
Ž .Computer Standards & Interfaces 23 2001 157–168
www.elsevier.comrlocatercsi

Multi-technology distributed objects and their integration

Konstantinos Raptis a,), Diomidis Spinellis b, Sokratis Katsikas a

a Department of Information and Communication Systems, UniÕersity of the Aegean, GR-83200 KarloÕasi, Samos, Greece
b ()Department of Technology and Management, Athens UniÕersity of Economics and Business AUEB , EÕelpidon 47A,

11362 Athens, Greece

Received 14 November 2000; received in revised form 8 March 2001; accepted 15 March 2001

Abstract

Research on software objects, components, middleware, and component-based applications concerns among others
Ž . Ž . Ž .ActiveX controls, JavaBeans JBs , the Microsoft Transaction Server MTS , Enterprise JavaBeans EJBs , and how they

can interoperate with each other. Is their interoperation possible? Which elements are responsible for the software objects’
incompatibility? Is compatibility a responsibility of the objects or of their underlying architectures? In this article, we discuss
object compatibility problems by outlining three basic middleware remoting technologies: the OMG’s Common Object

Ž . Ž .Request Broker Architecture CORBA , Microsoft’s Distributed Component Object Model DCOM , and Sun’s Java Remote
Ž .Method Invocation RMI , discussing the basic incompatibility points, and overviewing the basic strategies for bridging the

gap between CORBA, DCOM, and RMI. q 2001 Published by Elsevier Science B.V.

Keywords: Software objects; Components; Bridge; Midlleware; Object compatibility; Interoperation

1. Introduction

Software development is becoming increasingly
complicated. Business requirements for clientrserver
applications, support for multiple platforms, and so-
phisticated end-user functionality have forced devel-
opers to adopt new approaches. One of the concepts
that changed the rules in software development is

Ž .object-oriented programming OOP , which is orga-
nized around objects rather than actions. According

w xto Budd 1 , AAll objects are instances of a class. The
method invoked by an object in response to a mes-
sage is determined by the class of the receiver. All

) Corresponding author. Tel.: q30-273-25-282; fax: q30-273-
25-282.

Ž .E-mail addresses: krap@aegean.gr K. Raptis , dds@aueb.gr
Ž . Ž .D. Spinellis , ska@aegean.gr S. Katsikas .

objects of a given class use the same method in
response to similar messagesB.

The need to develop software based on existing
code rather than development from scratch led to the
development of component-based software. Compo-
nents are typically object-oriented, or at least used as

w xobjects. Szyperski 16 defines a software component
as Aa unit of composition with contractually speci-
fied interfaces and explicit context dependencies
only. One that can be deployed independently and is
subject to third-party compositionB.

To be composable, components need to be identi-
fied by meaningful characteristics, namely: the com-
ponent name, which provides the developer with the
ability to identify it; the component interface, which
identifies the operations fulfilled by the component;
and the component model which specifies the seman-
tics and execution context of the component.

0920-5489r01r$ - see front matter q 2001 Published by Elsevier Science B.V.
Ž .PII: S0920-5489 01 00070-8

()K. Raptis et al.rComputer Standards & Interfaces 23 2001 157–168158

Moreover, a software component must meet three
basic demands:

1. it must be directly usable: the component must
contribute to the development process;

2. it must be a defined and discrete unit: the
content of the component must be explicitly
identified; and

3. it must be separable from its original context
and usable in other contexts: any component
must be reusable in applications other than the
one it was first defined.

The rapid deployment of software components
and the advantages of component-based applications
against the monolithic applications drive many enter-
prises to deploy their network applications based on
components. Although software components address
many enterprise application development issues, their
use unavoidably generates new problems. As we will
see below, the components must comply with a
specific underlying middleware architecture in order
to interact with each other efficiently. This depen-
dency on the underlying architecture creates compat-
ibility problems between components based on dif-
ferent architectures. These problems become critical
by changes in company information systems due to

w xacquisitions, mergers, and infrastructure upgrades 2 .
As a component’s instance is typically an object

and anything applying to objects also affects compo-
nents, in the next paragraphs our discussion will
focus on software objects.

2. Middleware technologies

The ability to construct applications using objects
from different vendors, running on different ma-
chines, and on different operating systems, it is not
an easy task. The need for interaction between the
software objects led to the specification of middle-
ware models. The Object Management Group’s
Component Object Request Broker Architecture
Ž .CORBA , Microsoft’s Distributed Component Ob-

Ž .ject Model DCOM , and the Sun Microsystems
Ž .Remote Method Invocation RMI are three models

that enable software objects from different vendors,
running on different machines, and on different oper-
ating systems, to work together.

To provide our readers with a feeling of the
different technologies, we have implemented three
versions of a very simple clientrserver application,

Ž . Ž .utilizing CORBA Listing 1 , DCOM Listing 2 ,
Ž .and Java RMI Listing 3 . The application client uses

the server to sum two numbers. The client, Sum-
Client, initially sends two numbers to the server,

()SumSerÕer, through the SetNum function, and then
()calls the Sum function through which the server

returns to the client the sum of the two numbers. We
present the code for those applications without in-
cluding the automatically generated helper files. The
clientrserver applications are implemented using the
Java language in order to provide a uniform lan-
guage-layer presentation through which the differ-
ences of CORBA, DCOM and Java RMI can be
easily identified.

2.1. OMG CORBA

The Common Object Request Broker Architecture
Ž . w xCORBA 10 is an open standard specifying a
framework for transparent communication between
applications and application objects. It is defined and

Ž .supported by the Object Management Group OMG ,
a nonprofit, trade association of over 700 software
developers, vendors, and end-users. According to
CORBA, a client which asks for some services from
an object makes a request which is transferred to the
object request broker. The ORB is responsible for
forwarding the request to the right object implemen-
tation. This request contains all the information re-
quired to satisfy the request: target object, opera-
tions, zero or more parameters, and an optional
request context.

The client’s request to the ORB and the forward-
ing of the request from the ORB to the object
implementation must be in a form that will be under-
standable independently from the specific ORB. The
client invocation style depends on the component’s
interface details available to the client at compilation
time: if the client has access to the appropriate
component and its interface then it can use the static
interface, otherwise the client has to deposit its
request to the ORB through the dynamic interface.
To allow ORB-neutral invocation, the request is
made to the ORB through an interface called AIDL
StubB, if there is a static invocation, or through the
ADynamic InvocationB, if there is a dynamic invoca-

()K. Raptis et al.rComputer Standards & Interfaces 23 2001 157–168 159

tion. In the server end, the promotion of the request
to the object implementation is also made through
interfaces called AStatic IDL SkeletonB and ADy-
namic SkeletonB.

We stress that clients never come in direct contact
with the objects, but always with the interfaces of
these objects. The interfaces are determined through

Ž .OMG’s IDL Interface Definition Language . The
clients are not AwrittenB in OMG’s IDL, but in a
language for which there is a mapping to OMG’s
IDL.

In addition, the communication of a client with an
object running as a different process or on a different
machine uses a communication protocol to portably
render the data format independently from the ORB.
For this reason, the OMG has designed the General

Ž .Inter-ORB Protocol GIOP , a protocol which en-
sures the connection of the ORBs no matter where
they came from. The Internet Inter-ORB Protocol
Ž .IIOP is a specific mapping of the GIOP to TCPrIP
connections, the most popular protocol for network
connectivity.

()K. Raptis et al.rComputer Standards & Interfaces 23 2001 157–168160

2.2. Microsoft DCOM

Microsoft’s Distributed Component Object Model
Ž . w xDCOM 7 is an object-oriented model designed to
promote interoperability of software objects in a
distributed, heterogeneous environment. It’s an ex-
tension of Microsoft’s Component Object Model
Ž . w xCOM 8 . COM’s target is to allow two or more
applications or objects to easily cooperate with one
another, even if they have been written by different
vendors at different times, in different programming
languages, or if they are running on different ma-
chines, and under different operating systems.

A client requests services from an object via the
object interface represented as a pointer. Therefore,
the programming language in which the client is
implemented must have the ability to create pointers
and call functions through these pointers and the
client must have the right pointer to that interface.
The interfaces are determined through Microsoft’s

ŽInterface Description Language different from
.OMG’s IDL which allows the developers to con-

struct the object interfaces.

In case the client does not have the right pointer
to the appropriate interface, it addresses COM giving
as input the class identification, CLSID, of the object
and the server’s type of object class: Ain-processB,
AlocalB, or AremoteB. COM then uses the Service

Ž .Control Manager SCM to search and find the appli-
cable server and give back to the client the requested
pointer. The laying down of the client’s request and
its promotion to the appropriate object implementor
is done via proxy and stub interfaces, respectively.
These interfaces are responsible to marshal and un-
pack the transmitted data. Similarly, the stub mar-
shals the object’s response and the proxy unpacks
and promotes the response back to client.

Obviously, every client must provide at least the
Ž .class identification CLSID of the object it needs

and the type of the server. The client may be imple-
mented in any programming language as long as the
language supports the construction and management
of pointers. Inter-process communication is per-

Ž .formed using Remote Procedure Calls RPCs . The
remote procedure call mechanism is based on the
Distributed Computing Environment Remote Proce-

Ž .dure Call mechanism DCE RPC .

()K. Raptis et al.rComputer Standards & Interfaces 23 2001 157–168 161

On July 2000, Microsoft announced its .net plat-
form as the new base for developing Web-based
applications. The .net platform as a programming
model represents the next evolution of Microsoft’s
Component Object Model. The .net platform consists
of a set of application level frameworks, a set of base
frameworks, and a common language runtime. At the
center of the .net framework is an object model
called the Virtual Object System providing a middle-
ware infrastructure for components based on differ-

w xent technologies across the Web 6 . The interoper-
ability among the different technologies across the
Web is made possible using open Web protocols
such as XML and SOAP.

2.3. JaÕarRMI

Ž . w xThe Remote Method Invocation RMI 14 is also
an object-oriented model designed to promote inter-
operability of Java objects in a distributed, heteroge-
neous environment. RMI is the mechanism for the
transparent communication exclusively between Java
objects.

For an RMI client to use an object’s services, it
must submit a request to the RMI which contains an
object reference, the desired methods of that object,
and the necessary parameters for the implementation

of the request. RMI is then responsible to find and
promote the request to the right object. The submis-
sion of the client’s request is made to a stub. The
stub is the top level of the RMI which makes the
object appear as if it is in the same process as the
client. The stub presents the request in the right form
to be transmitted to the server-side RMI part. After
the stub, the request passes through the remote refer-
ence layer to the transport layer which is responsible
for transmitting the request. At the server side, the
object collects the request in a reverse way through
the RMI layers and responds back to the client via
RMI in the same way that the client did.

To deposit a request, the client must have an
object reference to the needed object. In the case
where the client does not have the object reference it
can look for it through the appropriate service pro-
vided by the Java RMI namely the jaÕa.rmi.Naming
class. Like the other two technologies the RMI clients
come in contact only with the interfaces of the
objects. Those interfaces are defined using the Java
language and not via a special IDL.

The clientrobject communication procedure
through RMI is the same irrespective of whether the
object resides locally or remotely. In the case where
the client communicates with an object residing on a
different machine the use of the Java Remote Method

Ž .Protocol JRMP is necessary.

()K. Raptis et al.rComputer Standards & Interfaces 23 2001 157–168162

3. Object incompatibility

For software objects to interact with each other,
they must comply with the rules of at least one of
the above models. However, it is difficult if not im-
possible for two objects conforming to dissimilar
technologies to interact with each other. The incom-
patibility reasons stem from the differences of the
underlying models and the way they present and use
the software objects. We can identify three basic

w xincompatibility points 12 .

3.1. Different interface approaches and implementa-
tions

One of the basic elements of an object are its
interfaces. Through their interfaces objects expose
their functionality. An interface consists of a descrip-
tion of a group of possible operations that a client
can ask from an object. A client interacts only with
the interfaces of an object, never with the object
itself. Interfaces allow objects to appear as black
boxes. Different approaches and implementations of
object interfaces make them invisible to clients of
other technologies.

Both CORBA and DCOM use special Interface
Ž .Definition Languages IDLs for the interface speci-

fication. Java RMI uses the Java language to define
the interfaces. In DCOM, every interface has a Uni-

Ž .versally Unique Identifier UUID , called the Inter-

Ž .face Identifier IID , and every object class has its
Ž .own UUID, called Class Identifier CLSID . More-

over, every object must implement the IUnknown
interface. When using the Java language to specify
DCOM objects every Java class implements that
interface behind the scenes through the Microsoft

Ž .Java Virtual Machine MSJVM . In Java RMI the
interface must be declared as public, it must extends
the interface jaÕa.rmi.Remote and each method must
declare jaÕa.rmi.RemoteException in its throws
clause.

3.2. Different object references and storage

When a client wishes to interact with an object it
must first retrieve information on the object’s inter-
face. A client’s underlying technology must recog-
nize an object’s name, it must know where to look,
and how to retrieve its information, i.e. it must know
how the required object’s technology stores and dis-
seminates its information. If a client’s technology
does not have that kind of ability then it is impossi-
ble for the necessary information of the needed
object to be found.

Ž .In CORBA Listing 1 , the IDL compiler gener-
ates the appropriate client stubs and server skeletons
for a client to deposit a static invocation to the
requested object. Moreover, all the necessary infor-
mation is stored in the Interface Repository through
which a client can get run-time information for a

()K. Raptis et al.rComputer Standards & Interfaces 23 2001 157–168 163

dynamic invocation. The client is searching for the
needed methods using the object’s name reference
and invokes it statically, through the client stub
interface, or dynamically, through the dynamic invo-
cation interface, depending on its run-time knowl-
edge. For the interaction to be possible the CORBA
server program must bind the server object using the
CORBA Naming Service. Prior to the above interac-
tion, the CORBA server and the CORBA client
program must first initialize the CORBA ORB

()through the ORB.init method.
ŽIn the DCOM clientrserver interaction Listing

.2 , the MSJVM hides many of the code details
needed in the previous CORBA example. The server

Žobject binding is performed using the jaÕareg util-
.ity through the system registry where the COM

clients search for the needed COM components. In
the DCOM client, the instantiation of the DCOM
object is done using the new keyword. Although it
seems that the client is referring to the needed
remote object by its name, the system is looking for
that object based on its CLSID. All the necessary
calls to the IUnknown and IDispatch interfaces used
by the client to acquire the appropriate pointer to the
server object and for the management of server’s
object life cycle are accomplished transparently
through the MJVM.

Ž .Looking at the Java RMI example Listing 3 , in
the server side program one creates the server object
and binds it to the RMIRegistry using the

()Naming.rebind method by assigning a URL-based
name. On the client side, the Java RMI client gets a
reference from the server’s registry using the URL-

()based object’s name through the Naming.lookup
method.

3.3. Different protocols

Another basic element in distributed object inter-
actions is the protocol used for the data transmission.
In our case, a protocol does not denote only the
transport-level protocol, such as TCPrIP but in-
cludes the presentation and session level protocols

Ž .supported by the Request Brokers RBs . The trans-
port-level protocol is responsible for the transmission
of the data to the end point. The presentation and
session level protocols are responsible for the for-
matting of the data transmitted between different
RBs from a client to an object, and vice versa.

w xAccording to Geraghty et al. 5 : AAlthough the
client and server may speak the same protocol, it is
critical that they speak the same language, or
higher-level protocolB.

In Table 1 we present the basic differences of the
three models according to the above incompatibility
points. These differences are not the only ones be-
tween these three architectures and the only reasons
for objects’ incompatibility. If we made a detailed
comparison between these models, we would see
many more differences and find many additional
reasons; the differences we described are however
the prime causes of incompatibilities. As we will see
in the next paragraphs, all attempts for bridging these
object middleware architectures focus their attention
on these points.

4. Bridging the gap

When two or more objects, based on different
technologies must to interoperate the mission target

Table 1
CORBArDCOMrRMI basic differences in relation with incompatibility points

Incompatibility points CORBA DCOM RMI

Interface approaches IDL MIDL Java
and implementations
Object identification Identification through Object Identification through Identification through URL-based

Ž .and Interface Names GUID CLSID and IID Object Name and Interface Name
Object reference Reference through Object Reference through Reference through

Ž .Reference OR Interface Pointer URL-based Object Reference
Object storage Storage in Implementation Storage pointers in the Storage in rmiregistry

Repository System Registry
Ž .Protocols GIOPrIIOPrESIOP Object RPC ORPC JRMPrIIOP

()K. Raptis et al.rComputer Standards & Interfaces 23 2001 157–168164

is to make the objects hide the fact that the other
objects are functioning under a different technology
without changing their characteristics and behavior.
According to object technology the Ashop-windowB
of an object is its interface. When an object wishes
to contact another it must be able to view, under-
stand, and work out with the other object’s interface
in order to request the needed methods. Each tech-
nology has its own way to create the objects’ inter-
faces using its own IDL. Therefore, for two tech-
nologies to interoperate any object must be able to
understand the other technology’s IDL. Suppose a
client deposits to its RB a request for some methods.
The RB must be able to look for the appropriate
object which exposes these methods. The RB must
therefore know the way the other RB names and
stores the information of its objects in order to be
able to find them and forward the request. For the
above operations to be feasible, the requests and the
responses to be transmitted must be formatted in a
mutually understandable way i.e. different RBs must
communicate using the same protocols.

The goals we outlined can be achieved by using a
w xproxy bridge object 11 . This object is used as a

mechanism to translate the requests and the re-
sponses in an understandable form and maintain the
main characteristics and behavior of the real object.
Moreover, the bridge object is provided with all the
necessary attributes so that it can be viewed from the
different technology’s object as if it was part of the
same technology. Figs. 1 and 2 are examples of class
and activity diagrams of the interaction of different
technology objects.

We can distinguish three cases depending on
where the bridge object resides. It could reside in the
client’s machine, in the server’s machine, or on a
third machine. If the bridge object resides in the
client’s machine, the client’s environment must sup-

port two or more different middleware technologies.
Moreover, if the server object changes its state, this
must be propagated to every bridge object, i.e. to the
machine of every client. When the bridge object
resides on the server’s or an entirely different ma-
chine, then the above problems are not relevant, but
performance problems are likely to occur. In the next
paragraphs, we outline some of the attempts for
bridging CORBA, DCOM, and RMI.

4.1. CORBA–DCOM bridge

CORBA and DCOM, as an extension of COM,
are the two most widespread middleware technolo-
gies. Their importance stems from their AparentsB.
CORBA is child of the Object Management Group
an association including Sun Microsystems, Com-
paq, Hewlett-Packard, IONA, Microsoft and others,
while DCOM comes from Microsoft which has the
highest share in the desktop operating system mar-
ket. Although COM and its extension DCOM are
built-in in Microsoft’s OSs and there are no other
providers of these technologies, the widespread
adoption of Microsoft’s OSs and the development of
programming languages which support rich COMr
DCOM frameworks, led to the production of many
components based on Microsoft’s architecture. On
the other side, the fact that the OMG provides
CORBA as specifications for ORBs instead of a
product led many companies to create their own
CORBA compliant request brokers providing the
developers and the users with a range of ORBs
capable to satisfy different demands.

After the first OLErCORBA bridge from IONA
Technologies in 1995, OMG decided to include as
part of its updated revision 2.0 of CORBA architec-
ture and specification the Interworking Architecture
which is the specification for bridging OLErCOM

Fig. 1. Class diagram of Object A–Object B interaction.

()K. Raptis et al.rComputer Standards & Interfaces 23 2001 157–168 165

Fig. 2. Activity diagram of Object A–Object B interaction.

and CORBA. The Interworking Architecture ad-
dresses three points:

Ø Interface Mapping. As both models use IDLs to
define the interfaces and as any object is exposed

by its interface, there must be a mapping between
them in order for a CORBA object to be viewed
as a COM object and vice versa. Particularly, OMG
specifies four distinct mappings: CORBArCOM,

()K. Raptis et al.rComputer Standards & Interfaces 23 2001 157–168166

CORBArOLE Automation, COMrCORBA, and
OLE AutomationrCORBA.

Ø Interface Composition Mapping. One of the ba-
sic differences between the CORBA and COM inter-
faces is the characteristic of inheritance. While
CORBA supports multiple interface inheritance,
COM supports multiple interfaces for objects and
therefore provides single inheritance. For a bridge to
work, there must be a map from CORBA’s multiple
inheritance to COM’s single inheritance and vice
versa.

Ø Identity Mapping. This specification is con-
cerned with the mapping between the different Inter-
face IDs used by CORBA and COM.

As we saw, OMG provides the specifications
regarding the mappings between COM and CORBA
IDLs and interfaces. One point that the Interworking
Architecture does not specify concerns the approach
that should be taken to bridge COM and CORBA.
We can distinguish two basic approaches for bridg-

w xing, the static bridging, and the dynamic bridging 5 .
Under static bridging, the creation of an interme-

diate code to make the calls between the different
systems is required. That intermediate code would be
the client’s side proxy which could be different in
order to receive an object system’s call, transform it,
and forward it to another object system. The main
advantage of static bridging is that it can be easily
implemented because it has to deal with object inter-
faces which contain known code. The disadvantage
of the static bridge is that any changes on the
interfaces require a change in the bridge.

In dynamic bridging, there is no code dependent
on the types of calls, i.e. the interfaces that must be
generated. The operation of a dynamic bridge is
based on the existence of a dynamic mechanism
which can manage any call in spite of the interfaces.
The dynamic bridging appears as an enhanced solu-
tion by which many problems of static bridging can
be avoided. The ability of CORBA to handle dy-
namic invocation calls through the Dynamic Invoca-

Ž .tion Interface DII and the similar ability of DCOM
through dynamic OLE Automation, makes the use of
dynamic bridging quite versatile especially in an
application environment where a large number of
interfaces are involved.

The OMG does not provide an implementation of
a COMrCORBA bridge but only specifications. The

implementation belongs to commercial companies
which have released many bridge tools, compliant
with OMG’s specification. Some of these products
are PeerLogic’s COM2CORBA, IONA’s Orbix-
COMet Desktop, and Visual Edge’s ObjectBridge.
All the above products realize one of the interface
mappings that OMG specifies. Their main goal is to
provide a two-way interworking between COM and
CORBA applications.

4.2. RMI–CORBA bridge

The widespread deployment of the Java language
and its use in the development of Web-based appli-
cations in combination with the presence of CORBA
as a mature middleware technology quickly led to
the combination of these two. Although Sun pro-
vided its own model for remote Java-object interac-

Ž .tions-the Java Remote Method Protocol RMI -the
effective combination of the Java language with the
CORBA architecture led OMG and Sun to contem-
plate the interoperation of RMI and CORBA. Ac-

w xcording to Sun Microsystems 15 , the Java develop-
ers would be able to use RMI-based Java objects and
interoperate with CORBA-based remote objects. In
June 1999, Sun and IBM announced the release of
the RMI architecture over IIOP protocol. According
to RMI-IIOP any RMI-based object can be accessed
by a CORBA one and vice versa. For this goal to be
achieved, OMG has adopted two standards for AOb-
ject By ValueB and AJava-to-IDLB mapping.

Apart from the adoption of IIOP as RMI’s alterna-
tive protocol, a new version of the rmic compiler has
been developed to generate IIOP stubsrties and IDL
interfaces. Furthermore, the use of new commands
and tools, for example for naming and storing in the
registry the RMI-objects and for ORB activation, is
required so that RMI-IIOP-based objects can be ac-
cessed by CORBA-based ones.

4.3. DCOM–RMI bridge

No special work has been done for bridging
COMrDCOM with RMI. In this field, the attention
is focused on the attempts for integrating the Java
language and COM and on the bridging of Jav-
aBeans with ActiveX.

()K. Raptis et al.rComputer Standards & Interfaces 23 2001 157–168 167

Until recently, Microsoft supported COMrDCOM
in its own edition of the Java language, Visual
Jqq. To provide Java users access to COM tech-
nology, Microsoft supported the Microsoft Java Vi-

w xsual Machine. According to Microsoft 9 , the
MSJVM provided all the mechanisms required for a
Java object to be viewed like a COM object and for
a COM object to be accessible like a Java object.
With the release of Visual Studio .net Microsoft has
stopped the active support of Java in favor of Ca.

As for JavaBeans—ActiveX bridging, a number
of companies, including Microsoft and Sun, provide
bridges for JavaBeans and ActiveX components to
interoperate with each other taking advantage of the
JavaBeans architecture flexibility in conjunction with
the underlying protocols. Moreover, a lot of the work
concerns the possibility of a JavaBean component to
be used in ActiveX-component based environments
like Microsoft Office or Visual Basic.

5. Conclusions

Most of the work in the area we surveyed con-
cerns bridging CORBA and DCOM. This is expected
considering the widespread deployment of Mi-
crosoft’s operating systems and the acceptance of
CORBA as the most mature middleware architecture.
Moreover, the early presence of a variety of COM
components and ORB products from commercial
companies led developers to use those products. As a
result the bridging between CORBA and DCOM was
an urgent need.

The attempts to bridge CORBA and RMI indicate
that although Sun states that it will continue to
support JRMP concurrently with IIOP as the RMI’s
communication protocol, the CORBA architecture
will prevail over RMI. Besides, OMG’s intention to
support Enterprise JavaBeans confirms that notion.
On the other hand, Microsoft’s and Sun’s work on
bridging ActiveX and JavaBeans apparently focus
more on the interoperation between their component
models than between their middleware remoting
technologies.

In the latest versions of CORBA and COM, which
are CORBA 3 and COMq , there is no further
contribution on the aspect of interoperability.
CORBA 3 adds three new features to the previous

specifications concerned with Java and Internet inte-
gration, quality of service control, and the CORBA

w xcomponent architecture 13 . On the other hand,
COMq enriches its ancestor with new features and
services like just-in-time activation, object pooling,
load balancing, in-memory databases, queued com-
ponents, automatic transactions, role-based security,

w xand events 4 . Moreover, Microsoft’s promotion of
its .net platform for next-generation Internet applica-
tions caused confusion about the future of technolo-

w xgies such as DCOM 3 .
The interoperation between different technology

objects is in practice much more complex and diffi-
cult than in theory. Although many attempts have
been undertaken to bridge the gap between the un-
derlying object architectures, these are currently not
providing true vendor-, language-, and technology-
independent interoperation between different soft-
ware objects. Unfortunately, until now the use of a
single middleware product is the most reliable solu-
tion. Compatibility problems between products of
different vendors persist even if the products are

w xcompliant with the same technology 2 . Even for the
available bridge tools their Afully compliantB state-
ments many times refer to a single vendor’s products
selection that does not support the vendor’s indepen-
dence theory. In the future, we hope that middleware
implementations using a common XML-based proto-
col will provide a new opportunity for truly interop-
erable objects.

References

w x1 T. Budd, An Introduction to Object-Oriented Programming.
Addison-Wesley Professional, Boston, USA, 1991.

w x2 J. Charles, Middleware Moves to the Forefront. IEEE Com-
Ž . Ž .puter 32 5 1999 17–19, May.

w x3 D. Deckmyn, Uncertainty surrounds Microsoft’s .net plans.
Ž . Ž .Computerworld 34 27 2000 12, July.

w x4 G. Eddon, COMq: the evolution of component services.
Ž . Ž .IEEE Computer 32 7 1999 104–106, July.

w x5 R. Geraghty, S. Joyce, T. Moriarty, G. Noone, COM–
CORBA Interoperability. Prentice-Hall Inc., New Jersey,
USA, 1999.

w x6 B. Meyer, The significance of Adot-NetB. Software Develop-
Ž . Ž .ment 8 14 2000 51–60, November.

w x7 Microsoft, DCOM Architecture, White Paper. Microsoft,
Redmond, WA, USA, 1998.

w x8 Microsoft, The Component Object Model Specification, Ver-
sion 0.9. Microsoft, Redmond, WA, USA, 1995 October.

()K. Raptis et al.rComputer Standards & Interfaces 23 2001 157–168168

w x9 Microsoft, Integrating Java and COM, A Technology
Overview. Microsoft, Redmond, WA, USA, 1999 January.

w x10 Object Management Group, The Common Object Request
ŽBroker: Architecture and Specification, Revision 2.0 Up-

.dated . Object Management Group, Needham, USA, 1996
July.

w x11 K. Raptis, D. Spinellis, S. Katsikas, Java as distributed object
glue. World Computer Congress 2000, Beijing, China, Au-
gust. International Federation for Information Processing,
2000.

w x12 K. Raptis, D. Spinellis, S. Katsikas, Distributed object bridges
and Java-based object mediator. InformatikrInformatique 2
Ž .2000 4–8, April.

w x Ž .13 J. Siegel, A preview of CORBA 3. IEEE Computer 32 5
Ž .1999 114–116, May.

w x14 Sun Microsystems, Java Remote Method Invocation Specifi-
cation, Beta Draft Revision 1.2. Sun Microsystems, Moun-
tain View, CA, USA, 1996 December.

w x15 Sun Microsystems. Java-Based Distributed Computing, RMI
and IIOP in Java, Sun Microsystems, Mountain View, CA,
USA, June 26, 1997. Online, Sun Microsystems. Available
online: http:rrwww.javasoft.comrprr1997rjunerstate-
ment970626-01.html, February 2001.

w x16 C. Szyperski, Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 1998.

Konstantinos Raptis is a PhD student in
the Department of Information and
Communication Systems at the Univer-
sity of the Aegean. His research inter-
ests include distributed applications,
software component models and dis-
tributed component interoperation tech-
nologies. Contact him at krap@aegean.
gr.

Diomidis Spinellis is an assistant profes-
sor in the Department of Technology
and Management at the Athens Univer-
sity of Economics and Business. Contact
him at dds@aueb.gr.

Sokratis Katsikas is vice rector at the
University of the Aegean. He is also a
professor in the Department of Informa-
tion and Communication Systems at the
University of the Aegean. Contact him
at ska@aegean.gr.

