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Abstract—The problem of joint source-channel coding in trans-
mitting independent sources over interference channels with corre-
lated receiver side information is studied. When each receiver has
side information correlated with its own desired source, it is shown
that source-channel separation is optimal. When each receiver has
side information correlated with the interfering source, sufficient
conditions for reliable transmission are provided based on a joint
source-channel coding scheme using the superposition encoding
and partial decoding idea of Han and Kobayashi. When the re-
ceiver side information is a deterministic function of the interfering
source, source-channel separation is again shown to be optimal. In
addition to these source-channel coding problems, a new channel
model that generalizes the classical interference channel is intro-
duced: the interference channel with message side information.
Achievable rate regions are given and a single letter characteri-
zation of the capacity region for a special class of Z-interference
channels is provided. Using this capacity result and the optimality
of source-channel separation, we demonstrate that our sufficient
conditions for reliable transmission when each receiver has side
information correlated with the interfering source are also neces-
sary for some special cases. As a by-product, the capacity region of
a class of Z-channels with degraded message sets is also provided.

Index Terms—Interference channel, joint source-channel
coding, receiver side information, source-channel separation
theorem.

I. INTRODUCTION

T HE wireless medium is shared by multiple communica-
tion systems operating simultaneously, which leads to in-

terference among users transmitting over the same frequency
band. In the simple scenario of two transmitter-receiver pairs,
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the interference channel [1] models two simultaneous transmis-
sions interfering with each other. In the classical interference
channel, the messages intended for each receiver are indepen-
dent of each other, and the receivers decode based only on their
own received signals. On the other hand, in applications such
as sensor networks, it is reasonable to assume that the receivers
have access to their own correlated observations about the un-
derlying source sequences as well. These correlated observa-
tions at the receivers can be exploited to improve the system
performance. Our goal is to understand the most effective ways
to exploit the correlated side information at the receivers in order
to manage interference in wireless networks.

Toward this end, we study an interference channel with in-
dependent sources, while each receiver has access to side infor-
mation correlated with the sources. We constrain the analysis to
independent sources, rather than considering arbitrary correla-
tion between the source signals as in [2] and [3], as this allows
us to isolate the effect of correlated side information on inter-
ference management and not to consider gains possible due to
correlated channel inputs [4]. Our aim is to characterize the nec-
essary and sufficient conditions such that reliable transmission
of the sources can be achieved. Since the capacity region of the
underlying interference channel is unknown in general, exact
characterization of the necessary and sufficient conditions is not
possible in the presence of receiver side information. Thus, in
this work, we provide a set of sufficient conditions for the most
general scenario, and matching necessary conditions for some
special cases.

In certain scenarios our results are limited to proving the op-
timality of source-channel separation without identifying the
necessary and sufficient conditions in a computable single-letter
form. This stems from the difficulty in identifying the channel
capacity for the general interference channel. However, a sepa-
ration result provides us insights for the design of the commu-
nication system. Moreover, we are able to provide single-letter
matching conditions for some special scenarios in which the ca-
pacity region of the underlying interference channel is known.

The study of communication with receiver side information
has received considerable attention. In a point-to-point scenario,
the availability of correlated side information at the receiver is
considered in [5]. It is shown that the source-channel separa-
tion theorem applies in this simple setting and that Slepian-Wolf
source coding followed by channel coding is optimal. How-
ever, it is known that the source-channel separation theorem
does not generalize to multi-user scenarios [1], [4], [6], and
necessary and sufficient conditions for reliable transmission in
the case of correlated sources and correlated receiver side in-
formation are not known in the most general setting. Broad-
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cast channel with correlated receiver side information has been
studied in [7]–[13], and interference channel with correlated
receiver side information has been studied in [6], which con-
siders the case where each receiver has access to side informa-
tion correlated with the interfering transmitter’s source. Nec-
essary and sufficient conditions for this setup are characterized
under the strong source-channel interference conditions, which
generalize the usual strong interference conditions by consid-
ering correlated side information as well. The result of [6] shows
that interference cancelation is optimal even when the under-
lying channel interference is not strong, as long as the overall
source-channel interference is.

In this paper, we extend the scenario studied in [6] to more
general interference channels. We first consider the case in
which each receiver has side information correlated with the
source sequence it wants to decode. We prove the optimality of
source-channel separation in this situation; that is, the optimal
performance can be achieved by first compressing each of the
sources conditioned on the correlated receiver side information,
and then transmitting the compressed bits over the channel
using an optimal interference channel code.

Next, we consider the scenario in which each receiver has side
information correlated with the interfering transmitter’s source.
As an example of such a model and to illustrate the benefits
of side information correlated with the interfering source, con-
sider the extreme case in which each receiver has access to the
message of the interfering transmitter. Note that this setup is
equivalent to the restricted two-way channel model of Shannon,
whose capacity is characterized in [1]. In this case, each receiver
can excise the interference from the undesired transmitter since
the message causing the interference is exactly known. Here,
we consider the more general case of arbitrary correlation be-
tween the receiver side information and the interfering source.
First, we provide sufficient conditions for reliable transmission
by proposing a joint source-channel coding scheme based on the
message splitting technique introduced by Han and Kobayashi
[14], in which part of the message is decoded by the unintended
receiver as well.

Then we digress from the joint source-channel coding
problem and turn our attention to a closely related channel
coding problem that generalizes the classical interference
channel model: the interference channel with message side
information (IC-SI), in which a portion of each user’s message
is available at the nonintended receiver. We provide a general
achievability scheme for this channel model, and characterize
the capacity region of the IC-SI for a special class of Z-inter-
ference channels.

Finally we go back to the source-channel coding problem and
prove the optimality of source-channel separation when the side
information is a deterministic function of the interfering source.
Here, the separation theorem is presented using the -letter ex-
pression for the capacity region of the underlying IC-SI. Then,
for the special class of Z-interference channels mentioned above
and when the receiver side information is a deterministic func-
tion of the interfering source, we provide single-letter neces-
sary and sufficient conditions for reliable transmission based on
source-channel separation and the capacity region of the un-
derlying IC-SI. This setting constitutes an example for which

the general sufficient conditions we provide are also necessary,
proving their tightness for certain special cases.

The rest of the paper is organized as follows. In Section II, we
present the system model. In Section III, we prove the optimality
of source-channel separation when the side information is cor-
related with the desired source. The case in which the side infor-
mation is correlated with the interfering source is considered in
Section IV. In Section IV-A, we provide general sufficient con-
ditions for reliable transmission. In Section IV-B, we consider
a related channel coding problem by introducing the IC-SI and
characterize the capacity region of this channel model for a spe-
cial class of Z-interference channels. Then, in Section IV-C, we
go back to the source-channel coding problem and focus on the
special case in which the receiver side information is a determin-
istic function of the interfering source. We prove the optimality
of source-channel separation in this scenario. We further show
that for the special class of Z-interference channels studied in
Section IV-B, the sufficient conditions for reliable transmission
proposed in Section IV-A are also necessary. Discussion is pre-
sented in Section V, where in Section V-A, we comment on the
most general case of correlated side information at the receiver,
and in Section V-B, using the capacity results of Section IV-B,
we characterize the capacity region of a related channel coding
problem, i.e., a class of Z-channels with degraded message sets.
This is followed by conclusions in Section VI.

For notational convenience, we drop the subscripts on prob-
ability distributions unless the arguments of the distributions
are not lower case versions of the corresponding random vari-
ables. We use calligraphic, upper case and lower case variables
to represent sets, random variables and deterministic numbers,
respectively.

II. SYSTEM MODEL

An interference channel is composed of two transmitter-re-
ceiver pairs. The underlying discrete memoryless channel is
characterized by the transition probability from
the finite input alphabet to the finite output alphabet

. Transmitter has access to the source sequence
, . Consider side information sequences
, such that the source and the side information se-

quences are independent and identically distributed (i.i.d.) and
are drawn according to joint distribution over
a finite alphabet ; that is, the two source-side
information pairs are independent of each other while the
components of each pair can have arbitrary correlation.

For , Transmitter observes and wishes
to transmit it noiselessly to Receiver over uses of the
channel1. The encoding function at Transmitter is

We assume that the side information vector is available at
receiver , where is a permutation of . Depending
on the scenario, specifies whether the side information is
correlated with the desired source or with the interfering source.

1Here we use the notation � � �� � � � � � � �, and similar notation
applies for other length-� sequences.
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Fig. 1. Interference channel model in which the receivers have access to side information correlated with the sources they want to receive.

The decoding function at receiver reconstructs its estimate
from its channel output and the side information vector using

the decoding function

The probability of error for this system is defined as

Definition 1: We say that a source pair can be re-
liably transmitted over a given interference channel in the pres-
ence of side information , if there exists a se-
quence of encoders and decoders such that

as .
In the following sections, we focus on two scenarios in par-

ticular. In the first one, each receiver has side information cor-
related with its desired source, i.e., , . In the
second scenario, each receiver has side information correlated
with the interfering source, i.e., and . In
both cases, we want to exploit the availability of correlated side
information at the receivers. In the first case, each transmitter
needs to transmit less information to its intended receiver due
to the availability of correlated side information. In the latter
case, while the side information is not helpful in reducing the
amount of information to be transmitted, it can be used to mit-
igate the effects of interference.

III. SIDE INFORMATION CORRELATED WITH

THE DESIRED SOURCE

In this section, we consider an interference channel in which
each receiver has side information correlated with the source
it wants to decode, i.e., receiver has access to side informa-
tion (see Fig. 1). For this special case, we prove that the
source-channel separation theorem applies; that is, it is optimal
for the transmitters first to compress their sources conditioned
on the side information at the corresponding receiver, and then
to transmit the compressed bits over the channel using an op-
timal interference channel code. Note that, in the general case,
we do not have a single-letter characterization of the capacity
region of the interference channel, yet we can still prove the op-
timality of source-channel separation. In the proof, we use the

-letter expression for the capacity region, which was also used
in [15] to prove the optimality of source-channel separation for a

multiple access channel with receiver side information and feed-
back. The main result of this section is the following theorem.

Theorem 1: Sources and can be transmitted reliably
to their respective receivers over the discrete memoryless inter-
ference channel with side information at
receiver , , if

(1)

where denotes the interior, and denotes the capacity
region of the underlying interference channel.

Conversely, if , then sources
and cannot be transmitted reliably.
Proof: A proof of Theorem 1 is given in Appendix A.

IV. SIDE INFORMATION CORRELATED WITH

THE INTERFERING SOURCE

Now we consider the case in which Receiver 1 has access to
while Receiver 2 has access to , i.e., each receiver has side

information correlated with the interfering transmitter’s source
(see Fig. 2). We investigate how the side information about the
interference helps in decoding the desired information.

A. Sufficient Conditions for Reliable Transmission

We first provide sufficient conditions for reliable transmission
of the sources. In the spirit of the well-known Han-Kobayashi
scheme for the classical interference channel [14], we provide
sufficient conditions for reliable transmission of the sources by
proposing a joint source-channel coding scheme that requires
the receivers to decode part of the interference with the help
of their side information. In the Han-Kobayashi scheme, each
transmitter splits its message into two parts to allow the nonin-
tended receiver to decode part of the interference. In our scheme,
each transmitter enables a quantized version of its source to be
decoded by both receivers, where the unintended receiver uses
its correlated side information as well as the channel output to
decode the interference corresponding to this quantized part.

Theorem 2: Sources and can be transmitted reliably
over the interference channel with side in-
formation at Receiver 2 and at Receiver 1 if there exist
random variables and such that
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Fig. 2. Interference channel model in which the receivers have access to side information correlated with the sources of the interfering transmitters.

for some , , and , where the
entropies and mutual information terms are evaluated using the
joint distribution

(2)

Proof: A proof of Theorem 2 is given in Appendix B.

Remark 1: In the special case of no receiver side informa-
tion, i.e., , by choosing the distribution in (2) such
that the Markov Chain conditions and

are satisfied, and defining
and , the sufficient conditions in Theorem 2
reduce to the Han-Kobayashi rate region in the form expressed
in [16, Th. 2].

We do not know whether the sufficient conditions provided
in Theorem 2 are too strong, leading to pessimistic results in
general. However, we show in Section IV-C that the conditions
in Theorem 2 are also necessary for some special cases, showing
their tightness at least in certain scenarios.

B. Interference Channel With Message Side Information

In this subsection, we digress from the source-channel
coding problem of Fig. 2 and consider a related channel coding

Fig. 3. Interference channel with message side information at the receivers.

problem. Apart from being a problem of interest in its own
right, we will later use the capacity pertaining to this channel
coding problem in identifying a source-channel separation
theorem under the assumption of deterministic side information
in Section IV-C.

We consider the communication model depicted in Fig. 3. In
this model, which again is called the interference channel with
message side information (IC-SI), Transmitter , , has
two messages and at rates and , respectively.
All messages are independent. Receiver is interested in ob-
taining both messages and . Unlike the classical in-
terference channel, Receiver 2 has access to and Receiver
1 has access to as side information. One can see that this
channel model is a generalization of the classical interference
channel in which and are constants.

A code for an IC-SI consists
of two encoding functions

and two decoding functions

The average probability of error for the
code is defined

as
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Definition 2: A rate quadruplet is said
to be achievable for the IC-SI if there exists a sequence of

codes for which as
.

Definition 3: The capacity region of the IC-SI is defined
as the closure of the set of all achievable rate quadruplets

, and is denoted by .
For the IC-SI, we propose the following achievable scheme

that is based on the Han-Kobayashi scheme for the interfer-
ence channel: the codebook at Transmitter is generated such
that the inner codebook carries the side information at Re-
ceiver , as well as a portion of its private message , while
the outer codebook carries the remaining part of ,

. The intuition behind this coding scheme is the fol-
lowing: since is already available at the nonintended re-
ceiver, the codeword corresponding to this message can be di-
rectly decoded and hence, it does not cause any additional in-
terference. In particular, Transmitter 1 splits its private message

into , where , and
. Here is to be decoded by Re-

ceiver 2 as well, even though it is not intended for this receiver.
Overall, constitute the message that is decoded by
both receivers, while is decoded by only Receiver 1. A
similar message splitting is also applied at Transmitter 2.

By standard error analysis of the above scheme, and
noting that is already available at Receiver ,

, we obtain the achievable rate region corre-
sponding to the above achievable scheme for the IC-SI in the
following lemma.

Lemma 1: Let be the set of probability distributions
in the form

For a fixed , define as the set of rate tuples
that satisfy

Then we have

Proof: We skip the details of the proof as it closely re-
sembles the proof given in [16] for the classical interference
channel.

Next, we show that the coding scheme of Lemma 1 is ca-
pacity-achieving for a special class of interference channels.
In particular, we consider a special class of Z-interference
channels. The Han-Kobayashi scheme is shown to be ca-
pacity-achieving for this class of interference channels in [17]
when there is no message side information. We show here
that this optimality extends to the message side information
scenario with the coding scheme of Lemma 1.

For Z-interference channels, can be written
as , i.e., the channel between and

is a single user channel characterized by . This
corresponds to an interference channel in which only the second
transmitter-receiver pair faces interference. In particular, the
members of the class of Z-interference channels we consider
satisfy the following conditions.

1) For any positive integer , , when eval-
uated with the distribution , is in-
dependent of for any .

2) Define as

(3)

Then there exists a such that ,
when evaluated with the distribution

, is equal to
for any .

Condition 1 specifies that the channel is in-
variant, in terms of the conditional output entropy, with respect
to the input sequence of Transmitter 2, i.e., . Intuitively,
Condition 2 specifies that no matter how tightly packed the
codewords in the codebook of Transmitter 1 are, by spacing
out the codewords in the codebook of Transmitter 2, we can
always fill up the entire, or maximal, output space at Receiver
2. Please refer to [17] for the detailed intuition behind these
conditions and examples of Z-interference channels that satisfy
these two conditions.

In the next lemma, we provide a single-letter characteriza-
tion for the capacity region of this class of Z-interference chan-
nels with message side information. Since Receiver 1 does not
face interference, it does not benefit from the message side in-
formation . Hence, without loss of generality, we assume

.

Lemma 2: The capacity region of Z-interference channels
satisfying Conditions 1 and 2, with message side information

at Receiver 2, is characterized by

(4)

(5)

(6)
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for some , where the mutual informations and en-
tropies are evaluated with the joint distribution of the form

Proof: A proof of Lemma 2 is given in Appendix C. For the
proof of achievability, the general coding scheme of Lemma 1
is used. A specialized converse is developed and further shown
to coincide with the achievable region using the fact that the
channels satisfy Conditions 1 and 2.

Comparing these results in the case of side information at the
receiver with the traditional Z-interference channel [17], the rate
of takes the place of , which means that the message that
causes interference is reduced from to . Due to the fact
that is available at Receiver 2, does not cause any in-
terference and therefore its rate can be made as large as possible
within the constraint of the capacity of the channel de-
picted by (4).

C. Source Transmission Over Interference Channel With
Deterministic Side Information

Now, we go back to the source-channel coding problem of
Fig. 2 and focus on a special case in which the side information
sequences and are deterministic functions of the sources

and , respectively, i.e.,

for some deterministic functions and , or equivalently we
have for .

The first result of this subsection states that when the side in-
formation at each receiver is a deterministic function of the in-
terfering source, the source-channel separation theorem applies;
that is, it is optimal to first perform source coding and encode

into message , and the remaining part of , denoted by
, into message , , and then to transmit these

messages optimally over the underlying IC-SI. We will use the
capacity region defined in Section IV-B for the IC-SI to express
this separation theorem.

Theorem 3: Sources and can be transmitted reliably
to their respective receivers over the discrete memoryless in-
terference channel characterized by with side
information at Receiver 2, and side information

at Receiver 1, if

(7)

Conversely, if
, then sources and cannot be transmitted reliably.

Proof: A proof of Theorem 3 is given in Appendix D. Sim-
ilarly to Theorem 1, Theorem 3 is proved by using the -letter
characterization of .

The benefits of considering the side information samples
as deterministic functions of the source samples are two-fold.
Firstly, transmitters know the side information and they can
use this knowledge to minimize the amount of interference

they cause. Due to this fact, we are able to achieve any point
in the capacity region of the IC-SI. Secondly, encoding ,

into the codebook at Transmitter not only helps
reduce the interference at the other receiver, but also does not
place any extra burden on Receiver to decode , as is
a deterministic function of . This fact enables the converse
proof of the given source-channel separation theorem.

Note that both of the separation results in Theorem 1 and
Theorem 3 are based on -letter capacity expressions, hence
they cannot be computed in general. However, if a single-letter
characterization of or is known for the underlying
interference channel, we would obtain the necessary and suffi-
cient conditions in Theorem 1 and Theorem 3, respectively, in
a single-letter form. Having established for a special
class of interference channels in Section IV-B, our second re-
sult of this subsection is to provide single letter necessary and
sufficient conditions for reliable source transmission when the
underlying interference channel falls into this special class.

Corollary 1: For Z-interference channels satisfying Condi-
tions 1 and 2 and side information at Receiver
2, and can be transmitted reliably to their respective re-
ceivers if

(8)

(9)

(10)

for some , where the mutual informations and en-
tropies are evaluated with a joint distribution of the form

(11)

Conversely, if the sources can be transmitted reliably, then the
inequalities (8)–(10) hold with replaced by for some joint
distribution of the form given in (11).

Proof: Corollary 1 follows directly from combining The-
orem 3 and Lemma 2.

Corollary 1 shows how the side information
about the interference helps in reliable transmission, and de-
termines the most efficient way of using this side information:
Transmitter 1 performs a separation-based encoding scheme. It
first splits its source into and a remaining part using
entropy-achieving data compression techniques, and thus ob-
tains two messages and . Then, it further splits
message into two parts and , at rates
and , respectively. Next, it performs superposi-
tion encoding, transmitting and through the inner
code at rate , and through the outer code at
rate . Transmitter 2 performs separation-based
source-channel coding, first mapping into a message and
then mapping into a codeword of an i.i.d. codebook gener-
ated with distribution . Receiver 1 decodes both the inner
and the outer codes. Receiver 2 knows the side information
and hence sees an inner codebook at an effective rate of only.
It decodes the inner codeword and the codeword of Transmitter
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2 jointly using the received signal and the available side infor-
mation about the interference while treating the outer codeword
of Transmitter 1 as noise.

Next, we show that the sufficient conditions in Corollary 1 can
also be obtained from Theorem 2. In Theorem 2, let

and . Also choose such
that the distribution in (2) is of the form

Using Condition 2 and the fact that
, we obtain the sufficient conditions in Corollary 1.

Hence, the third result of this subsection is that we have found a
special case of Fig. 2 where the sufficient conditions for reliable
transmission described in Theorem 2 are also necessary, i.e., the
sufficient conditions in Theorem 2 are tight in certain scenarios.

The intuition obtained from the special case studied in this
subsection is that one should put as much information as pos-
sible about the side information within the inner codebook in
order to minimize the impact of interference when the side in-
formation about the interference is available at the receiver.

V. DISCUSSION

A. The General Correlated Side Information Case

In Sections III and IV, we have studied the two cases in which
the side information is correlated with the desired source and
the side information is correlated with the interfering source, re-
spectively. In the most general case, the side information would
be correlated with both the desired and interfering source. We
do not consider this most general setup to keep the presen-
tation simple; however, we expect the intuition developed in
Sections III and IV to remain true, that is the transmitters should
transmit the minimum amount of information that is required
by the intended receiver to decode the source signal, and should
include as much as possible the part of the source that the unin-
tended receiver knows in the codeword that carries the common
information decoded by both receivers.

B. Z-Channel With Degraded Message Sets

From the proof of [9, Th. 3], there is some interesting intu-
ition that when the receiver has some side information about the
undesired message, we can set up a new scenario in which the
receiver does not have access to the side information, and is re-
quired to decode it. Then, when we remove the rate constraint
associated with decoding of the side information at the receiver
in the capacity region of the new scenario, we get the capacity
results of the original scenario. Based on this intuition, the so-
lution given in (4)–(6) resembles the solution of the following
problem.

The channel is described by two transition probabilities
and , and satisfies both Conditions 1 and

2. There are three independent messages , and .
Transmitter 1 has messages and and Transmitter 2
has message . needs to be decoded at both receivers,
while and need to be decoded only at Receiver 1 and

Receiver 2, respectively. Compared to the definition of the
Z-channel in [18], is not only intended for Receiver 2,
but also for Receiver 1. From another viewpoint, we have one
receiver that decodes both and , and the other that
decodes , in addition to . In other words, this channel
model can be seen as a broadcast channel (from Transmitter
1 to Receivers 1 and 2) with degraded message sets plus an
extra link from Transmitter 2 to Receiver 2. Therefore, we
call this channel model the Z-channel with degraded message
sets. The Z-channel with degraded message sets includes the
Z-interference channel as a special case, when the rate of
is zero.

The capacity region for the Z-channel with degraded message
sets when the underlying Z-interference channel satisfies Con-
ditions 1 and 2 can be characterized as follows:

for some and where the mutual informa-
tions and entropies are evaluated using

. The proof of this re-
sult follows from arguments very similar to those used in the
scenario of IC-SI considered in Lemma 2.

VI. CONCLUSIONS

We have studied the problem of joint source-channel coding
in interference channels with correlated receiver side informa-
tion. In the case when the receiver side information is corre-
lated with its desired source, we have shown that separate design
of source and channel codes is optimal. Note that the optimal
channel coding scheme is not known for interference channels
in general, and hence, we have used the -letter expression for
the capacity region to prove the optimality of separation. In sep-
arate source-channel coding, each user transmits only the part
of the sources that is not already known by their corresponding
receivers. Since the interfered receiver does not have any side
information about the source, there is no advantage of using a
joint source-channel coding scheme to reduce the interference.

For the case in which the receiver side information is cor-
related with the interfering source, we have provided sufficient
conditions for reliable transmission by proposing a joint source-
channel coding scheme based on the idea of superposition en-
coding and partial decoding of Han and Kobayashi. As a special
case, we have focused on the scenario in which the side informa-
tion at the receiver is a deterministic function of the interfering
source. By introducing the channel coding problem of the IC-SI,
we have shown that source-channel separation is optimal for this
situation as well. Finally, for a class of Z-interference channels
for which superposition encoding and partial decoding is op-
timal in the absence of receiver side information, when the re-
ceiver facing interference has access to a deterministic function
of the interfering source, using the capacity region of the un-
derlying IC-SI and the optimality of source-channel separation,
we have shown that the provided sufficient conditions are also
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necessary. Hence, our proposed sufficient conditions are tight at
least in some special cases.

APPENDIX A
PROOF OF THEOREM 1

The achievability part of the proof is straightforward. If (1)
holds, then there exists a rate pair in the interior of
such that for . Each transmitter com-
presses its source with respect to the side information at its own
receiver. This can be done at rate due to the Slepian-Wolf
theorem. Then the compressed bits can be transmitted reliably
over the channel since is in the capacity region of the
underlying interference channel. However, we note here that we
need to be careful in the error probability analysis as the capacity
characterization for the interference channel is for average error
probability criteria, not for maximal error probability. See [6]
for a similar analysis in a multiple access channel scenario.

To prove the converse, we first make use of the infinite letter
expression for the capacity region of the interference channel
given in [19]. We define

Then

(12)

where the limit is defined as in [1, Th. 5]. is a closed convex
set in the Euclidean plane.

From Fano’s inequality [20], we have, for

(13)

where is a nonnegative function approaching zero as
.

Next, we write the following chain of inequalities:

(14)

(15)

(16)

(17)

where (14) follows since form a Markov
chain; similarly (15) follows since form a
Markov chain, (16) follows as conditioning reduces entropy,
and finally (17) follows from (13). Similarly, we can also show

where the joint probability distribution factors as .
From the capacity region given in (12), we see that

for all
. Then, since as , and from the compact-

ness of the capacity region, we can conclude that
implies that . This completes
the proof.

APPENDIX B
PROOF OF THEOREM 2

Let the set of strongly typical -tuples according to
be denoted by where we have followed [21, Conven-
tion 2.11]. The definitions and notations of strong typicality can
be extended to joint and conditional distributions in a similar
manner [21].

Now, we start the achievability proof. Fix a joint distribu-
tion as in (2), where , , are
given while we are free to choose , , and

.
Codebook Generation: First, generate one random -se-

quence in an i.i.d. fashion according to .
Next, for Transmitter 1, generate a codebook of size with

, in which the codewords are gen-
erated i.i.d. with distribution . This codebook is denoted
by .

For each possible source output , count the number of
codewords in that are jointly typical with . If there are
at least codewords in jointly typical
with , choose one uniformly at random, and call it .
Intuitively, is a compressed version of that the re-
ceiver 2 decodes. This is similar to decoding part of the interfer-
ence in the Han-Kobayashi scheme for the interference channel
[14]. If there are fewer than codewords
of jointly typical with , randomly choose one codeword
from to be . The reason why we require the number
of codewords jointly typical with to be large is to benefit the
probability of error calculation later on in the proof. In a similar
fashion, we generate .

Define as the event that the number of
jointly typical with is larger than and
the number of jointly typical with is larger than

. We have

Lemma 3:

(18)

where superscript “ ” denotes the complement.
Proof: For each , define the

random variable as follows: is 1 if the -th
codeword of is jointly typical with and 0 otherwise. Then

(19)

(20)
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where and denote the expectation and variance, respec-
tively. Further, define random variable as the number of
codewords in that are jointly typical with , i.e.,

Then, from (19) and (20), we have

(21)

(22)

Hence, we have

(23)

(24)

(25)

(26)

(27)

where (23) and (26) follows from (21), (24) follows from
Chebyshev’s inequality, (25) follows from (22), and (27) is true
when is large enough. The same analysis applies for .

Hence, we have proved that

or

(28)

for all and all sufficiently large .
This means that

(29)

(30)

where (29) follows from (28), and (30) follows when is large
enough from the asymptotic equipartition property (AEP) [20].

Lemma 3 demonstrates that with probability close to one,
the number of sequences jointly typical with and in
codebooks and are larger than and

, respectively. This fact will be used in the
probability of error calculation.

For each possible sequence, generate one sequence
in an i.i.d. fashion, conditioned on , and , ac-
cording to . This sequence is denoted by

. The collection of all sequences will
be denoted as the codebook . Similarly, we generate the
codebook .

Encoding: When Transmitter 1 observes the sequence ,
it transmits . Similarly for Transmitter 2.

Decoding: Receiver 1 finds the unique pair
, , , such that

are jointly
typical and declares the first component of the pair as the
transmitted source. If there are more than one pair, and the first
component of the pairs are the same, then the decoder declares
the transmitted source to be the first component. If there are
more than one pair, and the first component of the pairs are not
the same, an error is declared. Also, if no such pair exists, an
error is declared. Similarly for Receiver 2.

Probability of Error Calculation: Denote by
the event

for . Further,
denote by the event

.
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Then, the probability of error at Receiver 1 conditioned on
, denoted by , is given by

(31)

where we have used the short-hand , and to denote events
, and , respectively.

The first term in (31) is bounded by as shown by (18). From
the achievability results of multi-terminal rate-distortion theory
[22], the second term in (31) is bounded by for sufficiently
large . The third term in (31) is bounded by for sufficiently
large based on the AEP [20]. Hence, from now on, we will
concentrate on the fourth term in (31).

The fourth term in (31) may be upper bounded by the sum of
the following four terms, which will be denoted by , , ,
and , respectively:

First, we upper bound . Define the set

Then, we have

(32)

which follows because there are fewer than
’s in ,

and for each , the probability that
is in is less than

due to the
symmetry of the random codebook generation. Hence, we may
write

(33)

(34)

(35)

(36)

(37)

where (34) follows from the definition of event
and , (35) follows from the fact that

there are fewer than ’s in
and of these ’s, each

has a probability of less than of being
chosen as ; (36) follows from (32); and (37)
follows because the distribution in (2) satisfies the Markov
chain relationship . Next,
we upper bound . Define the set

Then, we have
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Similarly to (33)–(36), we may write

(38)

where (38) follows using the same reasoning as for (37). Next,
we upper bound . Define the set

Then, we have

which follows from the fact that we always choose randomly
from at least choices to get . Sim-
ilarly to (33)–(36), we may write

(39)

where (39) follows using the same reasoning as for (37). Finally,
we upper bound . Define the set

Then, we have

Similarly to (33)–(36), we may write

(40)

where (40) follows using the same reasoning as for (37).
We have similar probability of error calculations at Receiver

2. Since

for this achievability scheme, as long as the following equations
are satisfied:

for some , , and , the proba-
bility of error is arbitrarily small for sufficiently large .

By Fourier-Motzkin elimination, we obtain the sufficient con-
ditions given in Theorem 2.

APPENDIX C
PROOF OF LEMMA 2

Due to the fact that the proof of this lemma is very similar to
the proof of the capacity region in [17], we omit certain details.
For notational convenience, denote the channel of as

and the channel as , where

A) Converse Result: The converse result derived in this
subsection is valid for any Z-interference channel satisfying
Condition 1. The tool that we are using comes from the fol-
lowing lemma.

Lemma 4 [21, pp. 314, eq. (3.34)]: For any , and any
random variables and and , we have

Since the rate triplet is achievable, there
exist two sequences of codebooks 1 and 2, denoted by and

, of rate and , and probability of error ,
where as . Let us define and to be uni-
formly distributed on codebooks 1 and 2, respectively. Let
be connected via to and be connected via to
and .
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We start the converse with Fano’s inequality [20]:

(41)

(42)

(43)

(44)

(45)

where in (41), is a nonnegative function approaching zero
as , (42) follows from the fact that and are in-
dependent, (43) follows from the fact that without loss of gen-
erality, we may consider deterministic encoders, (44) follows
from the Markov chain relationship ,
and (45) follows from the memoryless nature of . We also
have

(46)

(47)

where (46) follows from the data processing inequality [20].
Furthermore, we have

(48)

(49)

(50)

(51)

where (48) follows from the independence of and
, (49) follows from the Markov chain relationship

, (50) follows from the fact that
conditioning reduces entropy, and (51) follows from the defini-
tion of in (3).

Let us define another channel, , as

where is an arbitrary element in . Further, let us define
another sequence of random variables, , which is connected
via , the memoryless channel used times, to , i.e.,

. Also define as the
-sequence with repeated times. Since the channel under

consideration satisfies condition 1 , we have

(52)

By applying Lemma 4, we have

(53)

Furthermore, since conditioning reduces entropy, we can write

(54)

Define the following auxiliary random variables:

Further define as a random variable that is uniform on the set
and independent of everything else. Also, define

the following auxiliary random variables:

Then, from (53) and (54), we have

(55)

(56)

Due to the memoryless nature of and , the fact that is
independent of everything else, and the Markov chain relation-
ship , for , the joint distribution
of , , , satisfies

(57)

From (55) and (56), we may conclude that there exists a number
such that

(58)

(59)

By combining (45), (47), (51), (52), (57)–(59), and allowing
, we obtain the following converse result: for any Z-in-

terference channel that satisfies Condition 1 and the case where
Receiver 2 has side information , the achievable rate triplets

must satisfy

(60)

(61)

(62)

for some and distribution , where the mutual
informations and entropies are evaluated using

.
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B) Achievability Result: We use the coding scheme of
Lemma 1 which is valid for any IC-SI. We design a codebook
at Transmitter 1 such that the inner codebook carries the side
information at the Receiver 2, i.e., , and part of , and
the outer codebook carries the remaining part of . More
specifically, the inner codebook is of rate , and the outer
codebook is of rate . Then, we have the achievable rate
region as the union over all of

(63)

(64)

(65)

(66)

where the mutual informations are evaluated using

C) Capacity Region: Making use of Conditions 1 and 2
in the exact same way as in [17, Sec. VII-C], we can show that
the converse result in (60)–(62) and the achievability result in
(63)–(66) are the same for Z-interference channels satisfying
Conditions 1 and 2, and hence the capacity region in this case is
given in Lemma 2.

APPENDIX D
PROOF OF THEOREM 3

We use the -letter characterization of provided in
the next lemma. Define as

Lemma 5: The capacity region of the IC-SI as defined in
Section IV-B is

(67)

where the limit of the region is as defined in [1, Th. 5].
Proof: We first start with the proof of achievability. Fix dis-

tributions , , , and . For code-
book at Transmitter , , we generate an inner code-
book of i.i.d. codewords of length with probability

. Then, for each codeword of the inner codebook,
we generate an outer codebook of i.i.d. codewords of

length with probability . For
and , Transmitter sends the -th codeword of
the -th outer codebook. For decoding, Receiver 1 finds the
codeword in all possible outer codebooks that is jointly typical
with the received sequence and the -th codeword of the inner
codebook of Transmitter 2. Receiver 2 operates similarly. The
probability of error analysis follows from standard arguments
[20], and we can show that the probability of error can be driven
to zero as , as long as the rates satisfy the following
conditions:

For each , similarly to [1, Th. 5], by treating the interfer-
ence channel , which is a product channel of

, as a memoryless channel, we conclude that the
rates satisfying the following conditions are achievable for any

:

i.e., any rate quadruplet is
achievable. By the definition of the capacity region, the limiting
points of are also achievable, and thus, we have proved the
achievability of all the points in .

We next prove the converse. For any
code, denote its

input to the channel as random variables and and the
output of the channel as random variables and .

Arbitrarily choose -letter sequences
all in , and -letter

sequences all in . We then form a
one-to-one correspondence between , and , ,
respectively, by

if
otherwise

(68)

if
otherwise.

(69)

By Fano’s inequality [20], we have
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(70)

(71)

(72)

where in (70) is a nonnegative function approaching zero
as , (71) follows from the data processing inequality [20]
as the distributions factor as

and the Markov
chain relationship is satisfied,
and finally (72) follows from the definitions of the sequences

and in (68) and (69), respectively. We also have

(73)

(74)

where (73) follows using the same reasoning as for (71), and
(74) follows using the same reasoning as for (72).

Similarly, we have

Hence, we have proved that for all ,
.

Since the region as defined in (67) contains for
every [1, Th. 5], we have

(75)

for all . For codes where as , we have

(76)

since is closed [1, Th. 5]. This concludes the converse
part of the proof.

Note that in the proof of achievability, the auxiliary random
variables and take on the meaning of inner codewords
at Transmitters 1 and 2, respectively.

Now that we have the -letter characterization of the capacity
region of the IC-SI in Lemma 5, we are ready to prove Theorem
3.

The achievability part of the proof is straightforward. If (7)
holds, then there exists a rate quadruplet
in the interior of such that and

for . Transmitter first compresses into
index with rate , and then into index

into rate , for all in the typical set. Then
the indices can be transmitted reliably over the channel since

is in the capacity region of the underlying

interference channel with message side information at
Receiver 2 and at Receiver 1.

To prove the converse, we write

(77)

(78)

where (77) follows from Fano’s inequality, and (78) follows
from the data processing inequality, in other words, from the
Markov chain relationship . We
can also write

(79)

(80)

(81)

where (79) follows because is a deterministic function of ,
(80) follows from Fano’s inequality, and (81) follows from the
same reasoning as applied to (78). Similarly, we have

(82)

(83)

Hence, from (78), (81)–(83), we have

which by the same reasoning as applied to (75) and (76), for
codes where as , we have

This concludes the proof.
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