the parametric mode maps and to the single-electron
lifetime data yield slightly different frequencies for the three
nearest coupled modes (see Table II), we assign uncertainties
large enough to include both. The trap-radius limit only has
a significant effect near two modes, TE243 and TE043, and
we again use the mode-moving technique to place them at
their observed frequencies though it makes little difference to
our result because none of our four measurements of g/2 were
resonant with either mode. Because it appears in the parametric
mode map, we include TM027 in the calculation, although it
does not change the result noticeably.

Figures 12(d) and 12(e) display the results of this analysis,
and Table V shows the calculated cavity shifts for our four
measurements of g/2. The shifts span over 10 ppt with
uncertainties around 100 times smaller than that range. The
lowest uncertainties are below a part in 1013, over six times
smaller than in our 2006 measurement [1] and low enough that
this systematic uncertainty is no longer a dominant error in the
measurement of g/2.

VI. POWER SHIFTS

We expect neither ν̄a nor f̄c to shift with cyclotron or
anomaly drive power, but previous measurements of the
electron g/2 at the UW showed unexplained systematic shifts
of the cyclotron frequency with both drive powers [4,30].
The origin of these power shifts in the UW measurements
remains unknown [30], and extrapolation to zero cyclotron
power involved correcting shifts of several ppt in g/2 [4,30].
Estimates comparing our drive power to that used in the UW
measurements suggest that our narrower lines and single-
quantum cyclotron technique require drive strengths low
enough that the power shifts are negligible. We have yet to see a
power shift in our apparatus, though experimental searches are
time-consuming and the statistical uncertainty in the current
search is comparable to our final uncertainty in g/2.

A. Anomaly power shift estimate

The UW experiment showed anomaly power shifts of
several ppb in the anomaly frequency [30]. An off-resonant
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FIG. 13. Measurement of the offset between the electrostatic and
mode centers. Here, z refers to the position relative to the electrostatic
center, and the minimum in the cyclotron damping rate corresponds
to the mode center.
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anomaly drive during cyclotron excitation shifted the cyclotron
line by a similar amount, and the two shifts canceled in the
frequency-ratio calculation of g/2 [4]. The origin of these
shifts is unknown, although experiments with a variable-
strength magnetic bottle showed that they increase with the
magnitude of the bottle strength, independent of its sign [30].

Direct comparisons between the anomaly power used in the
UW experiment and that used here are difficult because the
experiments use different anomaly excitation techniques. The
UW excitations were primarily driven with counterflowing
current loops in split compensation electrodes, while we
drive the electron axially through the zρρ̂ gradient of the
magnetic bottle. Unlike the current-loop excitation technique,
our axial-excitation technique provides a clear mechanism
for an anomaly power shift by increasing the average axial
amplitude and, therefore, the average magnetic field seen by
the electron (because of the z2ẑ part of the magnetic bottle).
We estimate this shift below and expect it to be both smaller
than our current precision and canceled in the calculation of
g/2 by a similar cyclotron shift from a detuned anomaly drive
during cyclotron excitation.

For a driven axial amplitude, za , the frequency shift from
the motion through the magnetic bottle is

�ωa

ωa

= �ωc

ωc

= B2

B

z2
a

2
. (61)

Were this shift to approach the linewidth, we would be forced
to use the driven lineshape of Eq. (30) when extracting
frequencies. In order to calculate the expected size of the power
shift, we must estimate za; only amplitudes over 800 nm will
produce shifts at the 0.1 ppb level in frequency. We estimate za

using two methods: the observed anomaly transition rate and
a calibration of the drive voltage. The estimates give similar
amplitudes, and neither predicts anomaly power shifts at our
precision.

From Eq. (35), we see that the anomaly transition rate goes
as the product of the Rabi frequency squared 
2

a times the
lineshape function χ (ω). The anomaly Rabi frequency goes as
za [51], and we can estimate za from a typical peak excitation
fraction, Ppk, using

Ppk = π

2
T 
2

aχ (ωpk)

= π

2
T

(
g

2

eh̄

2m
B2za

√
2

mh̄(ω̄c − ω̄m)

)2

χ (ωpk). (62)

Because the lineshape function is normalized to unity, its
value on-peak in the Lorentzian lineshape limit—the limit
corresponding to the anomaly line—is inversely-proportional
to the linewidth

χ (ωpk) = 2

π

(
2�ω2

γz

+ γc

)−1

. (63)

For typical experimental parameters, we must drive to za ≈
100 nm to achieve a 20% excitation fraction.

Alternately, we can estimate the driven amplitude based on
the rf voltage on the bottom endcap. An endcap driven with
amplitude Va excites the electron to an amplitude given by [29]

za = c1d
2

2z0

[(
ωa

ωz

)2

− 1

]−1
Va

VR

. (64)

(VR is the ring electrode potential, and c1, d, and z0 are
geometric factors equal to approximately 0.78 mm, 3.5 mm,
and 3.8 mm in our trap.)

We determine the drive amplitude Va by measuring the
power output of our frequency synthesizer and using two
methods to calibrate the attenuation in the drive line to the
bottom endcap electrode. First, we look at shifts the anomaly
drive induces in the axial frequency. The shifts arise from
both a frequency-pulling from the off-resonant axial force
and a Paul-trap shift from the change in effective trapping
potential [51]. They amount to �ν̄z/(ν̄zV

2
a ) = −37 ppmV −2.

By increasing the output power of the signal generator far
above that used for anomaly excitation, we determine that
the drive line attenuates the signal by 30 dB. This agrees
with the attenuation we measure in the drive line during
room-temperature calibrations and seems reasonable given
the 20 dB cold attenuator installed at the 1K pot and some
additional loss in the stainless steel semirigid coaxial cable.
The highest anomaly power used for g/2 data was −16 dBV
at the synthesizer, which would attenuate to Va = 5 mV at the
bottom endcap and drive the electron to za = 250 nm.

Driven axial amplitudes around 100–250 nm should only
shift the anomaly and cyclotron frequencies at the 1–10 ppt
level, which is far too small to affect the lineshapes (the error
in g/2 would be lower by 1000 if the cyclotron and anomaly
shifts were uncorrelated, but should be even smaller because
the shifts cancel in the frequency ratio).

B. Cyclotron power shift estimate

Unlike the anomaly power shifts, the cyclotron power shifts
seen in the UW experiments did not cancel in g/2 and added a
1.3 ppt uncertainty to their 1987 result [4]. The shifts appeared
as a resonant effect of unknown origin with a resonant drive
shifting the cyclotron line several ppb but a detuned cyclotron
drive with the same power not shifting the anomaly line.
Investigations in a trap with a variable-strength magnetic bottle
showed that the shift scaled with B2 in magnitude and sign.
In [30], the authors hypothesize that the shift could have
originated in an excitation of the magnetron motion because a
typical shift could have been explained by a 10% increase of
the magnetron radius.

Our cyclotron excitation technique, injecting microwaves
into the trap cavity, is similar to that used in the UW measure-
ments, so we can compare our technique to theirs. Our lower
temperature narrows the lines by a factor of 10, requiring less
power to drive transitions. The measured bottle-dependence
suggests that our 10-times-stronger magnetic bottle could
cancel the advantage of our narrower lines. The overall shifts
should still be reduced because our single-quantum-jump
spectroscopy only needs to excite to the n = 1 state less than
20% of the time. At the UW, typical excitations sustained the
electron at energies corresponding to n >∼ 4 [29,30]. Naively,
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FIG. 14. (Color online) The lower plots show cyclotron (a) and
anomaly (b) data taken in search of cyclotron and anomaly power
shifts. The upper plots compare the weighted means of these lines.

exciting to an average energy of n = 4 requires 20-times more
power than an average energy of n = 0.2, and this power
reduction alone would reduce several-ppt shifts in g/2 below
our precision. The relativistic shifts between cyclotron levels
suggest additional power in the UW drives because excitations
above n = 1 involve driving in the exponential tails of the
higher states’ resonances. In addition, if the power shift is
indeed related to driving a magnetron–cyclotron sideband, our
ten-times-higher magnetron frequency and 10-times-narrower
cyclotron lines put the closest magnetron sideband, which was
fewer than 10 linewidths away at the UW, 100 times farther
from the cyclotron resonance.

C. Experimental search for power shifts

Although we do not expect any cyclotron or anomaly power
shifts of ν̄a or f̄c, their existence in the UW measurements
makes us proceed with caution and look for them anyway.
We examine the shifts of each line individually to ensure
that no systematic effects (even ones that cancel in g/2)
go unnoticed. We look for a cyclotron frequency shift by
running three cyclotron scans: a control, one with double
the detuned anomaly power, and one with half the cyclotron
power (lower to avoid saturation). The scans are interleaved
in the same way we interleave cyclotron and anomaly scans
during g/2 measurements, alternating single sweeps of each
line and including edge-tracking to remove long-term drifts
(see Sec. III). The resulting cyclotron lines are shown in
Fig. 14(a). We calculate the cyclotron frequency of each line
with the weighted-mean method (the offset from f̄c cancels
when subtracting for a frequency shift). Frequency differences
between methods are summarized in Table IV.

To look for anomaly frequency shifts, we run three anomaly
scans—a control, one with double the detuned cyclotron
power, and one with double the anomaly power (the control
power is low enough that we can double the power without
saturating)—interleaved and normalized via edge tracking as

TABLE IV. Summary of power-shift searches.

test “shift” (ppb)

f̄c with double anomaly power −0.18(13)
f̄c with half cyclotron power 0.13(19)
ν̄a with double anomaly power 0.11(35)
ν̄a with double cyclotron power 0.38(35)
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FIG. 15. Four measurements of g/2 without (open) and with
(filled) cavity-shift corrections. The light gray uncertainty band shows
the average of the corrected data. The dark-gray band indicates the
expected location of the uncorrected data given our result in Eq. (65)
and including only the cavity-shift uncertainty.

before. The resulting anomaly lines are shown in Fig. 14(b),
which includes the frequencies calculated by the weighted-
mean method. Table IV summarizes the differences.

The results in Table IV as consistent with zero. The
largest “shift” is that of the anomaly frequency with cyclotron
power—the only one of the four not seen at the UW. The
data of Table IV suggest that any power shift will be <∼0.35
ppb in frequency, which is consistent with the limits of our
prior studies (detailed in Sec. 6.2 of Ref. [41]) and with
our expectation of no shift at our current precision. The
uncertainties are limited by our ability to resolve the lines
in a timely manner. (The number of nights spent assembling
the data in Fig. 14 exceeds half the number used to determine
the g/2 value.) The anomaly line in particular requires the
time-consuming discrimination between |0,↑〉 and |1,↓〉 after
each anomaly pulse, and any search for a systematic shift in
the anomaly frequency multiplies the number of times this
must occur. Because we estimate that no power shift should
occur and our experimental searches are limited by our ability
to resolve the lines, we apply neither a correction nor any
additional uncertainty from power shifts.

VII. RESULTS AND APPLICATIONS

A. Most accurate determination of the dlectron g value

The result for the electron magnetic moment in Bohr
magnetons,

g/2 = 1.001 159 652 180 73(28) [0.28ppt], (65)

comes from the weighted average of the four measurements
with uncorrelated and correlated uncertainties combined ap-
propriately. The result has 2.7 and 15 times lower uncertainty
than the 2006 and 1987 measurements and 2300 times lower
uncertainty than has been achieved for the heavier µ lepton
[5]. Table V summarizes the measured values, shifts, and
uncertainties for the four separate measurements of g/2. The
uncertainties are lower for measurements with smaller cavity
shifts and narrower linewidths, as might be expected. While
significant cavity shifts exist (see Fig. 15), their uncertainties
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TABLE V. Measurements and shifts with uncertainties, multiplied
by 1012. The cavity-shifted “g/2 raw” and corrected “g/2” are offset
from our result in Eq. (65).

f̄c 147.5 GHz 149.2 GHz 150.3 GHz 151.3 GHz

g/2 raw −5.24(0.39) 0.31(0.17) 2.17(0.17) 5.70(0.24)
Cav. shift 4.36(0.13) −0.16(0.06) −2.25(0.07) −6.02(0.28)
Lineshape

correlated (0.24) (0.24) (0.24) (0.24)
uncorrelated (0.56) (0.00) (0.15) (0.30)

g/2 −0.88(0.73) 0.15(0.30) −0.08(0.34) −0.32(0.53)

no longer dominate. We no longer quote uncertainties for
variations of the power of the ν̄a and f̄c drives; although
power-shifts appeared in the 1987 measurement [4,30], our
narrower lines and single-quantum cyclotron technique require
much lower drive powers and we estimate—and check
experimentally—that they are no longer important.

1. Relation of 2006 and 2008 measurements

The 2008 measurement [2] is an independent measurement
that is consistent with the 2006 measurement [1]. Essentially
the same apparatus is used to make a fresh data set. However,
the apparatus is now better understood and both the measure-
ment and analysis procedures are significantly improved. For
example, the electron is used as a relative magnetometer to
allow many data sets, measured on different days, to be com-
bined. This gives lineshape curves with a signal-to-noise good
enough to compare their shape with theoretical expectations.
(Previously, each day’s measurements were combined to get a
g value, and the values from different days were averaged.)

The biggest reduction in the uncertainty in our second
measurement comes from a better understanding of cavity
shifts. Two independent probes of the cavity-mode structure
allow identification of nearly all modes and the quantification
of an offset between the effective center of the trap for the
radiation modes and for the electrostatic quadrupole potential.
By measuring g/2 at four magnetic fields with cavity shifts
spanning over 30 times our final uncertainty, we precisely test
this once-dominant uncertainty, and demonstrate that we can
assign an uncertainty that is much smaller than that estimated
for our first measurement.

Retroactively applying the improved understanding and the
modified analysis developed for the second measurement to the
first would require starting from the raw data. Improvements
in measurement methods cannot be retroactively implemented,
of course. We thus believe that the 2008 measurement should
be regarded as superseding the 2006 measurement rather than
trying to average the two measurements, which would only
insignificantly change the value of g/2 in the second digit of
the 2008 uncertainty. The correlations between the possible
systematic uncertainties that limit the two measurements has
neither been studied nor reported carefully enough to allow an
appropriate averaging of the two measurements.

B. Most accurate determination of α

The new measurements of the electron g/2 determine the
fine structure constant about 12 times more accurately than the
next-most-precise method (Fig. 2). The relationship between
g/2 and α has been summarized in detail in [23], with the final
value updated in [2]. Here we give only the results and a brief
summary.

Within the standard model of particle physics the electron
g/2 is related to α by

g

2
= 1 + C2

(
α

π

)
+ C4

(
α

π

)2

+ C6

(
α

π

)3

+ C8

(
α

π

)4

+ · · · + aµ,τ + ahadronic + aweak. (66)

The leading contribution to g/2 is the 1 that is predicted
for a Dirac point particle. Vacuum fluctuations modify the
interaction of the electron with the magnetic field, increasing
the effective magnetic moment of the electron by approxi-
mately one part per thousand. This addition is described by
the infinite QED series in powers of α/π , with coefficients Cn

determined by n-vertex QED calculations for the interaction of
electrons and photons. The first three coefficients (C2, C4, and
C6) have all been calculated exactly. A substantial numerical
calculation has determined C8, and a numerical calculation of
C10 is underway. A related series involving the µ and τ leptons
yields a small contribution, aµ,τ . Much smaller hadronic and
weak contributions, ahadronic and aweak, have been calculated
accurately enough that they do not add uncertainty at the
current level of precision. References to the most recently
calculated values are provided in [23].

The fine structure constant is determined from the measured
g/2 by solving Eq. (66) for α to obtain

α−1 = 137.035 999 084(33) (39)[0.24 ppb][0.28 ppb],

= 137.035 999 084(51) [0.37 ppb]. (67)

The first line shows experimental (first) and theoretical
(second) uncertainties that are nearly the same. The uncertainty
in α is now limited a bit more by the need for a higher-order
QED calculation (underway [25]) than by the measurement
uncertainty in g/2.

In more detail, the theory uncertainty contribution to α is
divided as (12) and (37) for C8 and C10. It should decrease
when a calculation underway [25] replaces the crude estimate
C10 = 0.0(4.6) [20,23]. The α−1 of Eq. (67) will then shift
by 2α3π−4C10, which is 8.0C10 × 10−9. A change �8 in the
calculated C8 = −1.9144(35) would add 2α2π−3�8.

The independent methods for determining α that come
closet to our accuracy are the “atom-recoil” measurements, so
called because their uncertainty is limited by measurements
of recoil velocities in Rb and Cs atoms. They rely on
many experiments, including the measured Rydberg constant
[58,59], the Rb or Cs mass in amu [60], and the electron mass in
amu [61,62]. The needed h/M[Rb] comes from a measurement
of the recoil of a Rb atom in an optical lattice [26,28,63]. The
needed h/M[Cs] comes from an optical measurement of the
Cs D1 line [27] and the “preliminary” recoil shift for a Cs atom
in an atom interferometer [64]. Although these determinations
of α have an uncertainty that is currently 12–22 times larger
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than ours, improvements are expected in experiments that are
underway [65,66].

C. Most precise test of QED

The most stringent test of QED, to the highest order in
α/π , comes from comparing the measured g/2 to the value
calculated using Eq. (66) using the best available value of
α that is not determined from the electron g. Our latest g,
compared to Eq. (66) with α(Rb), gives a difference [23,28]

|δg/2| < 5 × 10−12. (68)

The good agreement testifies to the remarkable success of
QED. The prototype of modern physics theories is thus tested
far more stringently than its inventors ever envisioned [67].

The latest g/2 measurement is now accurate enough to
allow a 10–20 times more stringent test of QED, should a
comparable-accuracy measurement of α become available.
We thus strongly emphasize the compelling need for greatly
improved independent measurements of α.

D. Limits on electron substructure

The same comparison of the measured g/2 and the value
calculated from Eq. (66) using the best available independent
α probes the internal structure of the electron [23,68]. A
composite electron is constrained to have constituents with
a mass m∗ > m/

√
δg/2 = 230 GeV/c2, corresponding to an

electron radius R < 1 × 10−18 m.
If this test was limited only by the experimental uncertainty

in g/2 (i.e., if a much better independent α becomes available)
then we could set a limit m∗ > 1 TeV. These high energy
limits seem somewhat remarkable for an experiment carried
out at 100 mK. However, a search for a contact interaction in
electron-positron collisions at LEP sets a more stringent limit,
m∗ > 10 TeV [69].

E. Test of CPT invariance with leptons

Already the most precise test of CPT invariance with a
lepton system comes from comparing the measured magnetic
moment of the positron and the electron [4]. A new measure-
ment underway at Harvard aims to improve the sensitivity of
this test by a factor of 15 or more, by applying the demonstrated
new electron methods to a positron.

F. Application to dark matter

The comparison of the measured g/2 and the value
calculated from Eq. (66) using the best available independent
α is also relevant to one model that attempts to explain dark
matter. The measured g/2 is accurate enough to allow the
discovery of, or to rule out, proposed dark-matter particles
with a mass that is close to the electron mass [70], if and
when a more accurate independent measurement of α becomes
available.

VIII. OUTLOOK

The new g/2 prepares the way for further tests of the
standard model, pending the availability of an independent

α at the uncertainty reported here. In addition, the techniques
used to measure the electron g/2 clear the way for a series of
new measurements, some of which have already begun.

First, measuring the positron g/2 to the same precision
would improve upon the most stringent lepton CPT test [4]
and constrain possible violations of Lorentz invariance [71].
Except for the loading mechanism and an inverted ring voltage,
a positron g/2 measurement would proceed identically to the
electron measurement presented here.

Second, a direct measurement of the proton-to-electron
mass ratio would combine the sub-ppb electron cyclotron
frequency resolution presented here with existing techniques
for 90 ppt resolution of the proton cyclotron frequency [72] to
compete with the existing 0.4 ppb limit [21].

Third, recent observations with a single trapped proton [73]
open the way to proposed direct measurements of the proton
and antiproton magnetic moments at the ppb scale [11,74].
These would reduce the existing uncertainties by factors of
10 and 106, respectively, and provide an important test of
CPT invariance [75]. The challenge to such a measurement
is QND detection of a spin flip in a magnetic bottle because
the smaller magnetic moment and larger mass reduce the axial
frequency shift by over 104, though a larger bottle gradient can
compensate for some of the reduction. Our goal is to realize
with a proton and antiproton the great signal-to-noise ratio and
sensitivity to frequency changes that have been realized with
the one-electron SEO.

Fourth, access to the lowest quantum states of a trapped
electron and the lack of radiative damping of any degree of
freedom except cyclotron motion have led to several quantum
information proposals using electrons in Penning traps, e.g.,
[76–79] that perhaps could be realized in a carefully optimized
planar Penning trap [80].

IX. CONCLUSION

In conclusion, precise control of the location of and the
coupling to the electromagnetic modes of the electrode cavity
reduces the once-dominant cavity-shift uncertainty. This
results in a measurement of the electron magnetic moment
15 times more accurate than the 1987 measurement that
provided the best g/2 and α for nearly 20 years. With the
measurement limited by the resolution and model of the
cyclotron and anomaly lines, future work on the electron g/2
should focus on enhancing magnetic field stability, narrowing
the lines, and building signal-to-noise. The techniques used in
this result may be directly applied in measuring the positron
g/2 and may be adapted to a direct proton-to-electron mass
ratio, to measurements of the proton and antiproton magnetic
moments, and to trapped-electron quantum information
studies. With an independent α of similar precision, the new
g/2 would make possible 10-times more stringent tests of
extensions to standard model.

Note added in proof. An independent measurement of
h/M[Rb] [81] was reported recently. This measurement (along
with the measured Rydberg constant, a transition frequency
measurement and measured mass ratios) determines α−1 =
137.035 999 037(91) with an uncertainty reduced to 1.8 times
that of our determination. The remarkable agreement of the
two determinations stringently tests QED and verifies the
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muonic and hadronic contributions to g/2. The independent
α and the standard model calculation discussed above agrees
with our our measured g/2 to a precision |δg/2| < 9 × 10−13.
This limit restricts the electron radius to R < 4 × 10−19 m and
limits potential composite-electron constituent particles to a
total mass of m∗ > 540 GeV/c2. The limit also essentially rules
out dark-matter particles with a mass close to the electron mass.
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