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In this, the ¢rst of three papers, the nature of, and motivation for, neuronal transients is described in
relation to characterizing brain dynamics. This paper deals with some basic aspects of neuronal
dynamics, interactions, coupling and implicit neuronal codes. The second paper develops neuronal
transients and nonlinear coupling in the context of dynamic instability and complexity, and suggests that
instability or lability is necessary for adaptive self-organization. The ¢nal paper addresses the role of
neuronal transients through information theory and the emergence of spatio-temporal receptive ¢elds
and functional specialization.

By considering the brain as an ensemble of connected dynamic systems one can show that a su¤cient
description of neuronal dynamics comprises neuronal activity at a particular time and its recent history.
This history constitutes a neuronal transient. As such, transients represent a fundamental metric of
neuronal interactions and, implicitly, a code employed in the functional integration of brain systems. The
nature of transients, expressed conjointly in distinct neuronal populations, re£ects the underlying
coupling among populations. This coupling may be synchronous (and possibly oscillatory) or asynchro-
nous. A critical distinction between synchronous and asynchronous coupling is that the former is
essentially linear and the latter is nonlinear. The nonlinear nature of asynchronous coupling enables the
rich, context-sensitive interactions that characterize real brain dynamics, suggesting that it plays a role in
functional integration that may be as important as synchronous interactions. The distinction between
linear and nonlinear coupling has fundamental implications for the analysis and characterization of
neuronal interactions, most of which are predicated on linear (synchronous) coupling (e.g. cross-
correlograms and coherence). Using neuromagnetic data it is shown that nonlinear (asynchronous)
coupling is, in fact, more abundant and can be more signi¢cant than synchronous coupling.

Keywords: neuronal transients; complexity; functional integration; neural codes; selection;
self-organization

1. INTRODUCTION

This paper is about the dynamical aspects of brain
function. Brain states are inherently labile, with a
complexity and transience that renders their invariant
characteristics elusive. The position adopted in these
articles is that the most fruitful approach to under-
standing brain dynamics is to study this instability and
transience. The aim of this paper is to introduce the
notion of neuronal transients and the underlying frame-
work, within which issues such as neuronal coupling,
neuronal codes, functional integration, self-organization
and the special complexity of brain dynamics can be
addressed. The central tenet is that the behaviour of
neuronal systems can be viewed as a succession of
transient spatio-temporal patterns of activity that
mediate adaptive perceptual synthesis and sensorimotor
integration. This integration is shaped by the brain’s
anatomical infrastructure, principally connections, that
has been selected to ensure the adaptive nature of the
dynamics that ensue. Although rather obvious, this
formulation embodies one fundamental point; namely
that any proper description of brain dynamics should

have an explicit temporal dimension. In other words,
measures of brain activity are only meaningful when
speci¢ed over extended periods of time. Simply appre-
ciating this fact leads to quite compelling insights about
brain organization and places some extant concepts in a
more general context. The ¢rst example, considered in
this paper, is that of neuronal codes: when trying to
construct a taxonomy of neuronal codes it becomes clear
that existing formulations are special cases of a more
generic transient coding. This is particularly important in
relation to fast dynamic interactions among neuronal
populations that are characterized by synchrony.
Synchronization has become popular in the past years
(e.g. Eckhorn et al. 1988; Gray & Singer 1989; Engel et al.
1991) and yet may represent only one domain in the
possible and, as will be shown, actual universe of interac-
tions. Transient coding subsumes both synchronous and
asynchronous interactions and it is the latter which
mediate the nonlinear and context-sensitive features of
brain dynamics.

The arguments presented in these papers depend, in
part, on a mathematical formulation that is developed to
reinforce, illustrate and, at times, motivate the ideas

Phil. Trans. R. Soc. Lond. B (2000) 355, 215^236 215 © 2000 The Royal Society
Received 2 September 1998 Accepted 8 June 1999



introduced. Important mathematical derivations are
provided in the appendices for the interested reader,
while only key equations are presented in the main text.
In general it is the form of these equations that is
important, not their content. Details concerning data
acquisition and simulation parameters are provided in
the ¢gure legends. This paper is divided into six sections.
In ½ 2 we review the conceptual and mathematical basis
of neuronal transients. This section uses a fundamental
equivalence, between two mathematical formulations of
nonlinear systems, to show that descriptions of brain
dynamics, in terms of (i) neuronal transients and (ii) the
e¡ective connectivity among interacting brain systems, is
complete and su¤cient. In ½ 3, the ensuing framework is
used to motivate a taxonomy of putative neuronal codes,
the relationships among them and the predictions that
arise. In ½ 4, we review the evidence for neuronal transi-
ents in terms of phenomena such as `dynamic correlations’
and nonlinear interactions between brain regions
evidenced by asynchronous coupling. This section
concludes with a direct test of the transient hypothesis,
using data acquired with magnetoencephalography
(MEG) that is based on the predictions from ½ 2. Section
5 addresses the general relationship between asynchro-
nous coupling and nonlinear interactions, leading to a
discussion in ½ 6 of the neurobiological mechanisms (e.g.
modulatory e¡ects) that might mediate them.

2. NEURONAL TRANSIENTS

(a) Neuronal transients and time
The assertion that teleologically meaningful measures

or metrics of brain dynamics have an explicit temporal
domain is neither new nor contentious (e.g. Von der
Malsburg 1981; Optican & Richmond 1987; Engel et al.
1991; Aertsen et al. 1994; Freeman & Barrie 1994; Abeles
et al. 1995; deCharms & Merzenich 1996). A straight-
forward analysis demonstrates its veracity: the brain is a
highly nonlinear, spatially extended system that is unique
in relation to other complex systems by virtue of its
connectedness. The brain’s architecture can be regarded
as an ensemble of connections, where the nature and
organization of these connections entails the substance of
the system. The signals that traverse connections (axons
and dendritic cell processes) do so in a ¢nite amount of
time. Suppose that one wanted to posit a su¤cient metric
that described the brain as a dynamical system in terms
of neuronal activity. A natural choice would be the state
variable x in a state equation

@x(t)/@t ˆ f (x, C), (1)

where x is a large vector of activities for each unit in
the brain. These activities could be expressed in many
ways, for example ¢ring at the initial segment of an
axon or local ¢eld potentials of neuronal populations.
Equation (1) simply says that the change in activity with
time @x(t)/@ t is a function of x and C, a collection of
control parameters corresponding to the underlying, time-
invariant, connection strengths (e.g. synaptic e¤cacy).
However, equation (1) would not be su¤cient because it
may take several, possibly tens of, milliseconds for the
activity in one neuron, or population, to propagate to its

recipient. So the change in any unit is a function not just of
activity elsewhere at time t but at time t and in the recent
past.This leads to the equation

x(t) ˆ f (x(t ¡ u), C). (2)

Equation (2) is, in principle, a su¤cient description of
brain dynamics and involves the variable x(t7u), which
represents activity at all times u preceding the moment in
question. x(t7u) is simply a neuronal transient (albeit a
very global one). The degree of transience depends on how
far back in time it is necessary to go to fully capture the
brain’s dynamics. In less abstract terms, if we wanted to
determine the behaviour of a cell in the primary visual
cortex (V1), then we would need to know the activity of all
connected cells in the immediate vicinity (say within the
same cortical column) over the last millisecond or so. We
would also need to know the activity in distant sites, like
the lateral geniculate nucleus (LGN) and higher cortical
areas that send a¡erents, some ten or more milliseconds
ago. In short, we need the recent history of all inputs.

Transients can be expressed in terms of ¢ring rates (e.g.
chaotic oscillations; Freeman & Barrie 1994) or individual
spikes (e.g. syn¢re chains; Abeles et al. 1994,1995). In what
follows, we will assume that the relevant measurements
pertain to those behaviours of cells that can in£uence other
cells. There is a fundamental reason for this, which will
become apparent below. The analysis above is not just a
mathematical abstraction, it has very real implications at
a number of levels: for example, the emergence of fast
oscillatory interactions among simulated neuronal
populations depends on the time-delays implicit in axonal
transmission and the time constants of postsynaptic
responses. Another slightly more subtle aspect of this
formulation is that changes in synaptic e¤cacy, such as
short-term potentiation or depression, take some time to
be mediated by intracellular mechanisms. This means that
the interaction between x(t7u) and C, that models these
activity-dependent e¡ects in equation (2), again depends
on the relevant history of activity.

(b) Di¡erent levels of description
An alternative perspective, on the necessity of going

back in time to acquire a su¤cient description of
neuronal dynamics, is buried in the phrase above; `a su¤-
cient metric that describes the brain as a dynamical
system in terms of neuronal activity’. This perspective is a
little abstract, but provides a strong basis for neuronal
transients. By restricting ourselves to measuring neuronal
activity, there are a vast number of critical variables that
are being ignored (e.g. the electro- and biochemical state
of every cell process in the brain). If we knew every one of
them then equation (1) might be a tenable model, consti-
tuting a microscopic level of description that would be
entirely su¤cient and complete. However, because we do
not have access to this complete ensemble of `hidden’
variables, we are apparently unable to ever describe brain
dynamics properly. This is not necessarily the case.

(i) A fundamental equivalence
Assume that every neuron in the brain is modelled by

some immensely complicated nonlinear dynamical system
of the sort described by equation (1), where the state
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variables range from depolarization at every point in the
dendritic tree to the phosphorylation status of every
relevant enzyme. The input to this system corresponds to
a¡erent activity and the output to ¢ring at the cell’s initial
segment. Notice that both the input and the output are
homologous in that they both measure that aspect of a
system’s (cell’s) behaviour that can in£uence another
system. Under these assumptions it can be shown that the
output is a function of the recent history of its inputs.
Furthermore this relationship can be expressed as a
Volterra series of the inputs (see Appendix A and ½ 2(c)).
The critical thing here is that we never need to know the
underlying and `hidden’ variables that describe the details
of each cell’s electrochemical and biochemical status, we
only need to know the history of its inputs, which, of
course, are the outputs of other cells (including the one in
question).This leads to a conceptual model of the brain as a
collection of dynamical systems (e.g. cells or populations of
cells), each of which is represented as an input^state^
output model, where the state remains, for us, forever
hidden. However, the inputs and outputs are accessible and
are causally related where, in this special case of massively
connected systems, the output of one system constitutes the
input to another. A complete description therefore
comprises the nature of these relationships (the Volterra
series) and the neuronal transients (past history of all
inputs). This constitutes a mesoscopic level of description,
which allows a certain degree of `black-boxness’as long as
there is no loss of information or precision in specifying the
interactions among the black boxes (cells or populations).

The equivalence, in terms of specifying the behaviour of a
neuronal system, between microscopic and mesoscopic levels
of description is critical and one that is central to this paper
and neuronal transients. In short, the equivalencemeans that
all the information inherent in the unobservable microscopic
variables that determine the response of a neuronal system is
embodied in the history of its observable inputs and outputs.
This means that neuronal transients are a su¤cient descrip-
tion of a system which eschew the measurement of hidden
variables when predicting responses. Although the micro-
scopic level of description may be more causally inter-
pretable, from the point of view of response prediction,
neuronal transients are an equivalent representation.

We have focused above on the distinction between
microscopic and mesoscopic levels of description. The
macroscopic level is reserved for approaches, exempli¢ed
by synergistics (Haken 1983), that try to characterize the
spatio-temporal evolution of brain dynamics in terms of a
small number of macroscopic order parameters (see
Kelso (1995) for an engaging exposition). For example,
macroscopic variables can be extracted from large-scale
observations, such as magnetoencephalography (MEG),
using the order parameter concept: order parameters are
created and determined by the cooperation of micro-
scopic quantities and yet, at the same time, govern the
behaviour of the whole system. We will not deal with
these approaches here but interested readers are referred
to Jirsa et al. (1995) for an example.

(c) A nonlinear framework
The fact that a mesoscopic level of description exists

suggests that (i) a complete description of dynamics could
be cast in terms of neuronal transients; and (ii) a

complete model of e¡ective connectivity (i.e. the causal
in£uences that one neuronal system exerts over another)
should take the form of a Volterra series. These are quite
fundamental conclusions. The primary focus of these
papers is the ¢rst conclusion: namely, one can either try
to measure every aspect of brain function and charac-
terize the dynamics in terms of equation (1), or one can
identify the essential inputs and outputs of its components
and work explicitly with their recent history, i.e. frame
the dynamics in terms of neuronal transients as in equa-
tion (2). The former is impossible. The latter is the subject
of this paper.

Volterra series o¡er a very general form for the func-
tions in equation (2) and can be expressed as

xi(t) ˆ O0‰x(t)Š ‡ O1‰x(t)Š ‡ . . . ‡ On‰x(t)Š ‡ . . . , (3)

where xi(t) is the activity of the ith unit. On‰¢Š is the nth
order Volterra operator and has associated with it a
kernel or smoothing function h that operates on the recent
history of the inputs. Volterra series are functional Taylor
expansions and are generally thought of as nonlinear
convolutions or polynomial expansions with memory (see
Appendix A). We have found this nonlinear system identi-
¢cation framework very useful when characterizing
neuromagnetic and haemodynamic time-series from
functional magnetic resonance imaging (fMRI) and it is
used below many times. See also Stevens (1994).

The distinction, and equivalence, between microscopic
and mesoscopic levels of description is illustrated in
¢gure 1. Clearly this equivalence cannot be demonstrated
for real neuronal systems but can be shown using reason-
ably realistic synthetic or model systems. Figure 1
contains a schematic that summarizes the equations
behind the simulations used in these papers (see
Appendix B). Collectively these equations are an example
of equation (1) because they deal with all the relevant
state variables (depolarization, channel con¢guration,
discharge probability, etc.) and control parameters
(synaptic e¤cacies, time constants, etc.). These equations
constitute a microscopic level of description enabling one
to predict the evolution of the system given only its state
at one point in time. This system of di¡erential equations
has an entirely equivalent description in terms of the
Volterra kernels that mediate between inputs and the
responses (the ¢rst few are shown in ¢gure 1b). These
kernels can be applied to incoming transients, to give the
responses, without knowing the underlying state vari-
ables. All that is needed is the input over a period of time.

For completeness, it can be noted that the Volterra
formulation, based on the recent history of a system’s
inputs, is conceptually related to temporal embedding
used to `reconstruct’ the dynamics of a system given only
one variable. Temporal embedding involves using the
current value of the state variable and a succession of
values at a number of discrete times in the past. See
Muller-Gerking et al. (1996) for a useful discussion of this
approach in relation to the nonlinear characterization of
neuronal time-series.

Arguments like those above suggest that the `neuronal
moment’ lasts for tens if not hundreds of milliseconds and
that the instantaneous behaviour of neuronal units cannot
be divorced from their immediate temporal context. This
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is not startling and is similar to noting that `population
codes’ are necessarily distributed over many units.
Neuronal transients take this one step further and stipulate
that `transient codes’ are necessarily distributed over time.
Looked at in this way, neural transients are a natural
extension of the trend to characterize brain dynamics in
relation to the context in which they occur. Neuronal tran-
sients represent an attempt to generalize the notion of
population dynamics into the temporal domain.

(d) E¡ective connectivity and Volterra kernels
The second conclusion above (a complete model of

e¡ective connectivity should take the form of a Volterra
series) implies that a complete characterization of e¡ec-
tive connectivity, among neuronal systems, can be framed
in terms of the Volterra kernels associated with the trans-
formations of, and interactions among, inputs that yield
the outputs.

(i) E¡ective connectivity
Functional integration is usually inferred using correla-

tions among measurements of neuronal activity in
di¡erent brain systems. In imaging neuroscience, the
term `functional connectivity’ denotes the simple presence
of these correlations (Friston 1995a). However, correla-
tions can arise in a variety of ways. For example, in
multi-unit electrode recordings they can result from
stimulus-locked transients evoked by a common input, or
re£ect stimulus-induced oscillations mediated by synaptic
connections (Gerstein & Perkel 1969; Gerstein et al. 1989).
Integration within a distributed system is better under-

stood in terms of `e¡ective connectivity’. E¡ective
connectivity refers explicitly to `the in£uence that one
neural system exerts over another, either at a synaptic
(i.e. synaptic e¤cacy) or population level’ (Friston 1995a).
It has been proposed (Aertsen & PreiÞl 1991) that `the
[electrophysiological] notion of e¡ective connectivity
should be understood as the experiment- and time-
dependent, simplest possible circuit diagram that would
replicate the observed timing relationships between the
recorded neurons’. This speaks to two important points:
(i) e¡ective connectivity is dynamic; and (ii) it depends
on a model of the interactions.

If e¡ective connectivity is the in£uence that one neural
system exerts over another, it should be possible, given the
e¡ective connectivity and the a¡erent activity, to predict
the response of a recipient population. This is precisely
what Volterra kernels do. Any model of e¡ective connec-
tivity will be a special case of a Volterra series and any
measure of e¡ective connectivity can be reduced to a set of
Volterra kernels. An important aspect of e¡ective connec-
tivity is its context sensitivity. E¡ective connectivity is
simply the è¡ect’ that an input has on the output of a
target system. This e¡ect will be sensitive to the history of
the inputs (and outputs) and, of course, the microscopic
state and causal architecture intrinsic to the target popula-
tion.This intrinsic dynamical structure is embodied in the
Volterra kernels and the current state of the target popula-
tion enters thought the history of the outputs, that can re-
enter as inputs. In short, Volterra kernels are synonymous
with e¡ective connectivity because they characterize the
measurable è¡ect’ that an input has on its target. The use
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Figure 1. Schematic illustrating the distinction between (a) a microscopic level of description of a neuronal system (e.g cell or
population) where all the hidden variables are known, enabling the output to be causally related to the instantaneous input.
and (b) a more `black-box’ mesoscopic level in which it is only necessary to know the recent history of the inputs to determine the
outputs. The left panel details the operational equations of simulated neuronal populations used in subsequent sections and
the right panel gives an example of the Volterra kernels that characterize the ensuing input^output relationships. The simulated
populations are described in detail in Appendix B and comprise two subpopulations (one excitatory and one inhibitory). These
populations are described in terms of the mean transmembrane potential (V ) and the probability that constituent units of
subpopulation j will ¢re (Dj) in a deterministic way. The connectivity between them is described in terms of Pjk the probability
that a discharge event in j will open a postsynaptic channel in subpopulation k. The probability of channel opening Pk, is
computed by considering all potential inputs, including extrinsic inputs. The probability of channel opening enters into a
¢rst-order kinetic model of channel con¢guration for all k channel types. The expected proportion of open channels gk in turn
mediates changes in transmembrane potential though conductance changes and the depolarization relative to the equilibrium
potential Vk for that channel. Finally the discharge probability is computed as a sigmoid function of V and the e¡ective reversal
potential Vr. The same input^output behaviour can be emulated by convolving the recent history of the inputs with a series of
Volterra kernels of increasing order. In the example shown zeroth-, ¢rst- and second-order kernels are shown for the AMPA
simulations depicted in ¢gure 4. In this instance the input was taken to be the injected current and the output corresponded to
the simulated local ¢eld potential. These kernels were estimated using least squares after expressing them in terms of basis
functions (eighth-order discrete sine set over 128 ms) as described in Appendix E.



of Volterra kernels in characterizing e¡ective connectivity
will be dealt with elsewhere.

3. NEURONAL CODES

(a) Di¡erent sorts of code
The conjecture that functional integration may be

mediated by the mutual induction and maintenance of
stereotyped spatio-temporal patterns of activity (i.e.
neuronal transients) in distinct neuronal populations was
presented in Friston (1995b, 1997a). Functional integration
refers here to the concerted interactions among neuronal
populations that mediate perceptual binding, sensori-
motor integration and cognition. It pertains to the
mechanisms of, and constraints under which, the
dynamics of one population in£uence those of another. It
has been suggested by many, that integration among
neuronal populations uses transient dynamics that
represent a temporal c̀ode’. A compelling proposal is that
population responses, encoding a percept, become orga-
nized in time, through reciprocal interactions, to
discharge in synchrony (Milner 1974; Von der Malsburg
1985; Singer 1994). The use of the term `encoding’ here
speaks directly to the notion of codes.

A `code’ is used here to mean a measurement or metric
of neuronal activity that captures teleologically mean-
ingful transactions among di¡erent parts of the brain. No
attempt is made to discern the meaning or content of a
putative code. All that is assumed is that a code or metric
must necessarily show some dependency when used to
assess two interacting neuronal populations or brain
areas. In other words, a neuronal code is a metric that
reveals interactions among neuronal systems by enabling
some prediction of the activity in one population given
the activity in another. Clearly, from ½ 2, neuronal
transients represent the most generic form of code. Given
that neuronal transients have a number of attributes (e.g.
their duration, mean level of ¢ring, predominant
frequency, etc.), any one of these attributes is a contender
for a more parsimonious code. Although the term code is
not being used to denote anything that `codes’ for some-
thing in the environment, it could be used to de¢ne some
aspect of a sensory evoked transient that had a high
mutual information with a sensory parameter that was
manipulated experimentally (e.g. Optican & Richmond
1987; Tovee et al. 1993).

Given the above de¢nition, the problem of identifying
possible codes reduces to establishing which metrics are
mutually predictive or statistically dependent when
applied to two connected neuronal systems. This is quite
an important point and leads to a very clear formulation
of what can and cannot constitute a code and the
di¡erent sorts of codes that might be considered. Further-
more using this operational de¢nition, the problem of
¢nding the right code(s) reduces to identifying the form
of the Volterra operators in equation (3), for if we know
these we can predict exactly what will ensue in any unit,
given the dynamics elsewhere. Conversely, it follows that
the di¡erent forms that equation (3) can take should
specify the various codes likely to be encountered. We will
return to this point in a subsequent section.

To discuss the nature of neuronal transients, in relation
to codes, a taxonomy is now introduced. The most

general form of coding is considered to be transient
coding. All other codes are special cases, or special cases
of special cases. The most obvious special case of a
transient is when that transient shrinks to an instant in
time. The associated codes will be referred to as instanta-
neous codes that subsume temporal coding and rate
coding, depending on the nature of the metric employed.
A more important distinction is whether two transients in
two neuronal systems are synchronous or asynchronous,
leading to the notion of synchronous codes and asynchro-
nous codes. This synchronization may in turn be oscilla-
tory or not, leading to oscillatory codes or non-oscillatory
codes. Therefore oscillatory codes are a special case of
synchronous codes that are themselves special cases of
transient codes. This hierarchial decomposition is shown
schematically in ¢gure 2. This taxonomy is now reviewed
in more detail, working from the special cases to the
more general.

(i) Instantaneous codes: temporal and rate coding
The distinction between temporal coding and rate

coding (see Shadlen & Newsome 1995; de Ruyter van
Steveninck et al. 1997) centres on whether the precise
timing of individual spikes is su¤cient to facilitate
meaningful neuronal interactions. In temporal coding,
the exact time at which an individual spike occurs is the
important measure and the spike-train is considered as a
point process. The term temporal coding is used here in
this restricted sense, as opposed to designating codes that
have a temporal domain (e.g. Von der Malsburg 1985;
Singer 1994). There is a critical distinction between
instantaneous temporal codes and those that invoke some
temporal patterning of spikes over time. The former
include, for example, the instantaneous phase relationship
between a spike and some reference oscillation. Although,
in simple systems, knowledge of this phase will allow
some prediction of responses in a target unit, it would not
be su¤cient for more nonlinear systems where one would
need to know the history of phase modulation. The
second sort of temporal code is distributed over time and
represents a transient code. There are clear examples of
these codes that have predictive validity, for example, the
primary cortical representation of sounds by the
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Figure 2. A simple taxonomy of neuronal codes, where
commonly appreciated forms of encoding are seen as special
cases of each other.



coordination of action potential timing (deCharms &
Merzenich 1996). These codes depend on the relative
timing of action potentials and implicitly, by appealing to
an extended temporal frame of reference, fall into the
class of transient codes. A very good example of this is
provided by the work of de Ruyter van Steveninck et al.
(1997), who show that the temporal patterning of spike-
trains, elicited in £y motion-sensitive neurons by natural
stimuli, carry twice the amount of information as an
equivalent (Poisson) rate code.

Instantaneous rate coding considers spike-trains as
stochastic processes whose ¢rst-order moments (i.e. mean
activity) provide a metric with which neuronal inter-
actions are enacted. These moments may be in terms of
spikes themselves or other compound events (e.g. the
average rate of bursting; Bair et al. 1994). The essential
aspect of rate coding is that a complete metric would be
the average ¢ring rates of all the system’s components at
one instant in time. Interactions based on rate coding are
usually assessed in terms of cross-correlations and many
models of associative plasticity are predicated on these
correlated ¢ring rates (e.g. Hebb 1949). In this paper,
instantaneous rate codes are considered insu¤cient as
proper descriptions of neuronal interactions because, in
the absence of `hidden’ microscopic variables, they are
not useful. This is because they predict nothing about a
cell, or population, response unless one knows the micro-
scopic state of that cell or population.

(ii) Synchronous codes: oscillatory and non-oscillatory codes
The proposal most pertinent to these forms of coding

is that population responses, participating in the
encoding of a percept, become organized in time
through reciprocal interactions so that they come to
discharge in synchrony (Von der Malsburg 1985; Singer
1994) with regular periodic bursting. Frequency-speci¢c
interactions and synchronization are used synonymously
in this paper. It should be noted that synchronization
does not necessarily imply oscillations. However,
synchronized activity is usually inferred operationally by
oscillations implied by the periodic modulation of cross-
correlograms of separable spike-trains (e.g. Eckhorn et
al. 1988; Gray & Singer 1989) or measures of coherence
in multichannel electrical and neuromagnetic time-series
(e.g. Llinas et al. 1994). The underlying mechanism of
these frequency-speci¢c interactions is usually attributed
to phase-locking among neuronal populations (e.g.
Sporns et al. 1992; Aertsen & PreiÞl 1991). The key aspect
of these metrics is that they refer to the extended
temporal structure of synchronized ¢ring patterns, either
in terms of spiking (e.g. syn¢re chains; Abeles et al. 1994;
Lumer et al. 1997) or oscillations in the ensuing popula-
tion dynamics (e.g. Singer 1994).

One important aspect, that distinguishes oscillatory
from non-oscillatory codes, is that the former can embody
consistent phase relationships that may play a mechanistic
role in the ontology of adaptive dynamics (e.g. Tononi et
al. 1992). This has been proposed for theta rhythms in the
hippocampus and more recently for gamma rhythms (e.g.
Burgess et al. 1994; see Je¡erys et al. (1996) for further
discussion).

Many aspects of functional integration and feature
linking in the brain are thought to be mediated by

synchronized dynamics among neuronal populations
(Singer 1994). Synchronization re£ects the direct, reci-
procal exchange of signals between two populations,
whereby the activity in one population in£uences the
second, such that the dynamics become entrained and
mutually reinforcing. In this way the binding of di¡erent
features of an object may be accomplished, in the
temporal domain, through the transient synchronization
of oscillatory responses (Von der Malsburg 1981). This
`dynamical linking’ de¢nes their short-lived functional
association. Physiological evidence is compatible with this
theory (e.g. Engel et al. 1991): synchronization of oscilla-
tory responses occurs within, as well as among, visual
areas, for example between homologous areas of the left
and right hemispheres and between areas at di¡erent
levels of the visuomotor pathway (Engel et al. 1991; Roelf-
sema et al. 1997). Synchronization in the visual cortex
appears to depend on stimulus properties, such as conti-
nuity, orientation and motion coherence. Synchronization
may therefore provide a mechanism for the binding of
distributed features and contribute to the segmentation of
visual scenes. More generally, synchronization may
provide a powerful mechanism for establishing dynamic
cell assemblies that are characterized by the phase and
frequency of their coherent oscillations.

The problem with these suggestions is that there is
nothing essentially dynamic about oscillatory interactions.
As argued by Erb & Aertsen (1992), `the question might
not be so much how the brain functions by virtue of
oscillations, as most researchers working on cortical oscil-
lations seem to assume, but rather how it manages to do
so in spite of them’. In order to establish dynamic cell
assemblies, it is necessary to create and destroy synchro-
nized couplings. It is precisely these dynamic aspects that
render synchronization per se relatively uninteresting but
speak to changes in synchrony (e.g Desmedt & Tomberg
1994) and the transitions between synchrony and asyn-
chrony as the more pertinent phenomenon.

(iii) Transient coding: synchronous and asynchronous codes
An alternative perspective on neuronal codes is provided

by work on dynamic correlations (Aertsen et al. 1994) as
exempli¢ed inVaadia et al. (1995). A fundamental phenom-
enon observed by Vaadia et al. (1995) is that, following
behaviourally salient events, the degree of coherent ¢ring
between two neurons can change profoundly and systema-
tically over the ensuing second or so. One implication of
this work is that a complete model of neuronal interactions
has to accommodate dynamic changes in correlations,
modulated on time-scales of 100^1000 ms. A simple expla-
nation for these dynamic correlations has been suggested
(Friston 1995b): it was pointed out that the coexpression of
neuronal transients in di¡erent parts of the brain could
account for dynamic correlations (see ½ 4). This transient
hypothesis suggests that interactions are mediated by the
expression and induction of reproducible, highly struc-
tured spatio-temporal dynamics that endure over several
hundred milliseconds. As in synchronization coding, the
dynamics have an explicit temporal dimension but there is
no special dependence on oscillations or synchrony. In
particular, the frequency structure of a transient in one
part of the brain may be very di¡erent from that in
another. In synchronous interactions the frequency
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structures of both will be the same (whether they are oscil-
latory or not).

If the transient model is correct then important
transactions among cortical areas will be overlooked by
techniques that are predicated on rate coding
(correlations, covariance patterns, spatial modes, etc.) or
synchronization models (e.g. coherence analysis and
cross-correlograms). Clearly the critical issue here is
whether one can ¢nd evidence for asynchronous inter-
actions that would render the transient level of the
taxonomy a useful one (see ¢gure 2). Such evidence would
speak to the importance of neuronal transients and place
synchronization in a proper context. In ½ 4, we review the
indirect evidence for neuronal transients and then provide
direct evidence by addressing the relative contribution of
synchronous and asynchronous coupling to interactions
between brain areas.

4. THE EVIDENCE FOR NEURONAL TRANSIENTS

We are all familiar with neuronal transients in the form
of evoked transients in electrophysiology. However, the
critical thing is whether transients in two neuronal popula-
tions mediate their own induction. For example, at the
level of multi-unit micro-electrode recordings, correlations
can result from stimulus-locked transients, evoked by a
common a¡erent input, or re£ect stimulus-induced inter-
actionsöphasic coupling of neuronal assemblies,
mediated by synaptic connections (Gerstein & Perkel
1969; Gerstein et al. 1989). The question here is whether
these interactions can be asynchronous? One important
indication that stimulus-induced interactions are not
necessarily synchronous comes from dynamic correlations.

(a) Dynamic correlations and neuronal transients
As mentioned above, Vaadia et al. (1995) presented

compelling results concerning neuronal interactions in
monkey cortex, enabling them to make two fundamental
points: (i) it is possible that cortical function is mediated by
the dynamic modulation of coherent ¢ring among
neurons; and (ii) that these time-dependent changes in
correlations can emerge without modulation of ¢ring rates.
One implication is that a better metric of neuronal inter-
actions could be framed in terms of dynamic changes in
correlations. This possibility touches on the distinction
between temporal coding and rate coding as described in
the ½ 3. This distinction, and the related debate (e.g.
Shadlen & Newsome 1995), centres on whether the precise
timing of individual spikes can represent su¤cient infor-
mation to facilitate information transfer in the brain. The
position adopted by Vaadia et al. (1995) adds an extra
dimension to this debate: while accepting that spike-trains
can be considered as stochastic processes (i.e. the exact
time of spiking is not vital), they suggest that temporal
coding may be important in terms of dynamic, time-
dependent and behaviourally speci¢c changes in the
probability that two or more neurons will ¢re together. In
Shadlen & Newsome (1995), `precise’ timing means
synchronization within 1^5 ms. In contrast Vaadia et al.
(1995) demonstrate looser coherence over a period of about
100 ms (using 70 ms time bins). A simple explanation for
this temporally modulated coherence or dynamic correla-
tion is provided by the notion of neuronal transients.

Imagine that two neurons respond to an event with a
similar transient (a short-lived, stereotyped, time-
dependent change in the propensity to ¢re). For example, if
two neurons respond to an event with decreased ¢ring for
400 ms, and this decrease was correlated over epochs, then
positive correlations between the two ¢ring rates would be
seen for the ¢rst 400 of the epoch and then fade away,
therein emulating a dynamic modulation of coherence. In
other words, a transient modulation of covariance can be
equivalently formulated as a covariance in the expression
of transients. The generality of this equivalence can be
established using singular value decomposition (SVD).
Dynamic correlations are inferred on the basis of the
cross-correlation matrix of the trial by trial activity as a
function of peristimulus time. This matrix is referred to as
the joint peristimulus time histogram (JPSTH) and
implicitly discounts correlations due to stimulus-locked
transients by dealing with correlations over trials (as
opposed to time following the stimulus or event). Let xi be
a matrix whose rows contain the activities recorded in unit
i over a succession of time bins following the stimulus, with
one row for each trial. Similarly for xj. After these matrices
have been normalized, the cross-correlation matrix is
given by xT

i xj where Tdenotes transposition. By noting the
existence of the singular value decomposition

xT
I xj ˆ l1u

T
1 v1 ‡ l2u

T
2 v2 ‡ l3u

T
3 v3 ‡ . . . , (4)

one observes that any cross-covariance structure xT
i xj can

be expressed as the sum of covariances due to the expres-
sion of paired transients (the singular vectors uk and vk).
The expression of these transients covaries according to
the singular values lk. In this model, any observed
neuronal transient in unit i is described by a linear combi-
nation of the uk (or vi in unit j ).

This is simply a mathematical device to show that
dynamic changes in coherence are equivalent to the
coherent expression of neural transients. In itself it is not
important, in the sense that dynamic correlations are just
as valid a characterization as neuronal transients and
indeed may provide more intuitive insights into how this
phenomenon is mediated at a mechanistic level (e.g.
Riehle et al. 1997). What is important is that the existence
of dynamic correlations implies the existence of transients
that exist after stimulus-locked e¡ects have been
discounted. The next step is to ¢nd de¢nitive evidence
that transients underpin asynchronous coupling, or
equivalently that coupled transients in two neuronal
populations have a di¡erent form or frequency structure.
The essential issue, that remains to be addressed, is
whether a transient in one brain system, that mediates the
expression of another transient elsewhere, has the same or
a di¡erent temporal patterning of activity. The impor-
tance of this distinction will become clear below.

(b) Synchrony, asynchrony and spectral density
Synchronized, fast dynamic interactions among

neuronal populations represent a possible mechanism for
functional integration (e.g. perceptual binding) in the
brain, but focusing on synchrony precludes a proper
consideration of asynchronous interactions that may have
an equally important and possibly distinct role. In this
section, the importance of synchronization is evaluated in
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relation to the more general notion of neural transients
that allow for both synchronous and asynchronous inter-
actions. Transients suggest that neuronal interactions are
mediated by the mutual induction of stereotyped spatio-
temporal patterns of activity among di¡erent populations.
If the temporal structures of these transients are distinct
and unique to each population, then the prevalence of
certain frequencies in one cortical area should predict the
expression of di¡erent frequencies in another. In contrast,
synchronization models posit a coupled expression of the
same frequencies. Correlations among di¡erent frequen-
cies therefore provide a basis for discriminating between
synchronous and asynchronous coupling.

Consider time-series from two neuronal populations or
cortical areas. The synchrony model suggests that the
expression of a particular frequency (e.g. 40 Hz) in one
time-series will be coupled with the expression of the
same (40 Hz) frequency in the other (irrespective of the
exact phase relationship of the transients or whether they
are oscillatory or not). In other words, the modulation of
this frequency in one area can be explained or predicted
by its modulation in the second. Conversely, asynchro-
nous coupling suggests that the power at a reference
frequency, say 40 Hz, can be predicted by the spectral
density in the second time-series at some frequencies
other than 40 Hz. These predictions can be tested empiri-
cally using standard time-frequency and regression
analyses as exempli¢ed below. These analyses are an
extension of those presented in Friston (1997a) and
con¢rm that both synchronous and asynchronous
coupling are seen in real neuronal interactions. They use
MEG data, obtained from normal subjects while
performing self-paced ¢nger movements. These data were
kindly provided by Klaus Martin Stephan and Andy
Ioannides.

(c) De¢nitive evidence for asynchronous coupling
After Laplacian transformation of multichannel

magnetoencephalographic data, two time-series were
selected. The ¢rst was an anterior time-series over the
central prefrontal region and the second was a posterior
parietal time-series, both slightly displaced to the left.
These locations were chosen because they had been
implicated in a conventional analysis of responses evoked
by ¢nger movements (Friston et al. 1996). Figure 3 shows
an example of these data in the time domain x(t) and in
the frequency domain g(!,t) following a time-frequency
analysis. See Appendix C for a description of time-
frequency analyses and their relation to wavelet transfor-
mations. In brief, they give the frequency structure of a
time-series, over a short period, as a function of time.
The time-frequency analysis shows the dynamic changes
in spectral density between 8 and 64 Hz over about 16 s.
The cross-correlation matrix of the parietal and
prefrontal time-frequency data is shown in ¢gure 3b.
There is anecdotal evidence here for both synchronous
and asynchronous coupling. Synchronous coupling, based
on the co-modulation of the same frequencies, is manifest
as hot spots along, or near, the leading diagonal of the
cross-correlation matrix (e.g. around 20 Hz). More inter-
esting are correlations between high frequencies in one
time-series and low frequencies in another. In particular,
note that the frequency modulation at about 34 Hz in the

parietal region (second time-series) could be explained
by several frequencies in the prefrontal region. The most
profound correlations are with lower frequencies in the
¢rst time-series (26 Hz), but there are also correlations
with higher frequencies (54 Hz) and some correlations
with prefrontal frequencies around 34 Hz itself. The
problem here is that we cannot say whether there is a
true asynchronous coupling or whether there is simple
synchronous coupling at 34 Hz with other higher and
lower frequencies being expressed, in a correlated fashion,
within the prefrontal region. These within-region correla-
tions can arise from broad-band coherence (Bressler et al.
1993) or harmonics of periodic transients (see Jurgens
et al. 1995). In other words, synchronous coupling at
34 Hz might be quite su¤cient to explain the apparent
correlations between 34 Hz in the parietal region and
other frequencies in the prefrontal region. To address this
issue we have to move beyond cross-correlations and
make statistical inferences that allow for synchronous
coupling over a range of frequencies within the prefrontal
area. This is e¡ected by treating the problem as a regres-
sion analysis and asking whether the modulation of a
particular frequency in the parietal region can be
explained in terms of the modulation of frequencies in the
prefrontal region, starting with the model

g2(!0,t) ˆ
X

­ (!) £ g1(!,t), (5)

where g2(!,t) and g1(!,t) are the spectral densities from
the parietal and prefrontal time-series and !0 is the
frequency in question (e.g. 34 Hz). ­ (!) are the para-
meters that have to be estimated. To allow for couplings
among frequencies that arise from the correlated
expression of frequencies within the areas, the predictor
or explanatory variables g1(!,t) are decomposed into
synchronous and asynchronous predictors. These corre-
spond to the expression of the reference frequency in the
prefrontal region g1(!0,t) and the expression of all
the remaining frequencies orthogonalized with respect to
the ¢rst predictor g1(!,t)* (see Appendix D). By orthogo-
nalizing the predictors in this way we can partition the
total variance in parietal frequency modulation into those
components that can be explained by synchronous and
asynchronous coupling, respectively,

g2(!0,t) ˆ ­ (!0) £ g1(!0,t) ‡
X

­ (!)* £ g1(!,t)*. (6)

Furthermore by treating one of the predictors as a
confound we can test, statistically, for the contribution of
the other (i.e. either synchronous or asynchronous) using
standard inferential techniques, in this instance the
F-ratio based on a multiple regression analysis of serially
correlated data (see Appendix D).

To recap for those less familiar with regression techni-
ques, we take a reference frequency in one time-series
(e.g. the parietal region) and try to predict it using the
expression of all frequencies in the other (e.g. prefrontal
region). To ensure that we do not confuse asynchronous
and synchronous interactions due to broad-band coher-
ence and the like, correlations with the reference
frequency, within the prefrontal region, are removed from
the predictors.
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An example of the results of this sort of analysis are
shown in ¢gure 3c. Figure 3c(i) shows the proportion of
variance that can be attributed to either synchronous
(broken line) or asynchronous coupling (solid line) as a
function of frequency (!0). In other words, the proportion
of variance in parietal spectral density that can be
predicted on the basis of changes in the same frequency in
the prefrontal region (broken line) or on the basis of
other frequencies (solid line). Figure 3c(ii) portrays the
signi¢cance of these predictions in terms of the associated
p-values and shows that both synchronous and asynchro-
nous coupling are signi¢cant at 34 Hz (i.e. the middle
peak in ¢gure 3c(i),(ii)).

In contrast the high correlations between 48 Hz in the
second time-series and 26 Hz in the ¢rst is well away from
the leading diagonal in the cross-correlation matrix, with
little evidence of correlations at either of these frequencies
alone. The regression analysis con¢rms that, at this
frequency, asynchronous coupling prevails. The only signi¢-
cant coupling is asynchronous (right peak in ¢gure 3c(i),(ii))
and suggests that the expression of 48 Hz gamma activity in
the parietal region is mediated, in part, by asynchronous
interactions directly, or vicariously, with the prefrontal
cortex. Note that a common modulating source, in£uencing
both the parietal and prefrontal regions, cannot be invoked
as an explanation for this sort coupling because this e¡ect
wouldbe expressed synchronously.

(d) Summary
The above example was provided to illustrate both

mixed and asynchronous coupling and to introduce the
concept that simply observing correlations between
di¡erent frequency modulations is not su¤cient to infer
asynchronous coupling. Broad-band coherence in the
context of oscillations leads naturally to cross-frequency
coupling and, more importantly, non-oscillatory but
synchronous interactions will, as a matter of course, intro-
duce them by virtue of the tight correlations between
di¡erent frequencies within each area (e.g. Jurgens et al.
1995). By discounting these within time-series correlations,
using the orthogonalization above, one can reveal any
underlying asynchronous coupling. Results of this sort are
fairly typical (we have replicated them using di¡erent
subjects and tasks) and provide de¢nitive evidence for
asynchronous coupling. Generally our analyses show both
synchronous and asynchronous e¡ects, where the latter are
typically greater in terms of the proportion of variance
explained. As in the example presented here, it is usual to
¢nd both sorts of coupling expressed in the same data.

In conclusion, using an analysis of the statistical depen-
dence between spectral densities measured at di¡erent
points in the brain, the existence of asynchronous
coupling can be readily con¢rmed. It is pleasing that such
a simple analysis should lead to such an important
conclusion. These results are consistent with transient
coding and imply that correlations (rate coding) and
coherence (synchrony coding) are neither complete nor
su¤cient characterizations of neuronal interactions and
suggest that higher-order, more general interactions may
be employed by the brain. In the remaining sections, the
importance of asynchronous interactions and their
mechanistic basis will be addressed using both simulated
and real neuronal time-series.

5. COUPLING AND CODES

(a) Asynchronous coupling and nonlinear interactions
Why is asynchronous coupling so important? The

reason is that asynchronous interactions embody all the
nonlinear interactions implicit in functional integration
and it is these that mediate the diversity and context-
sensitive nature of neuronal interactions. The nonlinear
nature of interactions between cortical brain areas
renders the e¡ective connectivity among them inherently
dynamic and contextual. Compelling examples of
context-sensitive interactions include the attentional
modulation of evoked responses in functionally specia-
lized sensory areas (e.g. Treue & Maunsell 1996) and
other contextually dependent dynamics (see Phillips &
Singer (1997) for an intriguing discussion).

One of the key motivations for distinguishing between
synchronous and asynchronous coupling is that the under-
lying mechanisms are fundamentally di¡erent. In brief, it
will be suggested that synchronization emerges from the
reciprocal exchange of signals between two populations,
wherein the activity in one population has a direct or
`driving’ e¡ect on the activity of the second. In asynchro-
nous coding, the incoming activity from one population
may exert a `modulatory’ in£uence, not on the activity of
units in the second, but on the interactions among them
(e.g. e¡ective connectivity). This indirect in£uence will-
lead to changes in the dynamics intrinsic to the second
population that could mediate important contextual and
nonlinear responses. Before addressing the neural basis of
these e¡ects in the next section, the relationship between
asynchrony and nonlinear coupling is established and
discussed in relation to neuronal codes.

Perhaps the easiest way to see that synchronized inter-
actions are linear is to consider that the dynamics of any
particular neuronal population can be modelled in terms
of a Volterra series of the inputs from others. If this
expansion includes only the ¢rst-order terms then the
Fourier transform of the ¢rst-order Volterra kernel
completely speci¢es the relationship between the spectral
density of input and output in a way that precludes inter-
actions among frequencies, or indeed inputs (as shown
below). The very presence of signi¢cant coupling between
frequencies, above and beyond covariances between the
same frequencies, implies a ¢rst-order approximation is
insu¤cient and, by de¢nition, second- and higher-order
nonlinear terms are required. In short, asynchronous
coupling re£ects the nonlinear component of neuronal
interactions and as such is vital for a proper characteriza-
tion of functional integration.

To see more explicitly why asynchronous interactions
are so intimately related to nonlinear e¡ects consider
equation (3) where, for simplicity, we focus on the e¡ects
of unit j on unit i, discounting the remaining units.

xi(t) ˆ O0‰xj(t)Š ‡ O1‰xj(t)Š ‡ O2‰xj(t)Š ‡ . . . , (7)

where xi(t) is the activity of one unit or population and
xj(t) another. By discounting the constant and high-order
terms we end up with a simple convolution model of
neuronal interactions:

xi(t) ˆ O1‰xj(t)Š ˆ h1 Ä xj(t), (8)
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Figure 3. Time-frequency analysis of MEG time-series from two remote cortical regions designed to characterize the relative
contribution of synchronous and asynchronous coupling; in terms of correlated changes in spectral density within and among
frequencies respectively. Neuromagnetic data were acquired from normal subjects using a KENIKRON 37 channel MEG system
at 1 ms intervals for periods of up to 2 min. During this time subjects were asked to make volitional joystick movements either in
random directions, or to the left, every 2 s or so. Epochs of data comprising 214 ms were extracted. ECG artefacts were removed
by linear regression and the data were transformed using a V3 transformation (i.e. Laplacian derivative (Ioannides et al. 1990))
to minimize spatial dependencies among the data. Paired epochs were taken from a left prefrontal and left parietal region that
were subsequently bandpass ¢ltered (1^128 Hz). The data in this ¢gure come from a normal male performing leftwards move-
ments. (a) The two times-series x(t) (plots) and their corresponding time-frequency pro¢les g(!,t) (images). The ¢rst
time-series comes from the left prefrontal region roughly over the anterior cingulate and SMA. The second comes from the left
superior parietal region. The data have been normalized to zero mean and unit standard deviation. The frequencies analysed
were 8 Hz to 64 Hz in 1 Hz steps. (b) This is a simple characterization of the coupling among frequencies in the two regions and
represents the cross-correlation matrix of the time-frequencies g(!,t). In this display format the correlation coe¤cients have
been squared. (c) These are the results of the linear regression analysis that partitions the amount of modulation in the second
(parietal) time-series into components that can be attributed to synchronous (broken lines) and asynchronous (solid lines)
contributions from the ¢rst (prefrontal) time-series (see main text and Appendix D). (i) The relative contribution in terms of the
proportion of variance explained, and (ii) in terms of the signi¢cance using a semi-log plot of the corresponding p-values, both as



where Ä denotes convolution and h1 is the ¢rst-order
Volterra kernel. This can be expressed in the frequency
domain as

gi(!,t) ˆ jl(!)j2 £ gj(!,t), (9)

where l(!) is known as the transfer function and is
simply the Fourier transform of the ¢rst-order kernel h1.
This equality says that the expression of any frequency
in unit i is predicted exactly by the expression of the
same frequency in unit j (after some scaling by the
transfer function). This is exactly how synchronous inter-
actions have been characterized and furthermore is iden-
tical to the statistical model employed to test for
synchronous interactions above. In equation (6), the
parameters ­ (!0) are essentially estimates of jl(!0)j2 in
equation (9). From this perspective the tests for asyn-
chronous interactions in ½ 4 can be viewed as an implicit
test of nonlinear interactions, while discounting a linear
model as a su¤cient explanation for the observed
coupling. See Erb & Aertsen (1992) for an example of
transfer functions that obtain after the equations,
de¢ning a simulated neuronal population, have been
simpli¢ed to render them linear.

In summary, the critical distinction between synchro-
nous and asynchronous coupling is the di¡erence between
linear and nonlinear interactions among units or popula-
tions. Synchrony implies linearity. The term g̀eneralized
synchrony’ has been introduced to include nonlinear inter-
dependencies (see Schi¡ et al. 1996). Generalized
synchrony therefore subsumes synchronous and asynchro-
nous coupling. A very elegant method for making
inferences about generalized synchrony is described in
Schi¡ et al. (1996). This approach is particularly interesting
from our point of view because it implicitly uses the recent
history of the dynamics through the use of temporal
embedding to reconstruct the attractors analysed.
However, unlike our approach based on a Volterra series
formulation, it does not explicitly partition the coupling
into synchronous and asynchronous components.

(b) The taxonomy revisited
Relating synchrony and asynchrony directly to the

Volterra series formulation leads to a more formal and
principled taxonomy of putative neuronal codes. Recall
that the ¢rst level of the taxonomy distinguishes between
transient codes and instantaneous codes. In terms of the
Volterra model the latter are a special case of
equation (7), when all the Volterra kernels shrink to a
point in time. In this limiting case the activity in one unit

is simply a nonlinear function of the instantaneous
activity in the other unit (i.e. a polynomial expansion).

xi(t) ˆ h0 ‡ h1 xj(t) ‡ h2 xj(t)
2 ‡ . . . . (10)

All other cases enter under the rubric of transient codes.
These can be similarly decomposed into those that include
nonlinear terms (asynchronous) and those that do not
(synchronous). The ¢nal level of decomposition is of
synchronous interactions into oscillatory and non-
oscillatory. The former is a special case where the transfer
function l(!) shrinks down on to one particular
frequency. (For completeness it should be noted that
oscillatory codes expressed as kernels of any order, that
exist predominantly at one frequency may exist; G.
Green, personal communication).

In this framework, it can be seen that the most impor-
tant distinction, that emerges after discounting special or
limiting cases, is that between asynchronous and synchro-
nous coupling and the implicit contribution of nonlinear
interactions. The presence of coupling among di¡erent
frequencies, demonstrated in ½ 4, speaks to the prevalence
of strong nonlinearities in the functional integration of
neuronal populations. The nature of these nonlinearities
is the focus of the rest of this paper.

6. THE NEURAL BASIS OF ASYNCHRONOUS

INTERACTIONS

In Friston (1997b) it was suggested that, from a neuro-
biological perspective, the distinction between asynchro-
nous and synchronous interactions could be viewed in the
following way. Synchronization emerges from the reci-
procal exchange of signals between two populations,
where each `drives’ the other, such that the dynamics
become entrained and mutually reinforcing. In asynchro-
nous coding the a¡erents from one population exert a
`modulatory’ in£uence, not on the activity of the second,
but on the interactions among them (e.g. e¡ective
connectivity or synaptic e¤cacy) leading to a change in
the dynamics intrinsic to the second population. In this
model, there is no necessary synchrony between the
intrinsic dynamics that ensue and the temporal pattern of
modulatory input. An example of this may be the facilita-
tion of high-frequency gamma oscillations among nearby
columns in visual cortex by transient modulatory input
from the pulvinar. Here the expression of low-frequency
transients in the pulvinar will be correlated with the
expression of high-frequency transients in visual cortex.
To test this hypothesis one would need to demonstrate
that asynchronous coupling emerges when extrinsic
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Figure 3. (Cont.) functions of frequency in the parietal region. The dotted line in the latter corresponds to p ˆ 0.05 (uncorrected
for the frequencies analysed). This particular example was chosen because it illustrates all three sorts of coupling (synchronous,
asynchronous and mixed). From inspection of the cross-correlation matrix it is evident that power in the beta range (20 Hz) in
the second time-series is correlated with similar frequency modulation in the ¢rst, albeit at a slightly lower frequency. The
resulting correlations appear just o¡ the leading diagonal (broken line) on the upper left. The graphs on the right show that the
proportion of variance explained by synchronous and asynchronous coupling is roughly the same and, in terms of signi¢cance,
synchrony supervenes. In contrast the high correlations, between 48 Hz in the second time-series and 26 Hz in the ¢rst, are well
away from the leading diagonal, with little evidence of correlations within either of these frequencies. The regression analysis
con¢rms that, at this frequency, asynchronous coupling prevails. The variation at about 34 Hz in the parietal region could be
explained by several frequencies in the prefrontal region. A formal analysis shows that both synchronous and asynchronous
coupling coexist at this frequency (i.e. the middle peak in the graphs on the right).



connections are changed from driving connections to
modulatory connections. Clearly this cannot be done in
the real brain. However, we can use computational
techniques to create a biologically realistic model of inter-
acting populations and test this hypothesis directly.

(a) Interactions between simulated populations
Two populations were simulated using the model

described in Appendix B. This model simulated entire
neuronal populations in a deterministic or analogue
fashion based loosely on known neurophysiological
mechanisms. In particular, we modelled three sorts of
synapse, fast inhibitory (GABA), fast excitatory (AMPA)

and slower voltage-dependent synapses (NMDA).
Connections intrinsic to each population used only
GABA- and AMPA-like synapses. Simulated glutami-
nergic extrinsic connections between the two populations
used either driving AMPA-like synapses or modulatory
NMDA-like synapses. In these and the remaining simula-
tions, transmission delays for extrinsic connections were
¢xed at 8 ms. By using realistic time constants the charac-
teristic oscillatory dynamics of each population were
expressed in the gamma range.

The results of coupling two populations with unidirec-
tional AMPA-like connections are shown in ¢gure 4a in
terms of the simulated local ¢eld potentials (LFP).
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Figure 4. Simulated local ¢eld potentials (LFP) of two coupled populations using two di¡erent sorts of postsynaptic responses
(AMPA and NMDA-like) to extrinsic inputs, to the second population from the ¢rst. These data were simulated using the model
described in ¢gure 1 and Appendix B. The dotted line shows the depolarization e¡ected by sporadic injections of current into the
¢rst population. The key thing to note is that under AMPA-like or driving connections the second population is synchronously
entrained by the ¢rst (a), whereas, when the connections are modulatory or voltage dependent (NMDA), the e¡ects are much
more subtle and resemble a frequency modulation (b). For the AMPA simulation self-excitatory AMPA connections of 0.15 and
0.06 were used for the ¢rst and second populations, respectively, with an AMPA connection between them of 0.06. For the
NMDA simulation the self-excitatory connection was increased to 0.14 in the second population and the AMPA connection
between the populations was changed to NMDA-like with a strength of 0.6.



Occasional transients in the driving population were
simulated by injecting a depolarizing current, of the same
magnitude, at random intervals (dotted line). The tight
synchronized coupling that ensues is evident. This
example highlights the point that near-linear coupling
can arise even in the context of loosely coupled, highly
nonlinear neuronal oscillators of the sort modelled here.
It should be noted that the connection strengths had to be
carefully chosen to produce this synchronous entraining.
Driving connections do not necessarily engender synchro-
nized dynamics, a point that we will return to later.
Contrast these entrained dynamics under driving connec-

tions with those that emerge when the connection is
modulatory or NMDA-like (¢gure 4b). Here there is no
synchrony and, as predicted, fast transients of an oscilla-
tory nature are facilitated by the a¡erent input from the
¢rst population. This is a nice example of asynchronous
coupling that is underpinned by nonlinear modulatory
interactions between neuronal populations. The nature of
the coupling can be characterized more directly using the
time-frequency analysis (identical in every detail) applied
to the neuromagnetic data of the previous section.

Figure 5 shows the analysis of the AMPA simulation
and demonstrates very clear broad-band coherence with
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Figure 5. Time-frequency and coupling analyses for the LFPs of the simulations employing AMPA-like connections. The format
and underlying analyses of this ¢gure are identical to ¢gure 3. The key thing to note is that the cross-correlations are almost
symmetrical, suggesting synchrony and extensive broad-band coherence. Indeed most p-values for synchronous (linear) coupling
were too small to compute.



most of the cross-correlations among di¡erent frequencies
lying symmetrically about the leading diagonal.
Synchrony accounts for most of the coupling, both in
terms of the variance in frequency modulation
(¢gure 5c(i)) and in terms of signi¢cance (¢gure 5c(ii)).
Note that at some frequencies the synchronous coupling
was so signi¢cant that the p-values were too small to
compute. These results can now be compared to the
equivalent analysis of the NMDA simulation (¢gure 6).

In contradistinction, the cross-correlation matrix looks
much more like that obtained with the MEG data in

¢gure 3. Both in terms of the variance, and inference,
asynchronous coupling supervenes at most frequencies
but, as in the real data, mixed coupling is also evident.
These results can be taken as a heuristic conformation of
the hypothesis that modulatory, in this case voltage-
dependent, interactions are su¤ciently nonlinear to
account for the emergence of asynchronous dynamics.

In summary, asynchronous coupling is synonymous
with nonlinear coupling. Nonlinear coupling can be
framed in terms of the modulation of intrinsic inter-
actions, within a cortical area or neuronal population, by
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Figure 6. As for ¢gure 5 but now for simulations employing voltage-dependent NMDA-like connections. In contradistinction to
¢gure 5, the coupling here includes some profoundly asynchronous (nonlinear) components involving frequencies in the gamma
range implicated in the analyses of real (MEG) data shown in ¢gure 3. In particular, note the asymmetrical cross-correlation
matrix and the presence of asynchronous and mixed coupling implicit in the p-value plots on the lower right.



extrinsic input o¡ered by a¡erents from other parts of the
brain. This mechanism predicts that the modulation of
fast (e.g. gamma) activity in one cortical area can be
predicted by a (nonlinear function of ) activity in another
area. This form of coupling is very di¡erent from coher-
ence or other metrics of synchronous or linear coupling
and concerns the relationship between the ¢rst-order
dynamics in one area and the second-order dynamics
(spectral density) expressed in another. In terms of the
above NMDA simulation, transient depolarization in the
modulating population causes a short-lived increased
input to the second. These a¡erents impinge on voltage-
sensitive NMDA-like synapses with time constants (in the
model) of 100 ms. These synapses open and slowly close
again, remaining open long after an a¡erent volley.
Because of their voltage-sensitive nature, this input will
have no e¡ect on the dynamics intrinsic to the second
population unless there is already a substantial degree of
depolarization. If there is, then, through self-excitation
and inhibition, the concomitant opening of fast excitatory
and inhibitory channels will generally increase membrane
conductance, decrease the e¡ective membrane time
constants and lead to fast oscillatory transients. This is
what we observe in ¢gure 4b.

(b) Nonlinear interactions and frequency modulation
The above considerations suggest that modulatory

a¡erents can mediate a change in the qualitative nature
of the intrinsic dynamics though a nonlinear voltage-
dependent e¡ect that can be thought of in terms of a
frequency modulation of the intrinsic dynamics by this
input. This motivates a plausible model of the relation-
ship, between the intrinsic dynamics of one population,
characterized by its spectral density g2(!0,t) and the
activity in the ¢rst population x1(t), that is mediated by
the modulatory e¡ects of the latter. These e¡ects can be
modeled with aVolterra series:

g2(!0,t) ˆ O0‰x1(t)Š ‡ O1‰x1(t)Š ‡ . . . . (11)

It is interesting to note that this relationship is a more
general version of the statistical model used to test for
coupling in the previous section, namely equation (5).
This is because a time-frequency analysis itself is a simple
form of a Volterra series (see Appendix C). The motiva-
tion behind this particular form of coupling between two
regions is predicated on the mechanistic insights provided
by simulations of the sort presented above.

Given the dynamics of the two populations from the
NMDA simulations, we can now estimate the form and
signi¢cance of the Volterra kernels in equation (11) to
characterize more precisely the nature of the nonlinear
coupling. In this case, the Volterra kernels were estimated
using ordinary least squares. This involves a dimension
reduction and taking second-order approximations of the
Volterra series expansion (see Appendix E for details).
Inferences about the signi¢cance of these kernels are
made by treating the least-squares estimation as a general
linear model in the context of a multiple regression for
serially correlated data (Worsley & Friston 1995) as for
the time-frequency analyses. The results of this analysis,
for each frequency !0, are estimates of the Volterra
kernels themselves (¢gure 7b) and their signi¢cance, i.e.

the probability of obtaining the observed data if the
kernels were equal to zero (¢gure 7a). By applying the
estimated kernels to the activity in the ¢rst population
one can visualize the expected and actual frequency
modulation at w0 (¢gure 7c).

It is clear that this approach picks up the modulation of
speci¢c frequency components in the second population
and furthermore the time constants (i.e. duration or
temporal extent of the Volterra kernels) are consistent
with the time constants of channel opening in the simula-
tion, in this case the long time constants associated with
voltage-dependent mechanisms. Knowing the form of the
Volterra kernels allows one to characterize the frequency
modulation elicited by any speci¢ed input. Figure 8 shows
the actual frequency structure of the modulated popula-
tion in the NMDA simulation and that predicted on the
basis of the activity in the ¢rst population. Figure 8d
shows the complicated form of frequency modulation that
one would expect with a simple Gaussian input over a
few hundred milliseconds.

Of course the critical test here is to apply this analysis
to the real data of ½ 5 and see if similar e¡ects can be
demonstrated. They can. A good example is presented in
¢gure 9, showing how a slow, nonlinear function
(modelled by the Volterra kernels) of prefrontal activity
closely predicts the expression of fast (gamma) fre-
quencies in the parietal region. The implied modulatory
mechanisms, which may underpin this e¡ect, are entirely
consistent with the anatomy, laminar speci¢city and func-
tional role attributed to prefrontal e¡erents (Rockland &
Pandya 1979; Selemon & Goldman-Rakic 1988).

7. CONCLUSION

This paper has introduced some basic considerations
pertaining to neuronal interactions in the brain, framed in
terms of neuronal transients and nonlinear coupling. The
key points of the arguments developed in this paper follow.

(i) Starting with the premise that the brain can be
represented as an ensemble of connected input^
state^output systems (e.g. cellular compartments,
cells or populations of cells), there exists an
equivalent input^output formulation in terms of a
Volterra-series expansion of each system’s inputs that
produces its outputs (where the outputs to one
system constitute the inputs to another).

(ii) The existence of this formulation suggests that the
history of inputs, or neuronal transients, and the
Volterra kernels are a complete and su¤cient
speci¢cation of brain dynamics. This is the primary
motivation for framing dynamics in terms of
neuronal transients (and using aVolterra formulation
for models of e¡ective connectivity).

(iii) The Volterra formulation provides constraints on the
form that neuronal interactions and implicit codes
must conform to. There are two limiting cases:
(i) when the neuronal transient has a very short
history; and (ii) when high-order terms disappear.
The ¢rst case corresponds to instantaneous codes
(e.g. rate codes) and the second to synchronous inter-
actions (e.g. synchrony codes).

(iv) High-order terms in the Volterra model of e¡ective
connectivity speak explicitly to nonlinear interactions
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and implicitly to asynchronous coupling. Asynchro-
nous coupling implies coupling among the
expression of di¡erent frequencies.

(v) Coupling among the expression of di¡erent frequen-
cies is easy to demonstrate using neuromagnetic
measurements of real brain dynamics. This implies
that nonlinear, asynchronous coupling is a prevalent
component of functional integration.

(vi) High-order terms in the Volterra model of e¡ective
connectivity correspond to modulatory interactions
that can be construed as a nonlinear e¡ect of inputs
that interact with the dynamics intrinsic to the reci-
pient system. This implies that driving connections
may be linear and engender synchronous inter-
actions, whereas modulatory connections, being

nonlinear, may cause, and be revealed by, asynchro-
nous coupling.

The latter sections of this paper have shown that
asynchronous coupling can account for a signi¢cant and
substantial component of interactions between brain
areas as measured by neuromagnetic signals. Asynchro-
nous coupling of this sort implies nonlinear coupling and
both speak to the di¡erential form of neuronal transients
that are expressed coincidentally in di¡erent brain areas.
This observation has been extended by testing the
hypothesis that a parsimonious and neurobiologically
plausible mechanism of nonlinear coupling employs
voltage-dependent synaptic interactions. This led to the
prediction that the dynamics in one region can predict the
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Figure 7. Nonlinear convolution (i.e. Volterra kernel) characterization of the frequency modulation e¡ected by extrinsic
modulatory inputs on the fast intrinsic dynamics. The analysis described in Appendix E was applied to the simulated LFPs
shown in ¢gure 4 using NMDA-like connections. These are the same time-series analysed in ¢gure 6. In this instance, we have
tried to ¢nd the Volterra kernels that best model the frequency modulation of the dynamics in the second simulated population
given the time-series of the ¢rst. (a) Plot of the signi¢cance of the Kernels as a function of frequency in the modulated (second)
population. For the most signi¢cant e¡ects (at 25 Hz) the estimated ¢rst- and second-order kernels are shown in (b). Applying
these kernels to the time-series of the ¢rst population (dotted lines in (c)) one obtains a modulatory variable (solid line) that best
predicts the observed frequency modulation (bottom line in (c)).



changes in the frequency structure (a metric of intrinsic
dynamics) in another. Not only is this phenomenon easily
observed in real data, but in many instances it is extremely
signi¢cant. In particular, it was shown that a nonlinear
function of prefrontal dynamics could account for a signi¢-
cant component of the frequency modulation of parietal
dynamics. It should be noted that dynamic changes in
spectral density may arise spontaneously from metastable
dynamics even in the absence of extrinsic input (see
Friston, paper 2, this issue). However, this does not a¡ect
the conclusions above because it has been shown that at
least some of the (parietal) frequency modulation can be
explained by extrinsic (prefrontal) inputs.

The importance of these observations relates both to the
mechanisms of functional integration in the brain and to
the way that we characterize neuronal interactions. In

particular, these results stress the importance of asynchro-
nous interactions that are beyond the scope of synchrony.
Although this conclusion is interesting from a theoretical
standpoint, in terms of identifying the right metric that is
sensitive to the discourse between di¡erent brain areas, it
also has great practical importance in the sense that many
ways of characterizing neuronal time-series are based on
synchronization or linear models of neuronal interactions
(e.g. cross-correlograms, principal component analysis,
singular value decomposition, coherence analyses etc.). An
appreciation that nonlinear e¡ects can supervene in terms
of their size and signi¢cance over linear e¡ects such as
coherence (see ¢gure 3) may be important to ensure that
we are measuring the right things when trying to charac-
terize functional integration. The theoretical implications
are far-reaching because they appeal directly to the
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context-sensitive nature of neuronal interactions. Modula-
tory e¡ects are probably central to the mechanisms that
mediate attentional changes in receptive ¢eld properties
and more generally the incorporation of context when
constructing a unit’s responses to sensory inputs (see
Phillips & Singer 1997). One of the reasons that we chose
the prefrontal and parietal regions in the MEG analyses
was that both these regions are thought to participate in
distributed attentional systems (e.g. Posner & Petersen
1990) and indeed our own work with fMRI in human
subjects suggests a modulatory role for prefrontal^parietal
projections (BÏchel & Friston 1997). In paper 2 (Friston,
this issue) we relate neuronal transients to dynamical

systems theory and complexity to arrive at a view of
functional organization in the brain that embraces both
linear and nonlinear interactions.
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Figure 9. Nonlinear convolution (i.e. Volterra kernel) characterization of the frequency modulation of parietal dynamics that
obtains by treating the prefrontal time-series as an extrinsic modulatory input. The format and underlying analyses of this
¢gure are identical to the analysis of simulated LFPs presented in ¢gure 7. (a) There is evidence here for profound frequency
modulation at 48 Hz that appears to be loosely associated with movement but not completely so. The top traces in (c) represent
the observed prefrontal time-series before and after nonlinear convolution with the estimated kernels on the upper right. The
middle trace is the parietal time-series ¢ltered at 48 Hz and the lower trace is the electromyogram re£ecting muscle activity
associated with movement. (b) Inspection of the ¢rst- and second-order kernels suggests that fast gamma (48 Hz) activity in the
parietal region is modulated by the transient expression of alpha (8 Hz) activity in the prefrontal region.



APPENDIX A. NONLINEAR SYSTEM IDENTIFICATION

AND VOLTERRA SERIES

Neuronal and neurophysiological dynamics are inherently
nonlinear and lend themselves to modelling by nonlinear
dynamical systems. However, due to the complexity of
biological systems it is di¤cult to ¢nd analytical equa-
tions that describe them adequately. An alternative is to
adopt a very general model (Wray & Green 1994). A
conventional method for representing a nonlinear
dynamic system (e.g. a neuron) is an input^state^output
model (Manchanda & Green 1998). These models can be
classi¢ed as either that of a fully nonlinear system (where
the inputs can enter nonlinearly) or a linear-analytical
system with the form

@s(t)/@t ˆ f1(s) ‡ f2(s) £ xj

xi ˆ f3(s)

where s is a vector of states (e.g. the electrochemical state
of every cell compartment), f1, f2 and f3 are nonlinear
functions, xj is the input (e.g. a¡erent activity from unit j)
and xi the output (e.g. e¡erent activity from unit i).
Simple extensions to this description accommodate
multiple inputs. Using functional expansions, Fliess et al.
(1983) have shown how more general nonlinear di¡erent-
ial models can be reduced to a linear-analytical form.
The Fliess fundamental formula describes the causal rela-
tionship between the outputs and the recent history of the
inputs. This relationship can be expressed as a Volterra
series. Volterra series allow the output to be computed
purely on the basis of the past history of the inputs
without reference to the state vector. The Volterra series is
an extension of the Taylor series representation to cover
dynamic systems and has the general form

xi(t) ˆ O0‰x(t)Š ‡ O1‰x(t)Š ‡ . . . ‡ On‰x(t)Š ‡ . . . , (A2)

where On ‰¢Š is the nth order Volterra operator:

On‰x(t)Š ˆ
X

j1

. . .
X

jn

Z1

0

. . .

Z1

0

h n
j1...jn (u1, . . . un)

£ xj1 (t ¡ u1) . . . xjn (t ¡ u2)du1 . . . dun.

x(t) ˆ [x1(t), x2(t), . . .] is the neuronal activity in all the
other connected units. h n

j1...jn is the nth order Volterra
kernel for units j1. . . jn. It can be shown that these series
can represent any analytical time-invariant system. For
fully nonlinear systems the above expansion, about the
current inputs, can be considered as an approximation
that is locally correct. If the inputs enter in a su¤ciently
nonlinear way the Volterra kernels will themselves change
with input (cf. activity-dependent synaptic connections),
something that will be developed in paper 2 (Friston, this
issue) in terms of instability and complexity. The Volterra
series has been described as a `polynomial series with
memory’ and is more generally thought of as a high order
or `nonlinear convolution’ of the inputs to provide an
output. See Bendat (1990) for a fuller discussion.

From the present perspective the Volterra kernels are
essential in characterizing the e¡ective connectivity or
in£uences that one neuronal system exerts over another
because they represent the causal characteristics of the

system in question. Volterra series provide central links to
conventional methods of describing input^output
behaviour such as the time-frequency analyses used in
this paper. See Manchanda & Green (1998) for a fuller
discussion of Volterra series in the context of neural
networks.

APPENDIX B. THE NEURONAL SIMULATIONS

The simulations used a biologically plausible model of the
dynamics of either one or several neuronal populations.
The model was of a deterministic or ànalogue’ sort (cf.
Erb & Aertsen 1992) whose variables pertain to the
collective, probabilistic behaviour of subpopulations of
neurons. The variables in this model represent the
expected transmembrane potentials over units in each
subpopulation and the probability of various events
underlying changes in that mean. Each population was
modelled in terms of an excitatory and inhibitory sub-
population (see Je¡erys et al. (1996) for an overview of
these architectures) whose expected (i.e. mean) trans-
membrane potentials V1 and V2, were governed by the
following di¡erential equations.

C £ @V1/@t ˆ g1e £ (V1 ¡Ve) ‡ g1v £ (V1 ¡Ve)
‡ g1i £ (V1 ¡ Vi) ‡ gl £ (V1 ¡ Vl)

C £ @V2/@t ˆ g2e £ (V2 ¡Ve) ‡ g2i £ (V2 ¡Vi)
‡ gl £ (V2 ¡Vl)

where C is the membrane capacitance (taken to be 1 mF)
and g1e, g1v and g1i are the expected proportion of excita-
tory (AMPA-like and NMDA-like) and inhibitory
(GABA-like) channels open at any one time over all exci-
tatory units in the population. Similarly for g2e and g2i in
the inhibitory population. gl is a leakage conductance. Ve,
Vi and Vl are the equilibrium potentials for the various
channels and resting conditions respectively. Channel
con¢gurations were modelled using a two-compartment,
¢rst-order model, in which any channel could be open or
closed. For any given channel type k:

@gk/@t ˆ (1 ¡ gk) £ Pk ¡ gk/½k, (B2)

where Pk is the probability of channel opening and ½k is
the time constant for that channel type (to model classical
neuromodulatory e¡ects ½AMPA was replaced by ½AMPA/
(17M), where M was 0.8 unless otherwise speci¢ed). Pk
was determined by the probability of channel opening in
response to one or more presynaptic inputs. This is simply
one minus the probability it would not open:

Pk ˆ 1 ¡ ¦(1 ¡ Pjk £ Dj(t ¡ ujk)), (B3)

where Pjk is the conditional probability that a discharge
event in subpopulation j would cause the channel to open
and Dj(t) is probability of such an event. Pjk represents the
mean synaptic e¤cacy for a¡erents from subpopulation j
and can be thought of as a connection strength. ujk is the
associated transmission delay. The ¢nal expression closes
the loop and relates the discharge probability to the
expected transmembrane potential in equation (B1).

Dj ˆ ¼²fVj ¡ Vrg, (B4)
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where ¼²f¢g is a sigmoid function ¼²fxg ˆ 1/
(1 ‡ exp( ¡ x/²)). Vr can be likened to the reversal
potential. For NMDA-like channels the channel opening
probability was voltage dependent:

Pjv ˆ P*
jv £ ¼8fVj ¡ Vvg, (B5)

where P*
jv is the conditional probability of opening given a

presynaptic input from subpopulation j when the post-
synaptic membrane is fully depolarized.

Each simulation comprised a 4096 iteration burn in
followed by 4096 iterations to see the dynamics that
ensued. Each iteration corresponds to 1ms. V1 was taken
as an index of the simulated local ¢eld potential.
Voltage-dependent connections were only used between
the excitatory subpopulations of distinct populations. The
intrinsic excitatory^inhibitory, inhibitory^excitatory and
inhibitory^ inhibitory connections Pjk where all ¢xed at
0.6, 0.4 and 0.2, respectively. Intrinsic excitatory^
excitatory connections were manipulated to control the
degree of spontaneous oscillation in the absence of other
inputs. Extrinsic connections were excitatory^excitatory
connections, employing either AMPA or NMDA
synapses and were speci¢ed depending on the architec-
ture of the system being modelled. All extrinsic trans-
mission delays were 8 ms. Remaining model parameters
were

Ve ˆ 0 mV, gl ˆ 1/60 ms,

Vi ˆ ¡100 mV, ½e ˆ 6 ms,

Vl ˆ ¡60 mV, ½v ˆ 100 ms,

Vr ˆ ¡20 mV, ½i ˆ 10 ms,

Vv ˆ ¡10 mV.

Note that sodium or potassium channels are not explicitly
modelled here. The nonlinear dependency of discharge
probability on membrane potential is implicit in equation
(B4).

APPENDIX C. TIME-FREQUENCY ANALYSIS

AND WAVELET TRANSFORMATIONS

The time-frequency analyses in this paper employed stan-
dard windowed Fourier transform techniques with a
256 ms Hanning window. MEG frequencies analysed
ranged from 8 to 64 Hz. Using a continuous time formu-
lation, for any given time-series x(t), the [time-dependent]
spectral density g(!,t) can be estimated as

g(!,t) ˆ js(!,t)j2,

where s(!,t) ˆ x(t) Ä f!(t)£ exp (¡ j!t)g

ˆ
Z

w(u)£exp (¡ j!t)£ x(t ¡ u)du

! is 2º times the frequency in question and j ˆ
p

¡1.
Here Ä denotes convolution and w(t) is some suitable
windowing function of length l. A Hanning function (a
bell-shaped function) w(t) ˆ (1 ¡ cos (2ºt/(l ‡ 1)))=2Š
with l ˆ 256 iterations or milliseconds was used. This
windowed Fourier transform approach to time-frequency
analysis is interesting, in the present context, because it is
a special case equation (A2), i.e. g(!,t) obtains from

applying a second-order Volterra operator to x(t), where
the corresponding kernel is

h(u1,u2) ˆ w(u1)£ w(u2)£ exp(¡ j!u1)£ exp(¡ j!u2). (C2)

(a) Relationship to wavelet analyses
This simple time-frequency analysis is closely related to

wavelet analyses, particularly those using Morlet wave-
lets. In wavelet analyses the energy at a particular scale is
given by

g(!,t) ˆ jx(t) Ä w(t,!)j2, C3)

where w(t,!) represents a family of wavelets. For example
the complex Morlet wavelet is

w(t,!) ˆ A £ exp(¡ u2/2¼2) £ exp(¡ j!t), (C4)

where the wavelet family is de¢ned by a constant µ (typi-
cally about 6) such that ! £ ¼ ˆ µ. Intuitively an analysis
using Morlet wavelets is the same as a time-frequency
analysis in equation (C1), but where the windowing
function becomes narrower with increasing frequency
(i.e. w(t) ˆ A £ exp(¡ u2/2¼2)). The relative advantages
of Morlet transforms, in terms of time-frequency resolu-
tion, are discussed inTallon-Baudry et al. (1997).

APPENDIX D. DETECTING NONLINEAR

INTERACTIONS IN TERMS OF ASYNCHRONOUS

COUPLING

Nonlinear coupling between two dynamical systems is
often di¤cult to detect. There are two basic approaches,
which re£ect the search for nonlinearities in general (see
Muller-Gerking (1996) for an excellent discussion). The
¢rst involves reconstructing some suitable state space and
characterizing the dynamics using the ensuing trajectories
(e.g. Schi¡ et al. 1996). The second is to test for the
presence of nonlinearities using standard inferential tech-
niques to look at mutual predictability after discounting
linear coupling. The time-frequency analysis presented in
this paper is an example of the latter and is based on the
observation that signi¢cant correlations among di¡erent
frequencies (after removing those that can be explained
by the same frequency) can only be mediated by
nonlinear coupling.

The time-dependent spectral density at ! of the time-
series x1(t) and x2(t) are estimated as above, with
g1(!,t) ˆ js1(!,t)j2. Similarly for x2(t) (see Appendix C). To
test for synchronous (linear) and asynchronous
(nonlinear) coupling at a reference frequency !0, g1(!0,t)
is designated as the response variable, with explanatory
variables g2(!0,t) and g2(!,t)* in a standard multilinear
regression, extended to account for serially correlated
variables (Worsley & Friston 1995). g2(!,t)* represents
modulation at all frequencies after the modulation at !0
has been covaried out.

g2(!,t)*ˆ g2(!,t)¡g2(!0,t)£pinvfg2(!0,t)g£g2(!,t), (D1)

pinvf¢g is the pseudo-inverse. This renders the synchro-
nous g2(!0,t) and asynchronous g2(!,t)* explanatory vari-
ables orthogonal. To test for asynchronous coupling the
explanatory variables comprise g2(!,t)*while g2(!0,t) is
treated as a confound. To test for synchronous coupling
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g2(!0,t) is treated as the regressor of interest and g2(!,t)*

the confounds. The ensuing multiple regressions give the
appropriate sums of squares (synchronous and asynchro-
nous), F-values and associated p-values as a function of
!0. In practice, the spectral densities are subject to a
quadratic root transform as a preprocessing step, to
ensure the residuals are approximately multivariate Gaus-
sian (Friston 1997a).

The inferences above have to be corrected for serial
correlations in the residuals, necessarily introduced
during the convolution implicit in the time-frequency
analysis (Worsley & Friston 1995). Under the null hypoth-
esis these can be modelled by convolution with w(t)2, the
square of the window employed. This would be exactly
right if we used the spectral densities themselves and is
approximately right using the quadratic root transform.
This approximation leads to a test that is no longer exact
but is still valid (i.e. slightly conservative).

APPENDIX E. ESTIMATING VOLTERRA KERNELS

The problem of estimating Volterra kernels is not a
trivial one. We have adopted a standard least-squares
approach. This has the advantage of providing for statis-
tical inference using the general linear model. To do this
one must ¢rst linearize the problem. Consider the second-
order approximation of equation (A2) with ¢nite
`memory’ T, where the input is a single time-series x(t)
and the output is denoted by y(t).

y(t) º O0‰x(t)Š ‡ O1‰x(t)Š ‡ O2‰x(t)Š. (E1)

The second step in making the estimates of h0, h1 and h2

more tractable is to expand the kernels in terms of a small
number P of temporal basis functions bi(u). This allows us
to estimate the coe¤cients of this expansion using
standard least squares:

let h0 ˆ g0

h1(u1) ˆ
Xp

iˆ 1

g1
i bi(u1)

h2(u1,u2) ˆ
Xp

iˆ 1

Xp

jˆ 1

g2
ijbi(u1) £ bj(u2)

Now de¢ne a new set of explanatory variables zi(t) that
represent the original time-series x(t) convolved with the
ith basis function. Substituting these expressions into equa-
tion (E1) and including an explicit error term e gives

y(t) ˆ g0 ‡
Xp

iˆ 1

g1
i zi(t) ‡

Xp

iˆ1

Xp

jˆ 1

g2
ijzi(t) £ zj(t) ‡ e. (E2)

This is simply a general linear model with response vari-
able y(t), the observed time-series, and explanatory vari-
ables 1, zi(t) and zi(t)£ zj(t). These explanatory variables
(convolved time-series of the original explanatory vari-
ables) constitute the columns of the design matrix. The
unknown parameters are g0, g1 and g2 from which the
kernel coe¤cients h0, h1 and h2 are derived, using equation
(E2). Having reformulated the problem in this way we
can now use standard analysis procedures developed for
serially correlated time-series that employ the general

linear model (Worsley & Friston 1995). These procedures
provide parameter estimates (i.e. estimates of the basis
function coe¤cients and implicitly the kernels themselves)
and statistical inferences about the signi¢cance of the
kernels, or more precisely the e¡ect that they mediate.
The issues of serial correlations in the residuals are iden-
tical to those described in Appendix D.
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