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ABSTRACT 
Finding the right agents in a large and dynamic network to 

provide the needed resources in a timely fashion, is a long 

standing problem. This paper presents a method for information 

searching and sharing that combines routing indices with token-

based methods. The proposed method enables agents to search 

effectively by acquiring their neighbors’ interests, advertising 

their information provision abilities and maintaining indices for 

routing queries, in an integrated way. Specifically, the paper 

demonstrates through performance experiments how static and 

dynamic networks of agents can be ‘tuned’ to answer queries 

effectively as they gather evidence for the interests and 

information provision abilities of others, without altering the 

topology or imposing an overlay structure to the network of 

acquaintances. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]:  Distributed Artificial Intelligence 

– multiagent systems 

Keywords 
Artificial social systems, Performance, Scalability, Robustness, 

and Dependability 

1. INTRODUCTION 
Considering to be a decentralized control problem, information 

searching and sharing in large-scale systems of cooperative agents 

is a hard problem in the general case: The computation of an 

optimal policy, when each agent possesses an approximate partial 

view of the state of the environment and when agents’ 

observations and activities are interdependent (i.e. one agent’s 

actions affect the observations and the state of an other) [3], is 

hard. This fact, has resulted to efforts that either require agents to 

have a global view of the system [15], to heuristics [4], to pre-

computation of agents’ information needs and information 

provision capabilities for proactive communication [17], to 

localized reasoning processes built on incoming information 

[12,13,14], and to mathematical frameworks for coordination 

whose optimal policies can be approximated [11] for small (sub-) 

networks of associated agents.  

On the other hand, there is a lot of research on semantic peer to 

peer search networks and social networks [1,5,6,8,9,10,16,18,19] 

many of which deal with tuning a network of peers for effective 

information searching and sharing. They do it mostly by imposing 

logical and semantic overlay structures. However, as far as we 

know there is no work that demonstrates the effectiveness of a 

gradual tuning process in large-scale dynamic networks that 

studies the impact of the information gathered by agents as more 

and more queries are issued and served in concurrent sessions in 

the network. 

The main issue in this paper concerns ‘tuning’ a network of 

agents, each with a specific expertise, for efficient and effective 

information searching and sharing, without altering the topology 

or imposing an overlay structure via clustering, introduction of 

shortcut indices, or re-wiring. ‘Tuning’ is the task of sharing and 

gathering the necessary knowledge for agents to propagate 

requests to the right acquaintances, minimizing the searching 

effort, increasing the efficiency and the benefit of the system. 

Specifically, this paper proposes a method for information 

searching and sharing in dynamic and large scale networks, which 

combines routing indices with token-based methods for 

information sharing in large-scale multi-agent systems.  

This paper is structured as follows: Section 2 presents related 

work and motivates the proposed method. Section 3 states the 

problem and section 4 presents in detail the individual techniques 

and the overall proposed method. Section 5 presents the 

experimental setup and results, and section 6 concludes the paper, 

sketching future work.  

2. RELATED WORK 
Information provision and sharing can be considered to be a 

decentralized partially-observable Markov decision process 

[3,4,11,14]. In the general case, decentralized control of large-

scale dynamic systems of cooperative agents is a hard problem. 

Optimal solutions can only be approximated by means of 

heuristics, by relaxations of the original problem or by centralized 

solutions. The computation of an optimal control policy is simple 

given that global states can be factored, that the probability of 

transitions and observations are independent, the observations 

combined determine the global state of the system and the reward 

function can be easily defined as the sum of local reward 

functions [3]. 

However, in a large-scale dynamic system with decentralized 

control it is very hard for agents to possess accurate partial views 

of the environment, and it is even more hard for agents to possess 
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a global view of the environment. Furthermore, agents’ 

observations can not be assumed independent, as one agent’s 

actions can affect the observations of others: For instance, when 

one agent joins/leaves the system, then this may affect other 

agents’ assessment of neighbours’ information provision abilities. 

Furthermore, the probabilities of transitions can be dependent too; 

something that increases the complexity of the problem: For 

example, when an agent sends a query to another agent, then this 

may affect the state of the latter, as far as the assessed interests of 

the former are concerned.  

Considering independent activities and observations, authors in 

[4] propose a decision-theoretic solution treating standard action 

and information exchange as explicit choices that the decision 

maker must make. They approximate the solution using a myopic 

algorithm. Their work differs in the one reported here in the 

following aspects: First, it aims at optimizing communication, 

while the goal here is to tune the network for effective information 

sharing, reducing communication and increasing system’s benefit. 

Second, the solution is approximated using a myopic algorithm, 

but authors do not demonstrate how sub-optimal are the solutions 

computed (something we neither do), given their interest to the 

optimal solution. Third, they consider that transitions and 

observations made by agents are independent, which, as already 

discussed, is not true in the general case. Last, in contrast to their 

approach where agents broadcast messages, here agents decide not 

only when to communicate, but to whom to send a message too. 

Token based approaches are promising for scaling coordination 

and therefore information provision and sharing to large-scale 

systems effectively. In [11] authors provide a mathematical 

framework for routing tokens, providing also an approximation to 

solving the original problem in case of independent agents’ 

activities. The proposed method requires a high volume of 

computations that authors aim to reduce by restricting its 

application to static logical teams of associated agents. In 

accordance to this approach, in [12,13,14], information sharing is 

considered only for static networks and self-tuning of networks is 

not demonstrated. As it will be shown in section 5, our 

experiments show that although these approaches can handle 

information sharing in dynamic networks, they require a larger 

amount of messages in comparison to the approach proposed here 

and can not tune the network for efficient information sharing. 

Proactive communication has been proposed in [17] as a result of 

a dynamic decision theoretic determination of communication 

strategies. This approach is based on the specification of agents as 

“providers” and “needers”: This is done by a plan-based pre-

computation of information needs and provision abilities of 

agents. However, this approach can not scale to large and dynamic 

networks, as it would be highly inefficient for each agent to 

compute and determine its potential needs and information 

provision abilities given its potential interaction with 100s of 

other agents.  

Viewing information retrieval in peer-to-peer systems from a 

multi-agent system perspective, the approach proposed in [18] is 

based on a language model of agents’ documents collection. 

Exploiting the models of other agents in the network, agents 

construct their view of the network which is being used for 

forming routing decisions. Initially, agents build their views using 

the models of their neighbours. Then, the system reorganizes by 

forming clusters of agents with similar content. Clusters are being 

exploited during information retrieval using a kNN approach and 

a gradient search scheme. Although this work aims at tuning a 

network for efficient information provision (through re-

organization), it does not demonstrate the effectiveness of the 

approach with respect to this issue. Moreover, although during re-

organization and retrieval they measure the similarity of content 

between agents, a more fine grained approach is needed that 

would allow agents to measure similarities of information items or 

sub-collections of information items. However, it is expected that 

this will complicate re-organization. Based on their work on peer-

to-peer systems, H.Zhand and V.Lesser in [19] study concurrent 

search sessions. Dealing with static networks, they focus on 

minimizing processing and communication bottlenecks: Although 

we deal with concurrent search sessions, their work is orthogonal 

to ours, which may be further extended towards incorporating 

such features in the future. 

Considering research in semantic peer-to-peer systems1, most of 

the approaches exploit what can be loosely stated a “routing 

index”. A major question concerning information searching is 

“what information has to be shared between peers, when, and 

what adjustments have to be made so as queries to be routed to 

trustworthy information sources in the most effective and efficient 

way”.  

REMINDIN’ [10] peers gather information concerning the 

queries that have been answered successfully by other peers, so as 

to subsequently select peers to forward requests to: This is a lazy 

learning approach that does not involve advertisement of peer 

information provision abilities. This results in a tuning process 

where the overall recall increases over time, while the number of 

messages per query remains about the same. Here, agents actively 

advertise their information provision abilities based on the 

assessed interests of their peers: This results in a much lower 

number of messages per query than those reported in 

REMINDIN’.  

In [5,6] peers, using a common ontology, advertise their expertise, 

which is being exploited for the formation of a semantic overlay 

network: Queries are propagated in this network depending on 

their similarity with peers’ expertise. It is on the receiver’s side to 

decide whether it shall accept or not an advertisement, based on 

the similarity between expertise descriptions. According to our 

approach, agents advertise selectively their information provision 

abilities about specific topics to their neighbours with similar 

information interests (and only to these). However, this is done as 

time passes and while agents’ receive requests from their peers.  

The gradual creation of overlay networks via re-wiring, shortcuts 

creation [1,8,16] or clustering of peers [17,9] are tuning 

approaches that differ fundamentally from the one proposed here: 

Through local interactions, we aim at tuning the network for 

efficient information provision by gathering routing information 

gradually, as queries are being propagated in the network and 

agents advertise their information provision abilities given the 

                                                                 

1 General research in peer-to-peer systems concentrates either on 

network topologies or on distribution of documents: 

Approaches do not aim to optimize advertising, and search 

mostly requires common keys for nodes and their contents. 

They generate a substantial overhead in highly dynamic settings, 

where nodes join/leave the system. 



interests of their neighbours. Given the success of this method, we 

shall study how the addition of logical paths and gradual 

evolution of the network topology can further increase the 

effectiveness of the proposed method. 

3. PROBLEM STATEMENT 
Let N={A1, A2, …An} be the set of agents in the system. The 

network of agents is modelled as a graph G=(N,E), where N is the 

set of agents and E is a set of bidirectional edges denoted as non-

ordered pairs (Ai,Aj). The neighbourhood of an agent Ai includes 

all the one-hop away agents (i.e. its acquaintance agents) Aj such 

that (Ai, Aj)∈ E. The set of acquaintances of Ai is denoted by 

N(Ai).  

Each agent maintains (a) an ontology that represents categories of 

information, (b) indices of information pieces available to its local 

database and to other agents, and (c) a profile model for some of 

its acquaintances. Indices and profile models are described in 

detail in section 4. 

Ontology concepts represent categories that classify the 

information pieces available. It is assumed that agents in the 

network share the same ontology, but each agent has a set of 

information items in its local repository, which are classified 

under the concepts of its expertise. The set of concepts is denoted 

by C. It is assumed that the sets of items in agents’ local 

repositories are non-overlapping. 

Finally, it is assumed that there is a set of k queries T={t1,…, tk}. 

Each query is represented by a tuple <id,a,c,path,ttl>, where id is 

the unique identity of the query, a is a non-negative integer 

representing the maximum number of information pieces 

requested, c is the specific category to which these pieces must 

belong, path is a path in the network of agents through which the 

query has been propagated (initially it contains the originator of  

the query and each agent appends its id in the path before 

propagating the query), and ttl is a positive integer that specifies 

the maximum number of hops that the query can reach. In case 

this limit is exceeded and the corresponding number of 

information pieces have not been found, then the query is 

considered “unfulfilled” However, even in this case, a (possibly 

high) percentage of the requested pieces of information may have 

been found. 

The problem that this article deals with is as follows: Given a 

network of agents G=(N,E) and a set of queries T, agents must 

retrieve the pieces of information requested by queries, in 

concurrent search sessions, and further ‘tune’ the network so as to 

answer future similar queries in the more effective and efficient 

way, increasing the benefit of the system and reducing the 

communication messages required. The benefit of the system is 

the ratio of information pieces retrieved to the number of 

information pieces requested. The efficiency of the system is 

measured by the number of messages needed for searching and 

updating the indexes and profiles maintained. 

‘Tuning’ the network requires agents to acquire the necessary 

information about acquaintances’ interests and information 

provision abilities (i.e. the routing and profiling tuples detailed in 

section 4), so as to route queries and further share information in 

the most efficient way. This must be done seamlessly to searching: 

I.e. agents in the network must share/acquire the necessary 

information while searching, increasing the benefit and efficiency 

gradually, as more queries are posed. 

4. INFORMATION SEARCHING AND 

SHARING 

4.1 Overall Method 
Given a network G=(N,E) of agents and a set of queries T, each 

agent maintains indices for routing queries to the “right agents”, 

as well as acquaintances’ profiles for advertising its information 

provision abilities to those interested.  

To capture information about pieces of information accessible by 

the agents, each agent A maintains a routing index that is realized 

as a set of tuples of the form <Ai,c,s>. Each such tuple specifies 

the number s of information items in category c that can be 

reached by A through Ai, such that Ai∈N(A)∪{A}. This specifies 

the information provision abilities of Ai to A with respect to the 

information category c. As it can be noticed, each tuple 

corresponds either to the agent A itself (specifying the pieces of 

information classified in c available to its local repository) or to 

an acquaintance of the agent (recording the pieces of information 

in category c available to the acquaintance agent and to agents 

that can be reached through this acquaintance). The routing index 

is exploited for the propagation of queries to the “right” agents”: 

Those that are either more likely to provide answers or that know 

someone that can provide the requested pieces of information. 

 

Considering an agent Ai, the profile model of some of its 

acquaintances Aj, denoted by Pij,, is a set of tuples <Aj,c,p>, 

maintained by Ai. Such a tuple specifies the probability p that the 

acquaintance Aj is interested to pieces of information in category c 

(subsequently, such a probability is also denoted by pc
i,j). 

Formally, the profile model of an acquaintance Aj of Ai is 

Pij={<Aj, c, pc
i,j>|Aj∈N(Ai) and c∈C}. Profile models are 

exploited by the agents to decide where to ‘advertise’ their 

information provision abilities.  

Given two acquaintances Ai and Aj in G, the information searching 

and sharing process proceeds as it is depicted in Figure 1: 

Initially, each agent has no knowledge about the information 

provision abilities of its acquaintances and also, it possesses no 

information about their interests. When that the query 

<id,a,c,path,ttl> is sent to Ai from the agent Aj, then Ai has to 

update the profile of Aj concerning the category c, increasing the 

probability pc
i,j that Aj is interested to information in c. When this 

probability is greater than a threshold value (due to the queries 

about c that Aj has sent to Ai), then Ai assesses that it is highly 

probable for Aj to be interested about information in category c. 

Figure 1. Typical pattern for information sharing between 

two acquaintances (numbers show the sequence of tasks) 

Aj Ai 

1:Propagate query 

<id,a,c,path,ttl> 

2:Update profile 

<Aj,c,p> 

3:in case pc
i,j  is greater than 

a threshold value Ai informs 

about its information 

provision abilities 

concerning c <Ai,c,s> 



This leads Ai to inform Aj about its information provision abilities 

as far as the category c is concerned. This information is being 

used by Aj to update its index about Ai. This index is being 

exploited by Aj to further propagate queries, and it is further 

propagated to those interested in c. Moreover, the profile of Aj 

maintained by Ai guides Ai to propagate changes concerning its 

information provision abilities to Aj.  

The above method has the following features: (a) It combines 

routing indices and token-based information sharing techniques 

for efficient information searching and sharing, without imposing 

an overlay network structure. (b) It can be used by agents to adapt 

safely and effectively to dynamic networks. (c) It supports the 

acquisition and exploitation of different types of locally available 

information for the ‘tuning’ process. (d) It extends the token-

based method for information sharing (as it was originally 

proposed in [12,13]) in two respects: First, to deal with categories 

of information represented by means of ontology concepts and not 

with specific pieces of information, and second, to guide agents to 

advertise information that is semantically similar to the 

information requested, by using a semantic similarity measure 

between information categories. Therefore, it paves the way for 

the use of token-based methods for semantic peer-to-peer systems. 

This is further described in section 4.3. (d) It provides a more 

sophisticated way for agents to update routing indices than that 

originally proposed in [2]. This is done by gathering and 

exploiting acquaintances’ profiles for effective information 

sharing, avoiding unnecessary and cyclic updates that may result 

to misleading information about agents’ information provision 

abilities. This is further described in the next sub-section. 

4.2 Routing Indices 
As already specified, given a network of agents G=(N,E), and the 

set N(A) of agent’s A acquaintances, the routing index (RI) of A 

(denoted by RI(A)) is a collection of at most |C|⋅|N(A)∪{A}| 

indexing tuples <Ak,c,s>. The key idea is that given such an index 

and a request concerning c, A will forward this request to Ak if the 

resources available via Ak (i.e. the information abilities of Ak to A) 

can best serve this request. To compute the information abilities 

of Ak to A, all tuples <Aj,c,si> concerning all agents in N(Ak)-{A} 

must be aggregated. Crespo and Garcia-Molina [2] examine 

various types of aggregations. In this paper, given some tuples 

<Ai1,c,s11>,<A21,c,s21,…> maintained by the agent Ak, their 

aggregation is the tuple <Ak,c,sum(s11,s21...)>. This gives 

information concerning the pieces of information that can be 

provided through Ak, but it does not distinguish what each of Ak’s 

acquaintances can provide: This is an inherent feature of routing 

indices. Without considering the interests of its acquaintances, Ak 

may compute aggregations concerning agents in N(A)∪{A}-{Ai} 

and advertise/share its information provision abilities to each 

agent Ai in N(A).  

For instance, given the network configuration depicted in Figure 2 

and a category c, agent Ak sends the aggregation of the tuples 

concerning agents in N(Ak)∪{A}-{A2} (denoted as 

aggregation(Ak,A1,c)) to agent A2, which records the tuple 

<Ak,c,X>. Similarly the aggregation of the tuples concerning the 

agents in N(Ak)∪{Ak}-{A1} (denoted as aggregation(Ak ,A2,c)) is 

sent to the agent A1, which also records the tuple <Ak,c,s>. It must 

be noticed that A1 and A2 record the information provision 

abilities of Ak each from “its own point of view”. Every time the 

tuple that models the information provision abilities of an agent 

changes, the aggregation has to re-compute and send the new 

aggregation to the appropriate neighbors in the way described 

above. Then, its neighbors have to propagate these updates to 

their acquaintances, and so on.  

Figure 2.Aggregating and sharing information provision 

indices. 

Routing indices may be misleading and lead to inefficiency in 

arbitrary graphs containing cycles. The exploitation of 

acquaintances’ profiles can provide solutions to these 

deficiencies. Each agent propagates its information provision 

abilities concerning a category c only to these acquaintances that 

have high interest in this category. As it has been mentioned, an 

agent “expresses” its interest in a category by propagating queries 

about it. Therefore, indices concerning a category c are 

propagated in the inverse direction in the paths to which queries 

about c are propagated. Indices are propagated as long as agents 

in the path have a high interest in c. Queries can not be 

propagated in a cyclic fashion since an agent serves and 

propagates queries that have not been served by it in a previous 

time point. Therefore, due to their relation to queries, indices are 

not propagated in a cyclic fashion, as well. However, there is still 

a specific case where cycles can not be avoided. Such a case is 

shown in Figure 3:  

 

 

Figure 3. Cyclic pattern for the sharing of indices. 

While the propagation of the query q’ causes the propagation of 

information provision abilities of agents in a non cyclic way 

(since the agent A recognizes that q’ has been served), the query q 

causes the propagation of information abilities of A to other 

agents in the network, causing, in conjunction to the propagation 

of indices due to q’, a cyclic update of indices. 

4.3 Profiles 
The key assumption behind the exploitation of acquaintances’ 

profiles, as it was originally proposed in [12,13], is that for an 

agent to pass a specific information item, this agent has a high 

interest on it or to related information. As already said, in our 

case, acquaintances’ profiles are created based on received queries 

and specify the interests of acquaintances to specific information 

categories. Given the query <id,a,c,path,ttl> sent from Aj to Ai, Ai 

has to record not only the interest of Aj to c, but the interest of Aj 

to all the related classes, given their semantic similarity to c. 

Ak 

A2 A1 

aggregation (Ak,A2,c)  

aggregation (A1, Ak, c) 

Notation 

Acquaintance relation 

Flow of query q 

Flow of indices due to q 

Flow of query q’ 

Flow of indices due to q’ 



To measure the similarity between two ontology classes we use 

the similarity function sim:C×C→[0,1] [7]: 

sim(ci,cj) = 
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 where l is the length of the shortest path between ci and cj   in the 

graph spanned by the sub concept relation and h the minimal level 

in the hierarchy of either ci,or cj. α and β are parameters scaling 

the contribution of shortest path length l and h, respectively.  

Based on previous works we choose α=0.2 and β=0.6 as optimal 

values. It must be noticed that we measure similarity between sub-

concepts, assigning a very low similarity value between concepts 

that are not related by the sub-concept relation. This is due to that, 

each query about information in category ci can be answered by 

information in any sub-category of ci close enough to ci. Given a 

threshold value 0.3, sim(ci,cj)≥0.3 indicates that an agent 

interested in ci is also interested in cj, while sim(ci,cj)<0.3 

indicates that an agent interested in ci is unlikely to be interested 

in cj. This threshold value was chosen after some empirical 

experiments with ontologies.  

The update of Ai’s assessment on p
c
i,j based on an incoming query 

<id,a,c,path,ttl> from Aj is computed by leveraging Bayes Rule as 

follows [12,13]: 
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According to the first case of the equation, the probability that the 

agent that has propagated a query about c to be interested about 

information in ck, is updated based on the similarity between c and 

ck. The second case updates the interests of agents other than the 

requesting one, in a way that ensures that normalization works. It 

must be noticed that in contrast to [12,13], the computation has 

been changed in favour to the agent that passed the query.  

The profiles of acquaintances enable an agent to decide where and 

which advertisements to be sent. Specifically, for each Aj∈N(Ai) 

and c∈C for which pc
i,j  is greater than a threshold value (currently 

set to 0.5), the agent Ai aggregates the vectors (Ak,c,s) of each 

agent Ak∈N(Ai)∪{Ai}-{Aj}and sends the tuple (Ai,c,s’) to Aj. Also, 

given a high pc
i,j, when a change to an index concerning c occurs 

(e.g. due to a change in Ai’s local repository, or due to that the set 

of its acquaintances changed), Ai sends the updated aggregated 

index entry to Aj. Doing so, the agent Aj which is highly interested 

to pieces of information in category c updates its index so as to 

become aware of the information provision abilities of Ai as far as 

the category c is concerned. 

4.4 Tuning 
Tuning is performed seamlessly to searching: As agents propagate 

queries to be served, their profiles are getting updated by their 

acquaintances. As their profiles are getting updated, agents 

receive the aggregated indices of their acquaintances, becoming 

aware of their information provision abilities on information 

categories to which they are probably interested. Given these 

indices, agents further propagate queries to acquaintances that are 

more likely to serve queries, and so on. Concerning the routing 

index and the profiles maintained by an agent A, it must be 

pointed that A does not need to record all possible tuples, i.e. 

|C|⋅|N(A)∪{A}|: It records only those that are of particular interest 

for searching and sharing information, depending on the expertise 

and interests of its own and its acquaintances. 

Initially, agents do not possess profiles of their acquaintances. For 

indices there are two alternatives: Either agents do not initially 

possess any information about acquaintances’ local repositories 

(this is the “no initialization of indices” case), or they do (this is 

the “initialization of indices” case). Given a query, agents 

propagate this query to those acquaintances that have the highest 

information provision abilities. In the “no initialization of indices” 

case where an agent does not initially possess information about 

its acquaintances’ abilities, it may initially propagate a query to all 

of them, resulting to a pure flooding approach; or it may 

propagate the query randomly to a percentage of them. In the 

“initialization of indices” case, where an agent initially possesses 

information about its acquaintances’ local repository, it can 

propagate queries to all or to a percentage of those that can best 

serve the request. We considered both cases in our experiments. 

Given a static setting where agents do not shift their expertise, and 

the distribution of information pieces does not change, the 

network will eventually reach a state where no information 

concerning agents’ information abilities will need to be 

propagated and no agents’ profiles will need to be updated: 

Queries shall be propagated only to those agents that will lead to a 

near-to-the-maximum benefit of the system in a very efficient 

way. In a dynamic setting, agents may shift their expertise, their 

interests, they may leave the network at will, or welcome new 

agents that join the network and bring new information provision 

abilities, new interests and new types of queries. In this paper we 

study settings where agents may leave or join the network. This 

requires agents to adapt safely and effectively. Towards this goal, 

in case an agent does not receive a reply from one of its 

acquaintances within a time interval, then it retracts all the indices 

and the profile concerning the missing acquaintance and re-

propagates the queries that have been sent to the missing agent 

since the last successful handshake, to other agents. In case a new 

agent joins the network, then its acquaintances that are getting 

aware of its presence propagate all the queries that have processed 

by them in the last n time points (currently n is set to 6) to the 

newcomer. This is done so as to inform the newcomer about their 

interests and initiate information sharing. 

5. EXPERIMENTAL SETUP 
To validate the proposed approach we have built a prototype that 

simulates large networks. To test the scalability of our approach 

we have run several experiments with various types of networks. 

Here we present results from 3 network types with |N|=100, 

|N|=500 and |N|=1000 that provide representative cases. Networks 



are constructed by distributing randomly |N| agents in an n×n area, 

each with a “visibility” ratio equal to r. The acquaintances of an 

agent are those that are “visible” to the agent and those from 

which the agent is visible (since edges in the network are bi-

directional). Details about networks are given in Table 1. The 

column avg(|N(A)|) shows the average number of acquaintances 

per agent in the network and the column |T| shows the number of 

queries per network type. It must be noticed that the TypeA 

network is more “dense” than the others, which are much larger 

than this.  

Each experiment ran 40 times. In each run the network is 

provided with a new set of randomly generated queries that are 

originated from randomly chosen agents. The agents search and 

gather knowledge that they further use and enrich, tuning the 

network gradually, run by run. Each run lasts a number of rounds 

that depends on the ttl of queries and on the parameters that 

determine the dynamics of the network: To end a run, all queries 

must have either been “served” (i.e. 100% of the information 

items requested must have been found), or they must have been 

“unfulfilled” (i.e. have exceeded their ttl). It must be noticed that 

in case of a dynamic setting, this ending criterion causes some of 

the queries to be “lost”. This is the case when some queries are 

the only “active” remained and the agents to whom they have 

been propagated left the network without their acquaintances to 

be aware of it. 

Table1: Network types 

 |N| R N avg(|N(A)|) |T| 

TypeA 100 10 25 50 363 

TypeB 500 10 125 20 1690 

TypeC 1000 10 250 10 3330 

Information used in the experiments is synthetic and is being 

classified in 15 distinct categories: Each agent’s expertise 

comprises a unique information category. For the category in its 

expertise each agent holds at most 1000 information pieces, the 

exact number of which is determined randomly.  

At each run a constant number of queries are being generated, 

depending on the type of network used (last column in Table 1). 

At each run, each query is randomly assigned to an originator 

agent and is set to request a random number of information items, 

classified in a sub-category of the query-originator agent’s 

expertise. This sub-category is chosen in a random way and the 

requested items are less than 6000.  The ttl for any query is set to 

be equal to 6. In such a setting, the demand for information items 

is much higher than the agents’ information provision abilities, 

given the ttl of queries: The maximum benefit in any experimental 

case is much less than 60% (this has been done so as to challenge 

the ‘tuning’ task in settings where queries can not be served in the 

first hop or after 2-3 hops).  

Given that agents are initially not aware of acquaintances’ local 

repository (“no initialization of indices” case), we have run 

several evaluation experiments for each network type depending 

on the percentage of acquaintances to which a query can be 

propagated by an agent. These types of experiments are denoted 

by TypeX-Y, where X denotes the type of network and Y the 

percentage of acquaintances: Here we present results for Y equal 

to 10, 20 or 50. For instance, TypeA-10 denotes a setting with a  
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Figure 4. Results for static networks as agents gather 

information about acquaintances’ abilities and interests 

network of TypeA where each query is being propagated to at 

most 10% of an agent’s acquaintances. The exact number of 

acquaintances is randomly chosen per agent and queries are being 

propagated only to those acquaintances that are likely to best 

serve the request. Figures 4 and 5 show experiments for static and 

dynamic networks of TypeA-10 (dense network with a low 

percentage of acquaintances), TypeB-20 (quite dense network 

i-messages per run 

q-messages per run 

benefit per run 

message gain per run 



with a low percentage of acquaintances), with initialization and 

without initialization, and TypeC-50 (not a so dense network with 

a quite high percentage of acquaintances). To demonstrate the 

advantages of our method we have considered  networks without 
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Figure 5. Results for dynamic networks as agents gather 

information about acquaintances’ abilities and interests  

routing indices for TypeC-50 and TypeB-20 networks: Agents in 

these networks, similarly to [12,13], share information concerning 

their local repository based on their assessments on 

acquaintances’ interests.  

Results computed in each experiment show the number of query-

propagation messages (q-messages), the number of messages for 

the update of indices (i-messages), the benefit of the system, i.e. 

the average ratio of information pieces provided to the number of 

pieces requested per query, and the message gain, i.e. the ratio of 

benefit to the total number of messages. The horizontal axis in 

each diagram corresponds to the runs. 

As it is shown in Figure 4, as agents search and share information 

from run 1 to run 40, they manage to increase the benefit of the 

system, by drastically reducing the number of messages. Also (not 

shown here due to space reasons) the number of unfulfilled 

queries decrease, while the served queries increase gradually. 

Experiments show: (a) An effective tuning of the networks as time 

passes and more queries are posed to the network, even if agents 

maintain the models of a small percentage of their acquaintances. 

(b) That ‘tuning’ can greatly facilitate the scalability of the 

information searching and sharing tasks in networks.  

To show whether initial knowledge about acquaintances local 

repository (the “initialization of indices” case) affects the effective 

tuning of the network, we provide representative results from the 

TypeB-20 network. As it is shown in Figure 4, the tuning task in 

this case does not manage to achieve the benefit of the system 

reported for the “no initialization of indices” case. On the 

contrary, while the tuning affects the i-messages drastically; the q-

messages are not affected in the same way: The q-messages in the 

“initialization of indices” case are less than those in the TypeB-20 

with “no initialization of indices” case. This is further shown in a 

more clear way in the message gain of both approaches: The 

message gain of the TypeB-20 with “initialization of indices” case 

is higher than the message gain for the TypeB-20 experiment with 

“no initialization of indices”. Therefore, initial knowledge 

concerning local information of acquaintances can be used for 

guiding searching and tuning at the initial stages of the tuning 

task, only if we need to gain efficiency (i.e. decrease the number 

of required messages) to the cost of loosing effectiveness (i.e. 

have lower benefit): This is due to the fact that, as agents posses 

information about acquaintances’ local repositories, the “tuning” 

process enables the further exchange of messages concerning 

agents’ information provision abilities only in cases where agents’ 

profiles provide evidence for such a need. However, initial 

information about acquaintances’ local repositories may mislead 

the searching process, resulting in low benefit.  In case we need to 

gain effectiveness to the cost of reducing efficiency, this type of 

local knowledge does not suffice. Considering also the 

information sharing method without routing indices (“without 

RIs” cases), we can see that for static networks it requires more q-

messages without managing to “tune” the system, while the 

benefit is nearly the same to the one reported by our method. This 

is shown clearly in the “message gain” diagrams in Figure 4.   

Figure 5 provides results for dynamic networks. These are results 

from a particular representative case of our experiments where 

more than 25% of (randomly chosen) nodes leave the network in 

each run during the experiment. After a random number of 

rounds, a new node may replace the one left. This newcomer has 

no information about the network. Approximately 25% of the 

nodes that leave the network are not replaced for 50% of the 

experiment, and approximately 50% are not replaced for more 

i-messages per run 

q-messages per run 

benefit per run 

message gain per run 



than 35% of the experiment. In such a highly dynamic setting with 

very scarce information resources distributed in the network, as 

Figure 5 shows, the tuning approach has managed to keep the 

benefit to acceptable levels, while still reducing drastically the 

number of i-messages. However, as it can be expected, this 

reduction is not so drastic as it was in the corresponding static 

cases. Figure 5 shows that the message gain for the dynamic case 

is comparable to the message gain for the corresponding (TypeC-

50) static case, which proves the value of this approach for 

dynamic settings. The comparison to the case where no routing 

indices are exploited reveals the same results as in the static case, 

to the cost of a large number of messages. 

Finally it must be pointed that the maximum number of messages 

per query required by the proposed method is nearly 12, which is 

less than that that reported by other efforts.  

6. CONCLUSIONS 
This paper presents a method for semantic query processing in 

large networks of agents that combines routing indices with 

information sharing methods. The presented method enables 

agents to keep records of acquaintances’ interests, to advertise 

their information provision abilities to those that have a high 

interest on them, and to maintain indices for routing queries to 

those agents that have the requested information provision 

abilities. Specifically, the paper demonstrates through extensive 

performance experiments: (a) How networks of agents can be 

‘tuned’ so as to provide requested information effectively, 

increasing the benefit and the efficiency of the system. (b) How 

different types of local knowledge (number, local information 

repositories, percentage, interests and information provision 

abilities of acquaintances) can guide agents to effectively answer 

queries, balancing between efficiency and efficacy. (c) That the 

proposed “tuning” task manages to increase the efficiency of 

information searching and sharing in highly dynamic and large 

networks. (d) That the information gathered and maintained by 

agents supports efficient and effective information searching and 

sharing: Initial information about acquaintances information 

provision abilities is not necessary and a small percentage of 

acquaintances suffices. 

Further work concerns experimenting with real data and 

ontologies, differences in ontologies between agents, shifts in 

expertise and the parallel construction of overlay structure. 
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